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Abstract 

When stereo images are captured under less than ideal 
conditions, there may be inconsistencies between the two 
images in brightness, contrast, blurring, etc.  When stereo 
matching is performed between the images, these variations 
can greatly reduce the quality of the resulting depth map. In 
this paper, we propose a method for correcting sharpness 
variations in stereo image pairs which is performed as a pre-
processing step to stereo matching.  We modify the more 
blurred of the two images so that it will match the less blurred 
image in sharpness as closely as possible.  The 2D discrete 
cosine transform (DCT) of both images is taken, and the DCT 
coefficients are divided into a number of frequency bands.  
The signal and noise energy in each band are estimated, and 
the coefficients are scaled so that the two images have equal 
signal energy in each band.  Experiments show that applying 
the proposed correction method can greatly improve the 
disparity map quality when one image in a stereo pair is more 
blurred than the other. 
 
 
Keywords: stereo images, sharpness, blur, depth estimation, 
discrete cosine transform (DCT). 

1 Introduction 

Stereo matching is a classical problem in computer vision that 
has been extensively studied [1].  It has many applications 
such as 3D scene reconstruction, image based rendering, and 
robot navigation.   Most stereo matching research uses high 
quality datasets that have been captured under very carefully 
controlled conditions.  However, capturing well-calibrated 
high quality images is not always possible, for example when 
cameras are mounted on a robot [2], or simply due to a low 
cost camera setup being used.   Inconsistencies between 
cameras can cause the images to differ in brightness, colour, 
sharpness, contrast, etc.  These differences reduce the 
correlation between the images and make stereo matching 
more challenging, resulting in lower quality depth maps.  
  
A number of techniques have been proposed to make stereo 
matching robust to radiometric differences between images 
(i.e., variations in brightness, contrast, vignetting). An 
evaluation of several matching techniques that are robust to 
radiometric differences is presented in [3].  Much less work 
has addressed stereo matching when there are variations in 
sharpness/blurring between images.  Variations in image 
sharpness may result from a number of causes, such as the 

cameras being focused at different depths, variations in 
shutter speed, and camera shake causing motion blur. 
  
In [4], a stereo method is proposed using a matching cost 
based on phase quantization.  Their phase-based matching is 
invariant to convolution with a centrally symmetric point 
spread function (psf), and hence is robust to blurring.  In [5] a 
method is proposed for performing stereo matching on images 
where a small portion of the images suffers from motion blur.  
A probabilistic framework is used, where each region can be 
classified as affected by motion blur or not.  Different 
smoothness parameters in an energy minimization step are 
used for the pixels estimated as affected by motion blur.   
Note that neither [4] nor [5] attempts to correct the blurring in 
the images (they do not modify the input images); instead, 
they attempt to make the matching process robust to blurring. 
  
In this paper, we propose a fast method for correcting 
sharpness variations in stereo images.  Unlike previous works 
[4], [5] the method is applied as pre-processing before depth 
estimation.  Therefore, it can be used together with any stereo 
method.   Our method takes a stereo image pair as input, and 
modifies the more blurry image so that it matches the sharper 
image.  Experimental results show that applying the proposed 
method can greatly improve the quality of the depth map 
when there are variable amounts of blur between the two 
images.  The rest of this paper is organized as follows.  The 
proposed method is described in section 2, experimental 
results are given in section 3 and conclusions are drawn in 
section 4.  

2 Proposed Sharpness Correction Method 

When an image is captured by a camera, it may be degraded 
by a number of factors, including optical blur, motion blur, 
and sensor noise.  Hence in a stereo image pair, the captured 
left and right images can be modelled as: 
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where i(x,y) is the “true” or “ideal” image and h(x,y) is the 
point spread function (psf) of the capturing process. The 
subscripts L and R denote the left and right images.  The ‘*’ 
operator represents two dimensional convolution.  The n(x,y) 
term is additive noise, which is usually assumed to be 
independent of the signal and  normally distributed with some 
variance σn

2.  Throughout the paper, we will use the tilde ‘~’ 
to denote an observed (and hence degraded) image.  The psf, 
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h(x,y), is usually a low-pass filter, which makes the observed 
image blurred (high frequency details are attenuated).  
  
If the same amount of blurring occurs in both images, i.e., hL 
and hR are the same, the images may lack detail but they will 
still be consistent.  Therefore, stereo matching will still work 
reasonably well.  We are interested in the case where different 
amounts of blurring occur in the images, so hL and hR are 
different.   Our method attempts to make the more blurred 
image match the less blurred image in sharpness, by scaling 
the DCT coefficients of the more blurred image.  The basis 
for our method is that un-blurred stereo images typically have 
very similar frequency content, so that the signal energy in a 
frequency band should closely match between the two 
images.  Therefore, we scale the DCT coefficients in each 
frequency band so that after scaling the image that originally 
had less energy in the band will have the same amount of 
energy as the other image.  The resulting corrected images 
will match closely in sharpness, making stereo matching 
between the images more accurate.  The steps of our method 
are described in detail in the following subsections.  

2.1 Removing non-overlapping edge regions 

Typical stereo image pairs have a large overlapping area 
between the two images.  However, there is usually also a 
region on the left side of the left image and a region on the 
right side of the right image that are not visible in the other 
image (Fig. 1a).   If these non-overlapping areas are removed, 

the assumption that the two images will have similar 
frequency content will be stronger. 
  
In order to identify the overlapping region between the two 
images, we consider two strips; one along the right edge of iL 
and one along the left edge of iR (see Figure 1a, regions 
highlighted in red).  Strips five pixels wide are used in our 
experiments.  We find matching strips in the other image 
using simple block based stereo matching.  Using the sum of 
absolute differences (SAD) as a matching cost, two SAD 
values are calculated for each possible disparity d, one for the 
edge of iL and one for the edge of iR: 
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 The disparity value d that minimizes the sum 
( ) ( )dSADdSAD RL +  is chosen as the edge disparity D.  

Cropped versions of iL and iR are created by removing D 
pixels from the left of iL and D pixels from the right of iR 
(Figure 1b).   These cropped images, which we will denote iLc 
and iRc, contain only the overlapping region of iL and iR.  
  
In equation (2), we have used the standard sum of absolute 
differences as the matching cost.  If there are variations in 
brightness between the images, a more robust cost should be 

(a)

(b)  
Figure 1: Removing non-overlapping edge regions. (a) Left and right original images with edge strips 

used in search shown in red and matching regions found through SAD search (equation (2)) 
shown in blue. (b) Images cropped with non-overlapping regions removed. 
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used, such as normalized cross correlation or mean-removed 
absolute differences. 

2.2 Noise variance estimation 

Noise can have a significant effect on blurred images, 
particularly in the frequency ranges where the signal energy is 
low due to blurring.  We wish to remove the effect of noise 
when estimating the signal energy, which requires estimating 
the noise variance of each image.  
  
We take the two dimensional discrete cosine transform (DCT) 
of the cropped images, which we will denote as ),(~ vuI Lc  
and ),(~ vuIRc .  The indices u and v represent horizontal and 
vertical frequencies, respectively.   These DCT coefficients 
are affected by the additive noise.  We can obtain an estimate 
for the noise standard deviation from the median absolute 
value of the high frequency DCT coefficients [6]: 
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Values uT and vT are the thresholds for deciding which DCT 
coefficients are classified as high frequency.  We have used 
20 less than the maximum values for u and v as the thresholds 
in our tests, resulting in 400 coefficients being used when 
calculating the median.  Using equation (3), we obtain an 
estimate for the noise level in each image, LN ,σ and RN ,σ . 

2.3 Division into frequency bands 

We wish to correct the full left and right images, without the 
cropping described in section 2.1.   Therefore, we also need to 
take the DCT of the original images, ),(~ vuIL  and ),(~ vuIR , so 
that those coefficients can be scaled.  This is in addition to 
taking the DCT of the cropped images ),(~ vuI Lc  and ),(~ vuIRc , 
from which we will calculate the scaling factors.  The DCT 
coefficients of each image have the same dimensions as the 
image in the spatial domain.  If the width and height of the 
original images are W and H, the cropped images will have 
dimensions (W-D)xH.  In the DCT domain, the dimensions of 
the coefficients will also be WxH for the original images and 
(W-D)xH for the cropped images.  
  
We divide the DCT coefficients of both the original and 
cropped images into a number of equally sized frequency 
bands.  Each frequency band consists of a set of (u,v) values 
such that 1+<≤ ii uuu  and 1+<≤ jj vvv , where ui is the 
starting index of band i in the horizontal direction and vj is the 
starting index of band j in the vertical direction.  If we use M 
bands in both the horizontal and vertical directions, then the 
starting frequency index of each band in the original and 
cropped images can be calculated as: 
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where ui and vj are the indexes for the original images, and ui,c 
and vj,c are the indexes for the cropped images.  Although ui 
and ui,c are different numbers, they correspond to the same 
spatial frequencies.  
  
The number of frequency bands to use in each direction, M, is 
a parameter that must be decided.  If more bands are used, the 
correction can potentially be more accurate. However, if too 
many bands are used, each band will contain little energy and 
therefore the estimate for the scaling factor will be less 
reliable.  Experimentally, we have determined that using 
M=20 frequency bands is works well over a wide set of stereo 
images and levels of blurring. 

2.4 DCT coefficient scaling 

We wish to scale the coefficients in each frequency band so 
that the left and right images have the same amount of signal 
energy in the band.  The energy of each observed (degraded) 
image in band ij can be computed as: 
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We wish to remove the effect of noise from the energy 
calculated with (5).  Let us define HI(u,v) as the DCT of the 
blurred signal ),(),( yxiyxh ∗ , and define N(u,v) as the 
DCT of the noise.   Since we are using an orthogonal DCT, 
N(u,v) is also normally distributed with zero mean and 
variance σN

2.  Given that the noise is independent of the signal 
and zero mean, we can calculate the expected value of the 
energy of the observed signal: 
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Summing the above relation over all the DCT coefficients in a 
frequency band gives: 
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where Enij(HI) is the energy of the blurred signal in frequency 
band ij and Cij is the number of coefficients in the band.  The 
left hand side of equation (7) can be estimated with the 
observed signal energy calculated with equation (6).  
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Therefore, we can estimate the energy of the blurred signal in 
the band as: 

( ) ( )( )2~En,0maxEn Nijijij CIHI σ−=   (8) 

In (8) we have clipped the estimated energy to be zero if the 
subtraction gives a negative result since the energy must be 
positive (by definition).  Using (8) we estimate the signal 
energies Enij(HIL) and Enij(HIR).  We wish to multiply the 
coefficients in the image with less energy by a gain factor 
(Gij) so that it has the same amount of signal energy as the 
other image.  The scale factors to apply to each image in this 
band can be found as: 
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( )

( )Rij

ij
Rij

Lij

ij
Lij

HI
G

HI
G

En
En

En
En

max,
,

max,
,

=

=
 (10) 

Note that either Gij,L or Gij,R will always be one, because no 
gain needs to be applied to the sharper image.  The gain 
factors calculated with (10) do not consider the effect of 
noise.  If the signal energy is very low, the gain will be very 
high, and noise may be amplified excessively (this is a 
common issue in de-blurring methods [7]). To prevent noise 
amplification from corrupting the recovered image, we clip 
the gain factors to have a maximum value of 4. 
 The scaling factors, Gij,L and Gij,R are calculated based on 
the DCT coefficients of the cropped images (because the 
assumption of equal signal energy in each frequency band 
will be stronger for the cropped images).  So equations (6) 
through (10) are all applied only to the DCT coefficients of 
the cropped images.  Once the gains are calculated for a 
frequency band ij, we scale the DCT coefficients of the 
original images to get the DCT coefficients of the corrected 
images: 
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After calculating all of the scaling factors, and applying 
equation (11) for every frequency band, we will have the 
complete DCT coefficients of the corrected images, 

),(, vuI corL  and ),(, vuI corR .  Then we simply take the inverse 
DCT to get the final corrected images in the spatial domain. 
 
3 Results 

We test our proposed method on ten stereo image pairs from 
the Middlebury stereo page [8] that have ground truth 
disparities obtained through a structured light technique [9].  
Thumbnails of the test images are shown in Figure 2.  The 
2005 and 2006 data sets from the Middlebury page (art, 
laundry, moebius, reindeer, aloe, baby1, rocks) all have seven 
views; we used the one-third size versions of views 1 and 3 in 
our tests. 
 
Our sharpness correction method is a pre-processing step 
done before stereo matching, and therefore it can be used 
together with any stereo method.  We test our method 
together with a representative fast global stereo method that 
solves a 2D energy minimization problem using Belief 
Propagation (BP) [10].  We refer readers to [10] for the 
details of the BP stereo algorithm. 
 
Two kinds of blurring filters are tested.  Out-of-focus blur, 
which is modelled with a disk filter of a given radius [11], 
and linear motion blur, which is modelled as an average of 
samples along a straight line of a given length.  We use the 
MATLAB commands fspecial(‘disk’,…) and 
fspecial(‘motion’,…) to generate the blurring filters. 
 
The performance metric we use is the percentage of ‘bad’ 
pixels in the disparity map in the un-occluded regions of the 
image. A bad pixel is defined as one whose estimated 
disparity differs from the true disparity by more than one 

 
Figure 2: Test images used in experiments (only left image of each pair is shown).  In reading order: Tsukuba, teddy, cones, 

art, laundry, moebius, reindeer, aloe, baby1, and rocks 
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pixel.  This is the most commonly used quality measure for 
disparity maps, and it has been used in major studies such as 
[1] and [3]. 
  
To show the effectiveness of our proposed method, we 
compare the quality of depth maps obtained using our 
proposed method relative to performing stereo matching 
directly of the blurred images.  In each test, the right image 
was left unfiltered, while the left image was blurred with 
either a disk filter (simulating out-of –focus blur) or a linear 
motion blur filter at 45 degrees to the x axis.  We tested of-
focus-blur with radii of 0, 1, 2 and 3 pixels and motion blur 
with lengths of 2, 3 and 4 pixels.  A larger radius or length 
means the image is blurred more.  A blur radius of zero 
means the image is not blurred at all, i.e., the filter is an 
impulse response and convolving it with the image leaves the 
image unaltered.  White Gaussian noise with a variance of 2 

was added to all of the blurred images (which is typical of the 
amount of noise found in the original images).  Figure 3 
shows the Tsukuba image blurred with all of the filters tested, 
to give the reader an idea of how severe the blurring is in 
different tests. 
  
Tables 1 and 2 show the percentage of errors in the disparity 
maps obtained when different levels of blurring are applied, 
with and without the proposed correction.  The second 
column of each table (images) shows whether stereo matching 
was performed on either the blurred left image and original 
right image (the “blurred” case), or on the left-right pair 
obtained by applying our proposed method (the “corrected” 
case).  Table 1 gives results for of-out-focus blur and Table 2 
gives results for motion blur. 

  

(c) (d) (e)

(f) (g) (h)

(a) (b)

 
Figure 3: Demonstration of blurring filters used in our tests on the Tsukuba images (a) Original left image (b) Original 

right image, (c)-(h) Left image blurred with: (c) Out-of-focus blur, radius 1 (d) Out-of-focus blur, radius 2 (e) Out-of-focus 
blur, radius 3 (f) motion blur, length 2 (g) motion blur, length 3 (h) motion blur, length 4.   The blurring filter is illustrated 

in the top left corner of each image. 
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From Tables 1 and 2, we can see there is a substantial 
reduction in the number of errors in the disparity maps when 
the proposed correction is used, particularly when the amount 
of blurring in the left image is high.  For the case of out-of-
focus blur with a radius of 3, the average number of errors is 
reduced from 29.4% to 18% using our proposed method.  For 
all images, there is some improvement when the proposed 
correction is used if one image is blurred. 
  
Even when neither image is blurred at all (the out-of-focus, 
zero radius case in Tables 1), there is some improvement on 
average when using the proposed method.  The average 
amount of errors is reduced from 6.8% to 5.7% on the 
original image pairs.  This suggests that some the original 
images may have slightly different levels of sharpness that the 
proposed method can correct.  
    
An example demonstrating the subjective visual quality of the 
corrected images and resulting disparity maps is shown in 
Figure 4.  The blurred left image and original right image of 
the cones stereo pair is shown, along with the result of 
correcting the image pair with our method.  The disparity 
maps obtained based on the blurred pair and corrected pair are 
also shown.  Comparing (c) and (f) in Figure 4, we can see 
that the proposed method greatly reduces the errors in the 
disparity map, and produces more accurate edges.  We can 
also see that the corrected images, (d) and (e), are 
perceptually much closer in sharpness than the blurred 
images, (a) and (b).  Therefore, the proposed method may 
also be useful in applications such as Free Viewpoint TV 0 
and other multiview imaging scenarios, for making the 
subjective quality of different viewpoints uniform.  
  
We have implemented our proposed method in C code, and 
the running time for the Tsukuba images is 62 ms on an Intel 
Core 2 E4400 2 GHz processer under Windows XP.   

4 Conclusions 

In this paper we have proposed a pre-processing method for 
correcting sharpness variations in stereo image pairs.  We 
modify the more blurred image to match the sharpness of the 
less blurred image as closely as possible, taking noise into 
account.  The DCT coefficients of the images are divided into 
a number of frequency bands, and the coefficients in each 
band are scaled so that the images have the same amount of 
signal energy in each band.  Experimental results show that 
applying the proposed method before estimating depth on a 
stereo image pair can significantly improve the accuracy of 
the disparity map compared to performing stereo matching 
directly on the blurred images, particularly when one image is 
blurred much more than the other.  
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