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Color Correction Preprocessing for
Multiview Video Coding

Colin Doutre, Student Member, IEEE, and Panos Nasiopoulos, Member, IEEE

Abstract— In multiview video, a number of cameras capture
the same scene from different viewpoints. There can be significant
variations in the color of views captured with different cameras,
which negatively affects performance when the videos are com-
pressed with inter-view prediction. In this letter, a method is
proposed for correcting the color of multiview video sets as a
preprocessing step to compression. Unlike previous work, where
one of the captured views is used as the color reference, we
correct all views to match the average color of the set of views.
Block-based disparity estimation is used to find matching points
between all views in the video set, and the average color is
calculated for these matching points. A least-squares regression
is performed for each view to find a function that will make
the view most closely match the average color. Experimental
results show that when multiview video is compressed with
Joint Multiview Video Model, the proposed method increases
compression efficiency by up to 1.0 dB in luma peak signal-
to-noise ratio (PSNR) compared to compressing the original
uncorrected video.

Index Terms— Color correction, disparity estimation,
multiview video coding (MVC), video processing.

I. INTRODUCTION

MULTIVIEW VIDEO systems have recently received
considerable attention from the research commu-

nity [1]. To capture a 3-D representation of a dynamic scene,
multiple video cameras are used, which capture the scene
from different viewpoints. Using image-based rendering tech-
niques [2], virtual viewpoints can be created, allowing the user
to watch the scene from a range of viewing positions.

Since a number of cameras are needed, and each individual
camera captures a large amount of data, the total amount of
data captured in multiview video systems is huge. Hence,
efficient compression methods are required for practical multi-
view video systems to allow efficient storage and transmission
of the data.

A challenge that arises in multiview video coding (MVC)
that is not present in traditional single view video coding
is the inconsistencies between cameras. It is difficult to
perfectly calibrate a number of cameras, so there are typi-
cally differences in brightness, color, focus, etc. between the
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videos captured with different cameras. These inconsistencies
reduce the correlation between views, and therefore reduce
compression efficiency when one view is predicted based
on another. Therefore, it is important in MVC to correct
the inconsistencies between cameras to improve compression
performance. Variations between views also negatively affect
rendering of new virtual viewpoints, and will be unpleasant to
users as they switch between different views.

In MVC systems, brightness and color correction can be
performed either as preprocessing before compression, or
incorporated into the compression process itself. Account-
ing for color variations in the compression process itself
has the advantage that the original data is restored during
the compression process, which gives flexibility for different
color correction methods to be applied after decoding. The
disadvantages are that the complexity of the compression
process is increased, and it forces correction to be performed
at the decoder, which further increases the complexity and
cost of the decoder/display side. Performing color correction
as preprocessing also has the advantage that more complex
correction algorithms can be applied, since it has to be
performed only once before encoding rather than at every
decoder.

A leading method for accounting for brightness variations
in the compression process is the macroblock (MB) based illu-
mination change compensation method proposed by Hur et al.
in [3]. In their method, an illumination change (IC) value is
calculated for each MB, which is the difference in the dc val-
ues between the MB being coded and the corresponding MB in
the reference view being used for prediction. The IC for each
MB is predicted from the IC values from neighboring MBs,
and the difference between the actual value and predicted value
is encoded in the bit stream. The motion estimation (ME) and
motion compensation processes are altered to account for the
IC values. This method is only applied to the luma channel of
the video.

In [4], another method for correcting brightness and color
during the encoding process is proposed, which uses lookup ta-
bles in RGB color space. Each frame being used for prediction
is converted to RGB color space, and the red, green, and blue
color channels are modified independently with three separate
lookup tables. The correction lookup tables are calculated by
finding matching points between pairs of views and using a
dynamic programming method to find a function that will
make the colors of the matching points agree. Then the frame
is converted back to the YUV color space to be used for inter-
view prediction. The lookup tables are sent as side information
in the bit stream.
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Fig. 1. Finding matching points between all views by choosing an anchor view and performing block matching between the anchor and all other.

A simple method for correcting color in multiview video
as a preprocessing step is the histogram matching method
proposed by Fecker et al. [5]. In their method, a lookup table
is calculated for each of the Y, U, and V channels based on the
histograms of the view being corrected and the reference view.
The histogram matching method was improved in [6], with the
correction being performed in the RGB color space and a time-
constant correction function being used (so the same correction
lookup table is used for every temporal frame in a sequence). A
fundamental disadvantage of histogram based methods is that
they cannot deal with occlusions between views, or situations
where the views have different amounts of foreground and
background.

Another preprocessing method is proposed in [7], where a
scaling and an offset parameter are calculated for each YUV
component. For example, the modified value for each Y sample
in a view being corrected is calculated with

Y cor = aY org + b (1)

where Y cor is the corrected value, Y org is the original value,
and a and b are the scaling and offset parameters for the Y
channel. The U and V channels are corrected equivalently. The
scaling and offset values for each channel are calculated based
on the histograms of the reference view and the view being
corrected.

In previous work on color correction in multiview video
sets, one view is always chosen as the color reference and
all other views are modified to match it on a pairwise
basis [3]–[7]. The reference view is usually chosen as a view
in the center of the camera arrangement [5]–[7]. The reason for
choosing the center view is that it will usually have the most in
common with the other views. However, the center view may
not always be a good choice for the color reference. The center
view may have substantially different color from the other
views. For example, in the standard Flamenco2 multiview
video set, the center camera has much lower brightness and
less saturated colors than the other views (Fig. 1). If it is used
as the reference, all other views will have to be greatly altered
to make their colors match the reference.

In this letter, we propose a new method, where instead we
find the average color of the video set and modify all views to
match the average. The advantage of using the average color
as the reference is that the minimum amount of modification
will be needed across the set of views in order to make them
consistent. A set of matching points between all views in
the video set is found with block-based disparity estimation.
The average Y, U, and V value for each set of matching
points is calculated. A least-squares regression is preformed
for each view to find the coefficients of a polynomial that
will make the corrected YUV values of the view most closely

match the average YUV values. Experimental results show that
applying the proposed color correction greatly increases the
compression efficiency when multiview video is compressed
with inter-view prediction.

The rest of this letter is organized as follows. The proposed
method is described in Section II. Experimental results are pre-
sented in Section III, including subjective color comparisons
and tests on how the proposed method improves inter-view
prediction in multiview video coding. Conclusions are given
in Section IV.

II. COLOR CORRECTION PREPROCESSING METHOD

Although modifying each view to match the average color
of all views is a relatively intuitive concept, in practice defining
and calculating the average color is not very straightforward.
We propose a point-based method for finding the average color.
We find matching points between all views using a correlation
method, and then calculate the average Y, U, and V values of
these matching points. We use a least-squares regression to
find a polynomial function to map the initial YUV values in
each view to match these average YUV values. These steps
are described in detail in the following sections.

A. Point Matching Between Views

Point matching in stereo and multiview camera arrays is
a classical problem that has been extensively studied. An
overview that evaluates several methods is presented in [8].
There are two main approaches to point matching: block-
based methods and feature-based methods. Block-based meth-
ods divide one image into small blocks and attempt to find
matching blocks in another image based on some criteria,
for example the sum of squared differences. Feature-based
methods, such as the scale-invariant feature transform [9],
involve extracting keypoints from each image and looking for
matches between keypoints. Block-based methods produce far
more matching points between images, but the matches are
less reliable.

In order to find a large number of matching points, we use
block-based disparity estimation on the luma channel to find
matching points between all views. One view in the center of
the camera arrangement is chosen as the anchor. This view
is divided into blocks of size 8 × 8 pixels, and matching
blocks for every block in the anchor are found in all other
views (Fig. 1). In video coding, block matching is usually
done using the sum of absolute differences or sum of square
differences as the cost function. However, these cost functions
are sensitive to the brightness level of the two blocks, and
have been shown to have very poor performance when there
are brightness variations between views [10]. In multiview
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(a) (b)

Fig. 2. Color correction of the Flamenco2 multiview video set: (a) original
data and (b) color-corrected with the proposed method.

video sets, there may be substantial brightness variations, so a
more robust matching criterion is needed. Therefore, we use
the normalized cross correlation (NCC) defined for an N × N
block located at position (x0, y0) in the anchor frame as shown
in (2) at the bottom of the page, where Yanc(x, y) is a frame of
the anchor view, Yview(x, y) is the view in which a matching
block is being found, and mview and manc are the mean values
of the blocks in the two frames

mview = 1

N 2

x0+N−1∑
x=x0

y0+N−1∑
y=y0

Yview(x, y)

manc = 1

N 2

x0+N−1∑
x=x0

y0+N−1∑
y=y0

Yanc(x, y).

(3)

Note that the mean of the block is subtracted and the
energy of the block is normalized in the NCC calculation.
This provides robustness to changes in brightness between

the views. The disparity is estimated by choosing the vector
(i∗, j∗) that results in the maximum NCC over a search range
i ∈ [sx1, sx2] , j ∈ [

sy1, sy2
]

(
i∗, j∗

) = arg max
sx1≤i≤sx2
sy2≤ j≤sy2

NCC(i, j). (4)

In this letter, we have used a rectangular search range
and a full search (where every displacement vector within
the search range is evaluated). The search range was chosen
separately for each video set based on the range of disparities
observed in the sequence. Note that the computational cost of
disparity estimation could be reduced by using a fast disparity
estimation algorithm such as those proposed in [11] and [12].

The disparity vector calculated with (4) may not correspond
to true disparity because of occlusion between the views,
noise, or other factors. Therefore, an additional test is used to
decide whether the disparity estimation has found matching
points for the current block. The NCC ranges from [−1, 1]
and has a value of 1 when the blocks are scaled versions
of each other (after mean removal). If the NCC value be-
tween the block in the anchor view and the matching blocks
in other views is above 0.7 for all views, the blocks are
considered to be valid matches across all views, and the
pixels in the block are added to vectors of matching points
Y1, Y2, . . . , YM, U1, U2, . . . , UM, V1, V2, . . . , VM. The sub-
script indicates the view number, with M being the number
of views in the video set. The threshold 0.7 was determined
experimentally to provide good results for typical multiview
content.

With the vectors of matching points, the average YUV
values across all views can easily be calculated for these points

Yavg = 1

M

M∑
i=1

Yi Uavg = 1

M

M∑
i=1

Ui Vavg = 1

M

M∑
i=1

Vi.

(5)

B. Color Correction Function

A transformation has to be found for each view to map the
view’s captured YUV values to match the average YUV values
as closely as possible. We use three functions to calculate
the corrected Y, U, and V values for each frame, which are
designed to minimize the error between the corrected YUV
values for the view and the average YUV values

Yavg = Ycor
i + εεε. (6)

In color correction research, polynomials are often used to
find least-squares fits to nonlinear functions. For a third-order
polynomial, the corrected Y, U, or V value for each pixel is

NCC (i, j) =
∑x0+N−1

x=x0

∑y0+N−1
y=y0

(Yanc (x, y) − manc) (Yview (x − i, y − j) − mview)√∑x0+N−1
x=x0

∑y0+N−1
y=y0

(Yanc (x, y) − manc)
2 · ∑x0+N−1

x=x0

∑y0+N−1
y=y0

(Yview (x − i, y − j) − mview)2
(2)
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calculated based on the captured YUV values of the pixel as

Y cor = aY 1Y + aY 2U + aY 3V + aY 4Y 2 + aY 5U 2

+ aY 6V 2 + aY 7YU + aY 8Y V + aY 9U V

+ aY 10Y 3 + aY 11U 3 + aY 12V 3 + aY 13YU V

+ aY 14Y 2U + aY 15Y 2V + aY 16YU 2 + aY 17Y V 2

+ aY 18U 2V + aY 19U V 2 + aY 20. (7)

The correction function for each view is controlled by the
weighting vector aY = [aY 1, aY 2, . . . , aY 20]. The corrected U
and V values are calculated equivalently with different weight
vectors aU and aV. A third-order polynomial is shown in (7)
but any order is possible. Through experimentation, we have
found that increasing the order above three results in minimal
gain and considerable increase in complexity.

The optimal weight vectors that will make the corrected
values match the average values can be calculated with a least
squares regression. Define � as follows, with multiplication
of vectors being performed elementwise:

� =
[
Yi Ui Vi Y2

i U2
i V2

i YiUi YiVi UiVi

Y3
i U3

i V3
i YiUiVi Y2

i Ui Y2
i Vi

YiU2
i YiV2

i U2
i Vi UiV2

i 1
]
. (8)

Here, Yi, Ui, and Vi, are the vectors of pixels of view ‘i’ found
in the block matching process. The color-corrected Y values
can be calculated as

Ycor = �aY. (9)

Substituting this into (6) gives

Yavg = �aY + εεε. (10)

The parameter vector aY which minimizes the energy of
the error vector εεε can be found with a standard least squares
estimator

aY = (�T�)−1�TYavg. (11)

Equivalent regressions are performed to calculate the cor-
rection vectors for the U and V channels. After the weight
vectors have been calculated with (11), each pixel in the view
can be color-corrected with (7).

The majority of video content is stored in YUV 4:2:0
formats, where the chroma (UV) channels are downsampled
by a factor of two in the vertical and horizontal directions
relative to the luma. Equations (7) through (11) require a
Y, U, and V sample for every matching point between frames.
Therefore, we downsample the Y channel by two in both
directions for the purpose of finding the correction parame-
ters. This yields a quarter-size video in YUV 4:4:4 format.
To apply (7) during the correction step, we upsample the U and
V channels in order to calculate the corrected Y channel. That
is, when applying (7), the corrected Y channel is a function of
the original Y channel and upsampled U and V channels, and
the corrected U and V channels are functions of the original
U and V channels and the downsampled original Y channel.

In practice, the block-matching process is not perfect, so
there will be a number of bad matches that will cause outliers

(a)

(b)

(c)

(d)

Fig. 3. Sample views from the Rena and Race test video sets: (a), (c) frames
from two views before correction and (b), (d) after proposed color correction.

in the regression. But as long as the ratio of good matches to
bad matches is relatively high, the bad matches will not have
a significant effect on the estimated correction parameters.
If there were a high number of outliers, robust regression
methods could be used [13]; however, we have found they
are not necessary for the multiview videos used here.

III. RESULTS

Results are presented for four standard multiview video
test sequences: Rena (16 views), Flamenco2 (5 views), Race
(8 views), and Ballroom (8 views). All videos have resolution
640 × 480. Sixty temporal frames were processed for each
video, with every tenth frame being used in the regression
analysis for calculating the parameter vectors aY, aU, and aV.
The same set of parameters was used to correct every temporal
frame in a view.

To show subjectively how the proposed method alters mul-
tiview video, the first frame from each view of the Flamenco2
video set before and after color correction is shown in Fig. 2.
Before correction, there are visible differences in brightness
and color between the different views, particularly the center
view which is darker than the rest and has less saturated
colors. After correction, the views look very consistent in
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Fig. 4. Rate-distortion performance obtained with the proposed color correction preprocessing.

brightness and color, and all the views have color which looks
like the average color before correction. Since the other video
sets have many views (8 or 16), it is not practical to show all
of the views at once due to limited space. For this reason, we
select to show only two views from the Rena and Race video
sets for subjective comparison (Fig. 3). These views have
noticeably different color before correction but look consistent
after our proposed color-correction algorithm is applied.

A. Effect on Compression Performance

When measuring PSNR, the compressed video is compared
to a reference which is assumed to have perfect quality.
Usually the original video is used as the reference. However,
when color correction is being performed, a fundamental
assumption is that the original data is not perfect and needs
to be modified. Therefore, when measuring the PSNR of
video where both color correction and compression have been
applied, we use the color-corrected version of the video as

the reference. The PSNR reported is a measure of the amount
of distortion introduced in the compression process. Note that
when different color correction schemes are compared, we use
different references for measuring the PSNR, because there is
no ground truth video that has perfect color.

In most video coding papers, only the luma PSNR is
reported since the human visual system is more sensitive to
luma than chroma. However, here we are modifying the color
of the video, so the chroma quality is also relevant. Hence we
provide two rate-distortion curves for each video to show the
luma and chroma PSNR. The chroma PSNR is the average
PSNR of the U and V channels.

In order to evaluate how the proposed method effects
multiview video encoding performance, experiments were run
with the joint multiview video model reference software
(JMVM 8.0) [14]. A temporal GOP size of 8 was used,
and the QPs used are those used in the JVT common test
conditions [15].
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We compare our method with 1) compressing the original
video; 2) the illumination compensation (IC) method adopted
in JMVM; and 3) the histogram-matching (HM) method
presented in [6]. Fig. 4 shows the PSNR versus bit rate curves
for both the luma and chroma channels of the test videos.
The proposed method results in luma PSNR gains ranging
from about 0.5 to 1 dB over compressing the original data
without IC. The gains compared to using IC range from 0 to
0.6 dB. Greater PSNR gains are seen in the chroma channels.
The proposed method gives chroma PSNR gains ranging from
about 0.7 to 2.1 dB over compressing the original videos.
For all videos the proposed method gives similar or better
performance than the HM method.

B. Computational Complexity

The proposed method consists of three main steps:
1) finding matching points through disparity estimation;
2) performing the least squares regressions; and 3) calculating
the corrected YUV values. The complexity of the first two
steps is dependent on the number of frames used to calculate
the correction parameters, which can be a small subset of the
total temporal frames in the video (six frames were used in
our tests). The last step must be performed on every frame in
the video set, so its computational complexity depends on the
temporal length of the video.

Disparity estimation is used to find matching points between
all views. The computational complexity of this process is
heavily dependent on the search range and search method
used. The search range required varies from video to video,
as it depends on the scene and camera geometry. In our
experiments, we have used a rectangular search window, and
a full search (where the cost function (2) is evaluated at every
possible disparity within the window). The speed of the search
process could be considerably increased by using fast disparity
estimation methods such as those in [11], [12]. If the videos
are well rectified, disparity estimation can be reduced to a 1-D
search [16], greatly reducing the number of search points. Note
that the disparity vectors calculated in this step could be reused
in later compression of the video (or serve as a starting point
for a smaller refinement search), so the additional complexity
of this step to a complete system may be minor.

Three least-squares regressions must be performed per
view to calculate the correction vectors with (11). There are
many very efficient numerical methods for performing least-
squares regressions [17]. In our experiments we have used
the MATLAB “\” operator which calculates the least-squares
solution based on QR factorization [18]. On an Intel Core2
Duo E4400 2.0-GHz system, performing the least-squares re-
gressions in MATLAB took 1.5 to 3.1 s per view, depending on
how many matching points were found in disparity estimation.

To calculate the final corrected YUV values with (7),
45 multiplications and 19 additions are needed per sample
(Y, U, or V). In our implementation, written in C code and
compiled with Microsoft Visual Studio, this takes about 15 ms
per 640 × 480 pixel frame. The complexity could be reduced
by using a lower order polynomial, or removing some terms
from (7), at the expense of slightly less accurate correction.

IV. CONCLUSION

In this letter, a method has been proposed for correcting
color in multiview video sets to the average color of the set of
original views. The color correction is done as a preprocessing
step to compression. Block-based disparity estimation is used
to find matching points between all views. A least-squares
regression is performed on the set of matching points to
find the optimal parameters for a polynomial that will make
the captured values from each view match the average color
values. Experimental results show that the proposed method
produces video sets that are highly consistent in color. Ap-
plying the proposed method increases compression efficiency
by up to 1.0 dB in luma PSNR when multiview video is
compressed with JMVM.
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