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a b s t r a c t

An optimization-based method is proposed for the design of high-performance

separable wavelet filter banks for image coding. This method yields linear-phase

perfect-reconstruction systems with high coding gain, good frequency selectivity, and

certain prescribed vanishing-moment properties. Several filter banks designed with the

proposed method are presented and shown to work extremely well for image coding,

outperforming the well-known 9/7 filter bank from JPEG 2000 in most cases. With the

proposed design method, the coding gain can be maximized with respect to the

separable or isotropic image model, or jointly with respect to both models. The joint

case, which is shown to be equivalent to the isotropic case, is experimentally

demonstrated to lead to filter banks with better average coding performance than the

separable case.

During the development of the proposed design method, filter banks from a certain

popular separable two-dimensional (2D) wavelet class (to which our optimal designs

belong) were observed to always have a higher coding gain with respect to the separable

image model than with respect to the isotropic one. This behavior is examined in detail,

leading to the conclusion that, for filter banks belonging to the above class, it is highly

improbable (if not impossible) for the isotropic coding gain to exceed the separable

coding gain.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Separable two-dimensional (2D) wavelet filter banks
have proven to be an extremely valuable tool for image-
coding applications [1–3]. In order to be effective in such
applications, however, a filter bank must typically have a
number of desirable characteristics such as perfect
reconstruction (PR), linear phase, high coding gain [4],
good frequency selectivity, and certain vanishing-moment
properties. To date, a great many optimization-based
design methods for wavelet filter banks have been
ll rights reserved.

+1 250 7216052.

ams),
proposed, some of which include [5–14]. One distinguish-
ing characteristic of a design method is the type of filter-
bank parameterization that it employs. Lattice [15] and
lifting [16] parameterizations have proven to be quite
popular, with [6,10] using the former and [9,11,13,12,14]
using the latter. Another distinguishing trait of a design
method is the set of filter-bank characteristics that it
considers (e.g., PR, linear phase, and so on). Although
many of the previously-proposed design methods con-
sider a subset of the desirable characteristics for image
coding mentioned above, few (if any) consider all of these
characteristics simultaneously. For example, the method
outlined in [7] considers coding gain, PR, linear phase, and
imposes one dual vanishing moment, but does not
explicitly consider frequency selectivity. The schemes
proposed in [12–14] consider PR, linear phase, and
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vanishing-moment properties, but not coding gain, and
are also restricted to a lifting parameterization with only
two or three lifting filters.

To design filter banks having all of the desirable
characteristics mentioned above is a challenging task. In
this paper, we propose a new design method that yields
high-performance separable wavelet filter banks with all
of these characteristics. This method employs optimiza-
tion and is based on ideas from [17]. During the course of
our work, the filter banks obtained both at the inter-
mediate and final stages of our design method were
observed to always have higher coding gain with respect
to the separable image model than with respect to the
isotropic one. In this manuscript, we also study this
phenomenon in detail and explain the reason for it. The
work presented herein has been, in part, described in our
conference papers [18,19].

The remainder of the manuscript is structured as
follows. Section 2 introduces some of the notational
conventions used herein, and Section 3 provides some
background information on filter banks and coding gain.
Our proposed design method is presented in Section 4. In
Section 5, our method is used to design several filter banks
and these filter banks are shown to perform very well for
image coding. Section 6 studies in detail the relationship
between the coding gains for the separable and isotropic
models and presents a number of interesting results in
this regard. Finally, Section 7 concludes our work with a
summary of our key results.

2. Notation and terminology

Before proceeding further, we introduce some of the
notation employed herein. The sets of integers and real
numbers are denoted as Z and R, respectively. For x 2 R,
the notation xb c denotes the largest integer not greater
than x (i.e., the floor function). For x; y 2 Z, we define the
functions divðx; yÞ ¼ x=y

� �
and modðx; yÞ ¼ x� y x=y

� �
(i.e.,

x divided by y yields the quotient divðx; yÞ and remainder
modðx; yÞ). Matrices and vectors are typically denoted by
uppercase and lowercase boldface letters, respectively.
The transpose of the matrix/vector A is denoted as AT . The
symbols I, 0, and 1 denote an identity matrix, a vector of
all zeros, and a vector of all ones, respectively, the size of
which should be clear from the context. The square root of
a positive semi-definite matrix A (e.g., as defined in [20])
is denoted as A1=2. For matrix multiplication, we define
the product notation as

QN
k¼MAk9ANAN�1 . . .AMþ1AM ,

where N � M. The element of the 2D sequence f with
index n ¼ ðn0;n1Þ 2 Z

2 is denoted as either f ½n0;n1� or f ½n�,
whichever is more convenient. A similar notational
H0(z) ↓ 2
y0[n]

↓ 2
y1[n]

H1(z)

x[n] y0[

y1[

Fig. 1. The canonical form of a 1D two-channel filt
convention is also employed for 2D functions. The Fourier
transform of a sequence/function f is denoted as f̂ . The
symbols � and % denote convolution and correlation,

respectively. The p-norm of the vector x ¼ ½x1 x2 . . . xd�
T,

denoted kxkp, is defined as kxkp ¼
Pd

i¼1jxij
p

� �1=p
for

p 2 f1;2g. The symbol r is used to denote the gradient
operator, which is defined to always produce a column
vector. In a context where it may be unclear with respect

to what quantity a gradient is taken, a subscript on r is

used to indicate this quantity (e.g., rx denotes the
gradient with respect to x). For a one-dimensional (1D)

sequence f satisfying f ½n� ¼ sf ½2c � n� for all n 2 Z, where

c 2 1
2Z and s 2 f�1;1g, f is said to be symmetric if s ¼ 1

and antisymmetric if s ¼ �1, and f is also said to have
symmetry about c. The polynomial FðzÞ is said to be
symmetric or antisymmetric about (the term) zc if the

sequence Z�1F is symmetric or antisymmetric about �c,

respectively, where Z denotes the z transform (e.g., 1þ

2z�1 þ 1z�2 is symmetric about z�1 and 3� 3z�1 is

antisymmetric about z�1=2). A 2D function/sequence f is

said to have quadrantal symmetry if f ðt0; t1Þ ¼ f ð�t0; t1Þ ¼

f ðt0;�t1Þ ¼ f ð�t0;�t1Þ for all t0; t1 in the domain of f . For a
filter H, we denote its transfer function and impulse

response as H and h, respectively. The sans-serif letters ‘‘h’’
and ‘‘v’’ are used to denote the horizontal and vertical
components of separable functions/sequences/operators.
For example, the horizontal and vertical components of

the separable 2D sequence f would be denoted as f h and

f v, respectively (i.e., f ½n0;n1� ¼ f h½n0�f v½n1�). For a signal
with P bits per sample, the peak-signal-to-noise ratio

(PSNR) is defined as PSNR ¼ 20 log10ðð2
P
� 1Þ=

ffiffiffiffiffiffiffiffiffiffiffi
MSE
p

Þ,
where MSE denotes the mean-squared error. The relative

difference d of two quantities is simply defined as

d ¼ ðn� rÞ=r, where n and r denote the non-reference
and reference quantities, respectively.

3. Background

A 1D two-channel filter bank has the canonical form
shown in Fig. 1. Such a filter bank consists of analysis
filters fH0;H1g, and synthesis filters fF0; F1g (where H0 and
F0 are lowpass), as well as downsamplers and upsamplers.
A filter bank can also be represented in terms of a lifting
realization [16]. The lifting realization of a 1D two-
channel filter bank is shown in Fig. 2, and consists of 2l
lifting filters fPkg

2l�1
k¼0 . Without loss of generality, we

assume that only P0ðzÞ and/or P2l�1ðzÞ may be identically
zero. The analysis and synthesis filters fH0;H1g and fF0; F1g

of the canonical form can be readily determined from the
+↑ 2
n]

F0(z)
y[n]

↑ 2 F1(z)
n]

er bank. (a) Analysis and (b) synthesis sides.
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+

+
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↑ 2

z−1

+

↑ 2

· · ·

· · ·
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y[n]

y1[n]

y0[n]
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Fig. 2. The lifting realization of a 1D two-channel filter bank. (a) Analysis and (b) synthesis sides.

Fig. 3. The equivalent M-channel nonuniform filter bank associated with the L-level tree-structured filter bank (where M ¼ 3Lþ 1).
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filters fPkg
2l�1
k¼0 of the lifting parameterization using the

following relationships:

H0ðzÞ ¼ H0;0ðz
2Þ þ zH0;1ðz

2Þ,

H1ðzÞ ¼ H1;0ðz
2Þ þ zH1;1ðz

2Þ (1)

where

HpðzÞ ¼
H0;0ðzÞ H0;1ðzÞ

H1;0ðzÞ H1;1ðzÞ

" #

¼
Yl�1

k¼0

1 P2kþ1ðzÞ

0 1

" #
1 0

P2kðzÞ 1

" # !

and

F0ðzÞ ¼ �z�1H1ð�zÞ and F1ðzÞ ¼ z�1H0ð�zÞ. (2)

Since images are 2D signals, their processing requires
multidimensional systems. To construct a 2D filter bank
from a 1D two-channel filter bank, we simply apply the
1D filter bank in each of the two dimensions of the signal
in succession. This results in a separable four-channel 2D
filter bank. Furthermore, in practice, we usually apply the
2D filter bank in an L-level tree structure, decomposing
the lowest-frequency (LL) subband signal at each level in
the tree. The resulting L-level tree-structured filter bank
can be equivalently expressed in the form of an M-channel
nonuniform filter bank, where M ¼ 3Lþ 1. This equivalent
M-channel filter bank has the general form shown in
Fig. 3, consisting of analysis filters fH0kg

M�1
k¼0 , synthesis

filters fF 0kg
M�1
k¼0 , and downsamplers/upsamplers, where the

kth downsampler/upsampler (associated with sampling
matrix Kk) has the horizontal and vertical sampling
factors of Mk;h and Mk;v, respectively. Due to the separable
nature of the filters, the subbands have four possible
orientations: horizontally-and-vertically lowpass (LL),
horizontally highpass and vertically lowpass (LH),
horizontally lowpass and vertically highpass (HL), and
horizontally-and-vertically highpass (HH).

As a matter of notation, the level in the analysis filter-
bank tree associated with channel k is denoted as levelðkÞ,
where levelðkÞ 2 f0;1; . . . ; L� 1g with the value of zero
corresponding to the tree root; and the orientation of
channel k is denoted as orientðkÞ, where orientðkÞ 2
f0;1;2;3g with the values of 0, 1, 2, and 3 corresponding
to the LL, LH, HL, and HH orientations, respectively. For
the lth level in the tree, LLl, LHl, HLl, and HHl denote the
subbands with LL, LH, HL, and HH orientations, respec-
tively. The mapping between the channel index k and
subband level/orientation is given by

levelðkÞ ¼
L� 1 for k ¼ 3L;

divðk;3Þ otherwise

(

and orientðkÞ ¼
0 for k ¼ 3L;

3�modðk;3Þ otherwise:

(
(3)

For convenience, we have numbered the channels such
that larger values of k correspond to a deeper descent into
the analysis filter-bank tree. Note that this numbering
convention is backwards from what is typically used. That
is, the lowest-frequency band is always associated with
the largest channel index 3L (instead of the smallest one
0). With our convention, decompositions with L and L0

levels have an identical numbering scheme for their
common filters/subbands. This allows for a much more
concise presentation of some of our later results. The
correspondence between channels and frequency bands is
further illustrated in Fig. 4, with the analysis filter
associated with each subband being shown in parenth-
eses. In order to avoid an overly complicated dia-
gram, only the first quadrant of the frequency plane is
shown, with the remainder following from (quadrantal)
symmetry.
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Fig. 4. Subband tiling of the first quadrant of the frequency plane.
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Given the 1D analysis filters fH0;H1g, the analysis
filters fH0kg

M�1
k¼0 of the 2D nonuniform filter bank can be

computed as

H0kðz0; z1Þ ¼ H0k;hðz0ÞH
0
k;vðz1Þ, (4)

where H0k;hðzÞ ¼ HmodðorientðkÞ;2Þðz
2levelðkÞ

ÞHPðzÞ, H0k;vðzÞ ¼

HdivðorientðkÞ;2Þðz
2levelðkÞ

ÞHPðzÞ, and HPðzÞ ¼ 1 if levelðkÞ ¼ 0,
and HPðzÞ ¼

QlevelðkÞ�1
‘¼0 H0ðz

2‘ Þ otherwise. The synthesis
filters fF 0kg

M�1
k¼0 of the 2D nonuniform filter bank are

determined in a similar way from the 1D synthesis filters
fF0; F1g (i.e., simply replace the Hs by Fs in the preceding
equation).

In the context of image coding, we are often interested
in the energy-compacting ability of a filter bank, which is
typically quantified using a measure known as the coding
gain. For a filter bank of the form shown in Fig. 3, the
coding gain G is given by [4]

G ¼
YM�1

k¼0

ak

AkBk

� �ak

where

Ak ¼
X
l2Z2

X
p2Z2

h0k½l�h
0

k½p�r½p� l�

¼
X
m2Z

h0k;h½m�
X
n2Z

h0k;v½n�
X
p2Z

h0k;h½p�
X
q2Z

h0k;v½q�r½m� p;n� q�,

Bk ¼ ak

X
l2Z2

f 0k
2
½l� ¼ ak

X
m2Z

f 0k;h
2
½m�

X
n2Z

f 0k;v
2
½n�,

ak ¼ ðMk;hMk;vÞ
�1, (5)

and r is the normalized autocorrelation sequence of the
source image model. The two most common choices for r

are given by the separable and isotropic models, which
are, respectively,

rsep½n� ¼ rknk1 and riso½n� ¼ rknk2 , (6)
where r is a correlation coefficient satisfying r 2 ½0;1�.
Since numerous quantities used herein depend on the
image model (e.g., G, fAkg

M�1
k¼0 ), we use the qualifiers ‘‘sep’’

and ‘‘iso’’ to denote these quantities in the separable and
isotropic cases, respectively. For example, Ak;sep denotes
the quantity Ak given by (5) with r ¼ rsep and Giso denotes
the coding gain G given by (5) with r ¼ riso.

4. Design method

In our design method, rather than representing a filter
bank in its canonical form as shown in Fig. 1, we instead
use the lifting framework as depicted in Fig. 2. The use of
the lifting framework has a number of advantages over the
canonical form. The key benefit, however, is that the PR
condition is automatically satisfied. Additionally, the
linear-phase requirement can be easily met by choosing
the lifting filters fPkg

2l�1
k¼0 to have certain symmetry

properties, as we shall see shortly. Since the PR and
linear-phase conditions can be imposed via the lifting
framework, there is no need for explicit optimization
constraints to ensure that these conditions are satisfied.
This greatly reduces the complexity of the subsequent
optimization problem. The lifting framework is also
advantageous as it trivially allows for the construction of
reversible integer-to-integer mappings [21]. Such map-
pings are extremely useful for image coding applications,
especially in situations where lossless coding may be
desired. In fact, the image coders used to obtain the
coding results presented later in this paper all employ
reversible integer-to-integer wavelet transforms.

As suggested above, the linear-phase condition can be
easily imposed through a clever choice of the lifting filters
fPkg

2l�1
k¼0 . In what follows, let Lk denote the length of the

lifting filter Pk. It can be shown [22] that if the fPkg
2l�1
k¼0 are

chosen to be of either of the following two forms, then the
resulting filter bank will have linear phase:

PkðzÞ ¼

PðLk�2Þ=2

i¼0

pk;iðz
�i þ ziþ1Þ for even k;

PðLk�2Þ=2

i¼0

pk;iðz
�i�1 þ ziÞ for odd k or

8>>>>><>>>>>:
(7a)

PkðzÞ ¼

�1 for k ¼ 0;

1
2þ P̃1ðzÞ for k ¼ 1;

P̃kðzÞ for k � 2

8>><>>:
and P̃kðzÞ ¼

XðLk�1Þ=2

i¼1

p̃k;iðz
�i þ ziÞ, (7b)

where, in (7a), Lk is even for k 2 f0;1; . . . ;2l� 1g (i.e., PkðzÞ

is symmetric about z1=2 and z�1=2 for even and odd k,
respectively) and, in (7b), Lk is odd for k 2 f1;2; . . . ;2l� 1g
(i.e., P̃kðzÞ is antisymmetric about z0). In the case of
parameterization (7a), h0 is symmetric about 0 and h1 is
symmetric about �1, while in the case of parameteriza-
tion (7b), h0 is symmetric about � 1

2 and h1 is antisym-
metric about � 1

2.
In the case of parameterization (7a), the symmetry

properties of the analysis filter impulse responses h0 and
h1 can be deduced as follows. To begin, one can show by
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induction that the analysis polyphase matrix HpðzÞ given
by (1) is such that: (1) H0;0ðzÞ and H1;1ðzÞ are symmetric
about z0; (2) H0;1ðzÞ is symmetric about z�1=2; and (3)
H1;0ðzÞ is symmetric about z1=2. From properties 1 and 2,
H0;0ðz

2Þ and zH0;1ðz
2Þ are both symmetric about z0, and

consequently, their sum H0ðzÞ (as given by (1)) is also
symmetric about z0. From properties 1 and 3, H1;0ðz

2Þ and
zH1;1ðz

2Þ are both symmetric about z1, and consequently,
their sum H1ðzÞ (as given by (1)) is symmetric about z1.
Thus, the stated symmetry properties hold for h0 and h1.
In the case of parameterization (7b), a proof of the stated
symmetry properties for h0 and h1 can be found in
[22, Section VII and Appendices A and B] and in more
verbose form in [23, pp. 74–77].

It is worth noting that (7a) completely parametrizes
(up to a trivial normalization) all PR linear-phase FIR filter
banks with odd-length analysis/synthesis filters, while
(7b) parametrizes (up to a normalization) only a subset
of all PR linear-phase FIR filter banks with even-
length analysis/synthesis filters. For this reason, one
might suspect parameterization (7a) to have greater
potential to yield good filter banks than parameteriza-
tion (7b). In fact, this suspicion turns out to be correct,
as later confirmed by our experimental results in
Section 5.

With the lifting framework, the synthesis filters are
completely determined by the analysis filters as given by
(2). Therefore, we focus primarily on the design of the
analysis side of the filter bank in what follows. Since we
have elected to use a lifting parameterization in our
design method, we need to relate the various filter-bank
properties of interest (i.e., the analysis-filter frequency
responses, vanishing-moment properties, and coding
gain) to the lifting-filter coefficients. In the case of the
moment properties of the primal and dual wavelet
coefficient sequences and the frequency responses, these
relationships can be derived in a straightforward manner
using (1), (2) and (7). The analysis-filter frequency
responses and the expressions for the moments of the
primal/dual wavelet coefficient sequences are polyno-
mials in the lifting-filter coefficients, where the poly-
nomial order depends on which of the two
parameterizations (7a) and (7b) is employed as well as
the number of lifting filters. For example, for filter banks
from parameterization (7a) with four lifting filters, the
lowpass analysis-filter frequency response, highpass ana-
lysis-filter frequency response, primal-moment expres-
sion, and dual-moment expression are polynomials in the
lifting-filter coefficients having orders of 4, 3, 4, and 3,
respectively. The coding gain can be expressed in terms of
the lifting-filter coefficients by combining (5), (4), (1), (2)
and (7). The resulting expression is highly nonlinear, due
mainly to the form of (5).
4.1. Abstract optimization problem

As indicated earlier, we seek to design filter banks
having numerous desirable characteristics, namely, PR,
linear phase, high coding gain, good frequency selectivity,
and certain prescribed vanishing-moment properties.
Since the PR and linear-phase properties are structurally
imposed via the lifting framework, we need not consider
them further. Thus, the design problem at hand reduces to
one explicitly involving only coding gain, frequency
selectivity, and vanishing-moment properties.

Now, let us consider the formulation of the design
problem as an optimization to be performed with respect
to the lifting-filter coefficients (i.e., the fpk;ig from (7a) or
the fp̃k;ig from (7b)). Let x denote the vector of (indepen-
dent) lifting-filter coefficients, where the coefficients are
lexicographically ordered by their first and then second
index (e.g., in the case of (7a), we have the ordering p0;0;

p0;1; . . . ; p0;ðL0�2Þ=2; p1;0; p1;1; . . . ; p1;ðL1�2Þ=2; . . . ; p2l�1;0; p2l�1;1;

. . . ; p2l�1;ðL2l�1�2Þ=2). We choose G, a measure related to
coding gain, as the function to maximize. Let Gsep

and Giso denote the coding gain (in dB) obtained from
(5) using the separable and isotropic models, respectively.
In our work, we consider three possible choices for G as
given by

GðxÞ ¼

GsepðxÞ separable only;

GisoðxÞ isotropic only;

minfGsepðxÞ;GisoðxÞg joint:

8><>: (8)

That is, we consider the maximization of each of the
separable and isotropic coding gains individually as well
as the joint maximization of both coding gains. The joint
case in (8) is motivated by the observation that many
images are nonstationary, exhibiting both separable and
isotropic behaviors in different regions. Thus, we might
suspect that there is an advantage to having both coding
gains high.

The remaining filter bank properties are handled as
constraints. To quantify the frequency selectivity of the
analysis filters, we employ a stopband-energy measure. In
particular, we define the stopband energy of the analysis
filter Hk as

bkðxÞ9
Z

Sk

jĥkðo; xÞj2 do; k 2 f0;1g, (9)

where S0 ¼ ½p�ob;p�, S1 ¼ ½0;ob�, and ob denotes the
stopband width of the analysis filters. The reason for using
only a stopband constraint is twofold. First, limiting the
stopband-energy leakage alone can be quite effective in
avoiding aliasing. Second, for filter banks with relatively
short filters, the number of degrees of freedom in the
design process is limited. Consequently, if a passband
constraint were also employed, the feasible region for the
optimization may be overly restricted, leading to poorer
designs.

To facilitate the introduction of moment constraints,
we define the moment-constraint functions

ckðxÞ9kmkðxÞk2; k 2 f1;2; . . . ;Zg, (10)

where mk is a nk-dimensional vector function with its
elements corresponding to the moments of interest (i.e.,
moments that are to be constrained). Each mk may
contain only one moment (i.e., nk ¼ 1) or a group of
moments (i.e., nk � 2). In this way, moments can be
controlled either individually or jointly.
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Combining (8)–(10), we obtain the following abstract
optimization problem to be solved:

maximize GðxÞ (11a)

subject to bkðxÞ � ek; k 2 f0;1g and (11b)

ckðxÞ � gk; k 2 f1;2; . . . ;Zg, (11c)

where the fe0; e1g and fgkg
Z
k¼1 are strictly positive toler-

ances for the stopband-energy and moment constraints,
respectively. Since the fgkg

Z
k¼1 are chosen to be strictly

positive, we do not attempt to satisfy the vanishing-
moment conditions exactly. Instead, we only ensure that
the moments of interest are very nearly vanishing (e.g.,
typically on the order of 10�5 or less in some of our later
design examples). In a practical sense, there is no
significant disadvantage to allowing the moments to
deviate slightly from zero, as exact vanishing moments
are usually lost during implementation anyhow, due to
finite-precision effects. In fact, this relaxed form of
moment constraint is actually quite beneficial, as it allows
increased design flexibility, which in most cases leads to
better designs. In passing, we note that parameterization
(7b) structurally imposes vanishing zeroth primal and
dual moments [22]. So, when this parameterization is
employed, the vanishing-moment conditions for the
zeroth moments will always be satisfied exactly.

In the abstract optimization problem (11), there are
three cases for the objective function (8). The joint case is
associated with a max–min problem, which is somewhat
difficult to solve directly. For this reason, we convert the
joint case into the following equivalent problem, which
can be more easily solved:

maximize t (12a)

subject to GsepðxÞ � t, (12b)

GisoðxÞ � t, (12c)

bkðxÞ � ek; k 2 f0;1g and (12d)

ckðxÞ � gk; k 2 f1;2; . . . ;Zg, (12e)

where t is an auxiliary variable.

4.2. Solution of the abstract optimization problem

As introduced above, the abstract optimization problem
for our filter-bank design scheme is given in (11), with the
joint case reformulated as in (12). Unfortunately, these
problems are highly nonlinear and somewhat difficult to
solve directly. For this reason, we adopt a strategy based on
the iterative solution of reduced-order problems. The
algorithm for this approach has the following general form:
Step 1
 (Initialization). Set the iteration number i to zero.
Choose the stopping tolerances t1 and t2. Select an
initial operating point x0 somewhere in the
feasible region. Select a nominal maximum step
size b0 for use in step 3.
Step 2
 (Order reduction). Represent each of the functions
GsepðxÞ and/or GisoðxÞ, fb0; b1g, and fckg

Z
k¼1 with a

Taylor-series approximation about the current
operating point xi. In particular, each function f

is represented using a linear approximation as
given by f ðxi þ diÞ � f ðxiÞ þ r

T f ðxiÞdi.
Step 3
 (Optimization). (a) Let b ¼ b0 (i.e., set the max-
imum step size b to the nominal maximum step
size b0). (b) Solve the reduced-order optimization
problem in the variable di. Let d�i denote the
corresponding optimal solution. Since the Taylor-
series approximations obtained in step 2 are
accurate only when di is small, the additional
constraint kdik2 � b is imposed in the reduced-
order optimization problem to ensure a solution in
the vicinity of the operating point xi. (c) The point
d�i will always be in the feasible region of the
reduced-order problem, but xi þ d�i may not be in
the feasible region of the original (i.e., non-
reduced order) problem if the reduced-order
approximation is not sufficiently accurate. There-
fore, if xi þ d�i is not in the feasible region of the
original problem, set b ¼ b=1:6 and go to step 3(b)
(i.e., restart the reduced-order optimization with a
smaller step size b in order to improve the
reduced-order approximation accuracy). Other-
wise, continue to step 4.
Step 4
 (Operating-point update). Set the new operating
point xiþ1 to xi þ d�i .
Step 5
 (Stopping-criteria check). If jGðxiþ1Þ � GðxiÞj � t1 or
kd�i k2 � t2, then output the solution x� ¼ xiþ1 and
stop. Otherwise, increment i by one and go to
step 2.
Essentially, the above algorithm finds a reduced-order
approximation of the original problem about the current
operating point, solves the reduced-order problem, ad-
justs the operating point accordingly, and iterates. In what
follows, we now explain in more detail how the preceding
algorithm can be used to solve our design problem.

In step 2, since it is extremely difficult to derive closed-
form expressions for the derivatives of GsepðxÞ and/or
GisoðxÞ, these quantities are computed numerically. In the
case of the less nonlinear functions fb0;b1g and fckg

Z
k¼1,

closed-form expressions are used for the derivatives. Due
to space constraints, we do not provide these expressions
here (as they are quite long and messy), but they can be
derived in a straightforward manner.

In step 3, we considered the use of several different
optimization methods, namely linear programming, con-
vex quadratic programming, sequential quadratic pro-
gramming, and second-order cone programming (SOCP)
[24,25]. Each of these methods requires Taylor series of
particular orders to be used in step 2 in order to
approximate the various functions of interest. In the
interest of brevity, we will only present a SOCP-based
approach in what follows. The interested reader, however,
can find details regarding the other approaches in [26, pp.
32-37]. As an aside, we note that numerous software
packages exist for the solution of SOCP problems (e.g.,
SeDuMi [27], CVX [28], and YALMIP [29]), with our work
having used SeDuMi.

To formulate step 3 as a SOCP problem, we choose (in
step 2) to represent each of the functions Gsep and/or Giso,
fb0; b1g, and fckg

Z
k¼1 using a linear approximation. For the

separable and isotropic cases of (11), it can then be shown
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that the optimization in step 3 can be expressed in terms
of the following SOCP problem (with optimization being
performed with respect to d):

maximize rT GðxiÞd (13a)

subject to kQ 1=2
k ðxiÞdþ qkðxiÞk2

� ek � bkðxiÞ

þ qT
k ðxiÞqkðxiÞ; k 2 f0;1g, (13b)

kr
T mkðxiÞdþmkðxiÞk2 � gk

k 2 f1;2; . . . ;Zg and (13c)

kdk2 � b, (13d)

where Q kðxÞ ¼
R

Sk
½rxĥkðo; xÞ�r

T
x ĥkðo; xÞdo, qkðxÞ ¼

Q�1=2
k ðxÞ

R
Sk

ĥkðo; xÞr
T
x ĥkðo; xÞdo, Sk is as defined in (9),

and d is a perturbation from the operating point xi. For the
joint case of (11) as reformulated in (12), the optimization
in step 3 can be expressed in terms of the following SOCP
problem, with the optimization being performed with

respect to the augmented vector variable d̃9½t d�T :

maximize ½1 0�d̃ (14a)

subject to ½0 rT GisoðxiÞ�d̃þ GisoðxiÞ � ½1 0�d̃ � 0, (14b)

½0 rT GsepðxiÞ�d̃þ GsepðxiÞ � ½1 0�d̃ � 0, (14c)

kQ̃ kðxiÞd̃þ q̃kðxiÞk2

� ek � bkðxiÞ

þ qT
k ðxiÞqkðxiÞ; k 2 f0;1g, (14d)

kr
T m̃kðxiÞd̃þ m̃kðxiÞk2 � gk

k 2 f1;2; . . . ;Zg and (14e)

k½0 I�d̃k2 � b, (14f)

where Q̃ kðxÞ ¼ ½0 Q 1=2
k ðxÞ�, q̃kðxÞ ¼ ½0 qkðxÞ�

T , m̃kðxÞ ¼

½0 mkðxÞ�
T , Q kðxÞ ¼

R
Sk
½rxĥkðo; xÞ�r

T
x ĥkðo; xÞdo, qkðxÞ ¼

Q�1=2
k ðxÞ

R
Sk

ĥkðo; xÞr
T
x ĥkðx; xÞdx, and Sk is as defined in

(9). Note that, as far as step 3 is concerned, the output of

the preceding optimization process is simply the d part of

the augmented vector d̃ (namely, d ¼ ½0 I�d̃).
In step 4 of the above algorithm, we update our

operating point. As the solution in step 3 is limited to the
neighborhood of the current operating point, we repeat
the process in steps 2–5 until one of the stopping criteria
is satisfied. This permits solutions farther away from the
current operating point to be found.

4.3. Design-parameter selection

Having introduced our design method, we now briefly
comment on the selection of numerous design para-
meters. For the frequency-selectivity constraints given by
(13b) and (14d), an appropriate choice of tolerances
fe0; e1g is critical to achieving good designs. Based on our
experiments, for a stopband width of ob ¼ 3p=8, a choice
of ek 2 ½0:02;0:14� is typically quite effective. The stopping
tolerances t1 and t2 (used in step 5) might reasonably be
chosen to be on the orders of 10�4 to 10�5 and 10�5 to
10�6, respectively. Also, we must select L (i.e., the number
of decomposition levels) which is used in the coding gain
formula. In this regard, we found that choosing L 2 f3;4;5g
makes a good tradeoff between computational complexity
(which increases with L) and design quality. In step 1, we
must choose the nominal maximum step size b0 where
b04t2. In practice, the choice of b0 ¼ 2� 10�3 was found
to work quite well.

In (13c) and (14e), the moment constraints fmkg
Z
k¼1

must be chosen along with appropriate tolerances fgkg
Z
k¼1.

This choice is also key to obtaining good designs. Let mk

denote the kth moment associated with the primal or dual
wavelet coefficient sequence of the filter bank. In the case
of filter banks from parameterization (7a), the highpass
analysis/synthesis filter is symmetric. Consequently, for
even k, if m0 ¼ m1 ¼ 	 	 	 ¼ mk�1 ¼ 0, then mk ¼ 0 implies
that mkþ1 ¼ 0 (i.e., the odd-indexed moments automati-
cally vanish). For a proof, see Theorem 1 (symmetric case)
in Appendix A. Thus, we need only consider constraints on
the fmkg for even k. Similarly, in the case of filter banks
from parameterization (7b), the highpass analysis/synth-
esis filter is antisymmetric. Consequently, m0 ¼ 0, and for
odd k, if m0 ¼ m1 ¼ 	 	 	 ¼ mk�1 ¼ 0, then mk ¼ 0 implies
that mkþ1 ¼ 0 (i.e., the even-indexed moments automati-
cally vanish). Again, see Theorem 1 (antisymmetric case)
in Appendix A for a proof. Thus, we need only consider
constraints on the fmkg for odd k. Based on our experi-
ments, good designs from the parameterization (7a) can
be obtained by constraining the zeroth moments of the
primal and dual wavelet coefficient sequences. More
specifically, we found it to be quite effective to place
these two moments in a single moment constraint
function m1 and choose a corresponding tolerance of
g1 ¼ 2� 10�5.

Due to the highly nonlinear nature of the abstract
optimization problem (11), the solution found by our
method will most likely not be globally optimal. The
particular solution obtained depends on the choice of the
initial point x0. Therefore, the quality of the design can be
improved by finding multiple (locally optimal) solutions
and then selecting the best one. As a practical matter, we
found that an effective strategy in this regard is to
consider many initial points with lifting-filter coefficients
of magnitude 2 or less, as the best designs typically have
coefficients in this range.
5. Design results

Having introduced our design method, we are now
ready to present some examples of filter banks generated
with our method as well as some coding results obtained
with these designs. Before proceeding further, however,
we first introduce some important details about the
methodology employed in our experiments. For all of
our filter-bank designs, we selected the various design
parameters as described in Section 4.3. The correlation
coefficient r in (5) was chosen as 0.95, and five
decomposition levels were used in the coding gain
computation (i.e., L ¼ 5). In our experiments, various
image coding results were collected. For test data, we
employed the 26 reasonably-sized grayscale images from
the JPEG-2000 test set [30]. Often, we focus our attention
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Table 1
Characteristics of the filter banks designed using different objective functions.

Transform Gsep
a Giso

a b0
b b1

b Dual VM c Primal VMc

9/7-sep 14.9735 12.1781 0.0628 0.0347 2, 5:79E� 5 2, 8:31E� 5

9/7-iso/jnt 14.9326 12.1809 0.0570 0.0351 2, 0.0041 2,0.1250

6/14-sep 15.0912 11.9285 0.0252 0.0131 1, 0.0483 1, 0.6209

6/14-iso/jnt 14.9766 12.0738 0.0212 0.0229 1, 0.0643 1, 0.1471

a Coding gain (in dB) for a six-level decomposition.
b Stopband energy as defined by (9).
c Index and magnitude of the first moment of dual/primal wavelet coefficient sequence with magnitude greater than 2� 10�5.
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on the results associated with three of these images,
namely the gold, sar2, and target images. These three
images were deliberately chosen, due to their significantly
differing statistical properties. In particular, the autocor-
relation sequences of the gold and sar2 images most
closely follow the separable and isotropic models, respec-
tively, while the autocorrelation sequence of the target
image follows neither the separable nor isotropic model.
For coding images, our implementations of the EZW [1],
SPIHT [2], and MIC [31] coders were employed, all of
which utilize reversible integer-to-integer transforms.
Since similar results were obtained with all three coders,
we present only results for the MIC coder. In all of our
coding experiments, a six-level wavelet decomposition
was employed.

For convenience, in what follows, we use the notation
l0=l1 to indicate that a filter bank has lowpass and
highpass analysis filters of lengths l0 and l1, respectively.
Also, for a lifting realization, we refer to the number and
lengths of its lifting filters as its lifting configuration. As a
matter of notation, the lifting configuration of a filter bank
is denoted as fL0; L1; . . .g, where Lk is the length of the kth
lifting filter. Recall that the fLkg are all odd for filter banks
from parameterization (7a) and all even for filter banks
from parameterization (7b). So, the parameterization
being used can be trivially determined from the lifting
configuration.
5.1. Choice of objective function

As indicated earlier, our design method allows for three
possible objective functions as given in (8). We also
suggested that, of these possibilities, the joint case might
be the most desirable. Now, we study the impact of the
choice of objective function in more detail.

To begin, for each of several different lifting configura-
tions, we used our design method to construct three filter
banks, one for each of the three choices of objective
function in (8). In so doing, we were able to make an
interesting observation. Namely, in all of our tests,
optimizing with respect to each of the isotropic and joint
coding gains always led to the same optimal designs. This
is due to the fact that, for filter banks with reasonable
analysis-filter frequency responses (i.e., at least one dual
vanishing moment), the condition Gsep4Giso always seems
to be satisfied. Since the reason that this condition holds is
not at all obvious, we provide a detailed analysis later in
Section 6 that explains why Gsep4Giso. Due to the
preceding behavior, maximizing the joint coding gain is
equivalent, in a practical sense, to maximizing the
isotropic coding gain alone. With the above observation
in mind, we combine the isotropic and joint cases of (8) in
the remainder of this discussion. After having designed
each set of optimal filter banks as described above, we
then compared the coding performance of the filter banks
within each set.

Although several sets of optimal filter banks were
considered in our work, we present results for only a
representative subset herein. In particular, we consider
two sets of optimal designs, one with analysis-filter
lengths of 9/7 corresponding to the lifting configuration
f2;2;2;2g, and one with analysis-filter lengths of 6/14
corresponding to the lifting configuration f1;3;5g. The
characteristics of these filter banks are shown in Table 1,
where the transform-name suffixes ‘‘sep’’, ‘‘iso’’, and ‘‘jnt’’
designate the optimal designs obtained using the separ-
able, isotropic, and joint objective functions of (8),
respectively.

Having produced several sets of filter banks as
described above, we then proceeded to compare the
coding performance of the filter banks within each set.
For each set, we chose to measure the performance of the
optimal designs within the set relative to another
previously-proposed filter bank having the same lifting
configuration and also known to be effective for image
coding. In particular, the reference filter banks used in the
9/7 and 6/14 cases are the 9/7 filter bank from JPEG 2000
[3] and the 6/14 filter bank from [32]. For each of the filter
banks in each set, we compressed all 26 test images in a
lossy manner at several bit rates, and in each case, we
measured the relative difference in the distortions (in
PSNR) obtained with our design and the corresponding
reference filter bank. The results are summarized in
statistical form in Table 2(a). In particular, we provide
the mean and median relative differences in PSNR
distortion (with positive values corresponding to our
designs outperforming the reference filter bank). As well,
we indicate the percentage of cases in which our filter
bank outperforms the reference filter bank. From Table
2(a), we can see that, in both the 9/7 and 6/14 cases,
designs based on the joint objective function (designated
by the suffix ‘‘jnt’’) have better coding performance than
those based on the separable objective function. For



ARTICLE IN PRESS

Table 2
Lossy compression results for the filter banks designed using different objective functions.

(a)

Transform Mean (%) Median (%) Outperform (%)

9/7-sep �0:0049 �0:0001 46.15

9/7-iso/jnt 0.1488 0.1070 87.69

6/14-sep �0:5848 �0:5112 20.77

614-iso/jnt 0.0331 0.0279 61.54

(b)

Image gold target sar2

Comp. ratio 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

PSNR (dB)

9/7-sep 36.76 33.77 31.26 29.15 27.33 41.48 33.55 27.08 22.70 19.13 30.33 26.61 24.69 23.55 22.73

9/7-iso/jnt 36.88 33.84 31.27 29.15 27.32 41.59 33.55 27.19 22.84 19.14 30.35 26.62 24.70 23.55 22.73

6/14-sep 36.77 33.50 31.07 28.82 27.06 40.94 32.79 27.37 22.39 18.49 30.24 26.49 24.64 23.48 22.59

6/14-iso/jnt 36.96 33.78 31.15 28.83 27.26 41.68 32.91 27.00 22.43 18.26 30.39 26.49 24.78 23.46 22.68

(a) Summary statistical results over all 26 test images and five bit rates. (b) Specific results for three images.

Table 3
Characteristics of the various filter banks.

Transform fLkg Gsep
a Giso

a b0
b b1

b Dual VM c Primal VM c
ĥ0ð0Þ ĥ0ðpÞ ĥ1ð0Þ ĥ1ðpÞ

9/7 f2;2;2;2g 14.933 12.181 0.057 0.035 2, 0.004 2, 0.125 1.25 2:1E� 6 �9:1E� 6 1.60

9/11 f4;2;2g 14.928 12.112 0.111 0.043 2, 0.276 2, 0.858 1.24 �5:6E� 6 �9:4E� 6 1.61

13/11 f4;2;2;2g 15.041 12.206 0.030 0.027 2, 0.068 2, 0.743 1.20 2:2E� 5 �1:9E� 5 1.67

17/11 f2;2;4;4g 15.117 12.218 0.031 0.028 2, 0.337 2, 0.572 1.19 9:9E� 6 4:9E� 6 1.69

13/15 f6;2;2g 14.641 12.074 0.094 0.035 2, 0.169 2, 0.566 1.35 �5:4E� 6 �9:4E� 6 1.49

9/7-J f2;2;2;2g 14.973 12.178 0.063 0.035 4, 9.560 4, 16.47 1.23 2:3E� 9 3:9E� 9 1.63

a Coding gain (in dB) for a six-level decomposition.
b Stopband energy as defined by (9).
c Index and magnitude of the first moment of dual/primal wavelet coefficient sequence with magnitude greater than 2� 10�5.
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example, in the 9/7 case, the joint design (i.e., 9/7-jnt) is
able to outperform the reference filter bank about 87% of
the time, while the separable design (i.e., 9/7-sep) can
only beat the reference filter bank approximately 46% of
the time. Similarly, in the 6/14 case, the joint design (i.e.,
6/14-jnt) is able to outperform the reference in about 61%
of the cases, while the separable design is only able to
beat the reference in approximately 20% of the cases. In
Table 2(b), we provide the actual distortions obtained for
three representative images, with the best result in each
case being highlighted. Here, we can see that the filter
banks with the jointly-highest coding gains (i.e., the ‘‘jnt’’
case) perform better overall for all three images, in spite of
the images having significantly different statistical prop-
erties. The above results clearly demonstrate that there is
a benefit to taking the isotropic coding gain into
consideration during the design process (as is done in
the joint and isotropic cases above).
5.2. Design examples and coding results

To demonstrate the effectiveness of our design method,
we now present some examples of filter banks generated
by our method and evaluate their performance for image
coding. In particular, five filter banks constructed with our
method are considered. For all of these optimal designs,
the joint objective function in (8) was employed, as this
was shown earlier to be the most effective choice (i.e.,
better than the separable case). For comparison purposes,
we also consider the well-known 9/7 filter bank from JPEG
2000 [3], which we refer to in this section by the name
9/7-J in order to distinguish it from another filter bank
having the same analysis-filter lengths. Several character-
istics of our optimal designs as well as the 9/7-J filter bank
are shown in Table 3. Due to space constraints, the lifting-
filter coefficients for our optimal designs are not pre-
sented here, but this information can be obtained from
[26, p. 47].

For the reasons discussed earlier in Section 4.1, in the
case of our optimal designs, the moments of interest only
nearly (but not exactly) vanish. To be more precise, for the
purposes of this discussion, we deem any moment with
magnitude less than 2� 10�5 to be nearly vanishing.
Although the 9/7-J filter bank has four primal and
four dual (exactly) vanishing moments (as indicated
in Table 3), this assumes an implementation in exact
arithmetic without quantization of the lifting-filter
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Fig. 5. Synthesis scaling and wavelet functions. (a) Scaling, (b) wavelet functions for the 9/7 design, (c) scaling and (d) wavelet functions for the 13/11

design.
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coefficients. In practice, however, arithmetic is not exact
and these coefficients must also be quantized (since they
are irrational). Consequently, in any practical implemen-
tation of the 9/7-J filter bank, the moments that are
supposed to exactly vanish, only nearly vanish. To provide
the reader with more insight into these quantization
effects, instead of giving the theoretical values for ĥ0ðpÞ
and ĥ1ð0Þ for the 9/7-J filter bank in Table 3 (which are
exactly zero), we give the actual ones in our implementa-
tion. Also, one might wonder to what extent the smooth-
ness of the basis functions associated with the filter bank
are impacted by allowing moments to only nearly vanish
(instead of exactly vanish). In short, for all practical
purposes, the smoothness is unaffected. To demonstrate
this, plots of the underlying synthesis scaling and wavelet
functions for two of our optimal designs are provided in
Fig. 5. Observe that the functions in these plots are visibly
quite smooth. That is to say, for all practical purposes, the
filter banks behave as if their moments exactly vanished.

Now, we consider the lossy and lossless coding
performance of the five filter banks constructed using
our method. To evaluate lossy coding performance, each
filter bank was used to compress all 26 test images at
several bit rates. Then, we measured the relative differ-
ence between the distortions (in PSNR) obtained with
each of our optimal designs and the reference 9/7-J filter
bank. The results are summarized in statistical form in
Table 4(a). In particular, we provide the mean and median
relative differences in distortion (with positive values
corresponding to our designs outperforming the 9/7-J
filter bank). We also indicate the percentage of cases in
which our optimal design outperforms the 9/7-J filter
bank. From these results, it is clear that all of our optimal
designs outperform the 9/7-J filter bank in the majority of
cases. For example, our 9/7 optimal design outperforms
the 9/7-J filter bank 87.69% of the time. Our four other
designs outperform the 9/7-J filter bank by margins
ranging from about 59% to 78%. The above results are
extremely encouraging, given that the 9/7-J filter bank is
well known for its exceptional lossy coding performance.
In Table 4(b), we provide the actual PSNR results obtained
for a representative subset of the test images, where the
best result for each bit rate is highlighted. From this table,
we can see that, even for images with different statistical
properties (such as the three images considered here), our
optimal designs outperform the 9/7-J filter bank, some-
times by as much as 1.65 dB. Lastly, we would like to note
that our optimal designs also lead to good subjective
image quality, comparable to that of the 9/7-J filter bank.
In Fig. 6, we provide an example of the lossy image
reconstructions obtained with the various filter banks.
From this figure, we can see that the quality of the image
reconstructions produced by our optimal designs is
comparable to that obtained with the 9/7-J filter bank.

As can be seen from Table 3, our 9/7 design and the
9/7-J filter bank have the same lifting configuration. While
the 9/7-J filter bank has four dual and four primal
(exactly) vanishing moments, our 9/7 design has only
two dual and two primal nearly-vanishing moments and
slightly higher isotropic coding gain as well. With our
design approach, by reducing the number of constrained
moments and relaxing the requirement that moments be
exactly zero, we are able to gain additional freedom,
which ultimately allows a higher-performance filter bank
to be constructed.

It is also interesting to note that, amongst all of the
filter banks that we designed from parameterization (7b),
we were not able to find any that outperforms the 9/7-J
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Table 4
Lossy compression results for the various filter banks.

(a)

Transform Mean (%) Median (%) Outperform (%)

9/7 0.1488 0.1070 87.69

9/11 0.5371 0.0554 59.23

13/11 0.1863 0.0872 74.62

17/11 0.5804 0.2422 77.69

13/15 0.5936 0.1633 68.46

(b)

Image gold target sar2

Comp. ratio 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

PSNR(dB)

9/7 36.88 33.84 31.27 29.15 27.32 41.59 33.55 27.19 22.84 19.14 30.35 26.62 24.70 23.55 22.73

9/11 37.34 34.00 31.35 29.24 27.39 42.92 33.47 26.65 22.35 18.86 30.30 26.59 24.65 23.52 22.70

13/11 36.85 33.76 31.24 29.17 27.37 42.12 33.83 27.84 23.11 19.35 30.33 26.60 24.69 23.54 22.74
17/11 37.17 33.91 31.32 29.17 27.35 42.81 34.00 27.88 23.19 19.46 30.33 26.62 24.69 23.53 22.74

13/15 37.39 33.95 31.27 29.25 27.34 43.11 33.45 26.84 22.42 18.94 30.37 26.57 24.70 23.54 22.67

9/7-J 36.75 33.75 31.23 29.16 27.32 41.46 33.54 27.07 22.70 19.16 30.32 26.61 24.69 23.55 22.73

(a) Summary statistical results over all 26 test images and five bit rates. (b) Specific results for three images.

Fig. 6. Parts of the lossy reconstructions obtained after coding the gold image at a compression ratio of 32:1 using the (a) 9/7, (b) 9/11, (c) 13/11, (d) 17/11,

(e) 13/15, and (f) 9/7-J filter banks.
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filter bank for lossy coding. This is likely due to the fact
that (7b) is an incomplete parameterization of all PR
linear-phase FIR 1D two-channel filter banks with even-
length analysis/synthesis filters, while (7a) is a complete
parameterization of all PR linear-phase FIR 1D two-
channel filter banks with odd-length analysis/synthesis
filters (up to a normalization).

In our work, we also evaluated the lossless coding
performance of the various filter banks. Each of the filter
banks was used to losslessly compress all 26 test images.
The results are shown in Table 5. In particular, we provide
the normalized bit rate (i.e., the reciprocal of compression
ratio) for three images as well as the mean taken over all
26 test images. Evidently, all of our filter banks perform
better overall than the 9/7-J filter bank for lossless coding,
with the 9/11 design yielding the best results.

5.3. Robustness of the design method

Since our proposed design method involves a rather
complex optimization, a few comments are worthwhile
regarding the robustness of the method. In our work, we
have run hundreds of design test cases, using many
combinations of lifting configurations (i.e., number of
lifting filters and lifting-filter lengths), design parameters
(i.e., frequency-response and vanishing-moment con-
straint parameters) and initial points for optimization,
and never once has our method been observed to fail to
converge to a solution. Furthermore, the solution obtained
has always been both feasible and optimal. Additional
experimentation has shown that small perturbations in
the initial point either have no effect on the final (locally)
optimal solution or serve only to displace it to a nearby
(locally) optimum point, with the first of these two
scenarios being far more likely. Therefore, from a practical
point of view, our method has been demonstrated to be
quite robust/stable. This said, there is some theoretical
justification for this good behavior. In each reduced-order
problem, we use a linear Taylor-series approximation of
numerous functions about the current operating point.
Since these functions are sufficiently smooth that their
first-order partial derivatives always exist, the Taylor
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Table 5
Lossless compression results for the various filter banks.

Image Normalized bit rate

9/7 9/11 13/11 17/11 13/15 9/7-J

gold 0.5666 0.5630 0.5652 0.5657 0.5644 0.5673

target 0.3086 0.2949 0.2964 0.3130 0.2975 0.3173

sar2 0.6351 0.6349 0.6353 0.6353 0.6352 0.6350

Meana 0.4874 0.4771 0.4787 0.4870 0.4828 0.4880

a Mean taken over all 26 test images.
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approximations are always well defined. To ensure the
validity of the solution obtained to each reduced-order
problem, the solution is restricted to a small region in
which the Taylor approximations are accurate. This
restriction is imposed by the b0 parameter of our design
method. As long as b0 is chosen sufficiently small (e.g.,
using the value we suggested earlier), the Taylor approx-
imations should always be sufficiently accurate to ensure
the validity of the intermediate/final results produced by
our method as well as guarantee its convergence.
6. Analysis of the coding gain

As was noted earlier in Section 5.1, during the
development of our proposed design method, we ob-
served that the filter banks obtained both at the
intermediate and final stages of our method always seem
to have higher coding gain with respect to the separable
model than with respect to the isotropic one, regardless of
which of the three objective functions in (8) is employed.
In what follows, we study this behavior in detail and
explain the reason for it. Since the results of our
subsequent analysis have application beyond the class of
filter banks associated with our design method, we
consider a superset of this class. In particular, we consider
the class of wavelet filter banks constructed from 1D two-
channel PR real-coefficient filter banks with at least one
dual vanishing moment. This class of filter banks includes
most (if not all) separable filter banks that are commonly
used in practical image-coding systems.

To begin, let us examine the coding gain formula given
by (5). First, we make a few observations regarding the
quantities fAkg

M�1
k¼0 and fBkg

M�1
k¼0 in this formula. Since each

of the fAkg
M�1
k¼0 is the ratio between two variances

(which are nonnegative real numbers) and Ak ¼ 0 implies
that hk is the zero sequence (which would preclude PR),
we have that Ak40. For similar reasons, each of the
fBkg

M�1
k¼0 satisfies Bk40. Next, we make a comment

concerning the correlation coefficient r appearing in (6).
In the remainder of our analysis, we exclude the
possibility that r 2 f0;1g, since these cases are of no
practical value and would only serve to complicate the
subsequent analysis. Since in practice r is typically chosen
as r 2 ½0:90; 0:95�, we emphasize this range of values in
our analysis. This said, however, our results are not strictly
limited to r in this range. So long as r is not too far
outside this range, all of our results should still hold. Let
us now consider how the coding gain is affected by the
choice of image model. From (5), we observe that the only
dependence that the coding gain G has on the image
model embodied by r is in the value of the fAkg

M�1
k¼0 . Since

ak40, G increases as the elements offAkg
M�1
k¼0 decrease.

With this in mind, we would like to more carefully
consider how the fAkg

M�1
k¼0 are affected by the choice of

image model.
Before proceeding further, we need to define several

new quantities that will be used throughout the remain-
der of our analysis. The kth factor in the product G from
(5) is denoted as Gk (i.e., Gk ¼ ðak=ðAkBkÞÞ

ak ). Hence,
G ¼

QM�1
k¼0 Gk. Let Gk;sep and Gk;iso denote the quantity Gk

in the separable and isotropic cases, respectively. Define
the quantities: DAk ¼ Ak;iso � Ak;sep, Dr ¼ riso � rsep, and
G̃k ¼ Gk;iso=Gk;sep.

Consider the expression for fAkg
M�1
k¼0 given by (5).

Through a change of variable, we can rewrite this
expression in a more convenient form as Ak ¼

P
p2Z2

r½p�ck½p�, where ck ¼ h0k%h0k (i.e., the autocorrelation of h0k).

Using the fact that the Fourier transform preserves inner

products and ĉk ¼ j
bh0kj2 (since h0k is real), the preceding

equation can be rewritten as

Ak ¼
1

4p2

Z
½�p;pÞ2

r̂ðxÞĉkðxÞdx ¼
1

4p2

Z
½�p;pÞ2

r̂ðxÞj bh0kðxÞj2 dx.

(15)

Now, we make some observations regarding r̂ and

ĉk ¼ j
bh0kj2. One can easily verify that the sequence r has

eightfold symmetry in both the separable (i.e., r ¼ rsep)

and isotropic (i.e., r ¼ riso) cases. That is, r has quadrantal
symmetry while additionally satisfying r½n0;n1� ¼ r½n1;n0�.

Thus, it follows that r̂ has quadrantal symmetry in both
the separable and isotropic cases. Moreover, since all of

the filters fh0kg
M�1
k¼0 are separable, their autocorrelation

sequences fckg
M�1
k¼0 are also separable. Due to the separ-

ability of h0k, the sequence ck has quadrantal symmetry,

which in turn implies that ĉk has quadrantal symmetry.

Due to the quadrantal symmetry of r̂ and ĉk ¼ j
bh0kj2, we

can rewrite (15) as

Ak ¼
1

p2

Z
½0;pÞ2

r̂ðxÞj bh0kðxÞj2 dx. (16)
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Fig. 7. Contour plot of r̂sep for r ¼ 0:95.
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Fig. 8. Contour plot of r̂iso for r ¼ 0:95.
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Fig. 9. Contour plot of cDr for r ¼ 0:95.
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Thus, we have that

DAk ¼
1

p2

Z
½0;pÞ2

cDrðxÞj bh0kðxÞj2 dx, (17)

where cDr ¼ r̂iso � r̂sep.

Now, we seek to determine a formula for the quantity r̂

in (16) and (17) for the separable and isotropic cases.
The 1D sequence from which rsep is composed is rsep;1d½n�

¼ rjnj, which has the Fourier transform r̂sep;1dðoÞ ¼
1� r2=ð1� 2r cosoþ r2Þ. Thus, the Fourier transform
of rsep is simply

r̂sepðo0;o1Þ ¼
ð1� r2Þ

2

ð1� 2r coso0 þ r2Þð1� 2r coso1 þ r2Þ
.

(18)

Now, we consider the Fourier transform of riso. Using the
eightfold symmetry of riso, we can show that

r̂isoðo0;o1Þ ¼ 1þ yðo0;rÞ þ yðo1;rÞ

þ yðo0 þo1;r
ffiffi
2
p

Þ þ yðo1 �o0;r
ffiffi
2
p

Þ

þ 4
X1
i¼2

Xi�1

k¼1

r
ffiffiffiffiffiffiffiffiffi
i2þk2
p

½cosðio0Þ cosðko1Þ

þ cosðko0Þ cosðio1Þ�, (19)

where yðo;aÞ ¼ ð2a coso� 2a2Þ=ð1� 2a cosoþ a2Þ.
In passing, we would like to briefly make note of an

alternative scheme for computing r̂iso. By observing that
the Fourier transform of the function f ðtÞ ¼ rktk2 is f̂ ðxÞ ¼
�2pðln2rþ kxk2

2Þ
�3=2 lnr [33, Eqn. (3)] and riso is a

sampled version of f , we can conclude r̂isoðxÞ ¼
�2pðlnrÞ

P
k2Z2 ½ln

2rþ kx� 2pkk2
2�
�3=2. Experimentally,

however, this formula for r̂iso has been observed to
converge more slowly than (19), and is therefore less
useful for computational purposes.

For future reference, r̂sep and r̂iso are plotted in Figs. 7
and 8 for r ¼ 0:95. In each case, only the first quadrant is
shown as the remainder of the plot can be trivially
deduced from quadrantal symmetry. For each of r̂sep
and r̂iso, the general shape of the plot remains the same for
all r 2 ½0:90;0:95�, but the decay rate increases with
increasing r. Also, cDr is plotted for r ¼ 0:95 in Fig. 9.
The gray-shaded region in the contour plot corresponds to
where the plotted function is negative. As r increases,
the decay rate of cDr increases, and there is a larger
region where cDr is positive. In all of the above plots, the
scale of the horizontal and vertical axes have been
normalized so that a value of one corresponds to the
Nyquist frequency.
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Now, we will use the expressions for Ak and DAk in (16)
and (17) in order to gain some additional insight into the
behavior of the coding gain. In what follows, we employ
the definitions introduced in Section 3 (e.g., L, M ¼ 3Lþ 1,
level, orient, etc.) and k is used to denote the channel
index, where k 2 f0;1;2; . . . ;3Lg.

For three filter banks, we have computed the various
coding-gain-related quantities for L 2 f1;2;3;4g with
r ¼ 0:95, the results of which can be found in Table 6.
(Note that the coding gains in this table are stated as
unitless quantities, and not in dB.) The first filter bank is
an orthonormal system with ideal filters. This corresponds
to a system with 1D prototype filters each having a gain offfiffiffi

2
p

and 0 in their passbands and stopbands, respectively.
(Thus, we have that h0k has passband and stopband gains
of 2levelðkÞþ1 and 0, respectively.) The other two filter banks
are the well-known Haar and 9/7 [3] systems, and were
Table 6
Intermediate coding gain quantities with r ¼ 0:95 for the (a) ideal (b) Haar, and

and (f) 9/7 filter banks.

(a)

k Band Ak;sep Ak;iso DAk

0 HH0 0.001 0.025 0.024

1 HL0 0.064 0.039 �0:024

2 LH0 0.064 0.039 �0:024

3 LL0 3.870 3.894 0.024

3 HH1 0.004 0.050 0.046

4 HL1 0.250 0.132 �0:117

5 LH1 0.250 0.132 �0:117

6 LL1 14.76 15.07 0.307

6 HH2 0.052 0.306 0.254

7 HL2 1.680 0.958 �0:721

8 LH2 1.680 0.958 �0:721

9 LL2 53.98 56.54 2.557

9 HH3 0.752 2.333 1.581

10 HL3 11.62 7.325 �4:300

11 LH3 11.62 7.325 �4:300

12 LL3 179.7 197.4 17.71

(b)

k Band Ak;sep Ak;iso DAk

0 HH0 0.002 0.030 0.027

1 HL0 0.097 0.069 �0:027

2 LH0 0.097 0.069 �0:027

3 LL0 3.802 3.830 0.027

3 HH1 0.020 0.100 0.079

4 HL1 0.540 0.383 �0:156

5 LH1 0.540 0.383 �0:156

6 LL1 14.10 14.45 0.343

6 HH2 0.237 0.622 0.384

7 HL2 3.424 2.579 �0:844

8 LH2 3.424 2.579 �0:844

9 LL2 49.34 52.02 2.679

9 HH3 2.702 4.508 1.806

10 HL3 20.39 16.57 �3:814
chosen for comparison purposes as examples of systems
with nonideal filters. The nonideal filter banks are
normalized such that their 1D prototype filters have
DC/Nyquist gains of

ffiffiffi
2
p

, as this facilitates more direct
comparisons with the ideal filter bank under considera-
tion. Note that there is no loss of generality in considering
only this particular normalization, as the coding gain for
PR filter banks is invariant to scaling and translation of the
analysis/synthesis filter impulse responses. We will refer
to the results in the above table in some of the discussion
that follows.

Now, we more carefully examine the formula for the
coding gain G in (5). As k increases (which corresponds to
level ðkÞ increasing), ak decays exponentially to zero (i.e.,
ak ¼ 4�levelðkÞ�1). This implies that Gk rapidly approaches
one as k increases. Thus (since G ¼

QM�1
k¼0 Gk), the most

significant contributions to the coding gain G come from
(c) 9/7 filter banks; and the final coding gains for the (d) ideal, (e) Haar,

DAk

Ak;sep

1
ak

Gk;sep Gk;iso G̃k

22.85 4 5.53 2.50 0.45

�0:378 4 1.98 2.23 1.12

�0:378 4 1.98 2.23 1.12

0.006 4 0.71 0.71 0.99

10.95 16 1.40 1.20 0.85

�0:470 16 1.09 1.13 1.04

�0:470 16 1.09 1.13 1.04

0.020 16 0.84 0.84 0.99

4.866 64 1.04 1.01 0.97

�0:429 64 0.99 1.00 1.00

�0:429 64 0.99 1.00 1.00

0.047 64 0.93 0.93 0.99

2.103 256 1.00 0.99 0.99

�0:369 256 0.99 0.99 1.00

�0:369 256 0.99 0.99 1.00

0.098 256 0.97 0.97 0.99

DAk

Ak;sep

1
ak

Gk;sep Gk;iso G̃k

11.01 4 4.47 2.40 0.53

�0:282 4 1.78 1.94 1.08

�0:282 4 1.78 1.94 1.08

0.007 4 0.71 0.71 0.99

3.862 16 1.27 1.15 0.90

�0:289 16 1.03 1.06 1.02

�0:289 16 1.03 1.06 1.02

0.024 16 0.84 0.84 0.99

1.618 64 1.02 1.00 0.98

�0:246 64 0.98 0.98 1.00

�0:246 64 0.98 0.98 1.00

0.054 64 0.94 0.94 0.99

0.668 256 0.99 0.99 0.99

�0:187 256 0.98 0.98 1.00
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Table 6 (continued )

(b)

k Band Ak;sep Ak;iso DAk DAk

Ak;sep

1
ak

Gk;sep Gk;iso G̃k

11 LH3 20.39 16.57 �3:814 �0:187 256 0.98 0.98 1.00

12 LL3 153.9 170.4 16.53 0.107 256 0.98 0.98 0.99

(c)

k Band Ak;sep Ak;iso DAk DAk

Ak;sep

1
ak

Gk;sep Gk;iso G̃k

0 HH0 0.001 0.024 0.023 21.81 4 5.40 2.47 0.45

1 HL0 0.064 0.040 �0:023 �0:360 4 1.97 2.20 1.11

2 LH0 0.064 0.040 �0:023 �0:360 4 1.97 2.20 1.11

3 LL0 3.811 3.834 0.023 0.006 4 0.72 0.72 0.99

3 HH1 0.008 0.090 0.081 9.265 16 1.35 1.16 0.86

4 HL1 0.352 0.199 �0:153 �0:434 16 1.06 1.10 1.03

5 LH1 0.352 0.199 �0:153 �0:434 16 1.06 1.10 1.03

6 LL1 14.12 14.44 0.314 0.022 16 0.84 0.84 0.99

6 HH2 0.098 0.511 0.412 4.176 64 1.03 1.00 0.97

7 HL2 2.213 1.343 �0:869 �0:392 64 0.98 0.99 1.00

8 LH2 2.213 1.343 �0:869 �0:392 64 0.98 0.99 1.00

9 LL2 49.61 52.10 2.496 0.050 64 0.93 0.93 0.99

9 HH3 1.325 3.652 2.327 1.755 256 0.99 0.99 0.99

10 HL3 14.44 9.829 �4:615 �0:319 256 0.98 0.99 1.00

11 LH3 14.44 9.829 �4:615 �0:319 256 0.98 0.99 1.00

12 LL3 157.4 173.2 15.84 0.100 256 0.97 0.97 0.99

(d)

L Gsep Giso

1 21.84 12.54

2 36.54 19.45

3 37.64 19.83

4 36.23 19.07

(e)

L Gsep Giso

1 10.25 6.49

2 16.70 10.00

3 18.25 10.86

4 18.50 11.01

(f)

L Gsep Giso

1 15.25 8.71

2 27.44 14.56

3 30.76 16.16

4 31.34 16.46
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Gk associated with small k, especially those k associated
with the 0th level (i.e., k 2 f0;1;2g or k 2 f0;1;2;3g for L �

2 and L ¼ 1, respectively). As k increases, the numerator
and denominator of G̃k ¼ Gk;iso=Gk;sep each rapidly ap-
proach one. Consequently, G̃k also rapidly approaches one.
Thus (since Giso=Gsep ¼

QM�1
k¼0 G̃k), any difference in the

separable and isotropic coding gains is most strongly
influenced by G̃k for small k. Furthermore, simple
algebraic manipulation shows that

G̃k ¼
Ak;sep

Ak;sep þ DAk

� �ak

¼ 1þ
DAk

Ak;sep

� ��ak

. (20)
Consequently, Gk;sep and Gk;iso differ most when jDAkj is
large relative to Ak;sep (i.e., jDAkj=Ak;sep is large), with
Gk;sep4Gk;iso (i.e., Gsep favored) if DAk40 and Gk;sepoGk;iso

(i.e., Giso favored) if DAko0. All of the above observations
can be seen to be consistent with the data in Table 6.

In what follows, it is instructive to consider the ideal
filter bank introduced above. In this case, from (16) and

(17), Ak and DAk are simply (up to scale) the integrals of r̂

and cDr over the first-quadrant portion of the passband

of the ideal filter h0k. In particular, we have Ak ¼

ðb2
k=p2Þ

R
Pk

r̂ðxÞdx and DAk ¼ ðb
2
k=p2Þ

R
Pk

cDrðxÞdx, where
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Pk is the first-quadrant portion of the passband of h0k, and

bk is the passband gain of h0k. To envision what the result

of such integrations will be, it is helpful to imagine the
frequency-plane tiling of Fig. 4 superimposed on the plots

of r̂sep, r̂iso, and cDr in Figs. 7–9.

Consider k ¼ 0 (i.e., the HH0 band) in the case of the

ideal filter bank. For x in the ðHH0Þ passband, r̂sepðxÞ and

r̂isoðxÞ are both very small but their difference cDrðxÞ is

relatively large (compared to r̂sepðxÞ and r̂isoðxÞ). So, in

(20), Ak;sep is small and DAk=Ak;sep is large in magnitude

and positive. Consequently, from (20), G̃k is significantly
less than one, meaning that Gsep is very strongly favored

over Giso. A similar argument also applies to the other HH

bands, but the influence on the coding gain G is less

significant in these cases since G̃k rapidly approaches one

as k increases. Now consider what happens in the case of
nonideal filters. Even in this case, it is very difficult for the
above qualitative behavior to change. To obtain signifi-

cantly different behavior, bh0k would have to be very large

along the axes where cDr is most negative (and therefore
most favorable to higher Giso). Due to the presence of at

least one dual vanishing moment, however, bh0k must be

zero along both axes. So, even in case of nonideal filters,
Gsep is still likely to be strongly favored by the HH bands.

In the case of the LH and HL bands, due to the presence

of at least one dual vanishing moment, bh0kðo0;o1Þmust be

zero along exactly one of o0 ¼ 0 or o1 ¼ 0. We observe

that cDr (shown in Fig. 9) is largest in magnitude along the
axes, with large positive values near the origin and large
negative values elsewhere on the axes. Thus, in the

calculation of DAk, the large positive values near the

origin in cDr are effectively cancelled since h0k is zero along

one axis, and we are left with large negative values along

the other axis. This leads to DAko0 so that G̃k41 and the
LH and HL bands favor Giso over Gsep. Lastly, we note that

the LH and HL subbands do not have as much impact on
the coding gain G as the HH bands. This is due to that fact
Ak;sep is larger for the LH and HL subbands, making it more

difficult for jDAkj to be large relative to Ak;sep.

An examination of the data for the filter banks in Table 6
shows that all of observations made above are consistent
with this data. For example, the coding gain is most strongly
influenced by the HH bands, with HH0 figuring most
prominently. The LL and HH bands favor Gsep (i.e., G̃ko1),
while the LH and HL bands favor Giso (i.e., G̃k41).

6.1. Additional commentary

In addition to the three filter banks for which results
are presented (in Table 6), we have also considered quite a
number of other filter banks, some of which were
considered for adoption in the JPEG 2000 Part-1 standard
[3], while others were produced at various stages of our
optimal design method. Similar trends (to those described
above) were also found in the case of these other filter
banks. Moreover, we were not able to find any filter bank
(belonging to the class of filter banks under consideration
here) for which Giso4Gsep. Based on our analysis, there is
good reason to believe that such filter banks probably do
not exist.

As an aside, we note that, for the class of filter banks
being considered here, if the constraint of having at least
one dual vanishing moment is dropped, it is possible for
Giso ¼ Gsep. For example, this result is trivially obtained by
the PR system with the 1D prototype analysis filters
H0ðzÞ ¼ 1 and H1ðzÞ ¼ z. So, obviously, for filter banks
outside the class being considered here, the condition
Gsep4Giso may be violated.

7. Conclusions

In this paper, we have proposed a novel optimization-
based method for the design of wavelet filter banks for
image coding. Our method yields linear-phase PR systems
with high coding gain, good frequency selectivity, and
certain prescribed vanishing-moment properties. Several
examples of filter banks constructed using our method
were presented and shown to be highly effective for image
coding. In particular, our optimal designs outperformed
the well-known 9/7 filter bank from the JPEG-2000
standard for both lossy and lossless compression, an
impressive feat given that this filter bank is known for its
exceptional lossy coding performance. Our design method
supports the maximization of the coding gain with respect
to the separable or isotropic image model, or jointly with
respect to both models. Through experimental results, we
have demonstrated that the joint maximization of both
coding gains leads to filter banks with improved coding
performance on average, relative to simply maximizing
the separable coding gain as is typically done.

Also, in this paper, we have studied the coding gain of
separable 2D wavelet filter banks derived from 1D two-
channel real-coefficient PR filter banks with at least one
dual vanishing moment. We have explained why, for such
filter banks, it is extremely difficult (if not impossible) for
the isotropic coding gain to exceed the separable coding
gain. The new insight provided by our analysis may prove
helpful in the design of improved filter banks for image
coding. For example, if one is trying to simultaneously
maximize the minimum of Gsep and Giso as in the case of
our work, our analysis shows that this is practically
equivalent to optimizing Giso alone.
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Appendix A. Proofs
Theorem 1. Consider a symmetric/antisymmetric sequence

h defined on Z of the form h½n� ¼ sh½2c � n�; where c 2 1
2Z is

the center of symmetry and s 2 f�1;1g (i.e., s ¼ 1 and �1
correspond the symmetric and antisymmetric cases, respec-

tively). Let mk denote the kth moment of h. For s ¼ 1: if

mk ¼ 0 for k 2 f0;1; . . . ;2Ng, then m2Nþ1 ¼ 0. For s ¼ �1:
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m0 ¼ 0 and if mk ¼ 0 for k 2 f1;2; . . . ;2N þ 1g, then

m2Nþ2 ¼ 0.

Proof. Suppose that s ¼ 1. Due to the symmetry proper-
ties of h, we have that ĥðoÞ ¼

P
n2Zh½n�e�jcx cosð½n� c�xÞ.

Taking the ‘th derivative of ĥ (via the Leibniz rule) and
using the fact that m‘ ¼ j‘ĥ

ð‘Þ
ð0Þ, we obtain

m‘ ¼
X

k2f0;1;...; ‘=2b cg

a‘;kðcÞf kðcÞ, (21)

where a‘;kðcÞ ¼ ð�1Þ‘ð ‘2kÞð�cÞ‘�2k and f kðcÞ ¼
P

n2Zh½n�

ðn� cÞ2k. Thus, from the preceding equation we have
m0 ¼ a0;0ðcÞf 0ðcÞ, m1 ¼ a1;0ðcÞf 0ðcÞ, m2 ¼ a2;0ðcÞf 0ðcÞþ

a2;1ðcÞf 1ðcÞ, m3 ¼ a3;0ðcÞf 0ðcÞ þ a3;1ðcÞf 1ðcÞ, . . ., and
m2L ¼

PL
k¼0a2L;kðcÞf kðcÞ. From this, we can deduce (by

induction) that

m‘ ¼ 0 for ‘ 2 f0;1; . . . ;2Lg implies f ‘ðcÞ

¼ 0 for ‘ 2 f0;1; . . . ; Lg. (22)

Suppose now that m‘ ¼ 0 for ‘ 2 f0;1; . . . ;2Lg so that (22)
applies. Since (22) applies, we have from (21) that m2Lþ1 ¼P

k2f0;1;...; ð2Lþ1Þ=2b cga2Lþ1;kðcÞf kðcÞ ¼
PL

k¼0a2Lþ1;kðcÞf kðcÞ ¼ 0.
Thus, we have proven the desired result for s ¼ 1.

Suppose that s ¼ �1. Trivially, m0 ¼ 0, as ĥð0Þ ¼ 0 (due

to the antisymmetry of h). The remainder of the proof is

obtained in a manner similar to the s ¼ 1 case above. &
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