Verilator-3.670

Wilson Snyder
http://www.veripool.org

2008-07-23

Verilator-3.670 CONTENTS

Contents

1I_NAME] 2
2
3 DESCRIPTION] 2

4 ARGUMENT SUMMARY] 2
5 ARGUMENTS 4
6 VERILOG ARGUMEN'TS] 9
[EXAMPLE CT T EXECUTION 10
8 EXAMPLE SYSTEMC EXECUTION! 11
9 BENCHMARKING & OPTIMIZATION] 13
14
[LENVIRONMENT! 15
12 -+ 16
13 CONNECTING TO SYSTEMC 17
14 CROSS COMPILATION] 17
[(5 VERILOG 2001 (TEEE 1364-2001) SUPPORT] 18
[(6 VERILOG 2005 (IEEE 1364-2005) SUPPORT] 18

[17 SYSTEMVERILOG (IEEE 1800-2005) SUPPORT] 18

Verilator-3.670

CONTENTS

18 SUGAR/PSL SUPPORT]

19 SYNTHESIS DIRECTIVE ASSERTION SUPPORT!

20 LANGUAGE EXTENSIONS

21 LANGUAGE LIMITATIONS]

22 LANGUAGE KEYWORD LIMITATIONS

23 FRRORS AND WARNINGS

[24 FAQ/FREQUENTLY ASKED QUESTIONS)

25 BUGS

26 HISTORY]

27 CONTRIBUTORS

28 DISTRIBUTIONI

29 AUTHORS

30 SEE ALSO

19

19

20

24

28

29

36

40

41

41

42

42

42

Verilator-3.670 4 ARGUMENT SUMMARY

1 NAME

Verilator - Convert Verilog code to C++/SystemC

2 SYNOPSIS

verilator --help

verilator --version

verilator --cc [options] [top_level.v] [opt_c_files.cpp/c/ccl
verilator --sc [options] [top_level.v] [opt_c_files.cpp/c/ccl
verilator --sp [options] [top_level.v] [opt_c_files.cpp/c/ccl
verilator --lint-only ...

3 DESCRIPTION

Verilator converts synthesizable (not behavioral) Verilog code, plus some Synthesis,
SystemVerilog and Sugar/PSL assertions, into C++, SystemC or SystemPer] code.
It is not a complete simulator, just a compiler.

Verilator is invoked with parameters similar to GCC, Cadence Verilog-XL/NC-Verilog,
or Synopsys’s VCS. It reads the specified Verilog code, lints it, and optionally adds
coverage and waveform tracing code. For C++ and SystemC formats, it outputs .cpp
and .h files. For SystemPerl format, it outputs .sp files for the SystemPerl preproces-
sor, which greatly simplifies writing SystemC code and is available at http://www.veripool.org.

The files created by Verilator are then compiled with C++. The user writes a little
C++ wrapper file, which instantiates the top level module, and passes this filename
on the command line. These C files are compiled in C+-+, and linked with the
Verilated files.

The resulting executable will perform the actual simulation.

4 ARGUMENT SUMMARY

This is a short summary of the arguments to Verilator. See the detailed descriptions
in the next sections for more information.

{file.v} Verilog top level filenames
{file.c/cc/cpp} Optional C++ files to link in
--assert Enable all assertions

Verilator-3.670 4 ARGUMENT SUMMARY

--autoflush Flush streams after all $displays
--bin <filename> Override Verilator binary

--cc Create C++ output

--compiler <compiler-name> Tune for specified C++ compiler
--coverage Enable all coverage
--coverage-line Enable line coverage
--coverage-user Enable PSL/SVL user coverage
-D<var> [=<value>] Set preprocessor define

--debug Enable debugging

--debug-check Enable debugging assertions
--dump-tree Enable dumping .tree files

-E Preprocess, but do not compile
--error-limit <value> Abort after this number of errors
--exe Link to create executable

-f <file> Parse options from a file

--help Display this help.

-I<dir> Directory to search for includes
--inhibit-sim Create function to turn off sim
--inline-mult <value> Tune module inlining

--language <lang> Language standard to parse
--lint-only Lint, but do not make output
--MMD Create .d dependency files

--MP Create phony dependency targets
--Mdir <directory> Name of output object directory
--mod-prefix <topname> Name to prepend to lower classes
--no-skip-identical Disable skipping identical output
-00 Disable optimizations

-03 High performance optimizations
-0<optimization-letter> Selectable optimizations
--output-split <bytes> Split .cpp files into pieces
--output-split-cfuncs <statements> Split .ccp functions
--pins64 Use uint64_t’s for 33-64 bit sigs
--prefix <topname> Name of top level class
--profile-cfuncs Name functions for profiling
--private Debugging; see docs

--psl Enable PSL parsing

--public Debugging; see docs

--scC Create SystemC output

--8p Create SystemPerl output

--stats Create statistics file
--top-module <topname> Name of top level input module
--trace Enable waveform creation
--trace-depth <levels> Depth of tracing

-U<var> Undefine preprocessor define
--underline-zero Zero signals with leading _’s

-v <filename> Verilog library

-Werror-<message> Convert warning to error
-Wfuture-<message> Disable unknown message warnings
-Wno-<message> Disable warning

-x-assign <mode> Initially assign Xs to this value

Verilator-3.670 5 ARGUMENTS

-y <dir> Directory to search for modules
+define+<var>+<value> Set preprocessor define
+incdir+<dir> Directory to search for includes
+libext+<ext>+[ext]... Extensions for finding modules

5 ARGUMENTS

{file.v}
Specifies the Verilog file containing the top module to be Verilated.

{file.c/cc/cpp}
Specifies optional C++ files to be linked in with the Verilog code. If any
C++ files are specified in this way, Verilator will include a make rule that
generates a module executable. Without any C++ files, Verilator will stop at
the module _ ALL.a library, and presume you’ll continue linking with make
rules you write yourself.

—assert

Enable all assertions, includes enabling the —psl flag. (If psl is not desired, but
other assertions are, use —assert —nopsl.)

See also —x-assign; setting "—x-assign unique" may be desirable.

—autoflush
After every $display or $fdisplay, flush the output stream. This insures that

messages will appear immediately but may reduce performance. Defaults off,
which will buffer output as provided by the normal C stdio calls.

—bin filename
Rarely needed. Override the default filename for Verilator itself. When a de-

pendency (.d) file is created, this filename will become a source dependency,
such that a change in this binary will have make rebuild the output files.

Specifies C++ without SystemC output mode; see also —sc¢ and —sp.

—compiler compiler-name

Enables tunings and work-arounds for the specified C++ compiler.

gece
Tune for Gnu C++, although generated code should work on almost any
compliant C++ compiler. Currently the default.

msvce
Tune for Microsoft Visual C++. This may reduce execution speed as it
enables several workarounds to avoid silly hardcoded limits in MSVC++.
This includes breaking deeply nested parenthesized expressions into sub-
expressions to avoid error C1009, and breaking deep blocks into functions
to avoid error C1061.

Verilator-3.670 5 ARGUMENTS

—coverage

Enables all forms of coverage, alias for —coverage-line, —coverage-user

—coverage-line
Specifies basic block line coverage analysis code should be inserted.

Coverage analysis adds statements at each code flow change point, which are
the branches of IF and CASE statements, a super-set of normal Verilog Line
Coverage. At each such branch a unique counter is incremented. At the end of
a test, the counters along with the filename and line number corresponding to
each counter are written into logs/coverage.pl.

After running multiple tests, the vcoverage utility (from the SystemPerl pack-
age) is executed. Vcoverage reads the logs/coverage.pl file(s), and creates an
annotated source code listing showing code coverage details.

Verilator automatically disables coverage of branches that have a $stop in them,
as it is assumed $stop branches contain an error check that should not occur.
A /*verilator coverage block_off*/ comment will perform a similar function
on any code in that block or below.

Note Verilator may over-count combinatorial (non-clocked) blocks when those
blocks receive signals which have had the UNOPTFLAT warning disabled; for
most accurate results do not disable this warning when using coverage.

For an example, after running 'make test’ in the Verilator distribution, see the
test_sp/logs/coverage source directory. Grep for lines starting with ’%’ to see
what lines Verilator believes need more coverage.

—coverage-user

Enables user inserted functional coverage. Currently, all functional coverage
points are specified using PSL which must be separately enabled with —psl.

For example, the following PSL statement will add a coverage point, with the
comment "DefaultClock":

// psl default clock = posedge clk;
// psl cover {cyc==9} report "DefaultClock,expect=1";

—debug
Select the debug built image of Verilator (if available), and enable more internal
assertions, debugging messages, and intermediate form dump files.
—debug-check
Rarely needed. Enable internal debugging assertion checks, without changing
debug verbosity. Enabled automatically when —debug specified.
—dump-tree

Rarely needed. Enable writing .tree debug files. This is enabled with —debug,
so "—debug —no-dump-tree" may be useful if the dump files are large and not
desired.

Verilator-3.670 5 ARGUMENTS

Preprocess the source code, but do not compile, as with ’gcc -E’. Qutput is
written to standard out. Beware of enabling debugging messages, as they will
also go to standard out.

—error-limit <value>

After this number of errors or warnings are encountered, exit. Defaults to 50.

—exe
Generate a executable. You will also need to pass additional .cpp files on the
command line that implement the main loop for your simulation.

—help
Displays this message and program version and exits.

—inhibit-sim
Rarely needed. Create a "inhibitSim(bool)" function to enable and disable
evaluation. This allows a upper level testbench to disable modules that are not
important in a given simulation, without needing to recompile or change the
SystemC modules instantiated.

—inline-mult value

Tune the inlining of modules. The default value of 2000 specifies that up to
2000 new operations may be added to the model by inlining, if more than this
number of operations would result, the module is not inlined. Larger values,
or a value <= 1 will inline everything, will lead to longer compile times, but
potentially faster runtimes. This setting is ignored for very small modules; they
will always be inlined, if allowed.

—language value
Select the language to be used when first processing each Verilog file. The lan-
guage value must be "1364-1995", "1364-2001", "1364-2001", "1364-2005", or
"1800-2005". This should only be used for legacy code, as the preferable option
is to edit the code to repair new keywords, or add appropriate ‘begin _keywords.
—lint-only
Check the files for lint violations only, do not create any other output.
—MMD

Enable creation of .d dependency files, used for make dependency detection,
similar to gcc -MMD option. On by default, use -no-MMD to disable.

-MP
When creating .d dependency files with -MMD, make phony targets. Similar
to gee -MP option.

—Mdir directory

Specifies the name of the Make object directory. All generated files will be
placed in this directory. If not specified, "obj dir" is used.

Verilator-3.670 5 ARGUMENTS

—mod-prefix topname

Specifies the name to prepend to all lower level classes. Defaults to the same
as —prefix.

—no-skip-identical

Rarely needed. Disables skipping execution of Verilator if all source files are
identical, and all output files exist with newer dates.

-00

Disables optimization of the model.

-03

Enables slow optimizations. This may reduce simulation runtimes at the cost
of compile time. This currently sets —inline-mult -1.

-Ooptimization-letter

Rarely needed. Enables or disables a specific optimizations, with the opti-
mization selected based on the letter passed. A lowercase letter disables an
optimization, an upper case letter enables it. This is intended for debugging
use only; see the source code for version-dependent mappings of optimizations
to -O letters.

—output-split bytes

Enables splitting the output .cpp/.sp files into multiple outputs. When a C++
file exceeds the specified number of operations, a new file will be created. In
addition, any slow routines will be placed into _ Slow files. This acceler-
ates compilation by as optimization can be disabled on the slow routines, and
the remaining files can be compiled on parallel machines. Using —output-split
should have only a trivial impact on performance. With GCC 3.3 on a 2GHz
Opteron, —output-split 20000 will result in splitting into approximately one-
minute-compile chunks.

—output-split-cfuncs statements

Enables splitting functions in the output .cpp/.sp files into multiple functions.
When a generated function exceeds the specified number of operations, a new
function will be created. With —output-split, this will enable GCC to compile
faster, at a small loss in performance that increases with smaller statement
values.

—pins64
Specifies SystemC outputs of 33-64 bits wide should use uint64 t instead of
the backward-compatible default of sc_bv’s.

—prefix topname

Specifies the name of the top level class and makefile. Defaults to V prepended
to the name of the —top-module switch, or V prepended to the first Verilog
filename passed on the command line.

—profile-cfuncs

Modify the created C++ functions to support profiling. The functions will be
minimized to contain one "basic" statement, generally a single always block

Verilator-3.670 5 ARGUMENTS

or wire statement. (Note this will slow down the executable by ~5%.) Fur-
thermore, the function name will be suffixed with the basename of the Verilog
module and line number the statement came from. This allows gprof or oprofile
reports to be correlated with the original Verilog source statements.

—private
Opposite of —public. Is the default; this option exists for backwards compati-
bility.

—psl
Enable PSL parsing. Without this switch, PSL meta-comments are ignored. See
the —assert flag to enable all assertions, and —coverage-user to enable functional
coverage.

—public
This is only for historical debug use. Using it may result in mis-simulation of
generated clocks.
Declares all signals and modules public. This will turn off signal optimizations
as if all signals had a /*verilator public*/ comments and inlining. This will also
turn off inlining as if all modules had a /*verilator public_module*/, unless
the module specifically enabled it with /*verilator inline module*/.

—sc
Specifies SystemC output mode; see also —cc and -sp.

—sp
Specifies SystemPerl output mode; see also —cc and -sc.

—stats

Creates a dump file with statistics on the design in {prefix} _ stats.txt.

—top-module topname

When the input Verilog contains more than one top level module, specifies the
name of the top level Verilog module to become the top, and sets the default
for if —prefix is not used. This is not needed with standard designs with only
one top.

—trace

Adds waveform tracing code to the model. Verilator will generate additional
{prefix} _ Trace*.cpp files that will need to be compiled. In addition Sp.cpp
(for SystemC traces) or SpTraceVedC.c (for C++ only) from the SystemPerl
kit’s src directory must be compiled and linked in. If using the Verilator gener-
ated Makefiles, these will be added as source targets for you. If you’re not using
the Verilator makefiles, you will need to add these to your Makefile manually.

Having tracing compiled in may result in some small performance losses, even
when waveforms are not turned on during model execution.
—trace-depth levels

Specify the number of levels deep to enable tracing, for example —trace-level 1
to only see the top level’s signals. Defaults to the entire model. Using a small
number will decrease visibility, but greatly improve runtime and trace file size.

Verilator-3.670 6 VERILOG ARGUMENTS

—underline-zero

Rarely needed. Signals starting with a underline should be initialized to zero, as
was done in Verilator 2. Default is for all signals including those with underlines
being randomized. This option may be depreciated in future versions.

-Werror-message

Convert the specified warning message into a error message. This is gener-
ally to discourage users from violating important site-wide rules, for example
-Werror-NOUNOPTFLAT.

-Wfuture-message

Suppress unknown Verilator comments or warning messages with the given
message code. This is used to allow code written with pragmas for a later
version of Verilator to run under a older version; add -Wfuture- arguments for
each message code or comment that the new version supports which the older
version does not support.

-Wno-message

Disable the specified warning message.

-Wno-lint

Disable all lint related warning messages. This is equivelent to "-Wno-CASEINCOMPLETE
-Wno-CASEOVERLAP -Wno-CASEX -Wno-CASEZWITHX -Wno-CMPCONST
-Wno-IMPLICIT -Wno-UNDRIVEN -Wno-UNSIGNED -Wno-UNUSED -Wno-
VARHIDDEN -Wno-WIDTH".

It is strongly recommended you cleanup your code rather than using this option,
it is only intended to be use when running test-cases of code received from third
parties.

-x-assign 0
-x-assign 1
-x-assign fast (default)

-x-assign unique

Controls the two-state value that is replaced when an assignment to X is en-
countered. -x-assign—fast, the default, converts all Xs to whatever is best for
performance. -x-assign=0 converts all Xs to 0s, and is also fast. -x-assign=1
converts all Xs to 1s, this is nearly as fast as 0, but more likely to find reset
bugs as active high logic will fire. -x-assign=unique will call a function to de-
termine the value, this allows randomization of all Xs to find reset bugs and is
the slowest, but safest for finding reset bugs in code.

6 VERILOG ARGUMENTS

The following arguments are compatible with GCC, VCS and most Verilog programs.

10

Verilator-3.670 7 EXAMPLE C++ EXECUTION

+define+t+var+wvalue

-Dwvar=value

Defines the given preprocessor symbol.

-f file
Read the specified file, and act as if all text inside it was specified as command
line parameters.

+incdir-+dir

-Ider

-y dir
Add the directory to the list of directories that should be searched for include
directories or libraries.

+libext+ext+ext...
Specify the extensions that should be used for finding modules. If for example
module z is referenced, look in z.ext.

-Uvar

Undefines the given preprocessor symbol.

-v filename

Read the filename as a Verilog library. Any modules in the file may be used to
resolve cell instantiations in the top level module, else ignored.

7 EXAMPLE C+-+ EXECUTION

We’ll compile this example into C++.

mkdir test_our
cd test_our

cat <<EQF >our.v
module our;
initial begin \$display("Hello World"); \$finish; end
endmodule
EOQF

cat <<EOF >sim_main.cpp
#include "Vour.h"
#include '"verilated.h"
int main(int argc, char **argv, char **env) {
Vour* top = new Vour;

11

Verilator-3.670 8 EXAMPLE SYSTEMC EXECUTION

while (!Verilated::gotFinish()) { top->eval(); }
exit (0);
}
EQF

Now we run Verilator on our little example.

export VERILATOR_RO0T=/path/to/where/verilator/was/installed
$VERILATOR_ROOT/bin/verilator --cc our.v --exe sim_main.cpp

We can see the source code under the "obj dir" directory. See the FILES section
below for descriptions of some of the files that were created.

1s -1 obj_dir
We then can compile it

cd obj_dir
make -f Vour.mk Vour

(Verilator included a default compile rule and link rule, since we used —exe and passed
a .cpp file on the Verilator command line. You can also write your own compile rules,
as we'll show in the SYSTEMC section.)

And now we run it

cd ..
obj_dir/Vour

And we get as output

Hello World
- our.v:2: Verilog $finish

Really, you’re better off writing a Makefile to do all this for you. Then, when your
source changes it will automatically run all of these steps. See the test c directory
in the distribution for an example.

8 EXAMPLE SYSTEMC EXECUTION

This is an example similar to the above, but using SystemPerl.

12

Verilator-3.670 8 EXAMPLE SYSTEMC EXECUTION

mkdir test_our_sc
cd test_our_sc

cat <<EOF >our.v
module our (clk);
input clk; // Clock is required to get initial activation
always @ (posedge clk)
begin \$display("Hello World"); \$finish; end
endmodule
EOF

cat <<EOF >sc_main.cpp
#include "Vour.h"
int sc_main(int argc, char **xargv) {
sc_clock clk ("clk",10, 0.5, 3, true);
Vour* top;
top = new Vour("top"); // SP_CELL (top, Vour);

top->clk(clk); // SP_PIN (top, clk, clk);
while (!Verilated::gotFinish()) { sc_start(1); }
exit(0);
}
EQF

Now we run Verilator on our little example.

export VERILATOR_RO0T=/path/to/where/verilator/was/installed
$VERILATOR_ROOT/bin/verilator --sp our.v

Then we convert the SystemPerl output to SystemC.

cd obj_dir
export SYSTEMPERL=/path/to/where/systemperl/kit/came/from
$SYSTEMPERL/sp_preproc --preproc *.sp

(You can also skip the above sp_preproc by getting pure SystemC from Verilator by
replacing the verilator —sp flag in the previous step with -sc.)

We then can compile it

make -f Vour.mk Vour__ALL.a
make -f Vour.mk ../sc_main.o
make -f Vour.mk verilated.o

And link with SystemC. Note your path to the libraries may vary, depending on the
operating system.

13

Verilator-3.670 9 BENCHMARKING & OPTIMIZATION

export SYSTEMC=/path/to/where/systemc/was/built/or/installed
g++ -L$SYSTEMC/1ib-1linux ../sc_main.o Vour__ALL*.o verilated.o \
-o Vour -lsystemc

And now we run it

cd ..
obj_dir/Vour

And we get the same output as the C++ example:

Hello World
- our.v:2: Verilog $finish

Really, you’re better off using a Makefile to do all this for you. Then, when your
source changes it will automatically run all of these steps. See the test _sp directory
in the distribution for an example.

9 BENCHMARKING & OPTIMIZATION

For best performance, run Verilator with the "-O3 -x-assign=fast —noassert" flags.
The -03 flag will require longer compile times, and -x-assign=fast may increase the
risk of reset bugs in trade for performance; see the above documentation for these
flags.

Minor Verilog code changes can also give big wins. You should not have any UNOPT-
FLAT warnings from Verilator. Fixing these warnings can result in huge improve-
ments; one user fixed their one UNOPTFLAT warning by making a simple change to
a clock latch used to gate clocks and gained a 60% performance improvement.

Beyond that, the performance of a Verilated model depends mostly on your C++
compiler and size of your CPU’s caches.

By default, the lib/verilated.mk file has optimization turned off. This is for the benefit
of new users, as it improves compile times at the cost of runtimes. To add optimization

as the default, set one of three variables, OPT, OPT_ FAST, or OPT SLOW in
lib/verilated.mk. Or, just for one run, pass them on the command line to make:

make OPT_FAST="-02" -f Vour.mk Vour__ALL.a

OPT _FAST specifies optimizations for those programs that are part of the fast path,
mostly code that is executed every cycle. OPT _SLOW specifies optimizations for

14

Verilator-3.670 10 FILES

slow-path files (plus tracing), which execute only rarely, yet take a long time to
compile with optimization on. OPT specifies overall optimization and affects all
compiles, including those OPT _FAST and OPT _SLOW affect. For best results, use
OPT="-02", and link with "-static". Nearly the same results can be had with much
better compile times with OPT FAST="-O1 -fstrict-aliasing".

Unfortunately, using the optimizer with SystemC files can result in compiles taking
several minutes. (The SystemC libraries have many little inlined functions that drive
the compiler nuts.)

For best results, use GCC 3.3 or newer. GCC 3.2 and earlier have optimization bugs
around pointer aliasing detection, which can result in 2x performance losses.

If you will be running many simulations on a single compile, investigate feedback
driven compilation. With GCC, using -fprofile-arcs, then -fbranch-probabilities will
yield another 15% or so.

You may uncover further tuning possibilities by profiling the Verilog code. Use Veri-
lator’s —profile-cfuncs, then GCC’s -g -pg. You can then run either oprofile or gprof
to see where in the C++ code the time is spent. Run the gprof output through
verilator profcfunc and it will tell you what Verilog line numbers on which most of

the time is being spent.

When done, please let the author know the results. Ilike to keep tabs on how Verilator
compares, and may be able to suggest additional improvements.

10 FILES

All output files are placed in the output directory name specified with the -Mdir
option, or "obj dir" if not specified.

Verilator creates the following files in the output directory:

{prefix}.mk // Make include file for compiling
{prefix}_classes.mk // Make include file with class names

For -cc and -sc mode, it also creates:

{prefix}.cpp // Top level C++ file

{prefix}.h // Top level header
{prefix}{each_verilog_module}.cpp // Lower level internal C++ files
{prefix}{each_verilog_module}.h // Lower level internal header files

For -sp mode, instead of .cpp and .h it creates:

15

Verilator-3.670

11 ENVIRONMENT

{prefix}.sp
{prefix}{each_verilog_modulel}.sp

In certain optimization modes, it also creates:

{prefix}__Inlines.h
{prefix}__Slow.cpp
{prefix}__Syms.cpp
{prefix}__Syms.h
{prefix}__Trace.cpp
{prefix}__stats.txt

//
//

//
//
//
//
//
//

Top level SystemC file
Lower level internal SC files

Inline support functions
Constructors and infrequent routines
Global symbol table C++

Global symbol table header

Wave file generation code (--trace)
Statistics (--stats)

It also creates internal files that can be mostly ignored:

{each_verilog_module}.vpp
{prefix}.flags_vbin
{prefix}.flags_vpp
{prefix}{misc}.d
{prefix}{misc}.dot
{prefix}{misc}.tree

//
//
//
//
//
//

Post-processed verilog (--debug)
Verilator dependencies
Pre-processor dependencies

Make dependencies (-MMD)
Debugging graph files (--debug)
Debugging files (--debug)

After running Make, the C++ compiler should produce the following:

{prefix}
{prefix}__ALL.a
{prefix}{misc}.o

11 ENVIRONMENT

SYSTEMC

//
//
//

Final executable (w/--exe argument)
Library of all Verilated objects
Intermediate objects

Required for SystemC output mode. If set, specifies the directory containing
the SystemC distribution. This is used to find the SystemC include files. If
not specified, it will come from a default optionally specified at configure time

(before Verilator was compiled).

SYSTEMC_ARCH

Specifies the architecture name used by the SystemC kit. This is the part after
the dash in the lib-{...} directory name created by a 'make’ in the SystemC
distribution. If not set, Verilator will try to intuit the proper setting, or use the
default optionally specified at configure time (before Verilator was compiled). .

SYSTEMC CXX FLAGS

Specifies additional flags that are required to be passed to GCC when building

the SystemC model.

16

Verilator-3.670 12 CONNECTING TO C++

SYSTEMPERL

Specifies the directory containing the Verilog-Perl distribution kit. This is used
to find the Verilog-Perl library and include files. If not specified, it will come
from a default optionally specified at configure time (before Verilator was com-
piled).

VCS_HOME

If set, specifies the directory containing the Synopsys VCS distribution. When
set, a 'make test’ in the Verilator distribution will also run VCS baseline re-
gression tests.

VERILATOR BIN

If set, specifies an alternative name of the Verilator binary. May be used for
debugging and selecting between multiple operating system builds.

VERILATOR_ROOT

Specifies the directory containing the distribution kit. This is used to find the
executable, Perl library, and include files. If not specified, it will come from a
default optionally specified at configure time (before Verilator was compiled).

12 CONNECTING TO CH+

Verilator creates a .h and .cpp file for the top level module and all modules under it.
See the test ¢ directory in the kit for an example.

After the modules are completed, there will be a module.mk file that may be used
with Make to produce a module _ ALL.a file with all required objects in it. This is

then linked with the user’s top level to create the simulation executable.

The user must write the top level of the simulation. Here’s a simple example:

#include <verilated.h> // Defines common routines
#include "Vtop.h" // From Verilating "top.v"
Vtop *top; // Instantiation of module
unsigned int main_time = 0; // Current simulation time
double sc_time_stamp () { // Called by $time in Verilog

return main_time;

3

int main() {
top = new Vtop; // Create instance

17

Verilator-3.670 14 CROSS COMPILATION

top->reset_1 = 0; // Set some inputs

while (!Verilated::gotFinish()) {
if (main_time > 10) {
top->reset_1 = 1; // Deassert reset

}
if ((main_time % 10) == 1) {

top->clk = 1; // Toggle clock
}

if ((main_time % 10) == 6) {
top->clk = 0O;

}
top->eval(); // Evaluate model
cout << top->out << endl; // Read a output
main_time++; // Time passes...
}
top->final(); // Done simulating

// // (Though this example doesn’t get here)

Note signals are read and written as member variables of the lower module. You
call the eval() method to evaluate the model. When the simulation is complete call
the final() method to wrap up any SystemVerilog final blocks, and complete any
assertions.

13 CONNECTING TO SYSTEMC

Verilator will convert the top level module to a SC_MODULE. This module will plug
directly into a SystemC netlist.

The SC_MODULE gets the same pinout as the Verilog module, with the following
type conversions: Pins of a single bit become bool, unless they are marked with
‘systemc_ clock, in which case they become sc_clock’s (for SystemC 1.2, not needed
in SystemC 2.0). Pins 2-32 bits wide become uint32 _t’s. Pins 33-64 bits wide become
sc_bv’s or uint64 _t’s depending on the -pins64 switch. Wider pins become sc_ bv’s.

Lower modules are not pure SystemC code. This is a feature, as using the SystemC pin
interconnect scheme everywhere would reduce performance by an order of magnitude.

14 CROSS COMPILATION

Verilator supports cross-compiling Verilated code. This is generally used to run Ver-
ilator on a Linux system and produce C++ code that is then compiled on Windows.

18

Verilator-3.670 17 SYSTEMVERILOG (IEEE 1800-2005) SUPPORT

Cross compilation involves up to three different OSes. The build system is where you
configured and compiled Verilator, the host system where you run Verilator, and the
target system where you compile the Verilated code and run the simulation.

Currently, Verilator requires the build and host system type to be the same, though
the target system type may be different. To support this, ./configure and make
Verilator on the build system. Then, run Verilator on the host system. Finally, the
output of Verilator may be compiled on the different target system.

To support this, none of the files that Verilator produces will reference any configure
generated build-system specific files, such as config.h (which is renamed in Verilator
to config_build.h to reduce confusion.) The disadvantage of this approach is that
include/verilatedos.h must self-detect the requirements of the target system, rather
than using configure.

The target system may also require edits to the Makefiles, the simple Makefiles pro-
duced by Verilator presume the target system is the same type as the build system.

15 VERILOG 2001 (IEEE 1364-2001) SUPPORT

Verilator supports almost all Verilog 2001 language features. This includes signed
numbers, "always @*" comma separated sensitivity lists, generate statements, mul-
tidimensional arrays, localparam, and C-style declarations inside port lists.

16 VERILOG 2005 (IEEE 1364-2005) SUPPORT

Verilator supports the ‘begin keywords and ‘end keywords compiler directives.
Verilator supports $clog2.

Verilator partially supports the uwire keyword.

17 SYSTEMVERILOG (IEEE 1800-2005) SUPPORT

Verilator currently has very minimal support for SystemVerilog. As SystemVerilog
features enter common usage they will be added. Contact the author if a feature you
need is missing.

Verilator implements the full SystemVerilog 1800-2005 preprocessor, including func-
tion call-like preprocessor defines.

Verilator supports ==? and !=7 operators, $bits, $countones, $error, $fatal, $info,
$isunknown, $onehot, $onehot0, $warning, always comb, always ff, always latch,

19

Verilator-3.670 19 SYNTHESIS DIRECTIVE ASSERTION SUPPORT

do-while, and final.
It also supports .name and .* interconnection.

Verilator partially supports assert.

18 SUGAR/PSL SUPPORT

Most future work is being directed towards improving SystemVerilog assertions in-
stead of PSL. If you are using these PSL features, please contact the author as they
may be depreciated in future versions.

With the —assert switch, Verilator enables support of the Property Specification Lan-
guage (PSL), specifically the simple PSL subset without time-branching primitives.
Verilator currently only converts PSL assertions to simple "if (...) error" statements,
and coverage statements to increment the line counters described in the coverage
section.

Verilator implements these keywords: assert, assume (same as assert), default (for
clocking), countones, cover, isunknown, onehot, onehot0, report, true.

Verilator implements these operators: -> (logical if).

Verilator does not support SEREs yet. All assertion and coverage statements must
be simple expressions that complete in one cycle. PSL vmode/vprop/vunits are not
supported. PSL statements must be in the module they reference, at the module
level where you would put an initial... statement.

Verilator only supports (posedge CLK) or (negedge CLK), where CLK is the name
of a one bit signal. You may not use arbitrary expressions as assertion clocks.

19 SYNTHESIS DIRECTIVE ASSERTION SUPPORT

With the —assert switch, Verilator reads any "//synopsys full case" or "// synop-
sys parallel case" directives. The same applies to any "//cadence" or "// ambit
synthesis" directives of the same form.

When these synthesis directives are discovered, Verilator will either formally prove

the directive to be true, or failing that, will insert the appropriate code to detect
failing cases at runtime and print an "Assertion failed" error message.

20

Verilator-3.670 20 LANGUAGE EXTENSIONS

20 LANGUAGE EXTENSIONS

The following additional constructs are the extensions Verilator supports on top of
standard Verilog code. Using these features outside of comments or ‘ifdef’s may break
other tools.

‘

¢

__FILE

The FILE _ define expands to the current filename, like C++’s _ FILE

_LINE__

The LINE__ define expands to the current line number, like C++’s LINE _

‘error string

This will report an error when encountered, like C++’s #error.

_ (expr)

A underline followed by an expression in parenthesis returns a Verilog expres-
sion. This is different from normal parenthesis in special contexts, such as PSL
expressions, and can be used to embed bit concatenation ({}) inside of PSL
statements.

$c(string, ...);

The string will be embedded directly in the output C++ code at the point
where the surrounding Verilog code is compiled. It may either be a standalone
statement (with a trailing ; in the string), or a function that returns up to a
32-bit number (without a trailing ;). This can be used to call C++ functions
from your Verilog code.

String arguments will be put directly into the output C++ code. Expression
arguments will have the code to evaluate the expression inserted. Thus to call
a C++ function, $c("func(",a,")") will result in ’func(a)’ in the output C++
code. For input arguments, rather than hard-coding variable names in the string
$c("func(a)"), instead pass the variable as an expression $c("func(",a,")"). This
will allow the call to work inside Verilog functions where the variable is flattened
out, and also enable other optimizations.

If you will be reading or writing any Verilog variables inside the C++ functions,
the Verilog signals must be declared with /*verilator public*/.

You may also append a arbitrary number to $c, generally the width of the out-
put. [signal 32 _bits = $c32("...");] This allows for compatibility with other
simulators which require a differently named PLI function name for each differ-
ent output width.

$display, $write, $fdisplay, $fwrite

Format arguments may use C fprintf sizes after the % escape. Per the Verilog
standard, %x prints a number with the natural width, %0x prints a number
with minimum width, however %5x prints 5 digits per the C standard (it’s
unspecified in Verilog).

21

Verilator-3.670 20 LANGUAGE EXTENSIONS

‘coverage block off
Specifies the entire begin/end block should be ignored for coverage analysis.
Same as /* verilator coverage block off */.

‘systemc_header
Take remaining text up to the next ‘verilog or ‘systemc ... mode switch and
place it verbatim into the output .h file’s header. Despite the name of this
macro, this also works in pure C+-+ code.

‘systemc _ctor
Take remaining text up to the next ‘verilog or ‘systemc ... mode switch and
place it verbatim into the C++ class constructor. Despite the name of this
macro, this also works in pure C++ code.

‘systemc _dtor
Take remaining text up to the next ‘verilog or ‘systemc ... mode switch and
place it verbatim into the C++ class destructor. Despite the name of this
macro, this also works in pure C++ code.

‘systemc__interface
Take remaining text up to the next ‘verilog or ‘systemc ... mode switch and
place it verbatim into the C++ class interface. Despite the name of this macro,
this also works in pure C+-+ code.

‘systemc imp header
Take remaining text up to the next ‘verilog or ‘systemc ... mode switch and
place it verbatim into the header of all files for this C++ class implementation.
Despite the name of this macro, this also works in pure C++ code.

‘systemc implementation

Take remaining text up to the next ‘verilog or ‘systemc_ ... mode switch and
place it verbatim into a single file of the C++ class implementation. Despite
the name of this macro, this also works in pure C++ code.

If you will be reading or writing any Verilog variables in the C++ functions, the
Verilog signals must be declared with /*verilator public*/. See also the public
task feature; writing a accessor may result in cleaner code.

‘verilator

‘verilator3
The verilator and verilator3 defines are set by default so you may ‘ifdef around
compiler specific constructs.

‘verilog

Switch back to processing Verilog code after a ‘systemc ... mode switch. The
Verilog code returns to the last language mode specified with ‘begin keywords,
or SystemVerilog if none were specified.

22

Verilator-3.670 20 LANGUAGE EXTENSIONS

/*verilator clock enable*/

Experimental use only. Used after a signal declaration to indicate the signal
is used to gate a clock, and the user takes responsibility for insuring there
are no races related to it. (Typically by adding a latch, and running static
timing analysis.) This will cause the clock gate to be ignored in the scheduling
algorithm, improving performance.

/*verilator coverage block off*/

Specifies the entire begin/end block should be ignored for coverage analysis.

/*verilator inline module*/

Specifies the module the comment appears in may be inlined into any modules
that use this module. This is useful to speed up simulation time with some small
loss of trace visibility and modularity. Note signals under inlined submodules
will be named submodule _DOT ___ subsignal as C++ does not allow "." in
signal names. SystemPer]l when tracing such signals will replacethe DOT
with the period.

/*verilator isolate assignments*/

Used after a signal declaration to indicate the assignments to this signal in any
blocks should be isolated into new blocks. When there is a large combinatorial
block that is resulting in a UNOPTFLAT warning, attaching this to the signal
causing a false loop may clear up the problem.

IE, with the following

reg splitme /* verilator isolate_assignmentsx/;
always @x begin
if (....) begin
splitme =;
other assignments
end
end

Verilator will internally split the block that assigns to "splitme" into two blocks:

It would then internally break it into (sort of):

// All assignments excluding those to splitme
always @x begin
if (....) begin
other assignments
end
end
// All assignments to splitme
always @x begin
if (....) begin
splitme =;
end
end

23

Verilator-3.670 20 LANGUAGE EXTENSIONS

/*verilator lint _off msg*/

Disable the specified warning message for any warnings following the comment.

/*verilator lint _on msg*/

Re-enable the specified warning message for any warnings following the com-
ment.

/*verilator lint restore*/

After a /*verilator lint _save™/, pop the stack containing lint message state.
Often this is useful at the bottom of include files.

/*verilator lint _save*/

Push the current state of what lint messages are turned on or turned off to a
stack. Later meta-comments may then lint _on or lint _off specific messages,
then return to the earlier message state by using /*verilator lint _restore*/. For
example:

// verilator lint_save
// verilator lint_off SOME_WARNING

// code needing SOME_WARNING turned off
// verilator lint_restore

If SOME _WARNING was on before the lint_off, it will now be restored to on,
and if it was off before the lint off it will remain off.

/*verilator no_inline task*/

Used in a function or task variable definition section to specify the function or
task should not be inlined into where it is used. This may reduce the size of
the final executable when a task is used a very large number of times. For this
flag to work, the task and tasks below it must be pure; they cannot reference
any variables outside the task itself.

/*verilator public*/ (variable)

Used after a input, output, register, or wire declaration to indicate the signal
should be declared so that C code may read or write the value of the signal. This
will also declare this module public, otherwise use /*verilator public_flat*/.

/*verilator public*/ (task/function)

Used inside the declaration section of a function or task declaration to indicate
the function or task should be made into a C++ function, public to outside
callers. Public tasks will be declared as a void C++ function, public functions
will get the appropriate non-void (bool, uint32 _t, etc) return type. Any input
arguments will become C++ arguments to the function. Any output arguments
will become C++ reference arguments. Any local registers/integers will become
function automatic variables on the stack.

Wide variables over 64 bits cannot be function returns, to avoid exposing com-
plexities. However, wide variables can be input/outputs; they will be passed as
references to an array of 32 bit numbers.

Generally, only the values of stored state (flops) should be written, as the model
will NOT notice changes made to variables in these functions. (Same as when
a signal is declared public.)

24

Verilator-3.670 21 LANGUAGE LIMITATIONS

/*verilator public_flat*/ (variable)

Used after a input, output, register, or wire declaration to indicate the signal
should be declared so that C code may read or write the value of the signal.
This will not declare this module public, which means the name of the signal
or path to it may change based upon the module inlining which takes place.

/*verilator public _module*/
Used after a module statement to indicate the module should not be inlined
(unless specifically requested) so that C code may access the module. Verilator
automatically sets this attribute when the module contains any public signals
or ‘systemc__ directives. Also set for all modules when using the —public switch.

/*verilator sc_clock*/
Used after a input declaration to indicate the signal should be declared in
SystemC as a sc_ clock instead of a bool.

/*verilator tracing off*/
Disable waveform tracing for all future signals that are declared in this module.
Often this is placed just after a primitive’s module statement, so that the entire
module is not traced.

/*verilator tracing on*/

Re-enable waveform tracing for all future signals that are declared.

21 LANGUAGE LIMITATIONS

There are some limitations and lack of features relative to a commercial simulator,
by intent. User beware.

It is strongly recommended you use a lint tool before running this program. Verilator
isn’t designed to easily uncover common mistakes that a lint program will find for
you.

Synthesis Subset

Verilator supports only the Synthesis subset with a few minor additions such as $stop,
$finish and $display. That is, you cannot use hierarchical references, events or similar
features of the Verilog language. It also simulates as Synopsys’s Design Compiler
would; namely a block of the form

always @ (x) y=3x & z;

will recompute y when there is a change in x or a change in z, which is what Design
Compiler will synthesize. A compliant simulator would only calculate y if x changes.
(Use verilog-mode’s /*AS*/ or Verilog 2001’s always @* to prevent these issues.)

25

Verilator-3.670 21 LANGUAGE LIMITATIONS

Dotted cross-hierarchy references

Verilator supports dotted references to variables, functions and tasks in different
modules. However, references into named blocks and function-local variables are not
supported. The portion before the dot must have a constant value; for example a[2].b
is acceptable, while a[x].b is not.

References into generated and arrayed instances use the instance names specified in
the Verilog standard; arrayed instances are named {cellName}[{instanceNumber}] in
Verilog, which becomes {cellname} BRA {instanceNumber} KET inside
the generated C++ code.

Verilator creates numbered "genblk" when a begin: name is not specified around a
block inside a generate statement. These numbers may differ between other simu-
lators, but the Verilog specification does not allow users to use these names, so it

should not matter.

If you are having trouble determining where a dotted path goes wrong, note that
Verilator will print a list of known scopes to help your debugging.

Floating Point

Floating Point numbers are not synthesizable, and so not supported.

Latches

Verilator is optimized for edge sensitive (flop based) designs. It will attempt to do
the correct thing for latches, but most performance optimizations will be disabled
around the latch.

Time

All delays (#) are ignored, as they are in synthesis.

Two State

Verilator is a two state simulator, not a four state simulator. However, it has two
features which uncover most initialization bugs (including many that a four state
simulator will miss.)

First, assigning a variable to a X will actually assign the variable to a random value
(see the -x-assign switch.) Thus if the value is actually used, the random value

26

Verilator-3.670 21 LANGUAGE LIMITATIONS

should cause downstream errors. Integers also randomize, even though the Verilog
2001 specification says they initialize to zero.

Identity comparisons (=== or |==) are converted to standard == /!== when neither
side is a constant. This may make the expression result differ from a four state
simulator.

All variables are initialized using a function. By running several random simulation
runs you can determine that reset is working correctly. On the first run, the function
initializes variables to zero. On the second, have it initialize variables to one. On the
third and following runs have it initialize them randomly. If the results match, reset
works. (Note this is what the hardware will really do.) In practice, just setting all
variables to one at startup finds most problems.

Tri/Inout

As a 2 state compiler, tristate and inouts are not supported. Traditionally only chip
"cores" are Verilated, the pad rings have been written by hand in C++-.

Functions & Tasks

All functions and tasks will be inlined (will not become functions in C.) The only
support provided is for simple statements in tasks (which may affect global variables).

Recursive functions and tasks are not supported. All inputs and outputs are auto-
matic, as if they had the Verilog 2001 "automatic" keyword prepended. (If you don’t
know what this means, Verilator will do what you probably expect — what C does.
The default behavior of Verilog is different.)

Generated Clocks

Verilator attempts to deal with generated clocks correctly, however new cases may
turn up bugs in the scheduling algorithm. The safest option is to have all clocks as
primary inputs to the model, or wires directly attached to primary inputs.

Ranges must be big-bit-endian

Bit ranges must be numbered with the MSB being numbered greater or the same as
the LSB. Little-bit-endian busses [0:15] are not supported as they aren’t easily made
compatible with C4-+.

27

Verilator-3.670 21 LANGUAGE LIMITATIONS

32-Bit Divide

The division and modulus operators are limited to 32 bits. This can be easily fixed
if someone contributes the appropriate wide-integer math functions.

Gate Primitives

The 2-state gate primitives (and, buf, nand, nor, not, or, xnor, xor) are directly
converted to behavioral equivalents. The 3-state and MOS gate primitives are not
supported. Tables are not supported.

Specify blocks

All specify blocks and timing checks are ignored.

Array Initialization

When initializing an array, you need to use non-delayed assignments. This is done
in the interest of speed; if delayed assignments were used, the simulator would have
to copy large arrays every cycle. (In smaller loops, loop unrolling allows the delayed
assignment to work, though it’s a bit slower than a non-delayed assignment.) Here’s
an example

always @ (posedge clk)
if ("reset_l) begin
for (i=0; i<‘ARRAY_SIZE; i++) begin
array[i] = 0; // Non-delayed for verilator
end

Array Out of Bounds

Writing a memory element that is outside the bounds specified for the array may cause
a different memory element inside the array to be written instead. For power-of-2
sized arrays, Verilator will give a width warning and the address. For non-power-of-
2-sizes arrays, index 0 will be written.

Reading a memory element that is outside the bounds specified for the array will give

a width warning and wrap around the power-of-2 size. For non-power-of-2 sizes, it
will return a unspecified constant of the appropriate width.

28

Verilator-3.670 22 LANGUAGE KEYWORD LIMITATIONS

Assertions

Verilator is beginning to add support for assertions. Verilator currently only converts
assertions to simple "if (...) error" statements, and coverage statements to increment
the line counters described in the coverage section.

Verilator does not support SEREs yet. All assertion and coverage statements must
be simple expressions that complete in one cycle. (Arguably SEREs are much of the
point, but one must start somewhere.)

22 LANGUAGE KEYWORD LIMITATIONS

This section describes specific limitations for each language keyword.

‘ FILE_ ,¢ LINE_ _, ‘begin keywords, ‘begin keywords, ‘begin keywords,
‘begin_keywords, ‘begin _keywords, ‘define, ‘else, ‘elsif, ‘end keywords,
‘endif, ‘error, ‘ifdef, ‘ifndef, ‘include, ‘line, ‘systemc ctor, ‘systemc dtor,
‘systemc header, ‘systemc imp header, ‘systemc implementation,
‘systemc _interface, ‘timescale, ‘undef, ‘verilog
Fully supported.

always, always comb, always ff, always latch, and, assign, begin, buf,
case, casex, casez, default, defparam, do-while, else, end, endcase,
endfunction, endgenerate, endmodule, endspecify, endtask, final, for,
function, generate, genvar, if, initial, inout, input, integer, local-
param, macromodule, module, nand, negedge, nor, not, or, output,
parameter, posedge, reg, scalared, signed, supply0, supplyl, task, tri,
vectored, while, wire, xnor, xor

Generally supported.

specify specparam

All specify blocks and timing checks are ignored.

uwire
Verilator does not perform warning checking on uwires, it treats the uwire
keyword as if it were the normal wire keyword.

$bits, $countones, $error, $fatal, $finish, $info, $isunknown, $onehot, $one-
hot0, $readmemb, $readmemh, $signed, $stime, $stop, $time, $un-
signed, $warning.

Generally supported.
$display, $write, $fdisplay, $fwrite

$display and friends must have a constant format string as the first argument
(as with C’s printl), you cannot simply list variables standalone.

29

Verilator-3.670 23 ERRORS AND WARNINGS

$displayb, $displayh, $displayo, $writeb, $writeh, $writeo, etc
The sized display functions are rarely used and so not supported. Replace them
with a $write with the appropriate format specifier.

$finish, $stop

The rarely used optional parameter to $finish and $stop is ignored.

$fopen, $fclose, $fdisplay, $feof, $flush, $fgetc, $fgets, $fscanf, $fwrite

File descriptors passed to the file PLI calls must be file descriptors, not MCDs,
which includes the mode parameter to $fopen being mandatory. Verilator will
convert the integer used to hold the file descriptor into a internal FILE*. To
prevent, core dumps due to mis-use, and because integers are 32 bits while
FILE*s may be 64 bits, the descriptor must be stored in a reg [63:0] rather
than an integer. The define ‘verilator file descriptor in verilated.v can be
used to hide this difference.

$fscanf, $sscanf
Ounly integer formats are supported; %e, %f, %m, %r, %v, and %z are not
supported.

$fullskew, $hold, $nochange, $period, $recovery, $recrem, $removal, $setup,
$setuphold, $skew, $timeskew, $width
All specify blocks and timing checks are ignored.

$random
$random does not support the optional argument to set the seed. Use the srand
function in C to accomplish this, and note there is only one random number
generator (not one per module).
$readmemb, $readmemh
Read memory commands should work properly. Note Verilator and the Verilog
specification does not include support for readmem to multi-dimensional arrays.
$realtime

Treated as $time.

23 ERRORS AND WARNINGS

Warnings may be disabled in two ways. First, when the warning is printed it will
include a warning code. Simply surround the offending line with a warn_off/warn_on
pair:

// verilator lint_off UNSIGNED
if (‘DEF_THAT_IS_EQ_ZERO <= 3) $stop;
// verilator lint_on UNSIGNED

30

Verilator-3.670 23 ERRORS AND WARNINGS

Warnings may also be globally disabled by invoking Verilator with the -Wno-warning
switch. This should be avoided, as it removes all checking across the designs, and
prevents other users from compiling your code without knowing the magic set of
disables needed to successfully compile your design.

List of all warnings:

BLKANDNBLK

BLKANDNBLK is an error that a variable comes from a mix of blocked and
non-blocking assignments. Generally, this is caused by a register driven by both
combo logic and a flop:

always @ (posedge clk) fool[0] <= ...
always @* fool[l] = ...

Simply use a different register for the flop:
always @ (posedge clk) foo_flopped[0] <= ...

always @* foo[0] = foo_flopped[0];
always @* fool[1]

This is good coding practice anyways.

It is also possible to disable this error when one of the assignments is inside a
public task.

Ignoring this warning may make Verilator simulations differ from other simula-
tors.

CASEINCOMPLETE

Warns that inside a case statement there is a stimulus pattern for which there
is no case item specified. This is bad style, if a case is impossible, it’s better
to have a "default: $stop;" or just "default: ;" so that any design assumption
violations will be discovered in simulation.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

CASEOVERLAP

Warns that inside a case statement you have case values which are detected to
be overlapping. This is bad style, as moving the order of case values will cause
different behavior. Generally the values can be respecified to not overlap.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

CASEX

Warns that it is simply better style to use casez, and 7 in place of x’s. See
http://www.sunburst-design.com/papers/CummingsSNUG1999Boston _ FullParallelCase revl 1.pdf

Ignoring this warning will only suppress the lint check, it will simulate correctly.

31

Verilator-3.670 23 ERRORS AND WARNINGS

CASEWITHX

Warns that a case statement contains a constant with a x. Verilator is two-state
so interpret such items as always false. Note a common error is to use a X in a
case or casez statement item; often what the user instead insteaded is to use a
casez with 7.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

CMPCONST

Warns that you are comparing a value in a way that will always be constant.
For example "X > 1" will always be true when X is a single bit wide.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

COMBDLY

Warns that you have a delayed assignment inside of a combinatorial block. Us-
ing delayed assignments in this way is considered bad form, and may lead to
the simulator not matching synthesis. If this message is suppressed, Verilator,
like synthesis, will convert this to a non-delayed assignment, which may result in
logic races or other nasties. See http://www.sunburst-design.com/papers/CummingsSNUG2000SJ NBA _revl

Ignoring this warning may make Verilator simulations differ from other simula-
tors.

GENCLK

Warns that the specified signal is generated, but is also being used as a clock.
Verilator needs to evaluate sequential logic multiple times in this situation. In
somewhat contrived cases having any generated clock can reduce performance
by almost a factor of two. For fastest results, generate ALL clocks outside in
C++/SystemC and make them primary inputs to your Verilog model. (However
once need to you have even one, don’t sweat additional ones.)

Ignoring this warning may make Verilator simulations differ from other simula-
tors.

IMPLICIT
Warns that a wire is being implicitly declared (it is a single bit wide output
from a sub-module.) While legal in Verilog, implicit declarations only work
for single bit wide signals (not buses), do not allow using a signal before it
is implicitly declared by a cell, and can lead to dangling nets. A better op-
tion is the /*AUTOWIRE*/ feature of Verilog-Mode for Emacs, available from
http://www.veripool.org/

Ignoring this warning will only suppress the lint check, it will simulate correctly.

IMPURE

Warns that a task or function that has been marked with /*verilator no_inline _task*/
references variables that are not local to the task. Verilator cannot schedule
these variables correctly.

Ignoring this warning may make Verilator simulations differ from other simula-
tors.

32

Verilator-3.670 23 ERRORS AND WARNINGS

MULTIDRIVEN

Warns that the specified signal comes from multiple always blocks. This is often
unsupported by synthesis tools, and is considered bad style. It will also cause
longer runtimes due to reduced optimizations.

Ignoring this warning will only slow simulations, it will simulate correctly.

MULTITOP

Error that there are multiple top level modules, that is modules not instantiated
by any other module. Verilator only supports a single top level, if you need
more, create a module that wraps all of the top modules.

Often this error is because some low level cell is being read in, but is not really
needed. The best solution is to insure that each module is in a unique file by
the same name. Otherwise, make sure all library files are read in as libraries
with -v, instead of automatically with -y.

REDEFMACRO

Warns that you have redefined the same macro with a different value, for ex-
ample:

‘define MACRO def1l

/7. ..
‘define MACRO otherdef

The best solution is to use a different name for the second macro. If this is not
possible, add a undef to indicate the code is overriding the value:

‘define MACRO defl

//...
‘undef MACRO
‘define MACRO otherdef

STMTDLY

Warns that you have a statement with a delayed time in front of it, for example:
#100 $finish;

Ignoring this warning may make Verilator simulations differ from other simula-
tors.

TASKNSVAR

Error when a call to a task or function has a output from that task tied to a
non-simple signal. Instead connect the task output to a temporary signal of the
appropriate width, and use that signal to set the appropriate expression as the
next statement. For example:

task foo; output sig; ... endtask
always @* begin

foo(bus_we_select_from[2]); // Will get TASKNSVAR error
end

33

Verilator-3.670 23 ERRORS AND WARNINGS

Change this to:

reg foo_temp_out;
always @* begin
foo(foo_temp_out) ;
bus_we_select_from[2] = foo_temp_out;
end

Verilator doesn’t do this conversion for you, as some more complicated cases
would result in simulator mismatches.

UNDRIVEN
Warns that the specified signal is never sourced.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

UNOPT

Warns that due to some construct, optimization of the specified signal or block
is disabled. The construct should be cleaned up to improve runtime.

A less obvious case of this is when a module instantiates two submodules. Inside
submodule A, signal I is input and signal O is output. Likewise in submodule
B, signal O is an input and I is an output. A loop exists and a UNOPT warning
will result if AT & AO both come from and go to combinatorial blocks in both
submodules, even if they are unrelated always blocks. This affects performance
because Verilator would have to evaluate each submodule multiple times to
stabilize the signals crossing between the modules.

Ignoring this warning will only slow simulations, it will simulate correctly.

UNOPTFLAT

Warns that due to some construct, optimization of the specified signal is dis-
abled. The signal specified includes a complete scope to the signal; it may
be only one particular usage of a multiply instantiated block. The construct
should be cleaned up to improve runtime; two times better performance may
be possible by fixing these warnings.

Unlike the UNOPT warning, this occurs after netlist flattening, and indicates
a more basic problem, as the less obvious case described under UNOPT does
not apply.

Often UNOPTFLAT is caused by logic that isn’t truly circular as viewed by
synthesis which analyzes interconnection per-bit, but is circular to simulation
which analyzes per-bus:

wire [2:0] x = {x[1:0],shift_in};

This statement needs to be evaluated multiple times, as a change in "shift _in"

requires "x" to be computed 3 times before it becomes stable. This is because

a change in "x" requires "x" itself to change value, which causes the warning.

For significantly better performance, split this into 2 separate signals:

wire [2:0] xout = {x[1:0],shift_in};

34

Verilator-3.670 23 ERRORS AND WARNINGS

and change all receiving logic to instead receive "xout". Alternatively, change
it to

wire [2:0] x = {xin[1:0],shift_in};

and change all driving logic to instead drive "xin".

With this change this assignment needs to be evaluated only once. These sort
of changes may also speed up your traditional event driven simulator, as it will
result in fewer events per cycle.

The most complicated UNOPTFLAT path we’ve seen was due to low bits of a
bus being generated from an always statement that consumed high bits of the
same bus processed by another series of always blocks. The fix is the same;
split it into two separate signals generated from each block.

The UNOPTFLAT warning may also be due to clock enables, identified from
the reported path going through a clock gating cell. To fix these, use the
clock enable meta comment described above.

The UNOPTFLAT warning may also occur where outputs from a block of logic
are independent, but occur in the same always block. To fix this, use the
isolate assignments meta comment described above.

Ignoring this warning will only slow simulations, it will simulate correctly.

UNSIGNED

Warns that you are comparing a unsigned value in a way that implies it is
signed, for example "X < 0" will always be true when X is unsigned.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

UNUSED

Warns that the specified signal is never sinked. This is a future message, cur-
rently Verilator will not produce this warning.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

VARHIDDEN

Warns that a task, function, or begin/end block is declaring a variable by the
same name as a variable in the upper level module or begin/end block (thus
hiding the upper variable from being able to be used.) Rename the variable to
avoid confusion when reading the code.

Ignoring this warning will only suppress the lint check, it will simulate correctly.

WIDTH

Warns that based on width rules of Verilog, two operands have different widths.
Verilator generally can intuit the common usages of widths, and you shouldn’t
need to disable this message like you do with most lint programs. Generally
other than simple mistakes, you have two solutions:

If it’s a constant 0 that’s 32 bits or less, simply leave it unwidthed. Verilator
considers zero to be any width needed.

Concatenate leading zeros when doing arithmetic. In the statement

35

Verilator-3.670 23 ERRORS AND WARNINGS

wire [6:0] plus_one = from[5:0] + 6’dl + carryl[0];
The best fix, which clarifies intent and will also make all tools happy is:
wire [5:0] plus_one = from[5:0] + 6°d1 + {5°d0,carry[0]};

Ignoring this warning will only suppress the lint check, it will simulate correctly.

WIDTHCONCAT

Warns that based on width rules of Verilog, a concatenate or replication has a
undeterminate width. In most cases this violates the Verilog rule that widths
inside concatenates and replicates must be sized, and should be fixed in the
code.

wire [63:0] concat = {1,2};
An example where this is technically legal (though still bad form) is:

parameter PAR = 1;
wire [63:0] concat = {PAR,PAR};

The correct fix is to either size the 1 ("32°h1"), or add the width to the param-
eter definition ("parameter [31:0]"), or add the width to the parameter usage
("{PAR|[31:0],PAR[31:0]}".

The following describes the less obvious errors:

Internal Error
This error should never occur first, though may occur if earlier warnings or
error messages have corrupted the program. If there are no other warnings or
errors, submit a bug report.

Unsupported:
This error indicates that you are using a Verilog language construct that is not
yet supported in Verilator. See the Limitations chapter.

Verilated model didn’t converge

Verilator sometimes has to evaluate combinatorial logic multiple times, usually
around code where a UNOPTFLAT warning was issued, but disabled. For
example:

always @ (a) b="a;
always @ (b) a=b

36

Verilator-3.670 24 FAQ/FREQUENTLY ASKED QUESTIONS

will toggle forever and thus the executable will give the didn’t converge error
to prevent an infinite loop.

To debug this, run Verilator with —profile-cfuncs. Run make on the gener-
ated files with "OPT=-DVL_DEBUG". Then call Verilated::debug(1) in your
main.cpp.

This will cause each change in a variable to print a message. Near the bottom
you’ll see the code and variable that causes the problem. For the program
above:

CHANGE: filename.v:1: b
CHANGE: filename.v:2: a

24 FAQ/FREQUENTLY ASKED QUESTIONS

Does it run under Windows?

Yes, using Cygwin. Verilated output should also compile under Microsoft Visual
C++ Version 7 or newer, but this is not tested by the author.

Can you provide binaries?

Verilator is available as a RPM for SuSE and perhaps other systems; this is
done by porters and may slightly lag the primary distribution. If there isn’t a
binary build for your distribution, how about you set one up? Please contact
the authors for assistance.

Note people sometimes request binaries when they are having problems with
their C++ compiler. Alas, binaries won’t help this, as in the end a fully working
C++ compiler is required to compile the output of Verilator.

How can it be faster than (name-the-simulator)?

Generally, the implied part of the question is "... with all of their manpower
they can put into it."

Most commercial simulators have to be Verilog compliant, meaning event driven.
This prevents them from being able to reorder blocks and make netlist-style op-
timizations, which are where most of the gains come from.

Non-compliance shouldn’t be scary. Your synthesis program isn’t compliant, so
your simulator shouldn’t have to be — and Verilator is closer to the synthesis
interpretation, so this is a good thing for getting working silicon.

May programs I create with Verilator remain under my own copyright?

Yes, it’s just like using GCC on your programs. If you change Verilator itself,
you must make the source code available under the GNU Public License. How-
ever, the include and generated files use the GNU Lesser Public License, which
means that files using them are NOT required to be released.

You also have the option of using the Perl Artistic License, which again does
not require you release your Verilog or generated code.

37

Verilator-3.670 24 FAQ/FREQUENTLY ASKED QUESTIONS

Why is running Verilator so slow?

Verilator needs more memory than the resulting simulator will require, as Ver-
ilator creates internally all of the state of the resulting simulator in order to
optimize it. If it takes more than a minute or so (and you’re not using —debug),
see if your machine is paging; most likely you need to run it on a machine with
more memory. Verilator is a full 64 bit application and may use more than
4GB, but about 1GB is the maximum typically needed.

How do I generate waveforms (traces) in C++ or SystemC?
See the next question for tracing in SystemPer]l mode.

Add the —trace switch to Verilator, and make sure the SystemPerl package is
installed. SystemC itself does not need to be installed for C++ only tracing.
You do not even need to compile SystemPerl; you may simply untar the Sys-
temPerl kit and point the SYSTEMPERL environment variable to the untarred
directory.

In your top level C code, call Verilated::traceEverOn(true). Then create a
SpTraceVedC object, and in your main loop call "trace object->dump(time)"
every time step, and finally call "trace object->close()". For an example, see
the call to SpTraceVedC in the test c¢/sim _main.cpp file of the distribution.

You also need to compile SpTraceVedC.cpp and add it to your link. This is
done for you if using the Verilator —exe flag.

How do I generate waveforms (traces) in SystemPerl?

Add the —trace switch to Verilator, and make sure the SystemPer] package is
installed.

In your top level C sc_main code, call Verilated::traceEverOn(true). Then
create a SpTraceFile object as you would create a normal SystemC trace file.
For an example, see the call to SpTraceFile in the test sp/sc_main.cpp file of
the distribution.

How do I view waveforms (traces)?

Verilator makes standard VCD (Value Change Dump) files. They are viewable
with the public domain Dinotrace or GtkWave programs, or any of the many
commercial offerings.

Where is the translate off command? (How do I ignore a construct?)

Translate on/off pragmas are generally a bad idea, as it’s easy to have mis-
matched pairs, and you can’t see what another tool sees by just preprocessing
the code. Instead, use the preprocessor; Verilator defines the "verilator" define
for you, so just wrap the code in a ifndef region:

‘ifndef verilator
Something_Verilator_Dislikes;
‘endif

Why do I get "unexpected ‘do’" or "unexpected ‘bit’" errors?

Do, bit, ref, return, and other words are now SystemVerilog keywords. You
should change your code to not use them to insure it works with newer tools. Al-
ternatively, surround them by the Verilog 2005 /SystemVerilog begin _keywords
pragma to indicate Verilog 2001 code.

38

Verilator-3.670 24 FAQ/FREQUENTLY ASKED QUESTIONS

‘begin_keywords "1364-2001"
integer bit; initial bit = 1;
‘end_keywords

If you want the whole file to be parsed as Verilog 2001, just create a file with
‘begin_keywords "1364-2001"

and add it before other Verilog files on the command line. (Note this will also
change the default for —prefix, so if you’re not using —prefix, you will now need
to.)

How do I prevent my assertions from firing during reset?

Call Verilated::assertOn(false) before you first call the model, then turn it back
on after reset. It defaults to true. When false, all assertions controlled by
—assert are disabled.

Why do I get "undefined reference to ‘sc_time stamp()’"?

In C++ (non SystemC) code you need to define this function so that the sim-
ulator knows the current time. See the "CONNECTING TO C++" examples.

Why do I get "undefined reference to ‘VL RAND _ RESET I’ or ‘Veri-
lated::...”"?

You need to link your compiled Verilated code against the verilated.cpp file
found in the include directory of the Verilator kit.

Is the PLI supported?
No.

More specifically, the common PLI-ish calls $display, $finish, $stop, $time,
$write are converted to C++ equivalents. If you want something more com-
plex, since Verilator emits standard C++ code, you can simply write your own
C++ routines that can access and modify signal values without needing any
PLI interface code, and call it with $c¢("{any c++ statement}").

How do I make a Verilog module that contain a C++ object?

You need to add the object to the structure that Verilator creates, then use $c
to call a method inside your object. The test regress/t/t_extend class files
show an example of how to do this.

How do I get faster build times?

Between GCC 3.0 to 3.3, each compiled progressively slower, thus if you can
use GCC 2.95, or GCC 3.4 you’ll have faster builds. Two ways to cheat are
to compile on parallel machines and avoid compilations altogether. See the
—output-split option, and the web for the ccache, distcc and icecream pack-
ages, and the Make::Cache package available from http://www.veripool.org/.
Make::Cache will skip GCC runs between identical source builds, even across
different users.

39

Verilator-3.670 24 FAQ/FREQUENTLY ASKED QUESTIONS

Why do so many files need to recompile when I add a signal?

Adding a new signal requires the symbol table to be recompiled. Verilator uses
one large symbol table, as that results in 2-3 less assembly instructions for each
signal access. This makes the execution time 10-15% faster, but can result in
more compilations when something changes.

How do I access functions/tasks in C?

Write a Verilog function or task with input/outputs that match what you want
to call in with C. Then mark that function public.

Verilog inputs of one bit become C++ bool inputs. Inputs 32 bits or smaller
become C uint32_t inputs, 64-32 bits become C uint64_t inputs, and wider
signals become arrays of 32 bits. Outputs are passed as references to bool,
uint32_t, uint64 _t or uint32_t[] arrays.

Signals wider than 64 bits are passed as an array of 32-bit uint32 t’s. Thus
to read bits 31:0, access signal[0], and for bits 63:32, access signal[l]. Unused
bits (for example bit numbers 65-96 of a 65 bit vector) will always be zero. if
you change the value you must make sure to pack zeros in the unused bits or
core-dumps may result. (Because Verilator strips array bound checks where it
believes them to be unnecessary.)

In the SYSTEMC example above, if you had in our.v:

task publicSetBool;
// verilator public
input in_bool;
var_bool = in_bool;
endtask

From the sc_main.cpp file, you’d then:

#include "Vour.h"
#include "Vour_our.h"
top->v.publicSetBool(value);

See additional notes under the /*verilator public*/ section.

How do I access signals in C?

The best thing is to make a Verilator public task or function accessor that can
read or write that signal, as described in the previous FAQ. This will allow
Verilator to better optimize the model.

If you really want raw access to the signals, declare the signals you will be
accessing with a /*verilator public*/ comment before the closing semicolon.
Then scope into the C++ class to read the value of the signal, as you would
any other member variable.

Signals are the smallest of 8 bit chars, 16 bit shorts, 32 bit longs, or 64 bit long
longs that fits the width of the signal. Generally, you can use just uint32 t’s
for 1 to 32 bits, or uint64 _t for 1 to 64 bits, and the compiler will properly
up-convert smaller entities.

40

Verilator-3.670 25 BUGS

Signals wider than 64 bits are stored as an array of 32-bit uint32 t’s. Thus
to read bits 31:0, access signal[0], and for bits 63:32, access signal[1]. Unused
bits (for example bit numbers 65-96 of a 65 bit vector) will always be zero. if
you change the value you must make sure to pack zeros in the unused bits or
core-dumps may result. (Because Verilator strips array bound checks where it
believes them to be unnecessary.)

In the SYSTEMC example above, if you had in our.v:
input clk /*verilator publicx/;
From the sc_main.cpp file, you’d then:

#include "Vour.h"
#include "Vour_our.h"
cout << "clock is " << top->v.clk << endl;

In this example, clk is a bool you can read or set as any other variable. The
value of normal signals may be set, though clocks shouldn’t be changed by your
code or you’ll get strange results.

Should a module be in Verilog or SystemC?

Sometimes there is a block that just interconnects cells, and have a choice as
to if you write it in Verilog or SystemC. Everything else being equal, best
performance is when Verilator sees all of the design. So, look at the hierarchy
of your design, labeling cells as to if they are SystemC or Verilog. Then:

A module with only SystemC cells below must be SystemC.

A module with a mix of Verilog and SystemC cells below must be SystemC.
(As Verilator cannot connect to lower-level SystemC cells.)

A module with only Verilog cells below can be either, but for best performance
should be Verilog. (The exception is if you have a design that is instantiated
many times; in this case Verilating one of the lower modules and instantiating
that Verilated cells multiple times into a SystemC module *may* be faster.)

25 BUGS

First, check the the coding limitations section.

Next, try the —debug switch. This will enable additional internal assertions, and may
help identify the problem.

Finally, reduce your code to the smallest possible routine that exhibits the bug. Even
better, create a test in the test regress/t directory, as follows:

cd test_regress
cp -p t/t_EXAMPLE.pl t/t_BUG.pl
cp -p t/t_EXAMPLE.v t/t_BUG.v

41

Verilator-3.670 27 CONTRIBUTORS

Edit t/t_ BUG.pl to suit your example; you can do anything you want in the Verilog
code there; just make sure it retains the single clk input and no outputs. Now, the
following should fail:

cd test_regress
t/t_BUG.pl

Finally, report the bug using the bug tracker at http://www.veripool.org/verilator.
The bug will become publicly visible; if this is unacceptable, mail the bug report to
wsnyder@usnyder.org.

26 HISTORY

Verilator was conceived in 1994 by Paul Wasson at the Core Logic Group at Digital
Equipment Corporation. The Verilog code that was converted to C was then merged
with a C based CPU model of the Alpha processor and simulated in a C based
environment called CCLI.

In 1995 Verilator started being used also for Multimedia and Network Processor
development inside Digital. Duane Galbi took over active development of Verilator,
and added several performance enhancements. CCLI was still being used as the shell.

In 1998, through the efforts of existing DECies, mainly Duane Galbi, Digital gra-
ciously agreed to release the source code. (Subject to the code not being resold,

which is compatible with the GNU Public License.)

In 2001, Wilson Snyder took the kit, and added a SystemC mode, and called it
Verilator2. This was the first packaged public release.

In 2002, Wilson Snyder created Verilator3 by rewriting Verilator from scratch in
C++. This added many optimizations, yielding about a 2-5x performance gain.

Currently, various language features and performance enhancements are added as the

need arises. Verilator is now about 2x faster than in 2002, and is faster than many
popular commercial simulators.

27 CONTRIBUTORS

Many people have provided ideas and other assistance with Verilator.
The major corporate sponsors of Verilator, by providing funds or equipment grants,

are Compaq Corporation, Digital Equipment Corporation, Maker Communications,
Sun Microsystems, Nauticus Networks, and SiCortex.

42

Verilator-3.670 30 SEE ALSO

The people who have contributed code or other major functionality are Paul Wasson,
Duane Galbi, and Wilson Snyder. Major testers include Jeff Dutton, Ralf Karge,
David Hewson, Wim Michiels, and Gene Weber.

Some of the people who have provided ideas and feedback for Verilator include Hans
Van Antwerpen, Jens Arm, David Black, Gregg Bouchard, Chris Boumenot, John
Brownlee, Lauren Carlson, Robert A. Clark, John Deroo, Danny Ding, Jeff Dutton,
Fugen Fekete, Sam Gladstone, Thomas Hawkins, Mike Kagen, Ralf Karge, Dan Katz,
Sol Katzman, Gernot Koch, Steve Kolecki, Steve Lang, Charlie Lind, Dan Lussier,
Fred Ma, Wim Michiels, John Murphy, Richard Myers, Paul Nitza, Lisa Noack, Renga

Sundararajan, Shawn Wang, Greg Waters, Eugene Weber, Leon Wildman, and Mat
Zeno.

28 DISTRIBUTION

The latest version is available from http://www.veripool.org/.

Copyright 2003-2008 by Wilson Snyder. Verilator is free software; you can redistribute
it and/or modify it under the terms of either the GNU Lesser General Public License
or the Perl Artistic License.

29 AUTHORS

Wilson Snyder <wsnyder@wsnyder.org>

Major concepts by Paul Wasson and Duane Galbi.

30 SEE ALSO

verilator _profcfunc, systemperl, vcoverage, make

43

	1 NAME
	2 SYNOPSIS
	3 DESCRIPTION
	4 ARGUMENT SUMMARY
	5 ARGUMENTS
	6 VERILOG ARGUMENTS
	7 EXAMPLE C++ EXECUTION
	8 EXAMPLE SYSTEMC EXECUTION
	9 BENCHMARKING & OPTIMIZATION
	10 FILES
	11 ENVIRONMENT
	12 CONNECTING TO C++
	13 CONNECTING TO SYSTEMC
	14 CROSS COMPILATION
	15 VERILOG 2001 (IEEE 1364-2001) SUPPORT
	16 VERILOG 2005 (IEEE 1364-2005) SUPPORT
	17 SYSTEMVERILOG (IEEE 1800-2005) SUPPORT
	18 SUGAR/PSL SUPPORT
	19 SYNTHESIS DIRECTIVE ASSERTION SUPPORT
	20 LANGUAGE EXTENSIONS
	21 LANGUAGE LIMITATIONS
	22 LANGUAGE KEYWORD LIMITATIONS
	23 ERRORS AND WARNINGS
	24 FAQ/FREQUENTLY ASKED QUESTIONS
	25 BUGS
	26 HISTORY
	27 CONTRIBUTORS
	28 DISTRIBUTION
	29 AUTHORS
	30 SEE ALSO

