
Related Work
JumpGate is inspired by lots of recent work:
Sonata / Marple: Network telemetry query processing using packet processors.
RMT, SmartNICs, NPUs: Line-rate packet processing hardware in production
Unstructured Data Parser: Parse variable length formats in hardware.
Sparser: Filter (approximately) before you parse.
Flare: Native compilation from Scala to C.

[Sonata] Gupta et al,. “Sonata: query-driven streaming network telemetry” (SIGCOMM '18)
[Marple] Narayana et al., ”Language-Directed Hardware Design for Network Performance Monitoring.” (SIGCOMM '17)
[RMT] Bosshart et al., “Forwarding metamorphosis: fast programmable match-action processing in hardware” (SIGCOMM 2013)
[SmartNICs] Firestone et al., Azure Accelerated Networking: SmartNICs in the Public Cloud” (NSDI 2018)
[UDP] Fang et al., “UDP: a programmable accelerator for extract-transform-load workloads and more” (MICRO 2017)
[Sparser] Palkar et al., “Filter before you parse: faster analytics on raw data with sparser” (VLDB 2018)
[Flare] Essertel et al., “Flare: Optimizing Apache Spark for Scale-Up Architectures and Medium-Size Data” (OSDI 2018)

Early Challenges

JumpGate
A research system to evaluate costs, benefits and
challenges of in-network processing.

Craig Mustard*, Fabian Ruffy, Alexandra Fedorova, and Ivan Beschastnikh
University of British Columbia, Vancouver, Canada

*craigm@ece.ubc.ca

JumpGate: Towards In-Network Data Processing

Why not…
Execute operators on the
storage/compute nodes?

● JumpGate is a complementary
approach.

● May not want to provision resources
for client compute.

● HW packet processors can have
better throughput.

● JumpGate nodes not tied to storage,
easily released after use.

Storage
System

Compute
ClusterWhy not compute on

data here?

Network Devices
NICs, Switches, NPUs

Motivation

Advantages:
● Reduce network traffic and compute load.
● Flexibly (de)allocate processors on demand.

Leverage existing opportunities:
● Programmable packet processors already exist.
● Many database operators are stateless.
● Query engines support operator offload.

Can data be processed as it moves through the network?

We propose to apply database operations to
data in transit!

Simulation Details:
Mininet + Python
Dataset:
TPC-DS store_sales
JSON (~600b records)
Operator Type:
Precise

Record Parsing in Hardware Packet Processors:
Must parse: SCTP, JSON, columnar formats
HW packet processors limited to fixed length formats

Transport: Records must align to packets

Shuffle:
Eliminate
intra-node
exchange
(up to 50% reduction in traffic)

Node 1

JumpGate
Shuffler

Node 2
Node 3
Node 4

Input
Stream

Filter and Projection:
Traffic reduced by

selectivity (S)
(S% traffic reduction)

SCTP vs TCP:
~8% B/W
increase

Aggregation: Early combine
reduces traffic up to 10x

(includes implicit projection)

Input
Stream

JumpGate
Combiner Compute

Benefits: Effects on Bandwidth

Applicability detection:
Use JumpGate only when appropriate and beneficial

Fault detection and recovery:
Controller should detect transfer failures and adjust

Storage
System

In-Network
Processors

(NPs)

Network
Processor
Controller

Check applicability

Example Architecture and Query Execution

Compute
Cluster with a
Query Engine

Submit query

Start transfer to NPs

Allocate NPs and
compile program(s)

Generate and submit program

Return IP/Port of network processors

Unprocessed data stream

Processed data stream

Record 1 R2 R3 R4
P3Packet 1 P2

Potential Contributions:
1. Study the upper bounds on benefits in various settings
2. Operator implementations for current HW/SW
3. Fault tolerant protocol
4. Recommend improvements to packet processing HW

Target Features:
Data Formats: JSON + columnar format
Query Engine: Spark
Compile queries to: C / P4 / eBPF
Target both software and hardware packet processors

mailto:craigm@ece.ubc.ca

