

Improvements of Demosaicking and Compression for Single Sensor

Digital Cameras

by

Colin Ray Doutre

B. Sc. (Electrical Engineering), Queen’s University, 2005

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science

in

THE FACULTY OF GRADUATE STUDIES

(Electrical & Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

February 2007

© Colin Ray Doutre, 2007

ii

Abstract

 Most consumer digital cameras capture colour images using a single light sensor and

a colour filter array (CFA). This results in a mosaic image being captured, where at each

pixel location either a red, green, or blue sample is obtained. The two missing colours at

each location must be interpolated from the surrounding samples in a process known as

demosaicking. In most current digital cameras, demosaicking is carried out in RGB

colour space and later the image or video is converted to YCbCr 4:2:0 format and

compressed with standard methods. Most previous research on demosaicking and

compression in digital cameras has addressed the issues separately. That is, current

demosaicking methods ignore the fact that the data will later be compressed, and

compression techniques ignore the fact that the data was captured with a CFA.

 In this thesis we propose two methods for optimizing the demosaicking and

compression processes in digital cameras. First we propose a fast demosaicking method

that directly produces an image in YCbCr 4:2:0 format (the colour format most

commonly used in compression). This reduces the computational complexity relative to

the conventional approach of performing demosaicking in the RGB space and later

converting to YCbCr 4:2:0 format. Second, we propose two methods for compressing

video captured with a CFA prior to demosaicking being performed. This allows us to

take advantage of the smaller input data size, since demosaicking expands the number of

samples by a factor of three. Our first CFA video compression method uses standard

H.264, while our second method uses a modified motion compensation scheme that

further increases compression efficiency by exploiting the properties of CFA data.

iii

Table of Contents

Abstract……………………………………...………………………………………........ii

Table of Contents………………………...,……………………………………….…..…iii

List of Tables…………………………...….……………………..….……………………v

List of Figures..vi

1 Introduction.. 1

2 Background .. 4

2.1 Digital Camera Design.. 4

2.1.1 Optical System and Sensors... 4

2.1.2 Digital Image Processing... 7

2.2 Image and Video Compression... 9

2.2.1 YCbCr Colour Space ... 10

2.2.2 Image Compression ... 12

2.2.3 Video Compression ... 13

2.2.4 H.264 Video Compression... 15

2.3 Demosaicking Algorithms .. 16

2.4 Previous Work on CFA Image and Video Compression.................................. 23

3 Demosaicking Directly to YCbCr 4:2:0... 27

3.1 Introduction... 27

3.2 Proposed Demosaicking Method .. 28

3.2.1 Generating a Full Green Channel .. 29

3.2.2 Calculating Low-pass R-G and B-G Samples ... 31

3.2.3 Calculating Down-sampled Chroma Channels.. 33

3.2.4 Calculating the Full Luma Channel... 34

3.2.5 Summary of Complete Algorithm ... 36

3.3 Experimental Results .. 37

iv

3.4 Complexity Analysis... 46

3.5 Conclusions... 48

4 H.264 Based Compression of Bayer Pattern Video .. 50

4.1 Introduction... 50

4.2 Impact of Aliasing on CFA Video Coding ... 51

4.3 Proposed Methods for CFA Video Compression ... 54

4.3.1 Pixel Rearranging .. 54

4.3.2 Modified Motion Compensation.. 57

4.4 Results... 61

4.4.1 Testing Methodology... 61

4.4.2 Demosaicking Algorithm Choice .. 63

4.4.3 Quality Comparison Against Demosaick-First Approach 66

4.4.4 Complexity Comparison.. 69

4.4.5 Comparison Against Method in [19] ... 72

4.5 Conclusions... 73

5 Conclusions and Future Work .. 74

5.1 Conclusions... 74

5.2 Future Work .. 75

Bibliography……………………..……………………………………...……………….76

Appendix A: List of Acronyms……………………..…………………..……………….80

v

List of Tables

Table 3.1: Y-PSNR comparison of different demosaicking methods (dB) 40

Table 3.2: Cb-PSNR comparison of different demosaicking methods (dB) 41

Table 3.3: Cr-PSNR comparison of different demosaicking methods (dB) 42

Table 3.4: Number of operations per pixel required for the proposed method................. 47

Table 3.5: Number of operations per pixel required for the demosaicking method in [9]

plus conversion to YCbCr 4:2:0 format.. 47

Table 4.1: Bit Rate Comparison of our proposed methods with the method in [19]........ 72

vi

List of Figures

Figure 2.1: Typical optical path for a three sensor camera... 5

Figure 2.2: Typical optical path for a single sensor camera using a CFA. 5

Figure 2.3: Bayer Pattern CFA ... 6

Figure 2.4: Example digital processing pipeline for a single sensor camera...................... 7

Figure 2.5: Illustration of YCbCr sampling formats. (a) 4:4:4 (b) 4:2:2 (c) 4:2:0. 12

Figure 2.6: Block diagram of a typical motion compensated hybrid DCT based video

encoder .. 15

Figure 2.7: Original RGB and the result of applying bilinear interpolation to the image

when it is sampled with the Bayer pattern .. 18

Figure 2.8: Location numbering of Bayer Pattern .. 19

Figure 2.9: Conversion from Bayer cell to YCbCr 4:2:0 ... 22

Figure 2.10: Flow diagram of CFA compression schemes: (a) Traditional demosaick-first

approach. (b) Compression of CFA data prior to demosaicking. 23

Figure 2.11: Modified YCbCr conversion performed on the Bayer unit cell in [17]. 24

Figure 2.12: 45 degree rotation of luma samples used in [16].. 24

Figure 2.13: Methods for forming rectangular arrays of luma data in [17]. (a) Original

luma arrangement (b) Structure conversion (c) Structure separation 25

Figure 2.14: RGB based structure conversion method used in [21]. 26

Figure 3.1: Neighbourhood of pixels used for generating the luma and chroma samples in

the cell containing positions 1-4. .. 29

Figure 3.2: Test Images used in evaluating demosaicking algorithm performance.

Numbered 1-24, from top left to bottom right. ... 37

Figure 3.3: Procedure used for measuring demosaicking algorithm performance. 38

Figure 3.4: Comparison of demosaicking methods on a cropped portion of image 6.

(a) original image (b) bilinear (c) method in [6] (d) method in [9] (e) YUV method in

[31] (f) proposed method .. 44

vii

Figure 3.5: Comparison of demosaicking methods on a cropped portion of image 8.

(a) original image (b) bilinear (c) method in [6] (d) method in [9] (e) YUV method in

[31] (f) proposed method .. 45

Figure 4.1: A frame of the red channel from the “Mobile and Calender” video (top), and a

blowup of the highlighted region over four successive frames (bottom), illustrating the

affect of aliasing and the low correlation between frames. .. 52

Figure 4.2: The four frames of red data in Figure 4.1 after demosaicking has been

performed. ... 53

Figure 4.3: Methods for forming rectangular arrays of luma data in [17]. (a) Original

luma arrangement (b) Structure conversion (c) Structure separation 55

Figure 4.4: Conversion from mosaic data into separate R, G and B arrays used in our

CFA video compression methods. .. 57

Figure 4.5: (a) Performing demosaicking on a block of pixels from a reference frame

(b) Sampling the demosaicked reference frame to obtain a prediction for the block when

the motion vector is (1,0) in full pel units... 58

Figure 4.6: Screenshots of the test videos, CrowdRun (top) and OldTownCross (bottom).

... 62

Figure 4.7: Plots of PSNR (of the CFA data) vs. bit rate for the two test videos obtained

when different demosaicking algorithms are used for motion compensation. 65

Figure 4.8: Plots of CPSNR (measured after compression and demosaicking) vs. bit rate.

... 68

1

1 Introduction

 Consumer digital cameras have gained widespread popularity in recent years and

have replaced analog film and tape cameras as the most common means for home users

capturing still images and video. In capturing an image, many processing steps are

carried out by the camera before it can be stored and viewed by the user. Two critical

steps are demosaicking (colour filter array interpolation) and data compression.

 Due to the properties of the human visual system, at least three colour samples are

needed at each pixel location to represent a full colour image. Most digital cameras use

red, green and blue samples. One way to design a digital camera is to have three separate

sensors for capturing a red, green and blue sample at every pixel location. However, only

high-grade cameras use this design as it is expensive to implement. Instead, most

consumer digital cameras use a single light sensor together with a colour filter array

(CFA). The CFA allows only one colour of light to reach the sensor at each pixel

location. This results in a mosaic image, where at each pixel location either a red, green

or blue sample is captured, with the CFA controlling the pattern of the colour samples.

The two missing colour samples at each location must be interpolated from the

surrounding samples. This process is known as colour filter array interpolation or

demosaicking.

 Another critical processing step in digital cameras is data compression. The large

amount of data required for high-resolution images and video sequences makes efficient

compression necessary in order to keep the camera’s memory requirements reasonable.

For still images, the JPEG (Joint Photographic Experts Group) standard [1] is by far the

2

most common compression method used. For video sequences, a number of different

compression standards are available, the most popular being ITU-T H.263 [2], ISO/IEC

MPEG-2 [3], and, most recently, H.264/AVC [4].

 Virtually all of the work done in the area of single sensor digital cameras has

addressed the issues of demosaicking and compression separately. Most demosaicking

algorithms have been designed without regard as to how the image will be compressed

afterwards, and most compression techniques ignore the fact that the data was originally

captured with a colour filter array.

 Advanced demosaicking algorithms put a lot of computational effort into

reconstructing high frequency detail in the red and blue colour channels [5]-[15]. If the

image is compressed afterwards, it will typically be converted to YCbCr 4:2:0 format. In

this format, the chroma channels (Cb, Cr) are down-sampled by a factor of two in both

the horizontal and vertical directions, resulting in a loss of the high frequency colour

information. Therefore, it is wasteful to generate the high-frequency colour information

in the demosaicking process.

 The traditional approach to compressing image or video data captured with a CFA is

to first perform demosaicking and then compress the resulting full-colour data. This

approach is less than optimal, because demosaicking increases the size of the data

without introducing new information. That is, the demosaicking process introduces

redundancies into the data that the compression process must undo. Some work has been

done on compressing raw CFA still image data, rather than first performing

3

demosaicking and then applying compression [16]-[21]. However, little work has been

done on compressing video captured with a CFA.

 In this thesis we develop schemes that jointly optimize the demosaicking and

compression processes. Two approaches to doing this are considered:

1. Creating a demosaicking algorithm that directly produces an image in the format

used for compression (YCbCr 4:2:0), thus reducing the complexity of the

demosaicking process.

2. Compressing CFA video data prior to demosaicking rather than after, increasing

compression efficiency by taking advantage of the smaller input data size.

 The rest of this thesis is organized as follows. Chapter 2 provides background

information on digital cameras, image and video compression, demosaicking methods,

and existing techniques for CFA data compression. In Chapter 3, we present a new

demosaicking algorithm that directly produces an image in YCbCr 4:2:0 format that can

be immediately be compressed, without the needed for a separate colour space

conversion step. Two methods for compressing CFA video prior to demosaicking are

presented in Chapter 4. Finally, conclusions and directions for further research are

provided in Chapter 5.

4

2 Background

 In this chapter, we provide background information on digital camera design, the

fundamentals of image and video compression, demosaicking in digital cameras, and the

existing work on compression in single-sensor cameras. In Section 2.1 we provide basic

information on the design of digital cameras, including the optical path, sensors and

digital image processing steps. Section 2.2 provides an overview of the basics of image

and video compression, including the YCbCr colour space, the discrete cosine transform,

motion compensation, and the H.264 standard. In Section 2.3, an overview of

demosaicking algorithms is provided, with emphasis placed on fast techniques that run

directly on the digital camera itself. A detailed summary of existing research on direct

compression of CFA images and video is provided in Section 2.4.

2.1 Digital Camera Design

2.1.1 Optical System and Sensors

 A colour digital image can be represented using three colour samples. Often red,

green and blue are used, which roughly correspond to the wavelengths that the three

types of cones in the human eye are most sensitive to. By combining red, green and blue

light in different ratios, almost any visible colour can be obtained.

 To capture a digital image, the most straightforward design would be to use three

separate sensors to capture red, green and blue light. The optical path for such a system

is shown in Figure 2.1. A beam splitter would be used to project the light through three

colour filters, and towards three sensors. This three sensor design is used in some high-

5

end cameras. However, since the sensor is one of the most expensive parts of a camera,

typically accounting for 10-25% of the total cost [22], the three sensor design is not used

in most consumer digital cameras.

Figure 2.1: Typical optical path for a three sensor camera.

 To reduce cost, most consumer digital cameras manufacturers use only a single light

sensor. To capture colour information in such devices, a colour filter array (CFA) is

placed before the sensor [23]. The optical path for such a camera is shown in Figure 2.2.

The CFA only allows one colour of light to reach the sensor at each pixel location.

Several CFA designs exist [24], the most popular being the Bayer pattern [25]. The

Bayer pattern consists of a repeating 2x2 cell, each cell containing two green samples,

one red sample and one blue sample, as shown in Figure 2.3. More green samples are

captured than red or blue because the human visual system is more sensitive to the green

portion of the light spectrum.

Figure 2.2: Typical optical path for a single sensor camera using a CFA.

6

Figure 2.3: Bayer Pattern CFA

 In the optical path for both the three sensor and the single sensor camera designs,

optical filtering is done before the light passes through the colour filters. This is

necessary to provide infra red (IR) rejection. Most colour dyes transmit light beyond

700 nm, which the human visual system does not perceive, but which the camera’s light

sensor may be sensitive to. This light must be filtered out to capture an image that

corresponds to what a human observes. Typically, a hot mirror is used for IR rejection.

A hot mirror transmits low wavelength light and reflects high wavelengths. An anti-

aliasing filter may also be placed at the “optical filter” location in Figures 2.1 and 2.2.

An anti-aliasing filter provides spatial blurring to filter out high frequencies that cannot

be captured due to the spatial resolution of the sensor.

 The sensor used in digital cameras is either a charge-coupled device (CCD) or a

CMOS (Complementary Metal Oxide Semiconductor) device. CCD sensors were used in

virtually all early cameras, but CMOS sensors are now becoming more common due to

their lower cost, lower power consumption and their ability to be incorporated onto a

single chip with other circuits. However, CCD sensors produce superior image quality

and are used in high-end devices.

7

2.1.2 Digital Image Processing

 The output from the image sensor goes through an analog to digital (A/D) converter

to produce a digital image. After this, many digital image processing steps must be

carried out in order to produce a final viewable image. A typical digital image processing

pipeline for a single sensor camera is shown in Figure 2.4. It should be noted that this

pipeline is an example only; different cameras perform different processing steps and the

order of steps may be different in some cameras.

Figure 2.4: Example digital processing pipeline for a single sensor camera.

 After the A/D converter has generated a digital image, some pre-processing may be

applied. These steps vary significantly from camera to camera, but may include

interpolating values at defective pixel locations, or converting the output from a non-

linear sensor to a linear space.

 The colour of light coming off an object is a function of both the incident light colour

and the reflectance of the object. The human visual system corrects for the lighting

conditions so that a white object is still perceived as being white regardless of the light

source. To produce images that correspond to what a human perceives, a camera must

also correct the colours in an image based on the lighting conditions. This processing is

called white balancing or white-point correction. White balancing is done either by

8

having the user select from a number of pre-programmed settings, or using an auto white

balance (AWB) algorithm [26].

 When a CFA is used in a single sensor camera, the sensor captures a mosaic image,

where there is either a red, green or blue sample at each pixel location. The two missing

colours at each location much be estimated from the surrounding samples in a process

known as demosaicking [5]. An overview of demosaicking algorithms is provided later

in this chapter in Section 2.3.

 The spectral characteristics of an image sensor are not likely to be matched to the

spectral emission characteristics of the display device used. That is, if we took the RGB

values recorded by the sensor in response to a scene and directly displayed those RGB

values on a monitor, the colours produced by the monitor would not match the colours in

the image scene. Thus, it is necessary to convert the RGB values produced by a sensor

into a standard colour space, most often the sRGB (standard red, green, blue) space [27].

The sRGB space defines a mapping between a set of sRGB values and the CIE

(Commission Internationale de l'Eclairage) chromaticity coordinates of the light produced

by a display device. In digital cameras, the RGB values produced by the image

processing chain discussed so far are typically converted into CIE XYZ (chromaticity)

values through a linear transformation (that has been designed based on the sensors

characteristics) [28]. Then a non-linear transformation is applied to convert from XYZ

values to sRGB space [27].

9

 Some cameras apply post-processing to the image before it is compressed. This may

include steps such as sharpening and artifact removal to improve the subjective image

quality.

 The final step of the digital image processing chain is compression, where

redundancies are removed from the image representation so it can be coded using fewer

bits. The JPEG image compression standard [1] is by far the most commonly used image

compression scheme in digital cameras. Section 2.2 of this thesis provides more details

on image and video compression.

 Some cameras provide a setting for the user to bypass all of the digital image

processing steps above, and just store the raw data obtained by the sensor (perhaps with

some minimal compression). This allows the digital processing to be performed later on

a computer, with guidance from the user. By performing the digital processing on a

computer, more advanced algorithms for white-balance, demosaicking, and post

processing can be used, since a typical computer has much more computational power

than a digital camera. This mode of operation is used by professional users, but rarely by

typical consumers.

2.2 Image and Video Compression

 In the following sections the basics of image and video compression are covered.

Section 2.2.1 discusses the YCbCr colour space which is used in most still image and

video compression standards. Still image compression techniques are covered in Section

2.2.2 and video compression is discussed in Section 2.2.3. Finally, a brief overview of

H.264/AVC, the latest major video coding standard, is provided in Section 2.2.4.

10

2.2.1 YCbCr Colour Space

 A digital image can be represented using three colour samples per pixel. Typically red

(R), green (G) and blue (B) are used when capturing images with a digital camera.

However, storing images in RGB space is inefficient, as there is a large amount of

correlation between the channels. Instead, when images or video are to be compressed,

they are usually converted into YCbCr colour space. In YCbCr space, an image is

represented by one luma (Y) and two chroma (Cb, Cr) components. The luma channel

contains “brightness” information; it is essentially a greyscale version of the image. The

chroma values are colour offsets, which show how much a pixel deviates from greyscale

in the blue (Cb) and red (Cr) directions.

 The equations used for converting from RGB to YCbCr used in the JPEG JFIF format

[29] are:

B0.0813G0.4187R0.5Cr

B5.0G0.3313R0.1687- Cb

B0.114G587.0R0.299Y

⋅−⋅−⋅=

⋅+⋅−⋅=

⋅+⋅+⋅=

 (2.1)

 The reverse equations for converting from YCbCr to RGB are:

Cb772.1YB

Cr0.71414Cb0.34414YG

Cr402.1YR

⋅+=

⋅−⋅−=

⋅+=

 (2.2)

 For most natural images, the RGB to YCbCr conversion strongly de-correlates the

colour channels, so the Y, Cb, and Cr components can be coded independently without

loss of efficiency. In YCbCr space, the energy of an image tends to be concentrated in

11

the Y channel. This leaves the Cb and Cr channels with less information, so they can be

represented with fewer bits.

 Another advantage of the YCbCr space comes from the properties of the human

visual system. The human eye is more sensitive to brightness information than colour

information. Consequently, the chroma signals can be down-sampled relative to the luma

without significant loss of perceived quality. In fact, chroma down-sampling is almost

always done when compressing image or video data.

 Applying equation (2.1) at every pixel in an image results in an YCbCr 4:4:4 picture.

In YCbCr 4:4:4 format, the chroma is sampled at the same rate as luma (Figure 2.5a).

This format is rarely used, except in professional applications. In YCbCr 4:2:2 format,

the chroma signals are down-sampled by a factor of two relative to the luma in the

horizontal direction (Figure 2.5b). Some higher end digital video formats use YCbCr

4:2:2 sampling. However, the most common colour format used in compressed images

and video is YCbCr 4:2:0 (Figure 2.5c). In YCbCr 4:2:0 format, the chroma signals are

down-sampled by a factor of two in both the horizontal and vertical directions. It should

be noted that there are different chroma positions used in YCbCr 4:2:0 format.

Sometimes the chorma samples are considered to be half-way between the luma samples

vertically, or in the center of a group of four luma samples. In the downsampling process

the chroma channels should be low-pass filtered to limit aliasing.

12

Figure 2.5: Illustration of YCbCr sampling formats. (a) 4:4:4 (b) 4:2:2 (c) 4:2:0.

 There are minor variations on Equations 2.1 and 2.2 used for converting to YCbCr

format. These typically involve scaling of the luma and chroma vales so the final

samples will fall within a lower range. In digital images and video, the term YCbCr is

typically usually used interchangeably with YUV to refer to the same colour space.

2.2.2 Image Compression

 Still image compression involves removing spatial redundancies within an image.

This is usually done with a transform, such as the discrete cosine transform (used in

JPEG [1]) or the wavelet transform (used in JPEG 2000 [30]). The idea of transform

coding is to apply a mathematical transformation to a group of pixels that will

concentrate the energy of the signal into a smaller number of coefficients. After applying

a transform, many coefficients are typically near zero, and hence can be discarded with

minimal impact on the output image when the inverse transform is taken.

 By far, the most popular image compression method used in digital cameras is

baseline JPEG. JPEG is based on the 2D discrete cosine transform (DCT). The image

13

is divided into 8x8 blocks of pixels, and the DCT of each block is taken. The DCT

coefficients are calculated with the following formula:

() () () ()
() ()

() 7,0
8x1 1

0 21

16

12
cos

16

12
cos,

4

1
,

7

1

7

1

<<





<<

=
=








 +







 +
= ∑∑

= =

qp
x

xc

qypx
yxfqcpcqpD

x y

ππ

 (2.3)

 The DCT coefficients, D(p,q), show how much energy the image block has at

different spatial frequencies. Higher values of p and q correspond to higher frequencies

in the x and y directions. The coefficients are quantized based on how the human visual

system perceives different frequencies, with the higher frequency coefficients being more

coarsely quantized. The quantized coefficients are scanned in zigzag order, in direction

of increasing frequency. Entropy coding is applied to (run, level) pairs, where level is the

value of a quantized coefficient, and run is the number of zero values preceding the

coefficient in the zigzag scan.

2.2.3 Video Compression

 Due to the large amount raw data needed to represent video, efficient data

compression is critical in systems involving digital video. With a given amount of data

storage capacity more efficient video compression schemes allow either the video quality

to be increased or the play time to be extended. Efficient video compression is essential

in applications such as personal video players (e.g., DVD), streaming video over the

internet, digital camcorders, video conferencing, broadcasting, etc.

14

 A digital video is a time sequence of 2D frames. Video compression attempts to

remove redundancies both within a single frame and between frames.

 Some frames in a video are coded independently of other frames using intra coding

methods (I frames). These frames are compressed with still image techniques, typically

similar to those used in JPEG.

 The key technique that distinguishes video compression from image compression is

motion compensation (MC). When MC is used, some frames are coded by predicting the

frame from previously coded frames and storing the difference between the actual frame

and the prediction. Such frames are called P frames. After forming a prediction for a

block of pixels, the residual prediction error is calculated, which is the difference

between the actual block and the prediction. Then a transform (e.g., DCT) is usually

applied to the residual. The transform coefficients are then quantized, scanned and

entropy coded.

 MC involves dividing a frame into blocks and estimating and coding a displacement

vector for each block. The displacement vector tells the decoder which block in a

previously coded reference frame to use as a prediction. Using the displacement vector

the decoder can form the same prediction for the block, and by adding the residual to the

prediction the original block can be restored.

 Figure 2.6 shows a simplified block diagram of a motion compensated, transform

based hybrid video encoder. This basic structure is used in most major video coding

standards including MPEG-1, MPEG-2, H.261, H.263 and H.264/AVC.

15

Figure 2.6: Block diagram of a typical motion compensated hybrid DCT based video

encoder

2.2.4 H.264 Video Compression

 H.264/AVC is the latest major video coding standard, and it is being used in

applications such as next generation video players (Blu-ray, HD DVD). A number of

new coding features were introduced in H.264, the most important of which are

summarized below.

 The transform used in H.264 is different from previous standards. Instead of using a

DCT calculated with floating point arithmetic, as in JPEG and MPEG-2, H.264 uses an

integer transform that approximates the DCT. The integer transform matrix only contains

the values +1, -1, +2, and -2, so the transform can be calculated using only

addition/subtraction and bit shift operations. In baseline H.264, the transform is

calculated on blocks of 4x4 pixels, which is smaller than the 8x8 blocks used in most

previous standards. The smaller block size helps reduce ringing artifacts.

16

 When coding I frames, instead of taking the transform of blocks of pixels directly,

each block is predicted in the spatial domain from previously coded blocks (usually

blocks above or to the left of the one being coded). A number of different intra

prediction modes are supported, for example each pixel in the block can be predicted

from the pixel outside the block directly above it, to the left, or at a diagonal direction. A

DC prediction mode is also supported, where the entire block is predicted based of the

average value of the surrounding previously coded pixels. After the prediction has been

made, the integer transform is applied to the prediction residual.

 Motion Compensation (MC) is much more flexible in H.264 than in previous

standards (e.g., MPEG-2). In H.264, variable block size motion compensation is

supported. Blocks of size 16x16 pixels down to 4x4 pixels can be used. In addition,

H.264 allows the encoder to select from multiple previously coded frames to find the one

that will provide the best prediction for the frame being coded. Finally, motion vectors in

H.264 can be defined in units of one quarter pixel. This significantly increases the

accuracy of MC, resulting in higher compression efficiency. In order to support

fractional pixel motion vectors, the reference frames must be interpolated. This is done

with a 6 tap FIR (finite impulse response) filter to generate samples at half pixel

positions, followed by bilinear interpolation to generate samples at quarter pixel

positions.

2.3 Demosaicking Algorithms

 Most consumer digital cameras capture colour information with a single light sensor

and a colour filter array (CFA). The CFA only allows one light colour (red, green or

17

blue) to reach the sensor at each pixel location. The Bayer Pattern [25] is the most

commonly used CFA design.

 Demosaicking is the process of estimating the two missing colour samples at each

pixel location. The simplest demosaicking methods interpolate each colour channel

separately. One such technique is bilinear interpolation, where the average of the

surrounding samples is used. When bilinear interpolation is used, each missing green

sample is calculated as the average of the four surrounding green samples, and each

missing red or blue sample is taken as the average of the two nearest neighbours or four

nearest neighbours, depending on the position. Other standard interpolation methods,

such as cubic spline interpolation, can be used to slightly improve the performance when

processing each colour channel separately.

 The problem with methods that interpolate the colour channels independently is that

they usually fail at sharp edges in images, resulting in objectionable colour artifacts.

Figure 2.7 illustrates this; it shows a full colour image and the result of using bilinear

interpolation to reconstruct the image after it has been sub-sampled with the Bayer

pattern. Note how the bilinear image has false colours in regions of high frequency

image content and also appears significantly blurred.

18

Figure 2.7: Original RGB and the result of applying bilinear interpolation to the image

when it is sampled with the Bayer pattern

 To overcome the problems caused by simple methods that interpolate the colours

channels separately, many adaptive demosaicking algorithms have been developed which

exploit the correlation between the colour channels.

 One class of adaptive demosaicking algorithms is edge-directed interpolation [6]-[8].

These algorithms attempt to preserve edges by calculating gradients from the CFA data

and interpolating along the direction (typically either horizontal or vertical) that has the

lower gradient.

19

Figure 2.8: Location numbering of Bayer Pattern

 In [6], Hamilton and Adams propose a method where Laplacian second order

correction terms are used to enhance the estimates for missing pixels. Referring to Figure

2.8, consider the task of estimating the green sample at the location of sample R2 (we

denote the missing green sample G2). In the method in [6] (which we will refer to as

‘Laplacian demosaicking’) gradients are calculated as:

G3G7R22R12R20DV

G91GR22R24R16DH

−+⋅−+=

−+⋅−+=
 (2.4)

 Bilinear interpolation is carried out in the direction with the lower gradient, or both

directions if the gradients are equal. The Laplacian of the red or blue channel is

calculated in the same direction and added to the bilinear estimate. For example, G2 is

calculated as follows:

20

()

()

8

R12R24R20R16R24

4

G3G9G7G1
G2

 else

4

R12R20R22

2

G3G7
G2

DHDVif else

4

24R16RR22

2

G9G1
G2

DVDHif

−−−−⋅
+

+++
=

−−⋅
+

+
=

<

−−⋅
+

+
=

<

 (2.5)

 In equation (2.5), the left term of every sum is the result of applying bilinear

interpolation to the green channel in the lower gradient direction (horizontal, vertical, or

both). The right hand term of each sum is the Laplacian of the red channel. The

Laplacian is a high-pass filter. The RGB colour planes are typically very highly

correlated, especially in high-frequency content, so adding the Laplacian of the red

channel to the green channel enhances the bilinear estimate. The red and blue planes are

filled in a similar manner (calculating gradients and using directional interpolation with

Laplacian terms).

 In [9], Laplacian correction terms are also used, but to reduce the number of

computations required, the interpolation of the green channel always uses samples in both

directions (the last case in equation (2.5)). This eliminates the need for calculating the

gradients and performing comparisons, resulting in a very computationally simple

method. After the green channel has been filled, the red and blue channels are estimated

using bilinear interpolation on the difference between the red/blue channel and green

channel. The signals R-G, and B-G are generally much smoother (less high frequency

content) than the red and blue channels themselves and are thus more suitable for

conventional linear interpolation.

21

 Many demosaicking methods have been developed which are far more advanced than

the methods described so far. Wavelet decomposition is used in [10], where the high-

frequency sub-band of the green channel is used to iteratively update the high-frequency

content in the red and blue channels. Techniques have also been proposed using neural

networks [11], markov random fields [12] and a soft decision process for estimating edge

directions [13]. These methods can achieve very good image quality but have high

computational complexity. Thus, instead of performing demosaicking directly on the

camera when the image is taken, the raw data would be stored on the camera and then

transferred to a computer where demosaicking would take place. In this thesis, we focus

on methods that run directly on the digital camera, so these advanced algorithms are not

discussed in detail.

 When video is captured with a CFA device, demosaicking is usually done on each

frame independently. However, recent work has explored using motion estimation to

improve performance when demosaicking is performed on a video [14],[15]. Through

motion estimation, information from other frames can be used to improve the estimate for

the missing pixels in each frame, at the expense of greatly increased complexity.

 All the demosaicking algorithms described up to this point produce RGB output

images. If the image is to be compressed afterwards (it almost always will be), it will be

converted into YCbCr 4:2:0 format, which is more suitable for compression. Instead of

performing demosaicking in the RGB space and then converting to YCbCr 4:2:0 space

afterwards, the demosaicking algorithm can be designed to directly produce YCbCr 4:2:0

output.

22

Figure 2.9: Conversion from Bayer cell to YCbCr 4:2:0

 There is one previously published demosaicking algorithm that produces an YCbCr

4:2:0 output image [31]. Their algorithm, entitled “YUV through green interpolation

with median filtering post-processing,” (YUVGM), starts by creating a full green

channel, using the method for interpolating the green channel in [6]. For each 2x2 cell in

the Bayer pattern, four luma (Y) samples must be generated, together with one Cb and Cr

sample (Figure 2.9). Let Y(R,G,B), Cb(R,G,B) and Cr(R,G,B) denote functions for the

equations in (2.1) for converting from RGB space to YCbCr space. Then, the output

samples are calculated by the following equations:

)3B,G,2R(Cr1

)3B,G,2R(Cb1

4/G4)G32G1G(G

)3B,G4,2R(Y4

)3B,G3,2R(Y3

)3B,2G,2R(2Y

)3B,1G,2R(1Y

avg

avg

avg

Cr

Cb

Y

Y

Y

Y

=

=

+++=

=

=

=

=

 (2.6)

 After the above equations have been evaluated for every Bayer cell, median filtering

is performed on the Cb and Cr channels to remove colour artefacts. Note that the

YUVGM method is using zero-order hold interpolation on the red and blue channels,

which produces severe false colours around edges. The median filtering post processing

is an ad-hoc and computationally expensive method of reducing false colours.

23

2.4 Previous Work on CFA Image and Video Compression

 The conventional approach used for compressing images and video generated with

single-sensor cameras is to first perform demosaicking and then compress the resulting

full-colour data with standard methods (Figure 2.10a). This approach is sub-optimal

because demosaicking expands the size of data to be compressed by a factor of three and

introduces further redundancy into the data that will be removed by the compression

stage. Instead compression can be carried out on the CFA data, with demosaicking being

performed after decompression (Figure 2.10b) [16]-[19].

Figure 2.10: Flow diagram of CFA compression schemes: (a) Traditional demosaick-first

approach. (b) Compression of CFA data prior to demosaicking.

 There have been a few papers published on lossy compression of CFA image data

prior to demosaicking. The goal of these is to provide better image quality at a given bit

rate, allowing a camera to either store higher quality images or store more images with

the same quality level.

 In [16], Lee and Ortega propose a method starting with a modified YCbCr colour

space conversion. The conversion is performed on each group of four Bayer pattern

samples, and creates two Y samples and one Cb and Cr sample (Figure 2.11). The

equations for the modified conversion are:

24

B0.0813Gl0.20935Gu0.20935R0.5Cr

B5.0Gl0.16565Gu0.16565R0.1687- Cb

B0.114Gl587.0R0.299Yl

B0.114Gu587.0R0.299Yu

⋅−⋅−⋅−⋅=

⋅+⋅−⋅−⋅=

⋅+⋅+⋅=

⋅+⋅+⋅=

 (2.7)

 When calculating each luma value with (2.7), the corresponding green sample is used

together with the red and blue samples. For calculating the chroma values, the average of

the two green samples is used along with the red and blue. After the conversion, the

chroma samples are arranged into rectangular arrays and then compressed with standard

JPEG. The Y samples, which are arranged in a quincunx lattice, are rotated 45 degrees to

form a compact rhombus shape, as shown in Figure 2.12. Then the Y samples are

compressed with a modified JPEG algorithm, where padding is done at the edges of the Y

rhombus to create square 8x8 blocks that can be compressed with the JPEG DCT method.

Figure 2.11: Modified YCbCr conversion performed on the Bayer unit cell in [17].

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y Y

Y

Y

Y Y

Y

Y

Y Y

Y

Y

YY

YY

Y

Y

YY

YY

Y

Y

Y Y

Y Y

Y Y

Y

Y

Y Y

Y Y

Y Y

Y

Figure 2.12: 45 degree rotation of luma samples used in [16].

25

 Two CFA image compression methods are proposed by Koh et. al. in [17], which are

called‘structure conversion’ and ‘structure separation’. Both methods start with the

modified YCbCr conversion proposed in [16], followed by compressing the chroma

channels with JPEG. The methods differ in how they process the luma samples. In the

structure conversion method, the two luma samples generated from every Bayer cell are

merged into a single column, as shown in Figure 2.13b. This creates a single luma array

that has half the size of the CFA data. The process of merging the two samples distorts

the image content somewhat. The structure separation method involves separating the

even column and odd column luma samples into two arrays, each having size one quarter

that of the CFA data (Figure 2.13c). In both methods, after rectangular arrays of luma

samples have been formed they are compressed with standard JPEG.

Y1

Y4

Y2

Y5

Y7

Y10

Y8

Y11

Y13

Y16

Y14

Y17

Y3

Y6

Y9

Y12

Y15

Y18

Y1

Y4

Y2

Y5

Y7

Y10

Y8

Y11

Y13

Y16

Y14

Y17

Y3

Y6

Y9

Y12

Y15

Y18

Y1 Y4Y2 Y5

Y7 Y10Y8 Y11

Y13 Y16Y14 Y17

Y3 Y6

Y9 Y12

Y15 Y18

(a) (b) (c)

Figure 2.13: Methods for forming rectangular arrays of luma data in [17]. (a) Original luma

arrangement (b) Structure conversion (c) Structure separation

 Other techniques for compressing CFA images include sub-band decomposition [20]

and vector quantization of groups of pixels [21]. However, these methods have worse

compression efficiency than the JPEG based methods in [16] and [17]. A comparative

analysis of the two workflows (compression-first vs. conventional demosaick-first) is

presented in [18].

26

 The only previously published work on lossy compression of CFA videos is presented

in [19] by Gastaldi et. al. Their method is based on the structure conversion method in

[17]. In [19], the structure conversion process is done in the RGB domain (without first

applying an YCbCr colour space conversion), as shown in Figure 2.14. The arrays of

green, red and blue are compressed with a custom MPEG-2 like coding scheme. A

custom coding scheme was developed because no major video coding standard supports

input data where one channel (green) has twice the vertical size and the same horizontal

size as the other channels (red and blue). A the motion vectors from the green channel

are used on the red and blue channels, with appropriate scaling and downsampling. An

IBBPBBPBBPBB group of pictures structure is used, with JPEG compression used to

compress the I-frames and residual for P and B frames.

G1

G8

G3

G10

G13

G20

G15

G22

G25

G32

G27

G34

G5

G12

G17

G24

G29

G36

R2

B7

R4

B9

B19

R14

R21

R16

B31

R26

B33

R28

G6

B11

B23

R18

B35

R30

G1

G8

G3

G10

G13

G20

G15

G22

G25

G32

G27

G34

G5

G12

G17

G24

G29

G36

R2B7 R4B9

B19 R14R21 R16

B31 R26B33 R28

G6B11

B23 R18

B35 R30

Figure 2.14: RGB based structure conversion method used in [21].

27

3 Demosaicking Directly to YCbCr 4:2:0

3.1 Introduction

 Single sensor cameras capture colour information using a colour filter array (CFA).

This results in a mosaic image being captured, where at each pixel location either a red,

green or blue sample is captured. The two missing colours at each location are

interpolated from the surrounding samples in a process known as demosaicking. As

discussed in our overview of demosaicking methods in Section 2.3, virtually all

demosaicking algorithms produce an RGB output image. If the image is to be

compressed afterwards, it will typically be converted to YCbCr 4:2:0 format.

 The green channel is the dominant component in determining luma, and the red and

blue samples contribute most to the Cr and Cb channels, respectively. Advanced

demosaicking methods put a lot of computational effort into reconstructing fine detail in

the red and blue colour planes. This is a difficult task because red and blue are more

sparsely sampled in the Bayer pattern. It is also somewhat unnecessary as most of the

high frequency detail in those channels is lost in the conversion from RGB to YCbCr

4:2:0 format.

 In this chapter, we present a demosaicking method that directly produces an YCbCr

4:2:0 output image. This reduces computational complexity by avoiding the need for

performing demosaicking in the RGB domain and then converting to YCbCr 4:2:0 format

afterwards.

28

 The rest of this chapter is organized as follows. Our demosaicking method is

described in Section 3.2. Simulation results comparing our proposed method against

other fast demosaicking algorithms are presented in Section 3.3. A complexity analysis

of our method is given in Section 3.4, where the complexity of our proposed method is

compared against a very fast RGB based method. Finally, conclusions are given in

Section 3.5.

3.2 Proposed Demosaicking Method

 The Bayer pattern consists of cells of size 2x2 pixels, each cell containing two green

samples, one red sample and one blue sample. To produce YCbCr 4:2:0 output, four

luma samples and one Cb and Cr samples must be generated for each cell. Figure 3.1

shows a 2x2 cell (locations 1-4) and the surrounding Bayer pattern samples that will be

used to calculate the luma and chroma samples in the cell. In the following section we

describe how our algorithm generates chroma samples at location 1 (denoted as Cb1,

Cr1), and luma samples at locations 1-4 (denoted Y1, Y2, Y3, Y4). The steps described

are repeated on every 2x2 cell to generate the entire YCbCr 4:2:0 image. The location

numbering given in Figure 3.1 will be used throughout the rest of the chapter.

29

Figure 3.1: Neighbourhood of pixels used for generating the luma and chroma samples in

the cell containing positions 1-4.

 Our demosaicking algorithm consists of four steps:

1. Generating a full green channel

2. Generating low-pass filtered, down-sampled red-green and blue-green colour

difference values (R-G, B-G)

3. Calculating low-pass filtered, down-sampled chroma channels

4. Filling the luma channel.

 Each step is discussed in turn in the following sections.

3.2.1 Generating a Full Green Channel

 Since a full luma channel is needed, and green is the dominant component in

determining luma, our method begins by filling the green channel. A complete green

channel allows us to estimate a high-quality luma channel.

30

 Many existing demosaicking methods start by generating a complete green channel.

We base our method for calculating the missing green samples on the method by

Hamilton and Adams [6], which is a popular low-complexity demosaicking algorithm.

 The idea behind the method for filling the green channel is to calculate horizontal and

vertical gradients at the current location, and interpolate along the direction that contains

the lower gradient. This results in interpolation being performed along edges rather than

across edges. If the gradients are similar in magnitude, interpolation is done using

samples in both directions. There are two cases that need to be considered when

calculating the missing green samples; generating a green at a red location (R2) or blue

location (B3).

 At red location (R2), the gradients are calculated as:

G41G1R22R22R7DV

G151GR2216R14RDH

−+⋅−+=

−+⋅−+=
 (3.1)

 The missing green sample is calculated as follows:

()

()

8

R2216R14R7RR24

4

G4G15G11G1
G2

 else

4

R22R7R22

2

G4G11
G2

DHTDVif else

4

16R14RR22

2

G15G1
G2

DVTDHif

−−−−⋅
+

+++
=

−−⋅
+

+
=

<+

−−⋅
+

+
=

<+

 (3.2)

 The second term in each sum in (3.2) is the second order gradient (Laplacian) of the

red channel. The red, green and blue channels are typically very highly correlated,

31

especially in high frequency content [10], so adding the Laplacian term improves the

bilinear interpolation [32].

 A threshold ‘T’ is used to ensure that the gradients are sufficiently different for

interpolation to happen in only one direction. If the difference between the gradients is

less then T (the last case in equation (3.2)), the interpolation uses samples in both

directions. A threshold is not used in the method by Hamilton and Adams [6]. If the

threshold is set to zero, the method for filling the green channel would be identical to

their method. Experimentally, we found a threshold of 35 to provide good results for a

wide range of images.

 At the blue location (B3), the gradients and missing green sample are calculated

analogously to the red location using the following equations:

21G1G3B2B2410BDV

G418G3B219B17BDH

−+⋅−+=

−+⋅−+=
 (3.3)

()

()

8

B2410B19B17B3B4

4

G21G18G4G1
G3

 else

4

B2410B3B2

2

G21G1
G3

DHTDVif else

4

19B17B3B2

2

G4G18
G3

DVTDHif

−−−−⋅
+

+++
=

−−⋅
+

+
=

<+

−−⋅
+

+
=

<+

 (3.4)

3.2.2 Calculating Low-pass R-G and B-G Samples

 Since the conversion from RGB to YCbCr is a linear process, we can equivalently

perform loss-pass filtering in the RGB domain rather than the YCbCr domain. We apply

32

low-pass filtering to generate R-G and B-G values located at the location of G1 in Figure

3.1. Instead of performing interpolation on the red and blue channels themselves, we

perform interpolation on the difference between green and red or blue. The R-G and B-G

images are generally much smoother than the R and B channels, so they are more suitable

for interpolation [9]. From the low-pass R-G and B-G values, we can generate low-pass

chroma samples, as will be explained in the next section.

 The following 2D filter is used on the R-G channel:























=

8/108/1

000

4/104/1

000

8/108/1

KRh (3.5)

 This filter provides low-pass filtering in both the horizontal and vertical directions,

while only using positions that have red samples available. The filter in equation (3.5) is

separable, and equivalent to using the following two filters in the horizontal and vertical

directions:

[]

[]4/102/104/1

2/102/1

=

=

vert

hor

h

h
 (3.6)

 The vertical filter in (3.6) provides stronger low-pass filtering than the horizontal

filter, as it has two zeros at π radians/sample rather than just one. However, due to the

required positioning of the output, a filter with an even number of taps is needed in the

33

horizontal direction. Using a four tap horizontal filter would require significantly more

operations to implement.

 The resulting equation for calculating the low-pass R-G value, denoted KR is:

8

22G22RG20R207G7R5G5R

4

2G2R14G14R
)(1KR

−+−+−+−
+

−+−
=∗−≡ KRlp hGR

 (3.7)

 For calculating a low-pass B-G sample at location 1, an equivalent filter to that of

equation (3.5) is used, only this time it is rotated 90 degrees due to the different

positioning of the blue samples in the Bayer pattern:

















=

8/104/108/1

00000

8/104/108/1

KBh (3.8)

 The low-pass KB sample at location 1 is calculated equivalently to the low-pass KR

sample using:

8

19G19B17G17BG12B12G8B8

4

G33B10G10B
)(1KB

−+−+−+−
+

−+−
=∗−≡ KBlp hGB

 (3.9)

3.2.3 Calculating Down-sampled Chroma Channels

 The conversion from RGB to YCbCr space is linear, so instead of performing linear

low-pass filtering on the Cb and Cr channels, the filtering can be equivalently performed

on the RGB samples:

34

hhh

hhh

lp

lp

∗⋅−∗⋅−∗⋅=

∗⋅+∗⋅−∗⋅−=

B0813.0G4187.0R5.0Cr

B5.0G3313.0R1687.0Cb
 (3.10)

where h is the low-pass filter used to limit aliasing after downsampling, Cblp and Crlp are

low-pass chroma channels, and ∗ denotes 2D convolution.

 The equations in (3.10) can easily be rewritten in terms of the colour differences R-G

and B-G using the linear property of convolution:

hh

hh

lp

lp

∗⋅−∗⋅=

∗⋅+∗⋅−=

G)-B(0813.0G)-R(5.0Cr

G)-B(5.0G)-R(1687.0Cb
 (3.11)

 By allowing different low-pass filters to be applied to the R-G and B-G signals in

(3.11), the chroma values at location 1 can be calculated using the KR and KB samples

generated with equations (3.7) and (3.9):

lplp

lplp

1KB0813.01KR5.01Cr

1KB5.01KR1687.01Cb

⋅−⋅=

⋅+⋅−=
 (3.12)

 In our method, equation (3.12) is used to calculate the final chroma samples using the

low pass filtered, down-sampled, KR and KB values.

3.2.4 Calculating the Full Luma Channel

 Once the down-sampled chroma values have been calculated, the only task left is to

generate the full luma channel. Since different samples are available at each location, we

considered the task of generating luma samples at locations 1 through 4 separately.

35

 At the location of G1, we already have G, KR and KB samples available. By

rearranging the equation for luma in (2.1) in terms of R-G and B-G, the Y1 sample can be

calculated with:

lplp 1KB114.01G1KR299.01Y ⋅++⋅= (3.13)

 Note that we are using low-pass KR and KB values, when ideally unfiltered values

should be used. However, since the green sample has not been filtered and green is the

dominant component in calculating luma, the value calculated with equation (3.13) is still

a good estimate.

 At the location of R2, we have red and green samples available. An assumption often

made in demosaicking methods is that chroma varies smoothly in natural images, so

bilinear interpolation provides a good estimate for missing chroma samples. Using this

assumption, an estimate for the blue chroma at R2 is found as:

2

15Cb1Cb
2Cb

+
= (3.14)

 The Cb2 sample in (3.14) does not need to be calculated and stored, but the equation

will be used for deriving an expression for Y2. We would like to calculate the luma

value at location 2 using R2, G2 and Cb2. This can be done by substituting the equation

for B in equation (2.2) into the Y definition in equation (2.1).

()2Cb772.12Y0.114G2587.02R0.2992Y ⋅+⋅+⋅+⋅= (3.15)

 Further substituting the estimate for Cb2 given by (3.14) and solving for Y2 yields:

36

()15Cb1Cb114.0G26625.02R3375.02Y +⋅+⋅+⋅= (3.16)

 At location 3, green and blue samples are available. Using an analogous method as

described for calculating Y2, only now with bilinear interpolation performed on Cr

samples, Y3 is calculated as:

() 3B1626.0G20.83741Cr21Cr299.03Y ⋅+⋅++⋅= (3.17)

 At location 4, only a green sample is available. So here we use bilinear interpolation

on both the Cb and Cr channels to calculate Y4. Substituting the R and B equations

from (2.2) into the definition of luma gives:

Cr4)772.1(Y40.114G587.0Cr4)402.1(Y40.299Y4 ⋅+⋅+⋅+⋅+⋅= (3.18)

 Using bilinear interpolation on the four surrounding samples to estimate Cb4 and Cr4,

and solving for Y4 yields:

() ()Cb231Cb215Cb1Cb086.0G4Cr231Cr215Cr1Cr1785.04Y +++⋅+++++⋅= (3.19)

3.2.5 Summary of Complete Algorithm

 Our complete demosaicking algorithm for producing YCbCr 4:2:0 output consists of

the following steps. Each step must be carried out on every 2x2 cell before proceeding to

the next step.

1. Fill the missing green samples with equations (3.1), (3.2) (3.3) and (3.4).

2. Using (3.7) and (3.9) find low-pass R-G and B-G values.

37

3. Using (3.12) calculate the final Cb and Cr samples.

4. Fill the luma channel with equations (3.13), (3.16), (3.17), (3.19).

3.3 Experimental Results

 The 24 RGB images from the Kodac set where used in our experiments. These

images have been extensively used in demosaicking research. Thumbnails of the images

are provided in Figure 3.2. CFA images were obtained by sampling the RGB images with

the Bayer pattern.

Figure 3.2: Test Images used in evaluating demosaicking algorithm performance.

Numbered 1-24, from top left to bottom right.

 We compared our proposed method against the YUV method in [31], and some fast

demosaicking methods that operate in RGB space. The RGB methods tested were

bilinear interpolation, and the methods in [6] and [9]. The quality of the different

methods is evaluated by comparing the demosaicked image to the original full colour

image, as illustrated in Figure 3.3.

38

Figure 3.3: Procedure used for measuring demosaicking algorithm performance.

 Here objective quality is measured in the YCbCr 4:2:0 domain using the peak signal-

to-noise ratio (PSNR). The PSNR (in dB) of a demosaicked image channel, Idem(i,j) with

8 bit precision is calculated as:

() ()() 

















−

=

∑∑
= =

M

i

N

j

refdem jiIjiI
MN

PSNR

1 1

2

2

,,
1

255
log10 (3.20)

where i denotes the row, j the column, M is the height of the channel, N is the width of

the channel, and Iref(i,j) is the reference channel against which quality is measured.

 The reference images were obtained by converting the full colour RGB images to

YCbCr space with (2.1), filtering the Cb and Cr channels with a 9-tap FIR low-pass filter

and downsampling. The 9-tap filter closely approximates an ideal low-pass filter with

39

cut-off 0.5π radians/sample, so the reference images contain very little aliasing in the

down-sampled chroma channels.

 For the demosaicking methods that operate in RGB space, the following low-

complexity filter was used for filtering the chroma channels in the downsampling

process:

[]4/12/14/1=h (3.21)

 This filter provides a good tradeoff between complexity and limiting aliasing.

 Tables 3.1, 3.2 and 3.3 show the PSNR (in dB) obtained with each demosaicking

method in the Y, Cb and Cr channels, respectively. In almost all cases, the proposed

method gives higher PSNR than the other methods. On average the proposed method

gives about 1 dB higher PSNR in each channel than the RGB based methods in [6] and

[9]. For all images, the proposed method gives far better performance (over 5 dB higher

PSNR in luma) than the only other YUV 4:2:0 based demosaicking method presented in

[31].

40

Image Bilinear
Method in

[6]

Method in

[9]

YUV

Method in

[31]

Proposed

1 29.58 35.99 35.97 30.90 37.43

2 36.31 41.68 41.28 37.04 42.21

3 37.45 43.44 43.40 38.17 44.32

4 36.82 41.71 42.33 37.65 42.52

5 29.60 37.49 37.09 30.85 38.36

6 31.04 37.47 37.38 32.53 38.87

7 36.59 43.60 42.42 36.88 43.92

8 27.08 34.76 33.11 28.55 35.85

9 35.67 42.75 41.55 36.57 43.81

10 35.57 42.63 42.36 36.78 43.58

11 32.33 38.57 38.44 33.58 39.65

12 36.82 43.32 42.47 38.12 43.93

13 26.90 32.18 33.51 28.18 33.57

14 32.23 38.50 38.16 33.07 39.09

15 35.98 40.32 41.43 36.64 41.26

16 34.62 40.94 40.42 36.04 42.24

17 35.17 41.04 41.50 36.31 42.11

18 31.06 36.51 37.48 32.15 37.71

19 31.49 39.75 37.38 32.94 40.94

20 34.78 41.23 41.02 35.83 42.40

21 31.69 37.80 38.00 32.90 39.18

22 33.67 39.24 39.33 34.88 40.35

23 38.21 44.58 43.75 38.69 44.86

24 29.90 35.03 36.36 31.06 35.88

Average 33.36 39.60 39.42 34.43 40.58

Table 3.1: Y-PSNR comparison of different demosaicking methods (dB)

41

Image Bilinear
Method in

[6]

Method in

[9]

YUV

Method in

[31]

Proposed

1 35.03 40.03 39.37 37.85 42.68

2 41.73 45.01 44.25 42.46 45.48

3 42.76 45.46 45.36 41.85 45.94

4 43.45 45.69 46.07 43.31 47.56

5 37.22 40.87 40.73 36.61 41.59

6 36.17 41.30 40.63 38.29 43.35

7 42.88 45.60 44.67 39.87 45.40

8 32.05 38.44 35.73 33.49 40.35

9 41.19 45.22 44.06 40.84 45.38

10 41.53 45.61 45.21 41.64 46.17

11 37.86 42.53 41.84 40.11 44.36

12 41.97 46.35 45.15 43.01 46.60

13 32.78 36.18 37.08 35.50 38.90

14 37.75 40.60 40.03 36.09 40.35

15 42.01 43.61 44.93 41.58 45.81

16 39.10 44.32 43.15 41.03 45.68

17 41.78 44.44 44.68 41.40 45.27

18 37.09 40.29 40.76 37.83 41.75

19 36.78 43.00 40.37 37.16 43.85

20 40.64 43.91 43.45 40.73 44.38

21 37.12 41.34 41.12 38.69 43.26

22 39.12 42.17 41.80 39.15 42.57

23 44.66 46.79 45.87 41.62 45.46

24 35.23 38.04 38.95 36.15 39.53

Average 39.08 42.78 42.30 39.43 43.82

Table 3.2: Cb-PSNR comparison of different demosaicking methods (dB)

42

Image Bilinear
Method in

[6]

Method in

[9]

YUV

Method in

[31]

Proposed

1 35.97 41.36 39.33 37.83 42.36

2 39.88 42.04 40.62 38.55 41.53

3 44.34 46.36 44.24 42.16 46.01

4 41.18 42.36 41.40 39.13 41.90

5 36.74 42.02 39.06 37.24 42.18

6 38.93 42.77 40.77 39.24 43.76

7 42.51 46.23 43.65 40.51 45.89

8 30.25 39.29 35.19 34.03 40.03

9 40.88 46.34 43.66 42.05 46.65

10 42.03 46.30 44.23 42.24 46.45

11 38.02 42.62 40.58 39.29 42.82

12 42.70 46.10 44.27 42.51 46.03

13 34.78 38.57 38.19 37.01 40.28

14 37.92 40.29 38.41 36.37 39.57

15 39.77 41.03 40.69 38.46 41.05

16 43.35 45.92 43.92 42.13 46.68

17 41.48 46.09 44.55 43.10 46.87

18 37.58 41.40 40.24 38.57 42.05

19 36.36 44.24 39.80 38.05 44.48

20 40.53 45.86 43.03 42.60 46.41

21 38.86 43.15 41.22 39.92 44.19

22 38.27 42.23 41.00 39.01 42.36

23 43.91 45.97 43.56 40.98 45.28

24 37.12 40.32 39.72 37.58 40.71

Average 39.31 43.29 41.31 39.52 43.56

Table 3.3: Cr-PSNR comparison of different demosaicking methods (dB)

 Since PSNR is not always an accurate measure of perceived image quality we also

provide images for subjective quality comparisons. Figure 3.4 and Figure 3.5 show

cropped portions of images 6 and 8, respectively, and the result of applying each

demosaicking method to the image. For the RGB based demosaicking methods, the

images have been converted to YCbCr 4:2:0 format using the filter in (3.21) for the

chroma downsampling process. Close visual inspection of the images show that the

43

proposed method produces fewer color artifacts and results in less blurring of edges than

the other methods. Also note how that despite providing competitive PSNR, the method

in [9] produces unpleasing zipper artefacts along some edges (Figure 3.4d, Figure 3.5d).

44

Figure 3.4: Comparison of demosaicking methods on a cropped portion of image 6.

(a) original image (b) bilinear (c) method in [6] (d) method in [9] (e) YUV method in [31]

(f) proposed method

45

Figure 3.5: Comparison of demosaicking methods on a cropped portion of image 8.

(a) original image (b) bilinear (c) method in [6] (d) method in [9] (e) YUV method in [31]

(f) proposed method

46

3.4 Complexity Analysis

 A key advantage of the proposed method is the computational complexity saved by

directly producing YCbCr 4:2:0 output rather than performing demosaicking in RGB

space and then converting to YCbCr 4:2:0. Table 3.4 shows a summary of the number of

operations per pixel in the CFA image needed for the proposed demosaicking method.

Note there are some fractional values in Table 3.4 because many equations are not

evaluated out at every pixel location. The number of operations performed when

evaluating equations (3.2) and (3.4) is variable depending on the result of the

comparisons; only the worst case complexity is shown in Table 3.4.

 For comparison, Table 3.5 presents a complexity analysis of the method in [9], which

is one of the lowest complexity RGB based demosaicking algorithms reported in the

literature. This table shows the number of operations required for demosaicking with the

method in [9] and then converting to YCbCr 4:2:0 format. In this analysis, the simple

filter in equation (3.21) is used for limiting aliasing in the Cb and Cr channels and an

efficient downsampling scheme is used (where the filtering operations are performed at

the lower sampling rate).

47

Step Addition Shift Multiplication

Absolute

Value Comparison

Green interpolation

(worst case) 9 2.5 0 2 1

Low-pass KR, KB 5.5 1 0 0 0

Generating chroma 0.5 0 1 0 0

Calculating Luma 4 0 2.75 0 0

Total (worst case) 19 3.5 3.5 2 1

Table 3.4: Number of operations per pixel required for the proposed method.

Step Addition Shift Multiplication

Absolute

Value Comparison

Green Interpolation 4 1.5 0 0 0

Red Interpolation 4 0.75 0 0 0

Blue Interpolation 4 0.75 0 0 0

RGB to YCbCr Conversion 6 0 9 0 0

Filtering and downsampling

rows, Cr 1 1 0 0 0

Filtering and downsampling

columns, Cr 1 1 0 0 0

Filtering and downsampling

rows, Cb 0.5 0.5 0 0 0

Filtering and downsampling

columns , Cb 0.5 0.5 0 0 0

Total 21 6 9 0 0

Table 3.5: Number of operations per pixel required for the demosaicking method in [9] plus

conversion to YCbCr 4:2:0 format.

 Comparison of Tables 3.4 and 3.5 shows that the proposed demosaicking method has

lower complexity than the method in [9]. In the worst case, our method requires slightly

fewer additions and shift operations. More importantly, the proposed method uses far

fewer multiplication operations, which are expensive to implement in the low cost DSP

(digital single processor) chips typically used in digital cameras. The multiplications are

required for the RGB to YCbCr conversion, so our proposed method uses fewer

48

multiplications than performing any RGB based demosaicking method and subsequently

converting to YCbCr space.

 The demosaicking method in [6] has considerably higher complexity than the method

in [9], so our method has much lower complexity than that of [6]. We are not aware of

any demosaicking methods with complexity lower or equal to [9] that provide

comparable image quality.

3.5 Conclusions

 In this chapter, we have presented a fast demosaicking algorithm that directly

produces YCbCr 4:2:0 output. Our method saves considerable computational complexity

by avoiding the need for performing demosaicking in the RGB colour space and then

converting from RGB to YCbCr 4:2:0 format.

 The proposed method generates a full green channel, and low-pass filtered, down-

sampled red and blue samples. The green channel contains the fine detail needed to

generate a high quality luma channel, while the low-pass R-G and B-G values allow us to

directly compute low-pass, down-sampled chroma channels.

 The proposed method achieves much higher PSNR than the only other demosaicking

method that produces luma and chroma output. It also achieves better quality than fast

RGB based demosaicking methods, with lower complexity than performing

demosaicking in RGB space and then converting to YCbCr 4:2:0 format.

 Our demosaicking method prepares the image (or video) for compression. Thus, it

would be used in the conventional camera workflow of first performing demosaicking

49

and then compressing the image/video with standard methods. In performing

demosaicking to YCbCr 4:2:0 format, the number of samples is increased by a factor of

1.5, which is somewhat undesirable. To avoid this, in the next chapter we present

methods for compressing a CFA video prior to demosaicking, taking advantage of the

smaller data size.

50

4 H.264 Based Compression of Bayer Pattern Video

4.1 Introduction

 The conventional approach to compressing CFA data (still image or video) is to first

perform demosaicking and then compress the resulting full colour data. This approach is

sub-optimal because the amount of data is expanded by a factor of three in the

demosaicking stage, which increases the compression processing time and introduces

redundancy that the compression stage must remove. To avoid these problems,

compression can be carried out on the CFA data prior to demosaicking.

 In this chapter two new methods are proposed for compressing CFA video data. One

uses the H.264 video coding standard and one uses a modified version of the H.264.

H.264 is the latest major video coding standard and it provides significant improvements

in coding efficiency over previous standards such as MPEG-2. Basing our methods on

H.264 allows us to exploit the latest powerful video coding tools. Our first proposed

method compresses the CFA video with standard H.264 and achieves better quality

(measured with mean-square error) than the demosaick-first approach at high bit-rates.

Our second method further increases compression efficiency by introducing a modified

motion compensation scheme into H.264, alleviating problems that arise due to aliasing

in the CFA data. Both methods are suitable for devices such as digital camcorders where

video is encoded with high quality.

 The rest of the chapter is organized as follows. In Section 4.2, aliasing in CFA data

and its negative effect on video coding are discussed, providing the motivation for our

51

modified motion compensation scheme. The proposed methods for compressing CFA

video data are described in Section 4.3. Simulation results showing the performance our

methods relative to the conventional demosaick-first approach are presented in Section

4.4, along with a comparison of the complexity the different approaches. Conclusions are

presented in Section 4.5.

4.2 Impact of Aliasing on CFA Video Coding

 Aliasing in video has been shown to negatively impact the coding of P frames [33]. If

there is movement between frames the effect of aliasing will be different in each frame.

This results in low correlation between frames, and hence large P-frame size. The

negative effect of aliasing can be reduced by using sub-pixel accurate motion vectors

together with adaptive interpolation filters [34].

 CFA data can contain severe aliasing [35]. Single sensor cameras usually use an

optical filter to limit aliasing [5]. When selecting how much filtering to use, there is a

trade-off between limiting aliasing and capturing fine image detail. Furthermore, since

the Bayer pattern contains more green samples than red or blue, different amounts of

filtering are needed to limit aliasing in the different colours. If enough filtering were used

so that there was little aliasing in the red and blue channels, then significant detail would

be lost from the green channel which is undesirable, and defeats the purpose of sampling

green at a higher rate than red or blue.

 An assumption sometimes made in demosaicking research is that enough optical

filtering is done so that if a full colour image were captured, it would contain negligible

aliasing; however sampling with the Bayer CFA introduces aliasing [36]. Other work

52

makes the assumption that significant aliasing occurs in the red and blue channels, but

not in the green [10],[37].

 The effect of aliasing in CFA video is illustrated in Figure 4.1, which shows a frame

of red data from the “Mobile and Calender” video, and a blowup of the highlighted

region over four successive frames. Over these frames, the calendar is moving vertically.

Notice how the moving portion, especially the number ‘3’, looks considerably different in

each frame due to aliasing.

Figure 4.1: A frame of the red channel from the “Mobile and Calender” video (top), and a

blowup of the highlighted region over four successive frames (bottom), illustrating the affect

of aliasing and the low correlation between frames.

 Advanced demosaicking algorithms attempt to reduce the effects of aliasing in each

colour channel by using information from the other colour channels [9],[10],[37],[38].

53

An example of this is shown in Figure 4.2, which presents the four frames of red data in

Figure 4.1 after demosaicking has been performed with the method presented in [38].

Figure 4.2: The four frames of red data in Figure 4.1 after demosaicking has been

performed.

 Demosaicking increases the amount of red data by a factor of four, so the frames in

Figure 4.2 are bigger than in Figure 4.1. We observe that there is considerably more

temporal correlation in the frames after demosaicking than there is in the original CFA

data. Since each CFA frame is a subset of the corresponding demosaicked frame, the

CFA frames can be effectively predicted from the demosaicked versions of the other

frames.

54

4.3 Proposed Methods for CFA Video Compression

 Both of our proposed methods involve dividing the CFA data into separate arrays of

green, blue and red data, which are compressed in 4:2:2 sampling mode. In our first

method, standard H.264 is used for compressing the arrays of red, green and blue. In our

second method, a modified motion compensation (MC) scheme is also applied, where

demosaicking is performed on the reference frames within the encoder and decoder to

reduce the negative effects of aliasing on P-frames. The method of creating rectangular

arrays of each colour and arranging the data for compression with H.264 is described in

Section 4.3.1. The modified MC scheme used in our second method is described in

Section 4.3.2.

4.3.1 Pixel Rearranging

 Most video compression standards, including H.264, can only compress video of

rectangular shape. So in order to compress the CFA data using H.264, the pixels must be

rearranged into rectangular arrays. The red and blue data are sampled in a rectangular

manner, so they can easily be separated into arrays one quarter the size of the Bayer data.

 In [17] two options for creating rectangular arrays of quincunx sampled data are

proposed (Figure 4.3). These methods are applied to luma samples after a color space

conversion in [17], but they can also be applied to the green samples directly. If a frame

of Bayer pattern data has dimensions MxN (height, width), the structure separation

method involves separating the green data into two arrays of size (M/2)x(N/2), one

containing the even column samples and the other containing the odd column samples

(Figure 4.3c). Implementing this method in a video codec would require extensive

55

modifications to allow four channels to be compressed together rather than the usual

three. Also, downsampling the green data into two separate channels introduces further

aliasing in each channel (in addition to the aliasing introduced due to Bayer sampling the

green channel). In [17] a filter is applied to the green data before downsampling to limit

the aliasing. However, applying filtering is undesirable since it removes high-frequency

detail which cannot be recovered later.

Y1

Y4

Y2

Y5

Y7

Y10

Y8

Y11

Y13

Y16

Y14

Y17

Y3

Y6

Y9

Y12

Y15

Y18

Y1

Y4

Y2

Y5

Y7

Y10

Y8

Y11

Y13

Y16

Y14

Y17

Y3

Y6

Y9

Y12

Y15

Y18

Y1 Y4Y2 Y5

Y7 Y10Y8 Y11

Y13 Y16Y14 Y17

Y3 Y6

Y9 Y12

Y15 Y18

(a) (b) (c)

Figure 4.3: Methods for forming rectangular arrays of luma data in [17]. (a) Original luma

arrangement (b) Structure conversion (c) Structure separation

 The structure conversion method in [17] involves merging the two green samples

from every group of four Bayer pattern samples into a single column, resulting in a green

channel of size Mx(N/2). This method does not suffer from the aliasing problems of the

structure separation method, however the merging process does distort the data

somewhat. In [19] the structure conversion method is used for compressing video, where

they compress a green channel of size Mx(N/2) together with red and blue channels of

size (M/2)x(N/2). Since the relative dimensions of the three colour channels do not

correspond to any sampling scheme supported in major video coding standards, a custom

codec was used, where the motion vectors from the green channel are reused on the red

and blue channels, with appropriate downsampling and scaling on the motion vectors.

56

 We proposed a different structure conversion method, where the samples are merged

into rows. Let f(i,j) be the value of the CFA data at spatial location (i,j) within the image,

where i donotes the row and j the column. Let R(i,j), G(i,j) and B(i,j) denote the arrays of

red, green and blue data after conversion to separate arrays. The color arrays can be

expressed in terms of the CFA data by the following equations:

()
()

()

() ()

() ()12,2,

2,12,

 odd ,12

even ,2
,

+=

+=





+
=

jifjiR

jifjiB

jjif

jjif
jiG

 (4.1)

 The array G(i,j) has dimensions (M/2)xN, B(i,j) and R(i,j) have dimensions

(M/2)x(N/2), as illustrated in Figure 4.4. This approach allows the data to be compressed

in 4:2:2 sampling mode, with green data in the luma channel and red and blue data in the

chroma channels. Since 4:2:2 sampling support was added to H.264 with the Fidelity

Range Extensions (FRExt) [39], the CFA data can be compressed with H.264 achieving

the same effect as in [19] (reusing motion vectors from the green channel on the red and

blue data) without the need for a custom codec. Our first proposed method simply

consists of compressing the green, blue and red arrays given by (4.1) with standard H.264

using 4:2:2 sampling.

57

Figure 4.4: Conversion from mosaic data into separate R, G and B arrays used in our CFA

video compression methods.

 Our first proposed method has the advantage of using standard H.264. In the

following section we describe a second proposed method which increases coding

efficiency by using a modified motion compensation scheme, at the expense of increased

complexity.

4.3.2 Modified Motion Compensation

 As discussed in Section 4.2, aliasing in CFA data negatively effects P-frame coding.

In our second proposed method we minimize this problem by performing demosaicking

on the reference frames in the encoder and decoder for the purposes of motion

compensation. Each P-frame of CFA data is predicted from the demosaicked reference

frames, providing a better prediction for the frame being coded and hence lowering the

bit-rate.

 In H.264, I and P frames are used for predicting other frames of the video. After a

frame has been encoded, it is decoded within the encoder, and the decoded version of the

frame is used for prediction. In our method rather than directly using the decoded frame

58

for prediction, demosaicking is first performed on the decoded frame, and the

demosaicked frame is used for prediction. This increases the size of the green data by a

factor of two and the red and blue data by a factor of four. This is illustrated in Figure

4.5a, which shows a block of pixels from a decoded frame, and the block after

demosaicking. The numbers in Figure 4.5a indicate the location of each of the original

pixels in the demosaicked frame and the unlabeled pixels are generated in the

demosaicking process. Any demosaicking method could be used on the reference frames.

The choice of a particular method would depend on the application and the amount of

complexity that can be tolerated. Different demosaicking methods are evaluated for this

purpose in Section 4.4.2.

Figure 4.5: (a) Performing demosaicking on a block of pixels from a reference frame

(b) Sampling the demosaicked reference frame to obtain a prediction for the block when the

motion vector is (1,0) in full pel units

 After demosaicking, all three colour channels are up-sampled by a factor of four in

the horizontal and vertical directions to support quarter pel accurate motion vectors. This

59

is done using the method defined in the H.264 standard for upsampling the luma channel

(where a 6-tap FIR filter generates the half-pel samples, and bilinear interpolation is used

to generate quarter-pel samples). RGB data has properties more similar to luma than

chroma, so the luma upsampling method is used to give better performance.

 In the H.264 reference encoder, motion estimation (ME) is done on the luma channel.

When ME is performed on RGB data, the green channel is usually used for ME [14][15],

since the green data is more high correlated with luma than red or blue. So in our second

proposed method, ME is done on the green channel. Consider a green pixel at location

(iG, jG) in a CFA frame. After demosaicking, this pixel will be located at position (2iG,jG)

in the demosaicked frame if jG is even and position (2iG+1,jG) if jG is odd (Figure 4.5a).

Let Ω denote the set of coordinates of the green pixels within a block in the CFA data. A

motion vector (mi, mj) is calculated for the block by minimizing the sum of absolute

differences (SAD) given by:

()
()∑

Ω∈ 



+++−

++−
=

),(odd ,12),(

even ,2),(

ji jidem

jidem

jmjmiGjiG

jmjmiGjiG
SAD (4.2)

where Gdem(i,j) is the demosaicked reference frame being used for prediction. In equation

(4.2), the demosaicked reference frame is being sampled with shape of the green data in

the Bayer pattern, with the motion vector controlling the relative position of the

sampling. After a full pel motion vector has been found with (4.2), the motion vector is

refined to quarter pel accuracy, as is done in the H.264 reference encoder [4] (this

basically involves minimizing the SAD given by (4.2), only now letting mi and mj take on

values in increments of 0.25 pixels).

60

 In our method, the motion vectors calculated from the green channel are also used on

the red and blue channels. A red pixel at location (iR,jR) will be moved to (2iR, 2jR+1)

after demosaicking, and a blue pixel at (iB,jB) will be moved to (2iB+1, 2jB). In order to

obtain a prediction for a pixel in a CFA frame using motion compensation, the motion

vector calculated is added to the corresponding position of the pixel in the demosaicked

frame, and the demosaicked frame is sampled at that position. Let Bdem(i,j), and Rdem(i,j)

be the values of the demosaicked frame being used for prediction, and the motion vector

for a block of CFA data be (mi, mj). Then the predictions for the CFA pixels in the block

will be:

()
()
()

() ()
() ()

jRiRdemRRpred

jBiBdemBBpred

GjGiGdem

GjGiGdem

GGpred

mjmiRjiR

mjmiBjiB

jmjmiG

jmjmiG
jiG

+++=

+++=





+++

++
=

12,2,

2,12,

 odd ,12

even ,2
,

 (4.3)

 As an example, consider the task of predicting the 8x4 block of CFA pixels in Figure

4.5a in a future frame when the motion vector is (1,0) in full pel units. Figure 4.5b shows

how the demosaicked frame is sampled to obtain a prediction for the block. The white

squares represent pixels that are obtained by edge replication.

 In summary, our MC scheme uses demosaicked versions of reference frames to

predict the CFA frame being coded. This takes advantage of the increased temporal

correlation of frames after demosaicking has been performed, without the need for

compressing the larger demosaicked frames themselves.

61

4.4 Results

4.4.1 Testing Methodology

 To evaluate the performance of our compression schemes two videos from the SVT

High Definition Test Set [40], CrowdRun and OldTownCross, were used in our

simulations. The CrowdRun sequence is a shot of hundreds of marathoners running

through a park. It contains a high amount of motion due to the runners and also slight

camera motion. The OldTownCross sequence is an aerial shot of a European city

containing camera motion. Both videos contain large amounts of fine detail (high

frequency image content). Screenshots of the test videos are shown in Figure 4.6.

62

Figure 4.6: Screenshots of the test videos, CrowdRun (top) and OldTownCross (bottom).

63

 These videos were digitized at a resolution of 3840x2160, 16 bits per (RGB) colour

plane, 50 frames/sec. We down-sampled and cropped the videos to give 720x480, 8 bit

RGB data at 25 frames/sec. This is the quality of video typically captured by consumer

digital camcorders, our target application. CFA videos were obtained by sampling the

RGB videos with the Bayer pattern.

 In all tests, 60 frames of each video were compressed, with I-frames inserted every 15

frames. CABAC and B-frames were disabled to lower the encoding complexity (these

features are not likely to be used in digital camcorders). In the ME process, two

reference frames were used and the search range was ±16 integer pixels.

4.4.2 Demosaicking Algorithm Choice

 Here we evaluate the effectiveness of different demosaicking algorithms for use in

our modified motion compensation scheme.

 Three different demosaicking algorithms were tested; bilinear interpolation, an edge-

sensing method by Hamilton and Adams using Laplacian second order correction terms

[6] (referred to as Laplacian), and a state-of-the-art method based on estimating luma

from the CFA data [38]. These algorithms vary in complexity and the quality of image

they produce; bilinear interpolation has very low complexity but gives the poorest image

quality. The luma-based method gives much better image quality (in terms of mean-

square error) but has significantly greater computational cost. Laplacian demosaicking is

intermediate in both image quality and complexity.

64

 Rate-distortion curves obtained using different demosaicking algorithms for MC are

shown in Figure 4.7. Here, the PSNR of the CFA data itself is measured (as opposed to

measuring quality after demosaicking has been performed). Results are shown for our

proposed MC scheme with each demosaicking algorithm, as well as compressing the

CFA video with a standard H.264 encoder in 4:2:2 sampling mode (without our proposed

MC scheme).

65

Old Town Cross - CFA Video Quality

26

28

30

32

34

36

38

40

42

44

46

0 5 10 15 20 25

Bit rate (Mbps)

P
S

N
R

 (
d

B
)

Standard encoder

Bilinear demosaicking

Laplacian demosaicking

Luminance demosaicking

Crowd Run - CFA Video Quality

23

25

27

29

31

33

35

37

39

41

0 5 10 15 20 25 30

Bit rate (Mbps)

P
S

N
R

 (
d
B

)

Standard encoder

Bilinear demosaicking

Laplacian demosaicking

Luminance demosaicking

Figure 4.7: Plots of PSNR (of the CFA data) vs. bit rate for the two test videos obtained

when different demosaicking algorithms are used for motion compensation.

66

 The results for both videos show there is substantial benefit in using our MC scheme.

The bit-rate reductions for the CrowdRun sequence are about 4%, 10%, and 12% using

bilinear, Laplacian and luma-based demosaicking, respectively. Greater bit rate

reduction is obtained on the OldTownCross sequence, up to 15% using bilinear, 43%

using Laplacian and 48% using luma-based demosaicking. The OldTownCross sequence

experiences greater bit-rate reduction when our MC scheme is used because that video

contains camera motion. In general MC is very effective on videos with camera motion,

because the picture experiences simple translational motion. When the motion is more

complicated, such as the motion the marathoners in the CrowdRun sequence, MC is less

effective, and thus enhancing MC provides less benefit.

 These results show that the more advanced demosaicking schemes provide significant

bit-rate reductions over simple demosaicking such as bilinear. Using Laplacian

demosaicking for MC provides bit rates almost as low as the luma-based demosaicking

method with considerably lower complexity, so Laplacian demosaicking is used in the

rest of our tests.

4.4.3 Quality Comparison Against Demosaick-First Approach

 In this section we compare our two methods against the conventional demosaick-first

approach. When comparing to the demosaick-first approach, the quality of the final RGB

video, after both compression and demosaicking have been performed, needs to be

measured. The quality measure used here is the Composite Peak Signal to Noise Ratio

(CPSNR), which has been used in previous work on compressing CFA data [17],[19].

The CPSNR is calculated as the standard PSNR, but with the mean-square error

67

evaluated across the red, green and blue colour channels. The CPSNR for one frame of

video with 8 bit data is given by:

() ()() 

















−

=

∑∑∑
−

=

−

= =

1

0

1

0

3

1

2

2

,,,,
3

1

255
log10

M

i

N

j k

refcomp kjikji II
MN

CPSNR (4.4)

where k denotes the colour component (R, G, or B), Icomp(i,j,k) is the compressed video

after demosaicking, and Iref(i,j,k) is the reference video against which quality is measured.

The reference is taken as the video obtained by demosaicking the CFA data without any

compression. Thus, the reference video represents the best quality that can be obtained

from the CFA data with a given demosaicking algorithm. The CPSNR for a video is

taken to be the average CPSNR of the frames in the video.

 The proposed methods were compared against the conventional demosaick-first

approach. The demosaick-first results were obtained by demosaicking the CFA data

(with the Laplacian method), converting from RGB to YUV and compressing with

standard H.264. Results are presented for the demosaick-first approach using both YUV

4:2:0 and YUV 4:2:2 format during compression. Plots of CPSNR vs. bit-rate for the two

test videos are shown in Figure 4.8.

68

Crowd Run

22

24

26

28

30

32

34

36

38

40

42

0 5 10 15 20 25 30

Bit rate (Mbps)

C
P

S
N

R
 (
d

B
)

Demosaick first: YUV 4:2:0

Demosaick first: YUV 4:2:2

Proposed Method 1: Standard H.264

Proposed Method 2: Modified MC

Old Town Cross

26

28

30

32

34

36

38

40

42

44

46

0 2 4 6 8 10 12 14 16

Bit rate (Mbps)

C
P

S
N

R
 (

d
B

)

Demosaick first, YUV 4:2:0

Demosaick first, YUV 4:2:2

Proposed Method 1: Standard H.264

Proposed Method 2: Modified MC

Figure 4.8: Plots of CPSNR (measured after compression and demosaicking) vs. bit rate.

69

 Both proposed methods outperform the conventional demosaick-first approach at

high bit-rates. This is primarily because the proposed methods compress data one third

the raw size of the demosaick first approach. The proposed methods do not perform well

at low quality levels. Highly compressing the CFA data removes detail necessary for

demosaicking, and may introduce blocking artefacts which are interpreted as edges in the

demosaicking process. Consequently demosaicking does not work well on highly

compressed data. This problem obviously does not arise when demosaicking is performed

prior to compression.

4.4.4 Complexity Comparison

 In the conventional demosaick-first approach, a video of size MxN is compressed,

usually in YUV 4:2:0 format, resulting in 1.5MN total samples. In either of our proposed

methods, a video of size (M/2)xN is compressed in 4:2:2 format, which requires MN

samples. Hence our proposed methods require two-thirds the number of samples to be

compressed as the demosaick-first approach. Although the input video size is smaller in

our proposed methods, the video will have more detail (high-frequency image content) as

each frame has effectively been downsampled by a factor of two in the vertical direction.

 The most computationally expensive operation of an H.264 video encoder is motion

estimation (ME), which typically accounts for about 65% of the encoding time [41]. The

complexity of ME varies greatly based on the algorithm used. If a full-search is used, the

complexity of ME in either of our proposed methods will be about half that of the

demosaick-first approach, since the luma channel has half the size. If a fast, content

adaptive ME method is used, the ME complexity reduction obtained by using our

70

methods will be variable. Other significant functions that contribute to H.264 encoder

complexity are intra prediction, interpolation, transform and quantization, loop filtering

and entropy encoding [41]. With the exception of interpolation, the computational

complexity of these functions varies depending on the video content. Generally video

with more detail requires more computations. For these functions, our proposed methods

will require fewer computations than the demosaick-first approach, but not by a factor of

two-thirds since the smaller video will contain more detail.

 The number of calculations for interpolation varies in our two methods. In Method 1

(standard H.264), luma interpolation requires half the number of computations of the

demosaick-first approach, and chroma interpolation requires the same number of

operations, due to the relative channel sizes. In Method 2 (Modified MC), the luma

interpolation filter is applied to all of the red, green and blue channels. Therefore the

same number of luma interpolation calculations are required as in the demosaick-first

approach, because the combined size of the R, G, and B channels is the same as the size

of the luma channel in the demosaick-first approach. However, no chroma interpolation

calculations are required in Method 2. Therefore fewer interpolations operations are

required in both proposed methods than in the demosaick-first approach.

 In Method 1 (using standard H.264), demosaicking does not have to be performed at

the encoder, which saves some computations relative to the demosaick-first approach. In

Method 2, demosaicking is performed at the encoder, so the same number of

demosaicking calculations are required as in the demosaick-first approach.

71

 The most time consuming operations in H.264 video decoding are loop filtering,

interpolation, inverse transform and quantization, and entropy decoding [42]. With the

exception of interpolation, the amount of computations required for these operations is

highly content and bit rate dependent. In general, videos with more detail require more

computations. Hence the amount of computations required for the loop filter, inverse

quantization and entropy decoding will be lower in the proposed method due to the

smaller frame size, but not by a factor of two-thirds because the video will have more

detail. Our proposed methods will require two-thirds the number of inverse transform

calculations, because the amount of calculations required to perform the inverse

transform is not content dependent. The relative number of interpolation calculations is

the same at the encoder and decoder; so our proposed methods require fewer

interpolation calculations than the demosaick-first approach at the decoder as well. In

either of our proposed methods, the decoder will have to perform demosaicking, which it

would not in the demosaick-first approach. The decoder complexity of our proposed

methods relative to the demosaick-first approach will depend on the video coding options

used and the demosaicking algorithm.

 On average, H.264 decoding of a QCIF sized frame (176x144) requires 30-40 million

RISC operations [43], which corresponds to about 1200-1600 operations per pixel. By

comparison, the Laplacian demosaicking method in [6] requires about 60 operations per

pixel (the exact number will be dependent on the hardware and software implementation

details). Hence, if a computationally efficient demosaicking method is used,

demosaicking will only take a small fraction, around 4-5%, of the decoding

computations. This means that both proposed methods will have lower decoder

72

complexity than the demosaick-first approach, due to the smaller frame size of the

encoded video.

4.4.5 Comparison Against Method in [19]

 In order to compare our proposed methods against the method in [19], we use two

standard test videos, foreman and carphone, for which results are presented in [19].

These videos are of QCIF resolution (176x144) and sampled at 30 frames/sec. Both

videos were compressed at three quality levels and the resulting bit-rates are summarized

in Table 4.1. The results for the method in [19] are taken directly from that paper. Both

of our methods give far lower bit rates than the method in [19]. The bit rate reductions

achieved range from 68% to 83% for our first method using standard H.264, and 76% to

90% for our second method using modified MC. Because are methods are based on

H.264, which is a highly optimized, efficient video coding standard, they achieve much

better compression than the custom built method in [19].

Bit-rate (Kbps)

Video
CPSNR

(dB) Method

in [19]

Proposed Method 1:

Standard Encoder

Proposed Method

2: Modified MC

29.4 1360 246 182

32.5 2080 478 350 Foreman

36.0 2780 882 664

27.2 812 100 90

30.0 1154 194 166 Carphone

34.5 1850 458 370

Table 4.1: Bit Rate Comparison of our proposed methods with the method in [19].

73

4.5 Conclusions

 In this chapter, we have proposed two methods for compressing Bayer pattern CFA

video prior to demosaicking. Our first method involves separating the CFA data into

arrays of green, blue and red samples and compressing in 4:2:2 sampling with standard

H.264. In our second method, a modified motion compensation scheme is also used,

where demosaicking is performed on the references frames in the encoder and decoder in

order to alleviate problems due to aliasing in the CFA data. Both proposed methods give

better compression efficiency than the conventional demosaick-first approach at high bit-

rates, and much better performance than the only previously proposed method for

compressing CFA video prior to demosaicking.

74

5 Conclusions and Future Work

5.1 Conclusions

 In this thesis, two means of jointly optimizing demosaicking and compression in

single sensor cameras are investigated: 1) Creating a demosaicking algorithm that

directly produces an image in the format used for compression (YCbCr 4:2:0), and 2)

Compressing CFA video data prior to demosaicking, taking advantage of the smaller raw

data size before demosaicking has been performed.

 In Chapter 3, a new demosaicking method is proposed which directly generates an

YCbCr 4:2:0 output image. This allows the image to be directly compressed after

demosaicking, avoiding the need for a separate stage where the image is converted from

RGB to YCbCr space. The proposed method provides better image quality than fast

RGB based demosaicking methods and has lower computational complexity.

 In Chapter 4, two methods for compressing colour filter array videos prior to

demosaicking are proposed. Our first method uses standard H.264, and involves

separating the CFA data into arrays of green, blue and red which are compressed in 4:2:2

sampling mode. Our second method also uses GBR 4:2:2 sampling, but with a modified

motion compensation scheme where demosaicking is performed on reference frames.

This alleviates problems due to aliasing in the CFA data. Both proposed methods given

better compression efficiency than the standard demosaick-first approach at high bit-

rates, and give far better performance than the only other method for directly

compressing CFA video.

75

5.2 Future Work

 Our demosaicking method that produces YCbCr 4:2:0 output works strictly on still

images. If it were applied to a video sequence, the demosaicking would be done on each

frame independently, only using information from the current frame. When performing

demosaicking on a video, additional information is available from other frames. The

demosaicking method could be altered to take into account temporal correlation within a

sequence, which may improve performance.

 In our work on compressing CFA video prior to demosaicking, we have relied on

existing demosaicking methods for producing the final RGB video after demosaicking

and compression. Instead, the demosaicking could use knowledge of how the data was

compressed. Given knowledge of how a video has been degraded in the compression

process, a demosaicking method could be designed to produce the highest quality image

possible given the amount of compression that has been applied.

76

Bibliography

[1] ITU-T and ISO/IEC JTC1, “Digital Compression and Coding of Continuous-Tone

Still Images,” ISO/IEC 10918-1 – ITU Recommendation T.81 (JPEG), September

1992.

[2] ITU-T, “Video coding for low bitrate communication,” ITU-T Recommendation

H.263; version 1, November 1995; version 2, January 1998.

[3] MPEG-2: ISO/IEC JTC1/SC29/WG11 and ITU-T, “Revised text for ITU-T

recommendation H.262—ISO/IEC 13 818-2: Information technology-generic

coding of moving pictures and associated audio information: Video,” ISO/IEC

and ITU-T, Genf, Switzerland, 1995.

[4] ITU-T, “Draft ITU-T Recommendation and Final Draft International Standard of

Joint Video Specification,” ITU-T Rec. H.264/ISO/IEC 14496-10 AVC, Mar.

2003.

[5] B.K. Gunturk, J. Glotzbach, Y. Altunbasak, R.M. Mersereau, and R.W. Schafer,

“Demosaicking: Color filter array interpolation,” IEEE Signal Processing Mag.,

vol. 22, no. 1, pp. 44–54, 2005.

[6] Hamilton, J. F. and Adams, J. E., “Adaptive color plane interpolation in single

sensor color electronic camera,” U.S. Patent 5,629,734, May 1997.

[7] Laroche, C. A. and Prescott, M. A., “Apparatus and method for adaptively

interpolating a full color image utilizing chrominance gradients,” U.S. Patent

5,373,322, December 1994.

[8] R.H. Hibbard, “Apparatus and method for adaptively interpolating a full color

image utilizing luminance gradients,” U.S. Patent 5 382 976, 1995.

[9] S. C. Pei and I. K. Tam, “Effective color interpolation in CCD color filter arrays

using signal correlation,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no.

6, pp. 503–513, Jun. 2003.

[10] B. K. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation

using alternating projections,” IEEE Transcations on Image Processing, vol. 11,

no. 9, 2002.

[11] J. Go, K. Sohn, and C. Lee, “Interpolation using neural networks for digital still

cameras,” IEEE Transcations on Consumer Electronics., vol. 46, no. 3, pp. 610–

616, Aug. 2000.

77

[12] J. Mukherjee, R. Parthasarathi, and S. Goyal, “Markov random field processing

for color demosaicing,” Pattern Recognition Letters, vol. 22, no. 3-4, pp. 339–

351, Mar. 2001.

[13] X. Wu and N. Zhang, “Primary-consistent soft-decision color demosaicking for

digital cameras,” IEEE Trans. on Image Processing, vol. 13, pp. 1263–1274,

2004.

[14] X. Wu and L. Zhang, “Color Video Demosaicking via Motion Estimation and

Data Fusing,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 16, no. 2, pp. 231–240, Feb. 2006.

[15] X. Wu and N. Zhang, “Improvement of Color Video Demosaicking in Temporal

Domain,” IEEE Transactions on Image Processing, vol. 15, no. 20, pp. 3138–

3151, Oct. 2006.

[16] S.Y. Lee and A. Ortega, “A novel approach of image compression in digital

cameras with a Bayer color filter array," IEEE Int. Conf. Image Processing 2001,

vol. 3, pp. 482-485, Oct 2001.

[17] C.C. Koh, J. Mukherjee, S.K. Mitra. “New efficient methods of image

compression in digital cameras with color filter array”. IEEE Transactions on

Consumer Electronics 2003; 49(4):1448–56.

[18] N.X. Lian, L. Chang, V. Zagorodnov, Y.P. Tan, "Reversing Demosaicking and

Compression in Color Filter Array Image Processing: Performance Analysis and

Modeling," IEEE Transactions on Image Processing, vol.15, no.11, pp. 3261-

3278, Nov. 2006.

[19] F. Gastaldi, C. C. Koh, M. Carli, A. Neri and S. K. Mitra, “Compression of videos

captured via bayer patterned color filter arrays,” Proc. 13th European Signal

Processing Conference (EUSIPCO-2005), Antalya, Turkey.

[20] T. Toi, and M. Ohta, “A subband coding technique for image compression in

single CCD cameras with bayer color filter arrays,” IEEE Transactions on

Consumer Electronics, vol .45, no. 1, pp. 176–80, 1999.

[21] A. Bruna, A. Buemi, F. Vella, A. Vitali, “A Low Cost Algorithm For CFA Data

Compression”. Int Conf on Consumer Electronics, 2006 Digest of Technical

Papers, pp. 385-386, Jan. 2006.

[22] J. Adams, K. Parsulski, and K. Spaulding, “Color processing in digital cameras,”

IEEE Micro, pp. 20–29, Nov.–Dec. 1998.

[23] K.A. Parulski, “Color Filter Arrays and Processing Alternatives for One-Chip

Cameras,” IEEE Trans. Electron Devices, Vol. ED-32, No. 8, Aug. 1985, pp.

1381-1389.

78

[24] R. Lukac, and K. N. Plataniotis, “Color Filter Arrays: Design and Performance

Analysis,” IEEE Transactions on Consumer Electronics, vol. 51, no. 4, pp. 1260-

1267, Nov. 2005.

[25] B.E. Bayer, “Color Imaging Array,” U.S. Patent 3,971,065.

[26] K. Barnard, V. Cardei, and B. Funt, “A comparison of computational color

constancy algorithms - part i: Methodology and experiments with synthesized

data," IEEE Trans on Image Proc, vol. 11, no. 9, pp. 972-983, 2002.

[27] IEC 61966-2-1 (1999-10), Multimedia systems and equipment - Colour

measurement and management – Part 2-1: Colour management - Default RGB

colour space - sRGB, International Electrotechnical Commission, www.srgb.com,

1999.

[28] R. Ramanath, W.E. Snyder, Y. Yoo, M.S. Drew, “Color image processing

pipeline,” IEEE Signal Processing Mag., vol. 22, no. 1, pp. 34–43, 2005.

[29] E. Hamilton, “JPEG File Interchange Format, Version 1.02,” Sept., 1992.

Available: http://www.w3.org/Graphics/JPEG/jfif.pdf.

[30] ISO/IEC JTC1, “Information Technology – JPEG 2000 image coding system –

Part 1: Core coding system,” ISO/IEC 15444-1, 2000.

[31] Mukherjee, J., Lang, M. K., and Mitra, S. K. 2005. Demosaicing of images

obtained from single-chip imaging sensors in YUV color space. Pattern

Recognition Letters. 26, 7, pp. 985-997, May 2005.

[32] J.E. Adams, Jr., “Design of Practical Color Filter Array Interpolation Algorithms

for Digital Cameras,” Proc. SPIE, Vol. 3028, SPIE, 1997, pp. 117-125.

[33] T. Wedi and H.G. Musmann, “Motion- and aliasing-compensated prediction for

hybrid video coding,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 13, pp. 577–587, July 2003.

[34] T. Wedi, “Adaptive Interpolation Filters and High-Resolution Displacements for

Video Coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 4, pp. 484

- 491, Apr. 2006.

[35] D. Alleysson and S. Süsstrunk, “Aliasing in Digital Cameras”, SPIE EI

Newsletter, Special Issue on Smart Image Acquisition and Processing, Vol. 14,

Nr. 12, pp. 1,8, 2004.

[36] H. J. Trussell and R. E. Hartwig, “Mathematics for demosaicking,” IEEE Trans.

Image Processing, vol. 11, pp. 485–492, Apr. 2002.

79

[37] J.W. Glotzbach, R.W. Schafer, and K. Illgner, “A method of color filter array

interpolation with alias cancellation properties,” in Proc. IEEE Int. Conf. Image

Processing, vol. 1, 2001, pp. 141–144.

[38] N. Lian, L. Chang and Y.P Tan, “Improved color filter array demosaicking by

accurate luminance estimation," IEEE Int. Conf. Image Processing 2005, vol. 1,

pp. 41-44, Sept 2005.

[39] Joint Video Team of ITU-T and ISO/IEC, “Draft Text of H.264/AVC Fidelity

Range Extensions Amendment”, Doc. JVT-L047, Sept. 2004.

[40] L. Haglund, “The SVT High Definition Multi Format Test Set,” Available:

ftp://vqeg.its.bldrdoc.gov/HDTV/SVT_MultiFormat/

[41] A. Hallapuro and M. Karczewicz, “Complexity Analysis of H.26L,” ITU-T SG16

Doc. VCEG-M50, 2001.

[42] V. Lappalainen, A. Hallapuro, T.D. Hamalainen, “Complexity of optimized

H.26L video decoder Implementation,” IEEE Transactions on Circuits and

Systems for Video Technology, pp.717–725, vol. 13 , no. 7 , July 2003.

[43] C. Xu, T.M. Le, and T.T. Tay, "H.264/AVC Codec: Instruction-Level Complexity

Analysis", Proc. IASTED International Conference on Internet and Multimedia

Systems, and Applications (IMSA 2005), Honolulu, Hawaii, Aug. 2005.

80

Appendix A – List of Acronyms

AWB auto white balance

CCD charge-coupled device

CFA Colour filter array

CIE Commission Internationale de l'Eclairage

(International Commission on Illumination)

CMOS Complementary Metal Oxide Semiconductor

CPSNR Composite peak signal-to-noise ratio

DCT Discrete cosine transform

FIR Finite impulse response

JPEG Joint Photographic Experts Group

MC Motion compensation

ME Motion estimation

MPEG Moving Picture Experts Group

PSNR Peak signal-to-noise ratio

sRGB standard red, green, blue (colour space)

