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ABSTRACT 
 
Most modern stereo matching algorithms involve solving an 
optimization problem where the objective function includes 
a data cost term and a smoothness term.  The data cost term 
measures how well corresponding pixels match between the 
left and right images.  In this paper a new stereo matching 
data cost is proposed which is robust to variations in 
blurring between the images caused by camera focus.  In 
our method, each image is blurred once with a large filter. 
By comparing the original and blurred versions of each 
image we obtain a range of possible values each pixel could 
take on for different levels of blurring.  Based on this range 
we construct a blur robust data cost for comparing pixels 
between two images.  Experimental results show our 
proposed method greatly improves stereo matching 
accuracy when the left and right images in a stereo pair are 
focused differently. 
 

Index Terms— blurring robust, stereo matching, focus, 
data cost, disparity 
 

1. INTRODUCTION 
 
Most stereo matching datasets, such as those from the 
popular Middlebury stereo page [1], consist of images 
captured under very carefully controlled conditions using 
well calibrated cameras.  However it is not always possible 
to capture high quality well calibrated images, for example 
when cameras are mounted to a robot or simply due to low 
cost cameras being used.  In other cases, such as performing 
matching on sets of photos found on the internet [2], photos 
are taken at different times with different cameras, with no 
attempt to calibrate the cameras.  Hence stereo images often 
suffer from inconsistencies between cameras that can make 
the images differ in brightness, contrast, resolution, 
blurring, etc. 

A large amount of research has been performed on 
making stereo matching robust to variations in brightness 
between images.  A through overview and comparison of 
different methods is presented in [3].  Far less work has 
been done on making stereo matching robust to variations in 
blurring between images. 

One recent blurring-robust stereo matching method is 

based on matching phase values [4].  That method involves 
comparing quantized Discrete Fourier Transform (DFT) 
phase values of local regions of the two images.  Since 
phase values are not affected by convolution with a 
centrally symmetric point spread function, their method is 
robust to blurring such as out-of-focus blur or Gaussian 
blur.  A problem with this method is that the DFT must be 
taken on fairly large square windows for reliable matching, 
which leads to the well known foreground fattening effect 
[5]. 

Another stereo matching method that provides 
robustness to small amounts of motion blur is presented in 
[6].   In their method, each pixel is classified as either being 
affected by motion blur or not, and different weightings of 
the data cost and smoothness cost are used in an 
optimization stage for the pixels which are estimated as 
being affected by blurring.  This method is only affective if 
the portion of the image affected by blurring is quite small. 

A preprocessing method to correct sharpness variations 
in stereo images prior to matching is proposed in [7].  That 
method can correct global blurring, but is not applicable if 
the blurring varies spatially within an image, for example 
when part of an image is out of focus.    

In this paper we propose a stereo matching data cost 
that is robust to blurring caused by camera focus.  In our 
method we filter each image once in order to establish a 
range of values each pixel may take for different levels of 
blurring.  Experimental results show our method 
significantly improves the quality of stereo matching 
relative to existing methods.    
 

2. PROPOSED DATA COST 
 
 Most modern stereo matching algorithms involve solving 
an optimization problem considering a data cost term and 
smoothness cost term [8][9].  The data cost measures how 
well corresponding pixels match between the left and right 
images, whereas the smoothness cost penalizes 
discontinuities in the disparity map in order to favor 
smoother solutions. 

In this work we consider the data cost used in stereo 
matching.  The simplest data cost functions are absolute 
differences (AD) and squared differences (SD).  When 
comparing a pixel in the left image (iL) to a pixel in the right 
image (iR) the absolute difference data cost is given by: 
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Data costs such as the absolute difference perform 
poorly when the left and right images are blurred by 
different amounts. The images may be blurred differently if 
the cameras are focused differently (which is particularly a 
problem if auto-focus is used), or if there is motion blur.  
Blurring can change the value of a pixel significantly, 
particularly around object edges and in textured regions of 
an image.  If the blurring is caused by part of the image 
being out of focus, the blurring can be modeled by a disk-
filter with a point spread function of: 
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In equation (2), r is the radius of the blurring, which is 
dependent of the depth of the image point and the depth at 
which the camera is focused [10].  A discrete version of the 
filter in (2) can easily be made by sampling on a grid and 
integrating over the area of each pixel, which is done in the 
MATLAB fspecial() function. 

A straightforward method for making a data cost robust 
to blurring would be to compare the left image with a series 
of blurred versions of the right image that have different 
blurring radii (Fig. 1).  If the left pixel closely matches any 
of the blurred versions of the right image a blur robust data 
cost should return a low value, since the left and right pixels 
match for some level of blurring.   

While a blur robust data cost could be made based on 
the idea of Fig. 1, it would not be very practical.  Each 
image would have to be filtered several times, which has a 
high computational cost, and there is redundancy between 
the blurred versions of the image that is not being taken into 
account. 

In our method, instead of blurring the image several 
times, as in Figure 1, we blur the image once with a large 
filter that corresponds to the maximum level of blurring that 
could be expected in an application. Define i(r) as the value 
of a pixel when the image is blurred with a disk filter of 
radius r.  A property of blurring with a disk filter (equation 
(2)) is that as the radius of the filter is increased, each pixel 
value in the image varies continuously, i.e. the function i(r) 
is continuous.  In other words, a small change in r results in 
a small change in the filter f(x,y) and also a small change in 
each pixel value in the image filtered by f(x,y).  Therefore 
by the intermediate value theorem, for every possible value 
imid between i(0) and i(rmax), there is some level of blurring, 
rmid, for which i(rmid) = imid, with max0 rrmid  . 

This observation can be applied to design a blur robust 
data cost.  Suppose we are comparing a pixel in the left 
image with value iL to a pixel in the right image with value 
iR, and that after blurring the right image with a filter of 

radius rmax, the right pixel changes in value to iRB.  If the 
value iL falls between iR and iRB then we know that applying 
some level of blurring less than rmax to the right image 
would make the right pixel exactly match the left pixel.  
Therefore, a blur robust data cost should return a low value 
(i.e. consider the pixels a match) since they match for some 
level of blurring.  This is the basis for our proposed method. 

In our proposed data cost, we consider three cases: i) 
the images have the same amount of blurring, ii) the right 
image is blurred more, and iii) the left image is blurred 
more.  In our method, we calculate a separate cost for each 
of these three cases and then combine them to form a single, 
blur robust data cost. 

The first case is the easiest, where we test how closely 
the images match assuming they are consistent in blurring. 
Denoting this case consistent-blurring (CB), we can use a 
standard cost such as the absolute difference: 
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In the second case, we test how closely the left image 
matches a blurred version of the right image, which we 
denote the right-blurred (RB) case. Using the intermediate 
value theorem as discussed earlier, our data cost returns 
zero if iL falls between the right pixel value (iR) and the 
blurred right pixel value (iRB).  If iL falls outside that range, 
the traditional absolute difference between iL and iRB is used. 
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The third case tests how well the right pixel matches a 
blurred version of the left pixel.  We call this the left-
blurred (LB) case.  It is exactly equivalent to the second 
case with the role of the left and right pixels reversed; the 
cost is zero if iR falls between iL and iLB.  
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Fig. 1. Comparing a pixel left image with pixels from a series of blurred 
versions of the right image   
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With the three individual data costs computed, we merge 
them into a final, blur robust, single data cost.  This could 
be done by simply taking the minimum of the three costs, 
but that would treat pixels that match without any blurring 
equally to pixels that match with blurring.  Therefore we 
apply a small cost penalty to the second and third cases, in 
order to favor pixels that match without blurring, which can 
be considered a stronger match.  Our final data cost is 
calculated as: 
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where P is the penalty applied to the blurring cases.  
Experimentally we have found a penalty of P = 2.5 works 
well for 8-bit images. 

 
3. EXPERIMENTAL RESULTS 

 
In order to objectively test our method, we performed 
experiments using images pairs from the Middlebury stereo 
page [1], which have ground truth disparities.  We 
introduced blurring differences by synthetically applying 
out-of-focus blur to each image.  In each stereo pair, we 

made the left image near-focused (i.e. objects close to the 
camera appear sharp, object further away are blurred) and 
the right image far-focused (objects close to the camera are 
blurred).  In each case the image was blurred with a 
spatially varying disk-filter, where the radius of the filter (r) 
varies with the depth of the pixel as [10]: 
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where f is the cameras focal length, w is the width of a pixel, 
a is the aperture (f-number), z is the depth of the pixel, and 
the camera is focused at depth zF.  Further details on this 
focus-blurring model can be found in [10][11].  Examples 
of two stereo pairs generated with near-focus and far-focus 
are shown in Figure 2.  

Five stereo pairs from the Middlebury page were used 
for our tests, Art, Baby1, Cones, Dolls and Reindeer.  The 
half resolution versions of the images, available at [1], were 
used in all tests. 

We performed stereo matching on these differently 
focused stereo pairs using the belief propagation algorithm 
described in [9].  Three different data costs were compared: 
absolute difference, which is used in [9] and serves as a 
reference point; the blur-invariant phase quantization 

 
Fig. 2. Examples of synthetically focused stereo image pairs used in our tests. The left images are near focused and the right images are 
far focused.   The images are reproduced at approximately one third resolution here, at full resolution the blurring is more prominent. 



matching proposed in [4]; and our proposed blur robust data 
cost.  In the tests of our proposed method, we have used a 
value of rmax = 4 pixels for computing our blur robust data 
cost. 

The quality metric we use for comparing disparity maps 
is the percentage of errors in the un-occluded regions of the 
image.  An error is defined as a point at which the estimated 
disparity differs from the ground truth disparity by more 
than one pixel.   

In Table I, we show the percentage of errors in the 
disparity maps obtained using the three different data costs.  
Both the phase quantization cost and our proposed data cost 
result in fewer errors than absolute differences, with our 
proposed method giving the fewest errors on average.  Our 
proposed method gives a 37% to 60% reduction in the 
number of errors compared to absolute differences.  In 
Figure 3, we show the disparity map for the reindeer image 
generated using each data cost.  Subjectively our proposed 
method yields a better disparity map compared to both 
absolute differences and phase quantization.  

Our proposed method also has lower complexity than 
the phase quantization based method [4].  Using the 
parameters suggested by the authors of [4], their method 
requires 14 convolutions with complex numbers in order to 
calculate the phase at each point (seven for each image).  
Our proposed method requires only two convolutions with 
real numbers (one for each image).   
 

4. CONCLUSIONS 
 
In this paper, we have proposed a blur robust data cost for 
stereo matching.  Our method is based on blurring each 

image once with a large filter and comparing the original 
and blurred versions of each pixel in order to obtain a range 
of values the pixel may take with different levels of 
blurring.  Experimental results show our proposed method 
improves stereo matching accuracy compared to both 
traditional data costs and a state-of-the-art blur robust data 
cost when the left and right images are focused differently. 
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TABLE I: PERCENTAGE OF ERRORS IN DISPARITY MAPS OBTAINED USING 

DIFFERENT DATA COSTS 

Image
Absolute 

Differences
Phase 

Quantization
Proposed

Art 25.3 20.5 15.9
Baby1 8.0 4.4 3.2
Cones 24.7 10.7 11.3
Dolls 7.4 5.4 4.0

Reindeer 16.9 12.8 7.7
Average 16.4 10.8 8.4

(a) (b) (c) (d)  
Fig. 3. Disparity maps obtained using different data costs.  (a) Absolute differences, (b) Phase quantization [4], (c) Proposed data cost (d) Ground truth  


