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ABSTRACT 

3D displays have various aspect ratios (e.g., 16:9, 4:3, and 3:2). 

Watching 3D videos with the wrong aspect ratio decreases the 

quality of the viewing experience. We have developed a smart 

reframing solution that uses a visual attention model for stereo-

scopic 3D video to identify the prominent visual regions of every 

stereoscopic frame. Our method uses several saliency indicators 

such as depth, edges, brightness, color, and movement. Addi-

tionally, our method provides a dynamic cropping window that 

slides smoothly from frame to frame. 

Index Terms — 3D, stereoscopic, 3D TV, 3D displays, as-

pect ratio, reframing, visual attention model, saliency map, qua-

ternion, depth map,  texture map. 

1. INTRODUCTION 

3D-capable consumer devices are currently available in many 

different aspect ratios. 3D TVs, usually larger than 40”, feature a 

16:9 aspect ratio while it is common for smaller displays such as 

the ones found on tablets and mobile devices to have 4:3 and 3:2 

aspect ratios, respectively (see Fig. 1). Stereoscopic 3D media 

creators tailor their content for a specific aspect ratio (usually 

16:9). Unfortunately, playing this content on 3D displays with 

aspect ratios that are different to the intended one might degrade 

the quality of the viewing experience. 

 

 
Several solutions have been proposed in order to compensate for 

this variation in aspect ratios. The straightforward option is to 

add black bars to the screen, which can be horizontal (also 

known as letterboxing) or vertical (also known as pillarboxing), 

depending on the original and new aspect ratios [1]. The main 

problem with this option is that a significant part of the screen 

will remain unused. This is particularly problematic for small 

devices. A second option consists of cropping the borders of the 

video frames so that the modified frames have the proper aspect 

ratio. This technique, known as centered cropping, eliminates 

visual information without taking into account that these regions 

might actually be of interest to the viewers. 

An alternative solution is to supervise the reframing process 

and manually choose the areas of interest on a frame-by-frame 

basis. Human observers can detect the important visual points on 

the screen and control the location of the bounding box (i.e., the 

region of the frame that will prevail after the reframing process). 

This process, known as pan and scan in 2D video, ensures that 

the modified content will be meaningful to the viewers. This is 

evidently expensive, time-consuming and not suitable for real-

time applications. A better solution is to have an automatic pro-

cess that identifies the main visual information and keeps it in-

side the bounding box. 

A number of methods have been proposed for automatic 

content reframing. A vast majority of these schemes, however, 

deal exclusively with 2D still images [2], [3], [4]. For the case of 

automatic 2D video reframing, [5] proposes a scheme that pre-

serves visually important regions as well as temporal stability. 

The Visual Attention Model (VAM) used in this scheme is taken 

from [6], [7]. Two Kalman filters are used to ensure good tem-

poral consistency by smoothing the change in the values of the 

bounding box center coordinates on every frame. 

Color and depth are employed to create a visual attention 

model for 3D images in [8]. Results and conclusions, however, 

were drawn using data from merely five stereoscopic images. 

An early proposal for a visual attention model for 3D video 

is found in [9]. The proposed scheme uses cues such as stereo 

disparity, image flow  and motion. Relative depth was employed 

as a target selection criterion. This scheme is able to detect the 

moving object that is closest to the cameras. Although this solu-

tion might be useful for some videos, it will not provide accepta-

ble results for complex scenes like the ones usually found in 

commercial videos made by the entertainment industry. 

A VAM for 3D video is presented in [10]. The model uses 

features such as depth information, luminance, color and motion. 

This scheme, however, was developed and tested on multi-view 

videos and cannot be directly applied to stereoscopic video con-

tent. It is also computationally expensive, making it unsuitable 

for near real-time application.   

Most of the schemes proposed in the literature provide a sa-

liency map as the end result. For automatic video reframing, 

however, this is only an intermediate step towards a final solu-

tion. Once the saliency data has been obtained, a decision has to 

be made as to what sections of each frame need to be cropped. 

This is particularly challenging for the case of video since the 

bounding box cannot change abruptly from frame to frame. The 

case of 3D video adds an extra challenge: careless cropping 

might cause window violations that will produce an unpleasant 

3D experience to the viewers. Having these issues in mind, we 

have developed a complete solution that identifies the prominent 

visual regions by using a VAM for stereoscopic 3D video. Our 

method uses several saliency indicators such as depth, edges, 

brightness, color, and movement. Additionally, our method pro-

vides a dynamic bounding box that slides smoothly from frame 

to frame and lowers the chances of getting window violations. 

The rest of the paper is organized as follows. Section II 

provides an introduction to our visual attention model and the 

creation of depth maps. Section III describes our algorithm, in-

cluding the choice of the bounding box and the temporal 

smoothing process. Section IV shows our experiments. Conclu-

sions are drawn in Section V. 
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Fig. 1. Three different aspect ratios. 



2. OUR  3D VISUAL ATTENTION MODEL 

We have developed a Visual Attention Model (VAM) for 3D 

content that computes a disparity saliency map and combines 

this information with a couple of 2D saliency indicators, namely, 

local edges and global texture. Local edges emphasize the 

boundary of the objects in an image or video frame while global 

texture saliency refers to basic visual features that attract peo-

ple’s attention such as color, brightness motion. Disparity-based 

saliency assumes that objects that are close to the camera draw 

more visual attention than distant objects. This information can 

be obtained by comparing the left and right views of a stereo-

scopic image. Fig. 2 provides an example of how our scheme 

combines the 3D disparity data with the two other maps to pro-

duce a definitive saliency map for 3D video. 

2.1 Local Edge Saliency Map 

We compute a local edge saliency map for each frame. This map 

is computed as the gradient of the intensity values of the frame’s 

pixels. An example is shown in Figure 2b. 

2.2 Disparity Saliency Map 

People tend to give more importance to objects that are closer to 

them than to the ones that are further back. Information about the 

closeness of objects can be obtained by comparing the left and 

right views of each frame. The steps for computing a disparity-

based saliency map are as follows. 

In order to retain a fast algorithm, we first down-sample the 

left and right views of each stereoscopic frame. We then extract 

distinctive feature points from each down-sampled view employ-

ing the shift-invariant feature transform [11]. Feature points 

from both views are matched, and disparities of each pair of 

matching points are computed. Next, we remove some pairs of 

the matching points to further ensure the matching accuracy of 

the remaining points. This is done by discarding the points with 

large vertical disparities and points with horizontal disparities 

that heavily deviate from the majority of the points. A pruning 

algorithm [12] is then used to retain a set of sparse feature points 

in order to further increase the robustness and accuracy. This 

pruning algorithm trims the less robust points based on their 

temporal stability. We match and track all feature points among 

temporal frames. A point is removed if it is temporally less ro-

bust and its disparity is similar to a more robust neighboring 

point. 

Subsequently, a dense disparity map (one value per pixel) is 

generated by linearly interpolating the sparse feature points 

based on Delaunay triangulation. Areas that are not included in 

any Delaunay triangle are assigned the maximum disparity val-

ue. The disparity-based saliency map is finally obtained by as-

signing high saliency to small disparity values and low saliency 

to large disparity values. Refer to Fig. 2d for an example of this 

type of map. 

2.3 Global Texture Saliency Map 

It has been reported [13] that viewers pay special attention to 

basic visual features such as color, brightness and motion. 

Therefore, it is important to use this information to determine the 

salient objects of video frames. Although several computational 

models have been proposed to simulate human visual attention 

[14], we decided to use the scheme proposed in [15] as a starting 

point for our global texture map since it is fast and produces 

better results than other state-of-the-art schemes. 

For every pixel, we express information related to color, in-

tensity and motion in the form of a quaternion [16]. This allows 

us to obtain a quaternion frame q. 

                           (1) 

where    is the normalized disparity map; α, β, and γ are con-

stant values between 0 and 1; μi, i = 1, 2, 3 satisfies   
  

                            . M is the motion 

channel, C1 and C2 are the two color channels recommended in 

[17] (red/green and blue/yellow, respectively), and I is the inten-

sity channel. C1, C2 and I are computed as in [15]. In order to 

obtain M, we first compute the absolute value of the difference 

between the intensity channel of the current frame I(n) and the 

intensity channel from a previous frame I(n - n0), where n0 is a 

small positive integer number. The obtained result is normalized 

so that the highest value equals 1. For every pixel, the motion 

component takes the value of this normalized quantity provided 

that it is above a certain threshold τM, where 0 < τM ≤ 1. Other-

wise, the motion component for that pixel equals 0. 

Readers familiar with [15] will notice that we have added 

weights to the sum of the four channels in (1). This decision was 

taken after implementing the original scheme and conducting 

several subjective tests with a small group of people and deter-

mining that, for 3D videos, the motion channel is more relevant 

than the other channels to create an effective visual attention 

model. As in [15], we also use the Quaternion Fourier Transform 

(QFT) [16] to produce a saliency map. We implemented this 

method using the quaternion toolbox for Matlab offered in [18]. 

An example of a global texture saliency map is shown in 

Fig. 2c. The map indicates that the most salient regions of the 

frame are the bright light seen through the window and the only 

section of the frame with significant movement, which is the 

right arm of the lady (the sequence is handheld so there is rela-

tive movement in the entire frame). 

2.4 Combined 3D Saliency Map 

Finally, we fuse the normalized local edge saliency map   , the 

normalized disparity saliency map   , and the normalized global 

texture saliency map    as a combined 3D saliency map   , by 

computing the average value:                .       (2) 

 

3. AUTOMATIC 3D VIDEO REFRAMING 

Our automatic stereoscopic 3D video reframing solution produc-

es the three saliency maps described in Section II and fuses them 

to create a single model for visual attention. There are several 

proposals for combining saliency maps such as the schemes 

detailed in [3]. For our method, the maps are normalized and 

averaged to obtain the combined saliency map. 

For the case of video, decisions on how to crop a frame so 

that it fits its new aspect ratio cannot be solely based on the in-

formation available from its associated saliency map. We also 

need to consider the cropping locations of the previous frames so 

that we can ensure that the location of the bounding box does not 

result in video flickering. To achieve this, we have designed a 

scheme that provides smooth temporal cropping. 

The first goal of our scheme is to identify the area in the sa-

liency map with the highest “energy.” The energy in an area is 

defined as the summation of all saliency values within this area. 

For a fast implementation, an accumulated energy matrix is pre-

computed. We normalize the accumulated energy matrix so that 

the maximum value in the matrix is 1. The value of this matrix at 

each location P, denoted as E(P), is calculated as the energy of 

the rectangular region defined between the pixel on the top-left 

corner of the map and the current pixel P. Then, the energy in 

any rectangular region in the map can be later computed as three 



summations rather than requiring the sum of all the pixel values 

in this area. As shown in Fig. 3, the energy in the rectangle 

ABCD can be simply computed as: 

 E(ABCD) = E(A) - E(B) - E(D) + E(C).  (3) 

Based on the desired aspect ratio, we crop the frame leaving 

the rectangular region that contains the highest energy. 

 

 
 

 
Quite often, parts of an object have high saliency values 

whereas other parts have low values. Reframing solely based on 

the energy of a saliency map may result in cropping some im-

portant object.  In order to avoid this, we propose to use a very 

simple yet effective approach. First, we slightly reduce the size 

of the bounding box by μ pixels when searching for the highest 

energy area. Then, we expand the bounding box by μ pixels on 

all sides with the purpose of including the entire important object 

in the cropped new frame. This shrinking and expanding ap-

proach also implicitly brings the salient area towards the center 

of the new frame. Furthermore, this scheme reduces the proba-

bility of experiencing window violation after reframing. 

In order to ensure the temporal stability of the locations of 

the cropping window, we first make sure that the locations of the 

consecutive frames are spatially constrained if no scene change 

is detected. That is, the location difference of two consecutive 

frames is smaller than a threshold δ. The value of δ is determined 

by the resolution of the original video and the amount of motion 

contained in the sequence.  

Although a constraint of cropping locations is set in the 

previous step, local jerks still exist. This is often caused by small 

differences on the consecutive saliency maps which result from 

insignificant motion or lighting changes. Therefore, when choos-

ing the bounding box for the current frame, we give higher prior-

ity to the bounding box location of the previous frame. To this 

end, if the energy increase associated with the new location is 

less than a threshold τE, we keep using the previous location. In 

addition, a temporal filter using a simple moving average algo-

rithm is employed to further ensure the smoothness of the crop-

ping locations. Finally, the cropping locations are rounded to 

integers after applying the temporal filter in order to avoid spa-

tial interpolation of a frame. 

4. EXPERIMENTAL RESULTS 

We captured dozens of HD (high definition) stereoscopic video 

sequences using a 3D video camera. Each video frame is com-

posed of a side-by-side left and a right view, each with an 8:9 

aspect ratio, resulting in a 3D frame with a 16:9 aspect ratio. 

This format is widely accepted by 3D displays of 16:9 aspect 

ratios. The video resolution of the side-by-side frame is 1920 

pixels × 1080 pixels. The videos are several seconds long (from 

10 to 43 seconds) and some of them were recorded with a 

handheld camera and others had the camera mounted on a tripod. 

Most of the videos feature people working, playing or walking 

and we include both indoor and outdoor sequences. 

We reframed these videos to a 4:3 aspect ratio (i.e. a 2:3 as-

pect ratio for each view) using the proposed method. We used a 

value of 5 for n0. The threshold τM was set to 0.6 and the weights 

α, β, and γ were all set to 0.1. 

For HD stereoscopic video sequences, we employ μ =100 

pixels in the shrinking and expanding stage. We found in our 

experiments that a δ value of 15 pixels is able to sufficiently 

track the moving objects and maintain a relatively constrained 

position of the bounding box. The energy increase threshold τE is 

set to 1%. Finally, a window size of 20 frames is used for the 

window of the smoothness filter. 

Due to space limitations we will only provide two examples 

of how our method takes decisions based on both the combined 

saliency map and the positions of the neighboring bounding box. 

Fig. 4 shows the various saliency maps created for one of 

the frames of a sequence called “Playground” which was cap-

tured with a handheld camera. In this example, both the global 

texture map and the disparity map indicate that the most relevant 

region of the frame is the young girl. The global texture map 

highlights her because she is moving while she is emphasized by 

the disparity map because she is close to the 3D camera. The 

combined saliency map clearly indicates that the young girl oc-

cupies the most salient region of the frame. This map informs 

our reframing method where to place the bounding box. 

Another example is illustrated in Fig. 5 which includes a 

frame from the sequence “Main Mall,” captured with a 3D cam-

era placed on a tripod. In this case, the global texture map high-

lights the people walking down the street. On the other hand, 

both the local edge map and the disparity map highlight the bi-

cycle as the main object on the frame. Finally, the combined 

map identifies all the salient regions of the frame. This allows 

our method to select a bounding box for reframing purposes. Fig. 

5 is a clear example of the importance of employing a vast num-

ber of features to identify the objects of highest visual interest 

for each stereoscopic video frame. The combination of the vari-

ous saliency maps provides an accurate visual attention model 

for 3D content. 

5. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a novel and complete pipeline to re-

frame 3D content for displaying on screens of different aspect 

ratios. We first compute a bottom-up saliency map that was care-

fully fused from luminance, chrominance, motion, and disparity 

 
 

Figure 3. The energy in the rectangle ABCD is defined as E(ABCD) 

= E(A) - E(B) - E(D) + E(C). 

(a) (b) (c)

(d) (e) (f)

 
Figure 1. The proposed Visual Attention Model combines three 

saliency maps (only left frame is shown). (a) Original frame (verti-

cally squeezed since it is the left half of the side-by-side 16:9 3D 
frame; (b) local edge saliency map; (c) global texture saliency map; 

(d) disparity saliency map; (e) combined map using the same weight 

for all three maps; (f) resulting bounding box with a 4:3 aspect ratio. 

 

 



information. Then, we develop an automatic reframing approach 

to crop content based on this saliency map. Special attention was 

paid to avoid the important objects being cropped or locating at 

the border of the new frame. Temporal jerkiness of the cropping 

window was also eliminated by our proposed method. The re-

sults showed that our proposed scheme is very effective, robust, 

simple, and computational efficient for a great variety of stereo-

scopic video sequences. It works well for 3D videos that are 

captured with a tripod or handheld, still or panning, indoor or 

outdoor, with slow or fast motion, simple or complex scene. 

Results from subjective tests that show that viewers prefer our 

reframing solution to the traditional centered cropping approach 

will be presented in a future paper. We are currently working on 

a real-time implementation of this algorithm. 

 

 

 

6. REFERENCES 

 

[1] Randy Conrod, "Demystifying Active Format Description," 

Harris Assured Communications, Mason, OH, USA, White 

Paper 2008. 

[2] L. Itti, C. Koch, and E. Niebur, "A model of saliency-based 

visual attention for rapid scene analysis," IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 20, 

no. 11, pp. 1254-1259, November 1998. 

[3] C. Chamaret, J.C. Chevet, and O. Le Meur, "Spatio-

temporal combination of saliency maps and eye-tracking 

assessment of different strategies," in IEEE International 

Conference on Image Processing (ICIP), Hong Kong, 2010, 

pp. 1077 - 1080. 

[4] Dirk Walther and Christof Koch, "Modeling attention to 

salient proto-objects," Neural Networks, vol. 19, no. 9, pp. 

1395-1407, November 2006. 

[5] Christel Chamaret and Oliviere Le Meur, "Attention-based 

video reframing: validation using-eye-tracking," in 19th 

International Conference on Pattern Recognition, ICPR, 

Tampa, FL, USA, 2008, pp. 1-4. 

[6] O. Le Meur, D. Le Callet, and D. Barba, "Predicting visual 

fixations on video based on low-level visual features," Vi-

sion Research, vol. 47, no. 19, pp. 2483-2498, September 

2007. 

[7] O. Le Meur, D. Le Callet, D. Barba, and D. Thoreau, "A 

coherent computational approach to model the bottom-up 

visual attention," IEEE Trans. on Pattern Analysis and Ma-

chine Intelligence, vol. 28, no. 5, pp. 802-817, May 2006. 

[8] N. Ouerhani and H. Hugli, "Computing visual attention 

from scene depth," in Int. Conf. Pattern Recognition, Barce-

lona, 2000, pp. 375-378. 

[9] A. Maki, J. O. Eklundh, and P Norlund, "A computational 

model of depth-based attention," in International Confer-

ence on Pattern Recognition, vol. 4, Vienna, 1996, pp. 734-

739. 

[10] Yun Zhang, Gangyi Jiang, Mei Yu, and Ken Chen, "Stereo-

scopic Visual Attention Model for 3D Video," in Advances 

in Multimedia Modeling, Susanne Boll et al., Eds.: Springer 

Berlin / Heidelberg, 2010, pp. 314 - 324. 

[11] David G. Lowe, "Distinctive Image Features from Scale-

Invariant Keypoints," International Journal of Computer 

Vision, vol. 60, no. 2, pp. 91-110, November 2004. 

[12] Manuel and Hornung, Alexander and Wang, Oliver and 

Poulakos, Steven and Smolic, Aljoscha and Gross, Markus 

Lang, "Nonlinear disparity mapping for stereoscopic 3D," 

ACM Transaction son Graphics, vol. 29, no. 4, pp. 75:1-

75:10, July 2010. 

[13] A Treisman and G Gelade, "A Feature-Integration Theory 

of Attention," Cognitive Psychology, vol. 12, no. 1, pp. 97-

136, 1980. 

[14] Quan Huynh-Thu, Marcus Barkowsky, and Patrick Le 

Callet, "The Importance of Visual Attention in Improving 

the 3D-TV Viewing Experience: Overview and New Per-

spectives," IEEE transactions on broadcasting, vol. 57, no. 

2, pp. 421-431, June 2011. 

[15] Chenlei Guo, Qi Ma, and Liming Zhang, "Spatio-temporal 

Saliency detection using phase spectrum of quaternion Fou-

rier transform," in IEEE Conference on Computer Vision 

and Pattern Recognition, Anchorage, Alaska, USA, 2008, 

pp. 1-8. 

[16] Todd A. Ell and Stephen J. Sangwine, "Hypercomplex Fou-

rier Transforms of Color Images," IEEE Transactions in 

Image Processing, vol. 16, no. 1, pp. 22-35, January 2007. 

[17] Xuemei Zhang, Brian Wandell Stephen Engel, "Colour 

tuning in human visual cortex measured with functional 

magnetic resonance imaging," Nature (London), vol. 388, 

no. 6637, pp. 68-71, July 1997. 

[18] N. Le Bihan S. Sangwine. (2005) Source Forge. [Online].   

http://qtfm.sourceforge.net  

 

 
Figure 5. A frame from the "Main Mall" sequence. The combined 

map includes all the salient points in the frame and the bounding box 
is chosen accordingly. 

 
Figure 4. A frame from the sequence "Playground." In this example, 

both the global texture map and the saliency map identify the little 

girl as the most salient region. The combined map informs our 
method where to place the bounding box. 

 

 


