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Today, it is common to store data in long-term stor-
age systems and to load data into the memory of systems
for further processing. Therefore, the network path from
storage to main-memory is a natural place to perform
early processing on data being loaded. Programmable
packet processors are emerging that can efficiently pro-
cess a large number of packets using specialized hard-
ware designs [8, 9, 13, 20, 26] or optimized software on
general purpose processors [22, 24]. We are studying the
feasibility and potential performance gains of JumpGate,
a system that uses packet processors to perform common
database operations (filter, projection, shuffle, aggrega-
tion) on data as it moves from storage to compute nodes.
In-network compared to near-storage processing
Near-storage [10, 14, 16, 17, 18] and in-memory pro-
cessors [3, 5, 27] have high throughput designs that ef-
ficiently process large amounts of data. However, cou-
pling compute to storage can leave powerful processors
and expensive storage mediums under-utilized when data
is not accessed often. Packet processing systems can
avoid this utilization problem because they are not tied
to storage. Since packet processors can be quickly allo-
cated and released, they may be complimentary to exist-
ing near-storage compute systems that use general pur-
pose processors, such as [1, 25].
JumpGate Design. Figure 1 shows the JumpGate archi-
tecture and illustrates how a query would be executed.
A query processor (e.g., Apache Spark [4]) would com-
pile applicable parts of a query to a high-level packet-
processing program and send the program to a controller
that allocates available packet processors and compiles
the program for them (steps 1-4). The storage cluster
(e.g., HDFS) would send (properly formatted) data to-
wards the packet processors (step 5-6), which process
data as it arrives, forwarding the processed packets to
the query processor’s nodes to finish the remainder of
the query (step 7). JumpGate could target a variety of
packet processors, such as programmable switches [8],
NICs [13] or general purpose processors by compiling
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Figure 1: JumpGate architecture.

queries to P4 [7], eBPF [6] or C using the DPDK [24].
Potential Contributions We are encouraged by recent
successes on compiling Spark queries to native code [11,
12], compiling P4 to eBPF/XDP [2], processing network
telemetry operators in packet processors [15, 19], and
performing raw filtering before parsing [21]. Potential
contributions would be the compilation techniques, fault
tolerant network protocols and operator implementations
neccessary to achieve beneficial in-network processing
on data stored in typical storage systems and formats.

A full JumpGate implementation would require exten-
sive development effort and changes to multiple systems.
To motivate such efforts, we are first studying feasibil-
ity and potential performance improvements of Jump-
Gate by evaluating transport protocols and operators on
packet traces modeled on real schemas. For example,
we are investigating: (1) performing early filtering on
JSON records where each packet holds at least one com-
plete record, and (2) performing in-network shuffles by
directing/cloning packets to their assigned host(s). The
results of this study will be transport protocols and oper-
ator implementations we can use for evaluations on rele-
vant benchmark suites, such as TPC-DS [23].

We hope to present more details on JumpGate and
early results of our study in the poster session at OSDI.
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