
JumpGate: Towards In-Network Data Processing

Craig Mustard (Student Author)
craigm@ece.ubc.ca

University of British Columbia

Alexandra Fedorova
sasha@ece.ubc.ca

University of British Columbia

Ivan Beschastnikh
bestchai@cs.ubc.ca

University of British Columbia

Today, it is common to store data in long-term stor-
age systems and to load data into the memory of systems
for further processing. Therefore, the network path from
storage to main-memory is a natural place to perform
early processing on data being loaded. Programmable
packet processors are emerging that can efficiently pro-
cess a large number of packets using specialized hard-
ware designs [8, 9, 13, 20, 26] or optimized software on
general purpose processors [22, 24]. We are studying the
feasibility and potential performance gains of JumpGate,
a system that uses packet processors to perform common
database operations (filter, projection, shuffle, aggrega-
tion) on data as it moves from storage to compute nodes.
In-network compared to near-storage processing
Near-storage [10, 14, 16, 17, 18] and in-memory pro-
cessors [3, 5, 27] have high throughput designs that ef-
ficiently process large amounts of data. However, cou-
pling compute to storage can leave powerful processors
and expensive storage mediums under-utilized when data
is not accessed often. Packet processing systems can
avoid this utilization problem because they are not tied
to storage. Since packet processors can be quickly allo-
cated and released, they may be complimentary to exist-
ing near-storage compute systems that use general pur-
pose processors, such as [1, 25].
JumpGate Design. Figure 1 shows the JumpGate archi-
tecture and illustrates how a query would be executed.
A query processor (e.g., Apache Spark [4]) would com-
pile applicable parts of a query to a high-level packet-
processing program and send the program to a controller
that allocates available packet processors and compiles
the program for them (steps 1-4). The storage cluster
(e.g., HDFS) would send (properly formatted) data to-
wards the packet processors (step 5-6), which process
data as it arrives, forwarding the processed packets to
the query processor’s nodes to finish the remainder of
the query (step 7). JumpGate could target a variety of
packet processors, such as programmable switches [8],
NICs [13] or general purpose processors by compiling

Storage
Cluster

In-Network 
Processors

(NPs)

Network 
Processor 
Controller

Compute
Cluster

(1) Check query 
applicability

(5) Start transfer 
to NPs (2) Generate and 

submit program

(3) Compile 
program(s) and 
allocate network 
processors

(4) Return IP/Port 
of first network 
processor

(6) Unprocessed 
data stream

(7) Processed stream

Figure 1: JumpGate architecture.

queries to P4 [7], eBPF [6] or C using the DPDK [24].
Potential Contributions We are encouraged by recent
successes on compiling Spark queries to native code [11,
12], compiling P4 to eBPF/XDP [2], processing network
telemetry operators in packet processors [15, 19], and
performing raw filtering before parsing [21]. Potential
contributions would be the compilation techniques, fault
tolerant network protocols and operator implementations
neccessary to achieve beneficial in-network processing
on data stored in typical storage systems and formats.

A full JumpGate implementation would require exten-
sive development effort and changes to multiple systems.
To motivate such efforts, we are first studying feasibil-
ity and potential performance improvements of Jump-
Gate by evaluating transport protocols and operators on
packet traces modeled on real schemas. For example,
we are investigating: (1) performing early filtering on
JSON records where each packet holds at least one com-
plete record, and (2) performing in-network shuffles by
directing/cloning packets to their assigned host(s). The
results of this study will be transport protocols and oper-
ator implementations we can use for evaluations on rele-
vant benchmark suites, such as TPC-DS [23].

We hope to present more details on JumpGate and
early results of our study in the poster session at OSDI.

1



References
[1] Amazon S3 Select. https://aws.amazon.com/s3/

features/#s3-select.

[2] p4c-xdp. https://github.com/vmware/p4c-xdp.

[3] S. R. Agrawal, S. Idicula, A. Raghavan, E. Vlachos, V. Govin-
daraju, V. Varadarajan, C. Balkesen, G. Giannikis, C. Roth,
N. Agarwal, and E. Sedlar. A many-core architecture for
in-memory data processing. In Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microarchitecture,
MICRO-50 ’17, pages 245–258, New York, NY, USA, 2017.
ACM.

[4] Apache Software Foundation. Apache Spark. http://spark.

apache.org/. [Online; accessed 10-April-2017].

[5] C. Balkesen, N. Kunal, G. Giannikis, P. Fender, S. Sundara,
F. Schmidt, J. Wen, S. Agrawal, A. Raghavan, V. Varadarajan,
A. Viswanathan, B. Chandrasekaran, S. Idicula, N. Agarwal, and
E. Sedlar. Rapid: In-memory analytical query processing en-
gine with extreme performance per watt. In Proceedings of the
2018 International Conference on Management of Data, SIG-
MOD ’18, pages 1407–1419, New York, NY, USA, 2018. ACM.

[6] A. Begel, S. McCanne, and S. L. Graham. Bpf+: Exploiting
global data-flow optimization in a generalized packet filter archi-
tecture. In Proceedings of the Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’99, pages 123–134, New York, NY, USA,
1999. ACM.

[7] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rex-
ford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and
D. Walker. P4: Programming protocol-independent packet pro-
cessors. SIGCOMM Comput. Commun. Rev., 44(3):87–95, July
2014.

[8] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding metamor-
phosis: Fast programmable match-action processing in hardware
for sdn. In Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, pages 99–110, New York, NY,
USA, 2013. ACM.

[9] Cavium. Liquidio ii network appliance smart nics.
https://www.cavium.com/liquidio-II-network-

appliance-adapters.html.

[10] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt.
Query processing on smart ssds: Opportunities and challenges.
In Proceedings of the 2013 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’13, pages 1221–1230,
New York, NY, USA, 2013. ACM.

[11] G. Essertel, R. Tahboub, J. Decker, K. Brown, K. Olukotun, and
T. Rompf. Flare: Optimizing apache spark for scale-up architec-
tures and medium-size data. In Operating Systems Design and
Implementation. USENIX, 2018.

[12] G. M. Essertel, R. Y. Tahboub, J. M. Decker, K. J. Brown,
K. Olukotun, and T. Rompf. Flare: Native compilation for het-
erogeneous workloads in apache spark. CoRR, abs/1703.08219,
2017.

[13] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,
M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung,
H. K. Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier,
N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Rain-
del, T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Srivastava,

A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A. Maltz,
and A. Greenberg. Azure accelerated networking: Smartnics in
the public cloud. In 15th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 18), pages 51–66, Ren-
ton, WA, 2018. USENIX Association.

[14] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang,
M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang. Biscuit:
A framework for near-data processing of big data workloads. In
Proceedings of the 43rd International Symposium on Computer
Architecture, ISCA ’16, pages 153–165, Piscataway, NJ, USA,
2016. IEEE Press.

[15] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger. Sonata: Query-driven streaming network teleme-
try. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’18, pages
357–371, New York, NY, USA, 2018. ACM.

[16] Z. István, D. Sidler, and G. Alonso. Caribou: Intelligent dis-
tributed storage. Proc. VLDB Endow., 10(11):1202–1213, Aug.
2017.

[17] I. Jo, D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho, D. D. G.
Lee, and J. Jeong. Yoursql: A high-performance database
system leveraging in-storage computing. Proc. VLDB Endow.,
9(12):924–935, Aug. 2016.

[18] G. Koo, K. K. Matam, T. I, H. V. K. G. Narra, J. Li, H.-W. Tseng,
S. Swanson, and M. Annavaram. Summarizer: Trading commu-
nication with computing near storage. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-50 ’17, pages 219–231, New York, NY, USA, 2017.
ACM.

[19] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Al-
izadeh, V. Jeyakumar, and C. Kim. Language-directed hardware
design for network performance monitoring. In Proceedings of
the Conference of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’17, pages 85–98, New York, NY, USA,
2017. ACM.

[20] Netronome. Smartnics overview. https://www.netronome.

com/products/smartnic/overview/.

[21] S. Palkar, F. Abuzaid, P. Bailis, and M. Zaharia. Filter before you
parse: Faster analytics on raw data with sparser. Proceedings of
the VLDB Endowment, 11(11), 2018.

[22] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy,
L. Rizzo, and S. Shenker. E2: A framework for nfv applica-
tions. In Proceedings of the 25th Symposium on Operating Sys-
tems Principles, SOSP ’15, pages 121–136, New York, NY, USA,
2015. ACM.

[23] M. Poess, B. Smith, L. Kollar, and P. Larson. Tpc-ds, taking de-
cision support benchmarking to the next level. In Proceedings
of the 2002 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’02, pages 582–587, New York, NY,
USA, 2002. ACM.

[24] D. Project. Data plane development kit (dpdk). https://www.
dpdk.org/.

[25] R. Weiss. A Technical Overview of the Oracle Exadata Database
Machine and Exadata Storage Server. Oracle Corporation, 2012.

[26] Wikipedia. Tilera. https://en.wikipedia.org/wiki/

Tilera.

2

https://aws.amazon.com/s3/features/#s3-select
https://aws.amazon.com/s3/features/#s3-select
https://github.com/vmware/p4c-xdp
http://spark.apache.org/
http://spark.apache.org/
https://www.cavium.com/liquidio-II-network-appliance-adapters.html
https://www.cavium.com/liquidio-II-network-appliance-adapters.html
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
https://www.dpdk.org/
https://www.dpdk.org/
https://en.wikipedia.org/wiki/Tilera
https://en.wikipedia.org/wiki/Tilera


[27] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross.
Q100: The architecture and design of a database processing unit.
In Proceedings of the 19th International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’14, pages 255–268, New York, NY, USA, 2014.
ACM.

3


