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Abstract

This paper presents a method for determining smooth and time-optimal path con-

strained trajectories for robotic manipulators and investigates the performance of these

trajectories both through simulations and experiments. The desired smoothness of the

trajectory is imposed through limits on the actuator jerks. The third derivative of the

path parameter with respect to time, the pseudo-jerk, is the controlled input. The limits

on the actuator torques translate into state-dependent limits on the pseudo-acceleration.

The time-optimal control objective is cast as an optimization problem by using cubic

splines to parameterize the state space trajectory. The optimization problem is solved

using the exible tolerance method. The experimental results presented show that the

planned smooth trajectories provide superior feasible time-optimal motion.

1 Introduction

The need for increased productivity in path-following industrial robotic applications has

been commonly addressed in the literature by determining path-constrained time-optimal

motions (PCTOM) while accounting for actuator torque limits[1], [2], [3]. In these formula-

tions, the joint actuator torques are the controlled inputs and the open loop control schemes

result in bang-bang or bang-singular-bang controls[1], [3], [4].



PCTOM trajectories compute the maximum velocity achievable at the robot tip while

still following the prescribed path. However, implementation of PCTOM in physical manip-

ulators has drawbacks, such as joint oscillations due to �nite joint sti�ness and overshoot of

the nominal torque limits due to unmodelled actuator dynamics. The resultant extra strain

on the robot actuators could cause them to fail frequently[5], reducing the productivity of

the entire workcell.

At the trajectory planning level, a number of di�erent techniques have been devised to

address the problem of discontinuous actuator torques. A modi�ed cost function, such as

time-joint torques[2] or time-square of joint torques[6], can be used to smooth the controls

and improve the tracking accuracy, at the expense of motion time.

Another way of smoothing the controls is to parameterize the path by using functions

that are at least C2 continuous, i.e., continuous in acceleration. Cubic splines used for path

parameterization with time as the cost function[7] result in trajectories that have continuous

joint accelerations. However, the limits on the joint variables are very conservative, since

they remain constant over the entire work-space. Incorporating the actuator dynamics in

this problem formulation[8] transforms the actuator voltages into the limited controlled

inputs. The optimal trajectory is bang-bang in the new controls and the actuator torques

are no longer limited. Also, the case of singular controls is not considered since they can be

avoided by an appropriate selection of the path[3] or by convexifying the set of admissible

controls[9].

In this paper, a method is presented for determining time-optimal path-constrained

motions subject to actuator torque and jerk limits. The resulting trajectories will be called

smooth path-constrained time-optimal motions (SPCTOM) to distinguish them from the
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path-constrained time-optimal motions (PCTOM), which do not consider jerk limits.

The actuator jerk limits are imposed in view of the fact that unlimited jerks can cause

severe vibrations in the arm that may lead to the failure of the actuators themselves. More-

over, they are used as a means to compensate for structure exibility and inaccuracies in

the robot model. This is a desired feature in industrial applications, where the robot model

is not readily available. Therefore, the bene�t of the SPCTOM trajectories is that they bet-

ter characterize the dynamic limitations of a robot system and, hence, are suited for direct

implementation on a commercial robot using non-specialized industrial controllers.

Geometric limits on robot motion, such as obstacles and joint limits, are not addressed

herein, since the motion is path-constrained. That is, only the trajectory planning problem is

considered. The path is either imposed by the application itself or a time-optimal path can be

determined as in [10]: under the assumption that the desired path is smooth, an initial guess

is generated using splines and the optimal path is found through an unconstrained parameter

optimization. The cost function is composed of the motion time along the path plus penalty

terms corresponding to obstacles and joint limits.

2 Smooth Path-Constrained Time-Optimal Motions

2.1 Problem Formulation

The problem of smooth path-constrained time-optimal motion (SPCTOM) planning can

be stated as follows:

min
_T2


J =

Z tf

0
1dt, (1)
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subject to the manipulator dynamics:

M(q)�q+ _qTC(q) _q+G(q) = T, (2)

the boundary conditions:

q(0) = q0 ; q(tf ) = qf ; _q(0) = _q(tf ) = 0 ; �q(0) = �q(tf ) = 0, (3)

the path constraints:

r = r(s), (4)

the actuator torque limits:

Tmin � T � Tmax, (5)

and the actuator jerk limits:

_Tmin � _T � _Tmax, (6)

where n is the number of degrees of freedom of the manipulator. Furthermore, q 2 Rn

is the vector of joint positions, T 2 Rn is the vector of actuator torques, _T 2 Rn is the

vector of actuator jerks, M(q) 2 Rn�n is the inertia matrix of the manipulator, C(q) 2

Rn�n�n is a third order tensor representing the coeÆcients of the centrifugal and Coriolis
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forces, G(q) 2 Rn is the vector of gravity terms, and r 2 R3 is a C1 continuous curve

parametrized by s, which may be, for example, the arc length. To simplify the dynamics,

viscous and static friction terms have been neglected. However, as shown in the experiments

in Section 5, the imposition of suitable actuator jerk limits compensates for these and other

model inaccuracies.

In the above formulation, the actuator jerks represent the bounded controls. Since the

Lagrangian form of the robot dynamics incorporates only the actuator torques, the third

order dynamics is required. Di�erentiation of (2) with respect to time results in:

M(q)
...
q + _M(q)�q+ �qTC(q) _q+ _qT _C(q) _q+ _qTC(q)�q+ _G(q) = _T. (7)

Equation (7) is taken as the dynamics of the system, with _T representing the n-dimensional

bounded controls.

2.2 Path Constraints

The dynamic system described by Equation (7) has 3n degrees of freedom. However,

the path constraints (4) parameterize the end-e�ector tip position by a single parameter s,

reducing the order of the system to 3.

To obtain the actuator jerk bounds for the reduced order system, the joint jerk is com-

puted as:

...
q = q000 _s3 + 3 � q00 � _s�s+ q0

...
s , (8)
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where:

q000 = J�1 � (r000 �
d2J

ds2
� q0 � 2 �

dJ

ds
� q00), (9)

r000 =
d2J

ds2
� q0 + 2 �

dJ

ds
� q00 + J � q000, (10)

with r being the end-e�ector position and orientation, J being the Jacobian of the for-

ward kinematics map, and 0 denoting the derivative with respect to the path parameter.

Substituting Equations (7) and (8) into Equation (6) yields:

_Tmin � a(s) �
...
s + b(s) � _s � �s+ c(s) � _s3 + d(s) � _s � _Tmax, (11)

where:

an�1(s) = M � q0, (12)

bn�1(s) = 3 �M � q00 +
dM

ds
� q0 + 2 � q

0T �C � q0, (13)

cn�1(s) = M � q000 +
dM

ds
� q00 + q

00T �C � q0 + q
0T �

dC

ds
� q0 + q

0T �C � q00, (14)

dn�1(s) =
dG

ds
� _s. (15)

The matrices dM
ds

and dG
ds

and the third order tensor dC
ds

are robot dependent.

As shown in the following section, the actuator jerk bounds provide constraints on the

admissible states for the robot. However, the torque bounds derived in[3], [11] are still

required, since as the actuator jerk bounds become very large, the torque bounds become

the limiting constraint. For in�nite actuator jerks, the problem returns to PCTOM.
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Following [3], the actuator torque bounds for the reduced order system are obtained

substituting the path constraints (4) and Equation (2) into Equation (5):

Tmin � A(s) � �s+ B(s) � _s2 + C(s) � Tmax, (16)

where:

An�1(s) = M � q0, (17)

Bn�1(s) = M � q00 + q
0T �C � q0, (18)

Cn�1(s) = G. (19)

2.3 Torque Limits

As discussed in[3], for each value of the path parameter s, the actuator torque bounds (16)

translate into a polygonal feasible region in the _s2 � �s plane. Such a region is shown schemat-

ically in Figure 1 for a 3-dof manipulator. Analytically, the actuator torque bounds translate

into limits on the pseudo-velocity and the pseudo-acceleration:

_s � _smax;T (s) (20)

�smin;T (s; _s) � �s � �smax;T (s; _s). (21)

The subscript T is used to discriminate the pseudo-velocity and pseudo-acceleration bounds

due to the torque constraints (16) from those due to the jerk constraints (11), which will be

denoted with the subscript J .
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The curve _smax;T (s) as represented in the s � _s phase plane is called the velocity limit

curve (VLC) and it represents an upper bound for any feasible trajectory in this plane.

2.4 Jerk Limits

A similar approach can be used to determine the pseudo-velocity, pseudo-acceleration

and pseudo-jerk bounds due to the actuator jerk limits. Thus, for given values of the path

parameter s and pseudo-velocity _s, the actuator jerk bounds (11) form a polygonal feasible

region in the _s �
...
s plane (such as the one shown schematically in Figure 2 for a 3-dof

manipulator). Analytically, the actuator jerk bounds translate into limits on the pseudo-

acceleration and pseudo-jerk in the �s�
...
s plane:

�smin;J(s; _s) � �s � �smax;J (s; _s) (22)

...
smin(s; _s; �s) �

...
s �

...
smax(s; _s; �s) (23)

and a constraint on the pseudo-velocity in the _s� �s�
...
s space:

_s � _smax;J (s), (24)

where _smax;J (s) is de�ned as the pseudo-velocity value for which the admissible region in

the �s�
...
s plane reduces to a point:

�smin;J(s; _smax;J) = �smax;J(s; _smax;J). (25)
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2.5 Admissible States

In the formulation of the SPCTOM problem proposed herein, the actuator jerk limits

are imposed as a means for adjusting the smoothness of the trajectory. Hence, they are

independent of the actuator torque limits. This independence is reected in the state space,

as shown in Figure 3. In this �gure, the actuator torque and jerk constraints for the �rst

three joints of the SCORBOT ER VII robot (Figure 6, Table I) are plotted together in state

space for the three example actuator jerk limits in Table II.

This independence of the actuator torque and jerk limits is reected in a new constraint

on the pseudo-velocity:

_s � min f _smax;T (s); _smax;J(s)g , (26)

and a new constraint on the pseudo-acceleration:

maxf�smin;T (s); �smin;J(s)g � �s � minf�smax;T (s); �smax;J(s)g. (27)

Equation 26 de�nes a global velocity limit curve, called the smooth motion velocity limit

curve (SMVLC). In the s� _s plane, the SMVLC is an upper bound on any feasible trajectory.

The SMVLC can be computed at each point along the path by a line search using bisection

(the searched domain is limited from zero to _smax;T (s)).

The SMVLC corresponding to the three examples in Table II are plotted in Figure 4. As

shown in this �gure, the SMVLC is determined by a combination of both actuator torque

and jerk limits. Depending on the restrictions of the jerk limits, they can determine the
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SMVLC almost entirely, as shown in the third example, or they can have little inuence on

it, as shown in the �rst example.

2.6 System Dynamics

The states of the reduced system are x = (s _s �s)T , while
...
s is the scalar control u.

The SPCTOM planning problem is reformulated as:

min
u

J =

Z tf

0
1dt, (28)

subject to the system dynamics:

_x = f(x; u) = [x2 x3 u]T , (29)

the boundary conditions:

x0 = (s0 _s0 �s0)
T

xf = (sf _sf �sf )
T , (30)

the state inequality constraints (26) and (27), and the state-dependent control inequality

constraints (23).

This reformulation shows that the SPCTOM problem is a time-optimal control (TOC)

problem for a �rst order linear system with nonlinear state and control inequality constraints

and preimposed initial and �nal states. Moreover, Equations (23), (26), and (27) emphasize

that the state and control constraints are independently active, since the controls are limited
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only by the actuator jerks, while the states are limited by both the actuator jerks and the

actuator torques.

3 Solution of the SPCTOM

TOC problems similar to the SPCTOM above have been solved either by applying

Pontryiagin's Maximum Principle (PMP) to derive the necessary conditions for optimal-

ity and then using multiple shooting methods to solve the resulting two point boundary

value problem (TPBVP)[12] or by a search for the switching points, using either dynamic

programming[11] or speci�c algorithms[1], [2], [3].

Two diÆculties arise in the application of these approaches in the present case. First,

the complexity of the dynamic programming algorithms grows exponentially with the phase

space dimension, rendering the method infeasible for more than two dimensions. As de-

�ned, the SPCTOM problem has a three dimensional phase space. Second, the other two

approaches (based on PMP and the search for the switching points) depend on the bang-

bang or bang-singular-bang structure of the optimal controls. This structure has been proven

using results from Optimal Control Theory (OCT) regarding systems with state dependent

control constraints[13]. However, no results have been proven using OCT concerning the

necessary optimality conditions for systems with state and control constraints which are in-

dependently active. Thus, for the SPCTOM problem, it is not guaranteed that the optimal

controls are bang-bang or bang-singular-bang.

To resolve these diÆculties, the SPCTOM trajectory planning problem is analyzed and

solved herein in the s- _s phase plane. The motivation is that in this plane both trajectory
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end-points are �xed, while in the time domain the �nal point is free. Thus, the TOC problem

lends itself to a nonlinear parameter optimization in this phase plane. The motion time is

computed as:

t(s) =

Z sf

s0

ds

_s
, (31)

where s0 and sf are the initial and the �nal values of the path parameter, respectively.

Therefore, the SPCTOM in the s- _s phase plane is the smooth curve that minimizes t(s)

over the curve while not violating actuator torque and/or actuator jerk limits.

In view of the above, the optimal motion is determined by an optimization of a base

trajectory. A set of cubic splines with preselected knot-point locations are chosen as the

base trajectory for the optimization. Cubic polynomials have been selected to approximate

the SPCTOM because they are the lowest degree polynomials that result in a smooth curve,

i.e., continuous and di�erentiable everywhere. The location of the knots along the path

have been chosen to be the same as the location of the switching points of the PCTOM

(Figure 5). Since the PCTOM represents the limit for SPCTOM, these switching points

are, in the limit, the same for SPCTOM and provide a reasonable estimate for the location

of the SPCTOM switching points along the parameterized path.

Extra knot points could be chosen; however, the number of the PCTOM trajectory

switching points could be high and the addition of extra knots would signi�cantly increase

the number of optimization variables. Therefore, extra knots will be inserted only when the

corresponding PCTOM trajectory has one single switching point, because in this case the

trajectory parameterization by only two splines is potentially inadequate.
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This conjecture is supported by simulations which have shown that doubling the number

of knots improves the SPCTOM motion time with 3-6% for �ve switching points and with

10-17% for one switching point, with a larger decrease in motion time for trajectories with

larger jerks[14].

The variables of the optimization are the end-e�ector pseudo-velocities at the preselected

knot-points along the path and the slopes of the trajectory in the s- _s phase plane at the

path end-points. These variables control the motion time: the higher the knot-points over

the whole trajectory (as located in the phase plane), the shorter the motion time. On the

other hand, the end slopes control the speed at which the actuator torques leave or approach

their static equilibrium values. Therefore, steeper slopes also result in faster motion.

Thus, the vector of optimization variables, x, is de�ned as the following parameter set:

x =

 �
d _s
ds

�
0�

d _s
ds

�
m;0

_s1
_sm;1

� � �
_sp
_sm;p

�
d _s
ds

�
f�

d _s
ds

�
m;f

!T

, (32)

where the values with the index m correspond to the limiting PCTOM (the dotted line

in Figure 5), while the other values correspond to the splined trajectory (the solid line).

These variables are normalized since the end slopes vary over a much wider range than the

pseudo-velocities.

The optimal trajectory results from splining cubic polynomials in the s- _s phase plane

based on the optimized parameters x�. The trajectory must be within actuator torque and

actuator jerk limits and take minimum time. The actuator torque and jerk constraints in
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Equations (16) and (11) thus become:

g4(i�1)+1(x) = 1�max
_s(s)

Ti
Tmax;i

, (33)

g4(i�1)+2(x) = 1�max
_s(s)

Ti
Tmin;i

, (34)

g4(i�1)+3(x) = 1�max
_s(s)

_Ti
_Tmax;i

, (35)

g4(i�1)+4(x) = 1�max
_s(s)

_Ti
_Tmin;i

, (36)

for i = 1 : : : n. By this de�nition, whenever any of the actuator torques and/or jerks exceeds

its limits, the respective constraint becomes negative.

As formulated, the optimization is solved using the exible tolerance method (FTM)[15].

There are two reasons for choosing this method. First, the derivatives of the constraints and

the cost function, i.e., motion time, are not available. Second, the FTM keeps the search

close to the boundary of the admissible region and can �nd a minimum that lies exactly on

the boundary. The details of the FTM are discussed in the Appendix A.

4 Simulations

The method for determining optimal SPCTOM has been implemented in MATLAB[16]

and simulations are performed considering only the positional dof of the SCORBOT ER VII

robot in the Industrial Automation Laboratory at UBC (Figure 6). Thus, for the simula-

tions performed here, the robot is an elbow manipulator with the DH parameters and the

estimated masses and inertias given in Table I.

The actuator torque limits are the same for all the three examples given in this paper,
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while the limits on the jerks are di�erent, as successively shown in Table II.

4.1 Planning Performance

To determine the inuence of the trajectory smoothness on the motion time, a straight

line in the robot work space is chosen as the preimposed path. In parametric form, the path

is given as:

x(s) = 0:4

y(s) = 0:3s� 0:1

z(s) = 0:2s+ 0:3 (37)

s = 0; : : : ; 1.

The resulting optimal trajectories for the di�erent limits on the actuator jerks are shown

in Figures 7, 8 and 9, respectively, by solid lines. The dashed lines represent the time-optimal

trajectory considering only torque limits (PCTOM). The dotted lines are the smooth motion

velocity limit curves (SMVLC), i.e., the velocity limit curves determined considering both

torque and jerk limits. The corresponding actuator torques and jerks are also plotted in

these �gures.

While the PCTOM takes 0:59 seconds, the SPCTOM takes 0:7 seconds in the �rst exam-

ple. Here, the limits on the actuator jerks were very high and the trajectory is determined by

the limits on the actuator torques. In the ideal case, both trajectories should yield same mo-

tion times; however, there are two reasons for the increase in motion time for SPCTOM : (i)

the limited parameterization chosen in the s� _s phase plane and (ii) the signi�cant decrease
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in peak actuator jerks for SPCTOM (solid lines) compared to PCTOM (dotted lines), as

shown in the semi-log-scale plot in Figure 10.

In examples 2 and 3, the limits on the actuator jerks predominate. Therefore, the torque

constraints are not approached. The optimal motion times for these examples are higher,

0:735 seconds and 1:5 seconds, respectively.

The optimal trajectories determined through the proposed method are not bang-bang

in the controls. This is a consequence of the parameterization in the phase plane. How-

ever, as seen from the �rst example presented, the chosen parameterization alone causes a

comparatively small increase in the motion time.

As expected, the more restrictive the limits on actuator jerks are, the higher the motion

time is. The planning simulations, however, give no indication of the relationship between

trajectory smoothness and the tracking performance of the controller. To establish tracking

performance �ve simulations, followed by �ve experiments were performed.

4.2 Tracking Performance

The three SPCTOM trajectories computed above, together with the PCTOM trajectory

and an optimized quintic polynomial trajectory have been implemented on a simulated

model of the SCORBOT ER VII robot with friction under computed torque (CT) control.

Both the robot model and the controller have been built in the MATLAB Simulink

Toolbox[17]. Friction has been modeled as Coulomb and viscous friction, with the Coulomb

friction coeÆcients 2:0Nm and the viscous friction coeÆcients 0:2Nmsec for all three links.

The controller has been tuned for critical damping and a rise time of 200[msec] for a sampling

frequency of 200Hz. In the simulations, the actuator torques saturate at 10Nm, which is
16



the torque limit considered during planning.

The tracking performance of the CT controller for all �ve trajectories is plotted in

Figure 11, while the planned and simulated actuator torques are plotted in Figures 12-16.

The results are summarized in Table III.

As seen in Figure 11, due to actuator torque saturation, the controller cannot keep the

end-e�ector on the path when the actuator jerks are too high. This is the case with the

PCTOM trajectory and the SPCTOM trajectory corresponding to actuator jerk limits of

1000Nm/sec (labeled 'spctom1' in Figure 11). This result shows that actuator jerk limits

are extremely important for the ability of the system to track a planned trajectory, especially

given inaccurately identi�ed or modelled system dynamics. As expected, the smoother the

trajectory, i.e., the lower the actuator jerk limits, the higher the tracking accuracy of the

controller. For the PCTOM and SPCTOM with high jerk limits trajectories, the simulation

predicts actuator saturation, which results not only in decreased tracking performance, but

also in longer motion time (Table III).

For the same actuator jerk limits, the simulations show similar tracking performance for

the SPCTOM and the quintic trajectories. However, the SPCTOM trajectory takes 1:5sec,

compared to 2sec for the quintic trajectory.

5 Experiments

All the above trajectories have also been implemented on the SCORBOT ER VII in the

IAL at UBC. The robot is controlled by a TMS320C32 DSP board, interfaced with two axis

control cards, each capable of handling three axes simultaneously. An open architecture real-
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time operating system (ORTS)[18] is used in the implementation of the control algorithm and

in reading the pre-planned trajectories and feeding them to the control loop at the controller

frequency. The axis control cards and the real-time operating system ORTS were developed

by the Manufacturing Automation Laboratory, UBC. For the purpose of the experiments

reported here, only the positional degrees of freedom of the robot are considered, thus the

robot is treated as a 3-dof elbow manipulator with the kinematic and dynamic parameters

given in Table I. Trajectory tracking is ensured by a tuned computed torque controller. While

not typical in industry, such a controller allows the experiments to reect the inuence of

the planned trajectory on the system performance.

The results of the experiments are plotted in Figures 17-21, and summarized in Ta-

ble IV.

These experimental results support the simulation results. Namely, for high actuator jerk

limits, the controller cannot keep the end-e�ector on the path. Figures 17, 18, and 19 show

that trajectories with high jerks result in increased tracking errors, which, in turn, activate

the controller, saturating the actuators. Whenever this happens, the end-e�ector leaves the

path. Such a trajectory is an infeasible trajectory. For the case of the SCORBOT ER VII

manipulator, actuator jerk limits less than one order of magnitude higher than the actuator

torque limits are required to ensure that the end-e�ector follows the planned path. While

this result is more restrictive for the jerk limits than predicted by the simulations, it is not

totally unexpected. Due to the large errors involved in modelling the system, one would

expect that the simulation results would overestimate the system capabilities.

The experimental performance of the SPCTOM trajectory corresponding to the low jerk

limits, i.e. 10Nm/sec, is similar to its simulated performance. Thus, while being tracked by
18



the controller with similar accuracy and e�ort as the quintic trajectory, it results in reduced

motion time (1.5sec compared to 2sec). This indicates that actuator jerk limits are preferable

when determining smooth time optimal motions over global velocity and acceleration limits.

6 Conclusions

Amethod has been presented for determining smooth and time-optimal path-constrained

trajectories for robotic manipulators. The dynamics of the manipulator together with limits

on the actuator torques and jerks are considered. A base trajectory is constructed in the

s� _s phase plane using parameterized cubic splines and a set of initial, �nal, and knot point

conditions derived from PCTOM without actuator jerk limits. Thus, the optimal motion

is obtained through an optimization of this base trajectory, subject to actuator and jerk

limits.

In planning simulations, the trajectory smoothness has a negative impact on the motion

time, lower jerk limits resulting in higher motion time. However, both controller simulations

and experiments have shown that, in practice, trajectory smoothness has a positive e�ect

on both the tracking performance of the controller and the actual motion time. Moreover,

a smoothly planned trajectory can compensate for a poorly modeled robot system, which is

often the case in industrial practice.

Compared to a quintic polynomial trajectory with velocity and acceleration limits, the

SPCTOM trajectory results in a faster motion for similar tracking performance. Thus,

actuator jerk limits are preferable when imposing a desired degree of trajectory smoothness

over quintic polynomials, since they are not posture-dependent.
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A Appendix

In the exible tolerance method (FTM)[15], the optimization problem:

Minimize: f(x) x 2 Rn (A.1)

Subject to constraints: hi(x) = 0 i = 1; :::;m (A.2)

gi(x) � 0 i = m+ 1; :::; p

is solved as the following simpler equivalent problem with only one constraint:

min: f(x) x 2 Rn (A.3)

subject to: �(k) � T (x) � 0.

�(k) is the value of the exible tolerance criterion at the kth step of the optimization and

it also serves as a criterion for the termination of the search, and T is a positive functional

of all the equality and/or inequality constraints of the original problem. The cost function

f(x) and the equality and inequality constraints in (A.3) may be linear and/or non-linear

functions of the variables in x. The value of the cost function is improved by using infor-

mation provided by feasible points, as well as certain nonfeasible points called near-feasible

points. The near-feasibility limits are made more restrictive as the search advances, until in

the limit only feasible points are accepted.

In (A.4) below, T (x) is used as a measure of the constraint violation, while � is selected

20



as a positive decreasing function of the x points in Rn. For the SPCTOM:

T (x) =

8>>>><
>>>>:
maxi gi(x) if 9i such that gi(x) � 1

0 otherwise,

(A.4)

and:

�(k) = minf�(k�1);�
r+1X
i=1

kx
(k)
i � x

(k)
centrkg (A.5)

with � a constant.

The tolerance criterion is used to classify points in Rn. At the kth step of the optimiza-

tion, a point x(k) is said to be:

1. Feasible, if T (x) = 0

2. Near-feasible, if 0 � T (x) � �(k)

3. Nonfeasible, if T (x) < �(k).

A small value of T (x(k)) implies that x(k) is relatively near to the feasible region, and a

large value of T (x(k)) implies that x(k) is relatively far from the feasible region.

On a transition from x(k) to x(k+1), the move is said to be feasible if 0 � T (x(k+1)) � �(k),

and nonfeasible if �(k) � T (x(k+1)).

The FTM entails two independent optimizations : an outer minimization of the cost

function f(x) and an inner minimization of the violation of constraints T (x) whenever the

minimization of f(x) yields an infeasible point. The outer optimization of the motion time

is implemented in this paper using the exible polyhedron method (FPM)[19]. The FPM
21



is a search in n dimensions where the polyhedron changes shape to match the changing

shape of the surface. In the vicinity of a minimum the polyhedron shrinks, surrounding the

minimum. Replacement of an infeasible point with a feasible or near feasible one is done

through a line search using interval halving.
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Figure 6: The SCORBOT ER VII robot.

31



0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

path parameter [m]

ps
eu

do
−

ve
lo

ci
ty

 [m
/s

]

SMVLC 
PCTOM 
SPCTOM

(a) SPCTOM trajectory in the
s� _s plane.

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

path parameter [m]

ac
tu

at
or

 to
rq

ue
s 

[N
m

]

Actuator 1
Actuator 2
Actuator 3

(b) Actuator torques.

0 0.2 0.4 0.6 0.8 1
−400

−300

−200

−100

0

100

200

300

400

path parameter [m]

ac
tu

at
or

 je
rk

s 
[N

m
/s

]

Actuator 1
Actuator 2
Actuator 3

(c) Actuator jerks.

Figure 7: Example 1 (high jerk limits).

32



0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

path parameter [m]

ps
eu

do
−

ve
lo

ci
ty

 [m
/s

]

SMVLC 
PCTOM 
SPCTOM

(a) SPCTOM trajectory in the
s� _s plane.

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

path parameter [m]

ac
tu

at
or

 to
rq

ue
s 

[N
m

]

Actuator 1
Actuator 2
Actuator 3

(b) Actuator torques.

0 0.2 0.4 0.6 0.8 1
−400

−300

−200

−100

0

100

200

300

400

path parameter [m]

ac
tu

at
or

 je
rk

s 
[N

m
/s

]

Actuator 1
Actuator 2
Actuator 3

(c) Actuator jerks.

Figure 8: Example 2 (medium jerk limits).

33



0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

path parameter [m]

ps
eu

do
−

ve
lo

ci
ty

 [m
/s

]

SMVLC 
PCTOM 
SPCTOM

(a) SPCTOM trajectory in the
s� _s plane.

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

path parameter [m]

ac
tu

at
or

 to
rq

ue
s 

[N
m

]

Actuator 1
Actuator 2
Actuator 3

(b) Actuator torques.

0 0.2 0.4 0.6 0.8 1
−400

−300

−200

−100

0

100

200

300

400

path parameter [m]

ac
tu

at
or

 je
rk

s 
[N

m
/s

]

Actuator 1
Actuator 2
Actuator 3

(c) Actuator jerks.

Figure 9: Example 3 (low jerk limits).

34



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

path parameter s

ps
eu

do
−

je
rk

 [m
/s

3 ]

PCTOM 
SPCTOM

Figure 10: Absolute values of the actuator jerks for the SPCTOM in exam-
ple 1 (solid lines) and PCTOM (dotted lines)

35



0.392 0.394 0.396 0.398 0.4 0.402
−0.1

−0.05

0

0.05

0.1

0.15

0.2

x axis [m] (Cartesian space)

y 
ax

is
 [m

] (
C

ar
te

si
an

 s
pa

ce
)

desired
pctom  
quintic
spctom1
spctom2
spctom3

(a) Paths in the x0y plane.

0.392 0.394 0.396 0.398 0.4 0.402
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

x axis [m] (Cartesian space)

z 
ax

is
 [m

] (
C

ar
te

si
an

 s
pa

ce
)

desired
pctom  
quintic
spctom1
spctom2
spctom3

(b) Paths in the x0z plane.

Figure 11: Simulated controller tracking performance for the PCTOM, quin-
tic, and SPCTOM trajectories.

36



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

−5

0

5

10

to
rq

ue
s 

[N
m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

−5

0

5

10

to
rq

ue
s 

[N
m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

−5

0

5

10

time [sec]

to
rq

ue
s 

[N
m

]

planned  
simulated

Figure 12: Desired and simulated torques for the PCTOM trajectory.
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Figure 13: Desired and simulated torques for the SPCTOM trajectory (Ex-
ample 1 - jerk limits of 1000Nm/sec).
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Figure 14: Desired and simulated torques for the SPCTOM trajectory (Ex-
ample 2 - jerk limits of 100Nm/sec).
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Figure 15: Desired and simulated torques for the SPCTOM trajectory (Ex-
ample 3 - jerk limits of 10Nm/sec).
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Figure 16: Desired and simulated torques for the quintic trajectory.
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Figure 17: Experimental results for the PCTOM trajectory implemented on
the SCORBOT ER VII.
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Figure 18: Experimental results for the SPCTOM trajectory (Exam-
ple 1 - jerk limits of 1000Nm/sec) implemented on the
SCORBOT ER VII.
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Figure 19: Experimental results for the SPCTOM trajectory (Exam-
ple 2 - jerk limits of 100Nm/sec) implemented on the
SCORBOT ER VII.
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Figure 20: Experimental results for the SPCTOM trajectory (Exam-
ple 3 - jerk limits of 10Nm/sec) implemented on the
SCORBOT ER VII.
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Figure 21: Experimental results for the quintic trajectory implemented on
the SCORBOT ER VII.
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Table I: SCORBOT ER VII estimated kinematic and dynamic parameters.

Link �[rad] d[m] a[m] �[rad]

1 �1 = 0 d1 = 0:3585 a1 = 0:05 �1 = ��
2

2 �2 = 0 d2 = �0:037 a2 = 0:30 �2 = 0

3 �3 = 0 d3 = 0:0 a3 = 0:25 �3 = 0

Link Mass [kg] Ix[kgm
2] Iy[kgm

2] Iz[kgm
2]

1 m1 = 0:0 Ix1 = 0:00 Iy1 = 0:05 Iz1 = 0:0

2 m2 = 6:6 Ix2 = 0:10 Iy2 = 0:60 Iz2 = 0:6

3 m3 = 4:2 Ix3 = 0:02 Iy3 = 0:20 Iz3 = 0:3
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Table II: Imposed actuator torque and jerk bounds for the
SCORBOT ER VII.

Torque limits High jerk limits Medium jerk limits Low jerk limits
Example 1 Example 2 Example 3

T [Nm] _T1[Nm=sec] _T2[Nm=sec] _T3[Nm=sec]

T1 = 10 _T11 = 1000 _T12 = 100 _T13 = 10

T2 = 10 _T21 = 1000 _T22 = 100 _T23 = 10

T3 = 10 _T31 = 1000 _T32 = 100 _T33 = 10
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Table III: Simulated results for the PCTOM, SPCTOM, and quintic trajec-
tories.

Trajectory Jerk Motion Maximum RMS
limits time tracking tracking error

error joint 1 joint 2 joint 3
[Nm/sec] [sec] [cm] [o] [o] [o]

PCTOM 1 0:90 1:98 1:54 0:31 0:37

SPCTOM 1 1000 0:90 1:62 1:16 0:28 0:34

SPCTOM 2 100 0:74 1:40 1:12 0:26 0:33

SPCTOM 3 10 1:50 0:64 0:53 0:12 0:16

Quintic 7 2:00 0:51 0:42 0:10 0:12
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Table IV: Experimental results for the PCTOM, SPCTOM, and quintic tra-
jectories.

Trajectory Jerk Motion Maximum RMS
limits time tracking tracking error

error joint 1 joint 2 joint 3
[Nm/sec] [sec] [cm] [o] [o] [o]

PCTOM 1 4:0 14:0 17:5 3:1 15:8

SPCTOM 1 1000 4:0 13:4 17:2 2:8 14:8

SPCTOM 2 100 4:0 12:5 15:9 2:6 14:8

SPCTOM 3 10 1:5 3:1 2:6 1:9 1:5

Quintic 7 2:0 2:5 2:3 1:8 1:4
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