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Abstract 

 Most consumer digital cameras capture colour images using a single light sensor and 

a colour filter array (CFA).  This results in a mosaic image being captured, where at each 

pixel location either a red, green, or blue sample is obtained. The two missing colours at 

each location must be interpolated from the surrounding samples in a process known as 

demosaicking.   In most current digital cameras, demosaicking is carried out in RGB 

colour space and later the image or video is converted to YCbCr 4:2:0 format and 

compressed with standard methods.  Most previous research on demosaicking and 

compression in digital cameras has addressed the issues separately.  That is, current 

demosaicking methods ignore the fact that the data will later be compressed, and 

compression techniques ignore the fact that the data was captured with a CFA. 

 In this thesis we propose two methods for optimizing the demosaicking and 

compression processes in digital cameras.  First we propose a fast demosaicking method 

that directly produces an image in YCbCr 4:2:0 format (the colour format most 

commonly used in compression).  This reduces the computational complexity relative to 

the conventional approach of performing demosaicking in the RGB space and later 

converting to YCbCr 4:2:0 format.  Second, we propose two methods for compressing 

video captured with a CFA prior to demosaicking being performed.  This allows us to 

take advantage of the smaller input data size, since demosaicking expands the number of 

samples by a factor of three.  Our first CFA video compression method uses standard 

H.264, while our second method uses a modified motion compensation scheme that 

further increases compression efficiency by exploiting the properties of CFA data. 
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1 Introduction 

 Consumer digital cameras have gained widespread popularity in recent years and 

have replaced analog film and tape cameras as the most common means for home users 

capturing still images and video.  In capturing an image, many processing steps are 

carried out by the camera before it can be stored and viewed by the user.  Two critical 

steps are demosaicking (colour filter array interpolation) and data compression.  

 Due to the properties of the human visual system, at least three colour samples are 

needed at each pixel location to represent a full colour image.  Most digital cameras use 

red, green and blue samples.  One way to design a digital camera is to have three separate 

sensors for capturing a red, green and blue sample at every pixel location.  However, only 

high-grade cameras use this design as it is expensive to implement.  Instead, most 

consumer digital cameras use a single light sensor together with a colour filter array 

(CFA).  The CFA allows only one colour of light to reach the sensor at each pixel 

location.  This results in a mosaic image, where at each pixel location either a red, green 

or blue sample is captured, with the CFA controlling the pattern of the colour samples.  

The two missing colour samples at each location must be interpolated from the 

surrounding samples.  This process is known as colour filter array interpolation or 

demosaicking.  

 Another critical processing step in digital cameras is data compression.  The large 

amount of data required for high-resolution images and video sequences makes efficient 

compression necessary in order to keep the camera’s memory requirements reasonable.  

For still images, the JPEG (Joint Photographic Experts Group) standard [1] is by far the 



2 

most common compression method used.  For video sequences, a number of different 

compression standards are available, the most popular being ITU-T H.263 [2], ISO/IEC 

MPEG-2 [3], and, most recently, H.264/AVC [4].  

 Virtually all of the work done in the area of single sensor digital cameras has 

addressed the issues of demosaicking and compression separately.  Most demosaicking 

algorithms have been designed without regard as to how the image will be compressed 

afterwards, and most compression techniques ignore the fact that the data was originally 

captured with a colour filter array.   

 Advanced demosaicking algorithms put a lot of computational effort into 

reconstructing high frequency detail in the red and blue colour channels [5]-[15].  If the 

image is compressed afterwards, it will typically be converted to YCbCr 4:2:0 format.  In 

this format, the chroma channels (Cb, Cr) are down-sampled by a factor of two in both 

the horizontal and vertical directions, resulting in a loss of the high frequency colour 

information.  Therefore, it is wasteful to generate the high-frequency colour information 

in the demosaicking process.   

 The traditional approach to compressing image or video data captured with a CFA is 

to first perform demosaicking and then compress the resulting full-colour data.  This 

approach is less than optimal, because demosaicking increases the size of the data 

without introducing new information.   That is, the demosaicking process introduces 

redundancies into the data that the compression process must undo.  Some work has been 

done on compressing raw CFA still image data, rather than first performing 
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demosaicking and then applying compression [16]-[21].  However, little work has been 

done on compressing video captured with a CFA. 

 In this thesis we develop schemes that jointly optimize the demosaicking and 

compression processes.  Two approaches to doing this are considered: 

1. Creating a demosaicking algorithm that directly produces an image in the format 

used for compression (YCbCr 4:2:0), thus reducing the complexity of the 

demosaicking process. 

2. Compressing CFA video data prior to demosaicking rather than after, increasing 

compression efficiency by taking advantage of the smaller input data size.    

 The rest of this thesis is organized as follows.  Chapter 2 provides background 

information on digital cameras, image and video compression, demosaicking methods, 

and existing techniques for CFA data compression.  In Chapter 3, we present a new 

demosaicking algorithm that directly produces an image in YCbCr 4:2:0 format that can 

be immediately be compressed, without the needed for a separate colour space 

conversion step.  Two methods for compressing CFA video prior to demosaicking are 

presented in Chapter 4.  Finally, conclusions and directions for further research are 

provided in Chapter 5. 
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2 Background 

 In this chapter, we provide background information on digital camera design, the 

fundamentals of image and video compression, demosaicking in digital cameras, and the 

existing work on compression in single-sensor cameras.  In Section 2.1 we provide basic 

information on the design of digital cameras, including the optical path, sensors and 

digital image processing steps.  Section 2.2 provides an overview of the basics of image 

and video compression, including the YCbCr colour space, the discrete cosine transform, 

motion compensation, and the H.264 standard.  In Section 2.3, an overview of 

demosaicking algorithms is provided, with emphasis placed on fast techniques that run 

directly on the digital camera itself.   A detailed summary of existing research on direct 

compression of CFA images and video is provided in Section 2.4.   

2.1 Digital Camera Design 

2.1.1 Optical System and Sensors 

 A colour digital image can be represented using three colour samples.  Often red, 

green and blue are used, which roughly correspond to the wavelengths that the three 

types of cones in the human eye are most sensitive to.  By combining red, green and blue 

light in different ratios, almost any visible colour can be obtained.   

 To capture a digital image, the most straightforward design would be to use three 

separate sensors to capture red, green and blue light.  The optical path for such a system 

is shown in Figure 2.1.  A beam splitter would be used to project the light through three 

colour filters, and towards three sensors.  This three sensor design is used in some high-
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end cameras.  However, since the sensor is one of the most expensive parts of a camera, 

typically accounting for 10-25% of the total cost [22], the three sensor design is not used 

in most consumer digital cameras. 

 

 

Figure 2.1: Typical optical path for a three sensor camera. 

 To reduce cost, most consumer digital cameras manufacturers use only a single light 

sensor.  To capture colour information in such devices, a colour filter array (CFA) is 

placed before the sensor [23].  The optical path for such a camera is shown in Figure 2.2.  

The CFA only allows one colour of light to reach the sensor at each pixel location.  

Several CFA designs exist [24], the most popular being the Bayer pattern [25].  The 

Bayer pattern consists of a repeating 2x2 cell, each cell containing two green samples, 

one red sample and one blue sample, as shown in Figure 2.3.  More green samples are 

captured than red or blue because the human visual system is more sensitive to the green 

portion of the light spectrum. 

 

Figure 2.2:  Typical optical path for a single sensor camera using a CFA. 
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Figure 2.3: Bayer Pattern CFA 

 In the optical path for both the three sensor and the single sensor camera designs, 

optical filtering is done before the light passes through the colour filters.  This is 

necessary to provide infra red (IR) rejection.  Most colour dyes transmit light beyond 

700 nm, which the human visual system does not perceive, but which the camera’s light 

sensor may be sensitive to.  This light must be filtered out to capture an image that 

corresponds to what a human observes.  Typically, a hot mirror is used for IR rejection.  

A hot mirror transmits low wavelength light and reflects high wavelengths.  An anti-

aliasing filter may also be placed at the “optical filter” location in Figures 2.1 and 2.2.  

An anti-aliasing filter provides spatial blurring to filter out high frequencies that cannot 

be captured due to the spatial resolution of the sensor.  

 The sensor used in digital cameras is either a charge-coupled device (CCD) or a 

CMOS (Complementary Metal Oxide Semiconductor) device.  CCD sensors were used in 

virtually all early cameras, but CMOS sensors are now becoming more common due to 

their lower cost, lower power consumption and their ability to be incorporated onto a 

single chip with other circuits.  However, CCD sensors produce superior image quality 

and are used in high-end devices.  
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2.1.2 Digital Image Processing  

 The output from the image sensor goes through an analog to digital (A/D) converter 

to produce a digital image.    After this, many digital image processing steps must be 

carried out in order to produce a final viewable image.  A typical digital image processing 

pipeline for a single sensor camera is shown in Figure 2.4.  It should be noted that this 

pipeline is an example only; different cameras perform different processing steps and the 

order of steps may be different in some cameras. 

 

Figure 2.4: Example digital processing pipeline for a single sensor camera. 

 After the A/D converter has generated a digital image, some pre-processing may be 

applied.  These steps vary significantly from camera to camera, but may include 

interpolating values at defective pixel locations, or converting the output from a non-

linear sensor to a linear space. 

 The colour of light coming off an object is a function of both the incident light colour 

and the reflectance of the object.  The human visual system corrects for the lighting 

conditions so that a white object is still perceived as being white regardless of the light 

source.  To produce images that correspond to what a human perceives, a camera must 

also correct the colours in an image based on the lighting conditions.  This processing is 

called white balancing or white-point correction.  White balancing is done either by 
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having the user select from a number of pre-programmed settings, or using an auto white 

balance (AWB) algorithm [26].   

 When a CFA is used in a single sensor camera, the sensor captures a mosaic image, 

where there is either a red, green or blue sample at each pixel location.   The two missing 

colours at each location much be estimated from the surrounding samples in a process 

known as demosaicking [5].  An overview of demosaicking algorithms is provided later 

in this chapter in Section 2.3. 

 The spectral characteristics of an image sensor are not likely to be matched to the 

spectral emission characteristics of the display device used.  That is, if we took the RGB 

values recorded by the sensor in response to a scene and directly displayed those RGB 

values on a monitor, the colours produced by the monitor would not match the colours in 

the image scene.  Thus, it is necessary to convert the RGB values produced by a sensor 

into a standard colour space, most often the sRGB (standard red, green, blue) space [27].  

The sRGB space defines a mapping between a set of sRGB values and the CIE 

(Commission Internationale de l'Eclairage) chromaticity coordinates of the light produced 

by a display device.   In digital cameras, the RGB values produced by the image 

processing chain discussed so far are typically converted into CIE XYZ (chromaticity) 

values through a linear transformation (that has been designed based on the sensors 

characteristics) [28]. Then a non-linear transformation is applied to convert from XYZ 

values to sRGB space [27]. 
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 Some cameras apply post-processing to the image before it is compressed.  This may 

include steps such as sharpening and artifact removal to improve the subjective image 

quality. 

 The final step of the digital image processing chain is compression, where 

redundancies are removed from the image representation so it can be coded using fewer 

bits.  The JPEG image compression standard [1] is by far the most commonly used image 

compression scheme in digital cameras.  Section 2.2 of this thesis provides more details 

on image and video compression. 

 Some cameras provide a setting for the user to bypass all of the digital image 

processing steps above, and just store the raw data obtained by the sensor (perhaps with 

some minimal compression).  This allows the digital processing to be performed later on 

a computer, with guidance from the user.  By performing the digital processing on a 

computer, more advanced algorithms for white-balance, demosaicking, and post 

processing can be used, since a typical computer has much more computational power 

than a digital camera.  This mode of operation is used by professional users, but rarely by 

typical consumers.  

2.2 Image and Video Compression 

 In the following sections the basics of image and video compression are covered.  

Section 2.2.1 discusses the YCbCr colour space which is used in most still image and 

video compression standards.  Still image compression techniques are covered in Section 

2.2.2 and video compression is discussed in Section 2.2.3.  Finally, a brief overview of 

H.264/AVC, the latest major video coding standard, is provided in Section 2.2.4. 
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2.2.1 YCbCr Colour Space 

 A digital image can be represented using three colour samples per pixel. Typically red 

(R), green (G) and blue (B) are used when capturing images with a digital camera.  

However, storing images in RGB space is inefficient, as there is a large amount of 

correlation between the channels.  Instead, when images or video are to be compressed, 

they are usually converted into YCbCr colour space.  In YCbCr space, an image is 

represented by one luma (Y) and two chroma (Cb, Cr) components. The luma channel 

contains “brightness” information; it is essentially a greyscale version of the image.  The 

chroma values are colour offsets, which show how much a pixel deviates from greyscale 

in the blue (Cb) and red (Cr) directions.   

 The equations used for converting from RGB to YCbCr used in the JPEG JFIF format 

[29] are: 

B0.0813G0.4187R0.5Cr

B5.0G0.3313R0.1687-  Cb

B0.114G587.0R0.299Y

⋅−⋅−⋅=

⋅+⋅−⋅=

⋅+⋅+⋅=

 (2.1)  

 The reverse equations for converting from YCbCr to RGB are: 

Cb772.1YB

Cr0.71414Cb0.34414YG

Cr402.1YR

⋅+=

⋅−⋅−=

⋅+=

  (2.2) 

 For most natural images, the RGB to YCbCr conversion strongly de-correlates the 

colour channels, so the Y, Cb, and Cr components can be coded independently without 

loss of efficiency.  In YCbCr space, the energy of an image tends to be concentrated in 
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the Y channel.  This leaves the Cb and Cr channels with less information, so they can be 

represented with fewer bits. 

 Another advantage of the YCbCr space comes from the properties of the human 

visual system.  The human eye is more sensitive to brightness information than colour 

information.  Consequently, the chroma signals can be down-sampled relative to the luma 

without significant loss of perceived quality.  In fact, chroma down-sampling is almost 

always done when compressing image or video data. 

 Applying equation (2.1) at every pixel in an image results in an YCbCr 4:4:4 picture.  

In YCbCr 4:4:4 format, the chroma is sampled at the same rate as luma (Figure 2.5a).  

This format is rarely used, except in professional applications.  In YCbCr 4:2:2 format, 

the chroma signals are down-sampled by a factor of two relative to the luma in the 

horizontal direction (Figure 2.5b).  Some higher end digital video formats use YCbCr 

4:2:2 sampling.  However, the most common colour format used in compressed images 

and video is YCbCr 4:2:0 (Figure 2.5c).  In YCbCr 4:2:0 format, the chroma signals are 

down-sampled by a factor of two in both the horizontal and vertical directions.  It should 

be noted that there are different chroma positions used in YCbCr 4:2:0 format.  

Sometimes the chorma samples are considered to be half-way between the luma samples 

vertically, or in the center of a group of four luma samples.  In the downsampling process 

the chroma channels should be low-pass filtered to limit aliasing. 
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Figure 2.5: Illustration of YCbCr sampling formats.  (a) 4:4:4 (b) 4:2:2 (c) 4:2:0. 

   There are minor variations on Equations 2.1 and 2.2 used for converting to YCbCr 

format.  These typically involve scaling of the luma and chroma vales so the final 

samples will fall within a lower range.  In digital images and video, the term YCbCr is 

typically usually used interchangeably with YUV to refer to the same colour space.   

2.2.2 Image Compression 

 Still image compression involves removing spatial redundancies within an image.  

This is usually done with a transform, such as the discrete cosine transform (used in 

JPEG [1]) or the wavelet transform (used in JPEG 2000 [30]).  The idea of transform 

coding is to apply a mathematical transformation to a group of pixels that will 

concentrate the energy of the signal into a smaller number of coefficients.  After applying 

a transform, many coefficients are typically near zero, and hence can be discarded with 

minimal impact on the output image when the inverse transform is taken.  

 By far, the most popular image compression method used in digital cameras is 

baseline JPEG.  JPEG is based on the 2D discrete cosine transform (DCT).    The image 
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is divided into 8x8 blocks of pixels, and the DCT of each block is taken.  The DCT 

coefficients are calculated with the following formula: 

( ) ( ) ( ) ( )
( ) ( )
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 (2.3)  

 The DCT coefficients, D(p,q), show how much energy the image block has at 

different spatial frequencies.  Higher values of p and q correspond to higher frequencies 

in the x and y directions.  The coefficients are quantized based on how the human visual 

system perceives different frequencies, with the higher frequency coefficients being more 

coarsely quantized.  The quantized coefficients are scanned in zigzag order, in direction 

of increasing frequency.  Entropy coding is applied to (run, level) pairs, where level is the 

value of a quantized coefficient, and run is the number of zero values preceding the 

coefficient in the zigzag scan.  

2.2.3 Video Compression 

 Due to the large amount raw data needed to represent video, efficient data 

compression is critical in systems involving digital video.  With a given amount of data 

storage capacity more efficient video compression schemes allow either the video quality 

to be increased or the play time to be extended.  Efficient video compression is essential 

in applications such as personal video players (e.g., DVD), streaming video over the 

internet, digital camcorders, video conferencing, broadcasting, etc.  
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 A digital video is a time sequence of 2D frames.  Video compression attempts to 

remove redundancies both within a single frame and between frames.   

 Some frames in a video are coded independently of other frames using intra coding 

methods (I frames).  These frames are compressed with still image techniques, typically 

similar to those used in JPEG. 

 The key technique that distinguishes video compression from image compression is 

motion compensation (MC).  When MC is used, some frames are coded by predicting the 

frame from previously coded frames and storing the difference between the actual frame 

and the prediction.  Such frames are called P frames.  After forming a prediction for a 

block of pixels, the residual prediction error is calculated, which is the difference 

between the actual block and the prediction.  Then a transform (e.g., DCT) is usually 

applied to the residual.  The transform coefficients are then quantized, scanned and 

entropy coded. 

 MC involves dividing a frame into blocks and estimating and coding a displacement 

vector for each block.  The displacement vector tells the decoder which block in a 

previously coded reference frame to use as a prediction.  Using the displacement vector 

the decoder can form the same prediction for the block, and by adding the residual to the 

prediction the original block can be restored. 

 Figure 2.6 shows a simplified block diagram of a motion compensated, transform 

based hybrid video encoder.  This basic structure is used in most major video coding 

standards including MPEG-1, MPEG-2, H.261, H.263 and H.264/AVC. 
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Figure 2.6: Block diagram of a typical motion compensated hybrid DCT based video 

encoder 

2.2.4 H.264 Video Compression 

 H.264/AVC is the latest major video coding standard, and it is being used in 

applications such as next generation video players (Blu-ray, HD DVD).  A number of 

new coding features were introduced in H.264, the most important of which are 

summarized below. 

 The transform used in H.264 is different from previous standards.  Instead of using a 

DCT calculated with floating point arithmetic, as in JPEG and MPEG-2, H.264 uses an 

integer transform that approximates the DCT.  The integer transform matrix only contains 

the values +1, -1, +2, and -2, so the transform can be calculated using only 

addition/subtraction and bit shift operations.  In baseline H.264, the transform is 

calculated on blocks of 4x4 pixels, which is smaller than the 8x8 blocks used in most 

previous standards.  The smaller block size helps reduce ringing artifacts. 
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 When coding I frames, instead of taking the transform of blocks of pixels directly, 

each block is predicted in the spatial domain from previously coded blocks (usually 

blocks above or to the left of the one being coded).   A number of different intra 

prediction modes are supported, for example each pixel in the block can be predicted 

from the pixel outside the block directly above it, to the left, or at a diagonal direction.  A 

DC prediction mode is also supported, where the entire block is predicted based of the 

average value of the surrounding previously coded pixels.  After the prediction has been 

made, the integer transform is applied to the prediction residual.  

 Motion Compensation (MC) is much more flexible in H.264 than in previous 

standards (e.g., MPEG-2).  In H.264, variable block size motion compensation is 

supported.  Blocks of size 16x16 pixels down to 4x4 pixels can be used.  In addition, 

H.264 allows the encoder to select from multiple previously coded frames to find the one 

that will provide the best prediction for the frame being coded.  Finally, motion vectors in 

H.264 can be defined in units of one quarter pixel.  This significantly increases the 

accuracy of MC, resulting in higher compression efficiency.  In order to support 

fractional pixel motion vectors, the reference frames must be interpolated.  This is done 

with a 6 tap FIR (finite impulse response) filter to generate samples at half pixel 

positions, followed by bilinear interpolation to generate samples at quarter pixel 

positions.  

2.3 Demosaicking Algorithms 

 Most consumer digital cameras capture colour information with a single light sensor 

and a colour filter array (CFA).  The CFA only allows one light colour (red, green or 



17 

blue) to reach the sensor at each pixel location.  The Bayer Pattern [25] is the most 

commonly used CFA design.   

 Demosaicking is the process of estimating the two missing colour samples at each 

pixel location.  The simplest demosaicking methods interpolate each colour channel 

separately.  One such technique is bilinear interpolation, where the average of the 

surrounding samples is used.  When bilinear interpolation is used, each missing green 

sample is calculated as the average of the four surrounding green samples, and each 

missing red or blue sample is taken as the average of the two nearest neighbours or four 

nearest neighbours, depending on the position.  Other standard interpolation methods, 

such as cubic spline interpolation, can be used to slightly improve the performance when 

processing each colour channel separately.   

 The problem with methods that interpolate the colour channels independently is that 

they usually fail at sharp edges in images, resulting in objectionable colour artifacts.  

Figure 2.7 illustrates this; it shows a full colour image and the result of using bilinear 

interpolation to reconstruct the image after it has been sub-sampled with the Bayer 

pattern.  Note how the bilinear image has false colours in regions of high frequency 

image content and also appears significantly blurred. 
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Figure 2.7: Original RGB and the result of applying bilinear interpolation to the image 

when it is sampled with the Bayer pattern 

 To overcome the problems caused by simple methods that interpolate the colours 

channels separately, many adaptive demosaicking algorithms have been developed which 

exploit the correlation between the colour channels.   

 One class of adaptive demosaicking algorithms is edge-directed interpolation [6]-[8].  

These algorithms attempt to preserve edges by calculating gradients from the CFA data 

and interpolating along the direction (typically either horizontal or vertical) that has the 

lower gradient.   
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Figure 2.8: Location numbering of Bayer Pattern 

 In [6], Hamilton and Adams propose a method where Laplacian second order 

correction terms are used to enhance the estimates for missing pixels. Referring to Figure 

2.8, consider the task of estimating the green sample at the location of sample R2 (we 

denote the missing green sample G2).  In the method in [6] (which we will refer to as 

‘Laplacian demosaicking’) gradients are calculated as: 

G3G7R22R12R20DV

G91GR22R24R16DH

−+⋅−+=

−+⋅−+=
  (2.4)  

 Bilinear interpolation is carried out in the direction with the lower gradient, or both 

directions if the gradients are equal.  The Laplacian of the red or blue channel is 

calculated in the same direction and added to the bilinear estimate.  For example, G2 is 

calculated as follows: 
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 In equation (2.5), the left term of every sum is the result of applying bilinear 

interpolation to the green channel in the lower gradient direction (horizontal, vertical, or 

both).  The right hand term of each sum is the Laplacian of the red channel.  The 

Laplacian is a high-pass filter.  The RGB colour planes are typically very highly 

correlated, especially in high-frequency content, so adding the Laplacian of the red 

channel to the green channel enhances the bilinear estimate.  The red and blue planes are 

filled in a similar manner (calculating gradients and using directional interpolation with 

Laplacian terms).  

 In [9], Laplacian correction terms are also used, but to reduce the number of 

computations required, the interpolation of the green channel always uses samples in both 

directions (the last case in equation (2.5)).  This eliminates the need for calculating the 

gradients and performing comparisons, resulting in a very computationally simple 

method.  After the green channel has been filled, the red and blue channels are estimated 

using bilinear interpolation on the difference between the red/blue channel and green 

channel.  The signals R-G, and B-G are generally much smoother (less high frequency 

content) than the red and blue channels themselves and are thus more suitable for 

conventional linear interpolation. 
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 Many demosaicking methods have been developed which are far more advanced than 

the methods described so far.  Wavelet decomposition is used in [10], where the high-

frequency sub-band of the green channel is used to iteratively update the high-frequency 

content in the red and blue channels.  Techniques have also been proposed using neural 

networks [11], markov random fields [12] and a soft decision process for estimating edge 

directions [13].  These methods can achieve very good image quality but have high 

computational complexity.  Thus, instead of performing demosaicking directly on the 

camera when the image is taken, the raw data would be stored on the camera and then 

transferred to a computer where demosaicking would take place.  In this thesis, we focus 

on methods that run directly on the digital camera, so these advanced algorithms are not 

discussed in detail. 

 When video is captured with a CFA device, demosaicking is usually done on each 

frame independently. However, recent work has explored using motion estimation to 

improve performance when demosaicking is performed on a video [14],[15].   Through 

motion estimation, information from other frames can be used to improve the estimate for 

the missing pixels in each frame, at the expense of greatly increased complexity.  

 All the demosaicking algorithms described up to this point produce RGB output 

images.  If the image is to be compressed afterwards (it almost always will be), it will be 

converted into YCbCr 4:2:0 format, which is more suitable for compression.  Instead of 

performing demosaicking in the RGB space and then converting to YCbCr 4:2:0 space 

afterwards, the demosaicking algorithm can be designed to directly produce YCbCr 4:2:0 

output.   
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Figure 2.9: Conversion from Bayer cell to YCbCr 4:2:0 

 There is one previously published demosaicking algorithm that produces an YCbCr 

4:2:0 output image [31].  Their algorithm, entitled “YUV through green interpolation 

with median filtering post-processing,” (YUVGM), starts by creating a full green 

channel, using the method for interpolating the green channel in [6].  For each 2x2 cell in 

the Bayer pattern, four luma (Y) samples must be generated, together with one Cb and Cr 

sample (Figure 2.9).  Let Y(R,G,B), Cb(R,G,B) and Cr(R,G,B) denote functions for the 

equations in (2.1) for converting from RGB space to YCbCr space.  Then, the output 

samples are calculated by the following equations: 
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)3B,G,2R(Cb1

4/G4)G32G1G(G
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=
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+++=

=
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 (2.6)  

 After the above equations have been evaluated for every Bayer cell, median filtering 

is performed on the Cb and Cr channels to remove colour artefacts.  Note that the 

YUVGM method is using zero-order hold interpolation on the red and blue channels, 

which produces severe false colours around edges.  The median filtering post processing 

is an ad-hoc and computationally expensive method of reducing false colours.   
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2.4 Previous Work on CFA Image and Video Compression 

 The conventional approach used for compressing images and video generated with 

single-sensor cameras is to first perform demosaicking and then compress the resulting 

full-colour data with standard methods (Figure 2.10a).  This approach is sub-optimal 

because demosaicking expands the size of data to be compressed by a factor of three and 

introduces further redundancy into the data that will be removed by the compression 

stage.  Instead compression can be carried out on the CFA data, with demosaicking being 

performed after decompression (Figure 2.10b) [16]-[19].   

 

 

Figure 2.10: Flow diagram of CFA compression schemes: (a) Traditional demosaick-first 

approach. (b) Compression of CFA data prior to demosaicking. 

 There have been a few papers published on lossy compression of CFA image data 

prior to demosaicking.  The goal of these is to provide better image quality at a given bit 

rate, allowing a camera to either store higher quality images or store more images with 

the same quality level.   

 In [16], Lee and Ortega propose a method starting with a modified YCbCr colour 

space conversion.  The conversion is performed on each group of four Bayer pattern 

samples, and creates two Y samples and one Cb and Cr sample (Figure 2.11).  The 

equations for the modified conversion are: 
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B0.0813Gl0.20935Gu0.20935R0.5Cr

B5.0Gl0.16565Gu0.16565R0.1687-  Cb

B0.114Gl587.0R0.299Yl

B0.114Gu587.0R0.299Yu

⋅−⋅−⋅−⋅=

⋅+⋅−⋅−⋅=

⋅+⋅+⋅=

⋅+⋅+⋅=

 (2.7) 

 When calculating each luma value with (2.7), the corresponding green sample is used 

together with the red and blue samples. For calculating the chroma values, the average of 

the two green samples is used along with the red and blue.  After the conversion, the 

chroma samples are arranged into rectangular arrays and then compressed with standard 

JPEG.  The Y samples, which are arranged in a quincunx lattice, are rotated 45 degrees to 

form a compact rhombus shape, as shown in Figure 2.12.  Then the Y samples are 

compressed with a modified JPEG algorithm, where padding is done at the edges of the Y 

rhombus to create square 8x8 blocks that can be compressed with the JPEG DCT method. 

 

Figure 2.11: Modified YCbCr conversion performed on the Bayer unit cell in [17]. 
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Figure 2.12: 45 degree rotation of luma samples used in [16]. 



25 

 Two CFA image compression methods are proposed by Koh et. al. in [17], which are 

called‘structure conversion’ and ‘structure separation’.  Both methods start with the 

modified YCbCr conversion proposed in [16], followed by compressing the chroma 

channels with JPEG.   The methods differ in how they process the luma samples.  In the 

structure conversion method, the two luma samples generated from every Bayer cell are 

merged into a single column, as shown in Figure 2.13b.  This creates a single luma array 

that has half the size of the CFA data.  The process of merging the two samples distorts 

the image content somewhat.  The structure separation method involves separating the 

even column and odd column luma samples into two arrays, each having size one quarter 

that of the CFA data (Figure 2.13c).  In both methods, after rectangular arrays of luma 

samples have been formed they are compressed with standard JPEG.  

Y1

Y4

Y2

Y5

Y7

Y10

Y8

Y11

Y13

Y16

Y14

Y17

Y3

Y6

Y9

Y12

Y15

Y18

Y1

Y4

Y2

Y5

Y7

Y10

Y8

Y11

Y13

Y16

Y14

Y17

Y3

Y6

Y9

Y12

Y15

Y18

Y1 Y4Y2 Y5

Y7 Y10Y8 Y11

Y13 Y16Y14 Y17

Y3 Y6

Y9 Y12

Y15 Y18

(a) (b) (c)
 

Figure 2.13: Methods for forming rectangular arrays of luma data in [17]. (a) Original luma 

arrangement (b) Structure conversion (c) Structure separation 

 Other techniques for compressing CFA images include sub-band decomposition [20] 

and vector quantization of groups of pixels [21].    However, these methods have worse 

compression efficiency than the JPEG based methods in [16] and [17].  A comparative 

analysis of the two workflows (compression-first vs. conventional demosaick-first) is 

presented in [18]. 
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 The only previously published work on lossy compression of CFA videos is presented 

in [19] by Gastaldi et. al.  Their method is based on the structure conversion method in 

[17].  In [19], the structure conversion process is done in the RGB domain (without first 

applying an YCbCr colour space conversion), as shown in Figure 2.14.  The arrays of 

green, red and blue are compressed with a custom MPEG-2 like coding scheme.  A 

custom coding scheme was developed because no major video coding standard supports 

input data where one channel (green) has twice the vertical size and the same horizontal 

size as the other channels (red and blue).  A the motion vectors from the green channel 

are used on the red and blue channels, with appropriate scaling and downsampling.  An 

IBBPBBPBBPBB group of pictures structure is used, with JPEG compression used to 

compress the I-frames and residual for P and B frames. 
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Figure 2.14: RGB based structure conversion method used in [21]. 
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3 Demosaicking Directly to YCbCr 4:2:0  

3.1 Introduction 

 Single sensor cameras capture colour information using a colour filter array (CFA).  

This results in a mosaic image being captured, where at each pixel location either a red, 

green or blue sample is captured.  The two missing colours at each location are 

interpolated from the surrounding samples in a process known as demosaicking.  As 

discussed in our overview of demosaicking methods in Section 2.3, virtually all 

demosaicking algorithms produce an RGB output image.  If the image is to be 

compressed afterwards, it will typically be converted to YCbCr 4:2:0 format.   

 The green channel is the dominant component in determining luma, and the red and 

blue samples contribute most to the Cr and Cb channels, respectively.  Advanced 

demosaicking methods put a lot of computational effort into reconstructing fine detail in 

the red and blue colour planes.  This is a difficult task because red and blue are more 

sparsely sampled in the Bayer pattern.  It is also somewhat unnecessary as most of the 

high frequency detail in those channels is lost in the conversion from RGB to YCbCr 

4:2:0 format. 

 In this chapter, we present a demosaicking method that directly produces an YCbCr 

4:2:0 output image.  This reduces computational complexity by avoiding the need for 

performing demosaicking in the RGB domain and then converting to YCbCr 4:2:0 format 

afterwards.   
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 The rest of this chapter is organized as follows.  Our demosaicking method is 

described in Section 3.2.  Simulation results comparing our proposed method against 

other fast demosaicking algorithms are presented in Section 3.3.  A complexity analysis 

of our method is given in Section 3.4, where the complexity of our proposed method is 

compared against a very fast RGB based method.  Finally, conclusions are given in 

Section 3.5. 

3.2 Proposed Demosaicking Method  

 The Bayer pattern consists of cells of size 2x2 pixels, each cell containing two green 

samples, one red sample and one blue sample.  To produce YCbCr 4:2:0 output, four 

luma samples and one Cb and Cr samples must be generated for each cell.  Figure 3.1 

shows a 2x2 cell (locations 1-4) and the surrounding Bayer pattern samples that will be 

used to calculate the luma and chroma samples in the cell.  In the following section we 

describe how our algorithm generates chroma samples at location 1 (denoted as Cb1, 

Cr1), and luma samples at locations 1-4 (denoted Y1, Y2, Y3, Y4).  The steps described 

are repeated on every 2x2 cell to generate the entire YCbCr 4:2:0 image.  The location 

numbering given in Figure 3.1 will be used throughout the rest of the chapter. 
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Figure 3.1: Neighbourhood of pixels used for generating the luma and chroma samples in 

the cell containing positions 1-4. 

 Our demosaicking algorithm consists of four steps: 

1. Generating a full green channel 

2. Generating low-pass filtered, down-sampled red-green and blue-green colour 

difference values (R-G, B-G) 

3. Calculating low-pass filtered, down-sampled chroma channels 

4. Filling the luma channel. 

 Each step is discussed in turn in the following sections. 

3.2.1 Generating a Full Green Channel 

 Since a full luma channel is needed, and green is the dominant component in 

determining luma, our method begins by filling the green channel.  A complete green 

channel allows us to estimate a high-quality luma channel. 
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 Many existing demosaicking methods start by generating a complete green channel.  

We base our method for calculating the missing green samples on the method by 

Hamilton and Adams [6], which is a popular low-complexity demosaicking algorithm. 

 The idea behind the method for filling the green channel is to calculate horizontal and 

vertical gradients at the current location, and interpolate along the direction that contains 

the lower gradient.  This results in interpolation being performed along edges rather than 

across edges.  If the gradients are similar in magnitude, interpolation is done using 

samples in both directions.  There are two cases that need to be considered when 

calculating the missing green samples; generating a green at a red location (R2) or blue 

location (B3). 

 At red location (R2), the gradients are calculated as: 

G41G1R22R22R7DV

G151GR2216R14RDH

−+⋅−+=

−+⋅−+=
 (3.1) 

 The missing green sample is calculated as follows: 
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 The second term in each sum in (3.2) is the second order gradient (Laplacian) of the 

red channel.  The red, green and blue channels are typically very highly correlated, 
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especially in high frequency content [10], so adding the Laplacian term improves the 

bilinear interpolation [32]. 

 A threshold ‘T’ is used to ensure that the gradients are sufficiently different for 

interpolation to happen in only one direction.  If the difference between the gradients is 

less then T (the last case in equation (3.2)), the interpolation uses samples in both 

directions.  A threshold is not used in the method by Hamilton and Adams [6].  If the 

threshold is set to zero, the method for filling the green channel would be identical to 

their method. Experimentally, we found a threshold of 35 to provide good results for a 

wide range of images.  

 At the blue location (B3), the gradients and missing green sample are calculated 

analogously to the red location using the following equations: 
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 (3.4)  

3.2.2 Calculating Low-pass R-G and B-G Samples 

 Since the conversion from RGB to YCbCr is a linear process, we can equivalently 

perform loss-pass filtering in the RGB domain rather than the YCbCr domain.  We apply 
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low-pass filtering to generate R-G and B-G values located at the location of G1 in Figure 

3.1.  Instead of performing interpolation on the red and blue channels themselves, we 

perform interpolation on the difference between green and red or blue.  The R-G and B-G 

images are generally much smoother than the R and B channels, so they are more suitable 

for interpolation [9].  From the low-pass R-G and B-G values, we can generate low-pass 

chroma samples, as will be explained in the next section.  

 The following 2D filter is used on the R-G channel: 
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 This filter provides low-pass filtering in both the horizontal and vertical directions, 

while only using positions that have red samples available.  The filter in equation (3.5) is 

separable, and equivalent to using the following two filters in the horizontal and vertical 

directions: 
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 The vertical filter in (3.6) provides stronger low-pass filtering than the horizontal 

filter, as it has two zeros at π radians/sample rather than just one.  However, due to the 

required positioning of the output, a filter with an even number of taps is needed in the 
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horizontal direction. Using a four tap horizontal filter would require significantly more 

operations to implement.   

 The resulting equation for calculating the low-pass R-G value, denoted KR is: 

8
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  (3.7)  

 For calculating a low-pass B-G sample at location 1, an equivalent filter to that of 

equation (3.5) is used, only this time it is rotated 90 degrees due to the different 

positioning of the blue samples in the Bayer pattern: 
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 The low-pass KB sample at location 1 is calculated equivalently to the low-pass KR 

sample using: 
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  (3.9)  

3.2.3 Calculating Down-sampled Chroma Channels 

 The conversion from RGB to YCbCr space is linear, so instead of performing linear 

low-pass filtering on the Cb and Cr channels, the filtering can be equivalently performed 

on the RGB samples: 
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B0813.0G4187.0R5.0Cr
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  (3.10) 

where h is the low-pass filter used to limit aliasing after downsampling,  Cblp and Crlp are 

low-pass chroma channels, and ∗  denotes 2D convolution. 

 The equations in (3.10) can easily be rewritten in terms of the colour differences R-G 

and B-G using the linear property of convolution: 
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 By allowing different low-pass filters to be applied to the R-G and B-G signals in 

(3.11), the chroma values at location 1 can be calculated using the KR and KB samples 

generated with equations (3.7) and (3.9): 
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  (3.12) 

 In our method, equation (3.12) is used to calculate the final chroma samples using the 

low pass filtered, down-sampled, KR and KB values. 

3.2.4 Calculating the Full Luma Channel 

 Once the down-sampled chroma values have been calculated, the only task left is to 

generate the full luma channel.  Since different samples are available at each location, we 

considered the task of generating luma samples at locations 1 through 4 separately. 
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 At the location of G1, we already have G, KR and KB samples available. By 

rearranging the equation for luma in (2.1) in terms of R-G and B-G, the Y1 sample can be 

calculated with: 

lplp 1KB114.01G1KR299.01Y ⋅++⋅=  (3.13)  

 Note that we are using low-pass KR and KB values, when ideally unfiltered values 

should be used.  However, since the green sample has not been filtered and green is the 

dominant component in calculating luma, the value calculated with equation (3.13) is still 

a good estimate. 

 At the location of R2, we have red and green samples available.  An assumption often 

made in demosaicking methods is that chroma varies smoothly in natural images, so 

bilinear interpolation provides a good estimate for missing chroma samples.  Using this 

assumption, an estimate for the blue chroma at R2 is found as: 

2

15Cb1Cb
2Cb

+
=   (3.14)  

 The Cb2 sample in (3.14) does not need to be calculated and stored, but the equation 

will be used for deriving an expression for Y2.  We would like to calculate the luma 

value at location 2 using R2, G2 and Cb2.  This can be done by substituting the equation 

for B in equation (2.2) into the Y definition in equation (2.1). 

( )2Cb772.12Y0.114G2587.02R0.2992Y ⋅+⋅+⋅+⋅=  (3.15)  

 Further substituting the estimate for Cb2 given by (3.14) and solving for Y2 yields: 
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( )15Cb1Cb114.0G26625.02R3375.02Y +⋅+⋅+⋅=  (3.16) 

 At location 3, green and blue samples are available.  Using an analogous method as 

described for calculating Y2, only now with bilinear interpolation performed on Cr 

samples, Y3 is calculated as: 

( ) 3B1626.0G20.83741Cr21Cr299.03Y ⋅+⋅++⋅=   (3.17) 

 At location 4, only a green sample is available.  So here we use bilinear interpolation 

on both the Cb and Cr channels to calculate Y4.   Substituting the R and B equations 

from (2.2) into the definition of luma gives: 

Cr4)772.1(Y40.114G587.0Cr4)402.1(Y40.299Y4 ⋅+⋅+⋅+⋅+⋅=  (3.18)  

 Using bilinear interpolation on the four surrounding samples to estimate Cb4 and Cr4, 

and solving for Y4 yields: 

( ) ( )Cb231Cb215Cb1Cb086.0G4Cr231Cr215Cr1Cr1785.04Y +++⋅+++++⋅=  (3.19) 

3.2.5 Summary of Complete Algorithm 

 Our complete demosaicking algorithm for producing YCbCr 4:2:0 output consists of 

the following steps.  Each step must be carried out on every 2x2 cell before proceeding to 

the next step. 

1. Fill the missing green samples with equations (3.1), (3.2) (3.3) and (3.4). 

2. Using (3.7) and (3.9) find low-pass R-G and B-G values. 
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3. Using (3.12) calculate the final Cb and Cr samples. 

4. Fill the luma channel with equations (3.13), (3.16), (3.17), (3.19). 

3.3 Experimental Results 

 The 24 RGB images from the Kodac set where used in our experiments.  These 

images have been extensively used in demosaicking research.  Thumbnails of the images 

are provided in Figure 3.2. CFA images were obtained by sampling the RGB images with 

the Bayer pattern.   

 

Figure 3.2: Test Images used in evaluating demosaicking algorithm performance.  

Numbered 1-24, from top left to bottom right. 

 We compared our proposed method against the YUV method in [31], and some fast 

demosaicking methods that operate in RGB space.  The RGB methods tested were 

bilinear interpolation, and the methods in [6] and [9].  The quality of the different 

methods is evaluated by comparing the demosaicked image to the original full colour 

image, as illustrated in Figure 3.3. 
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Figure 3.3: Procedure used for measuring demosaicking algorithm performance. 

 Here objective quality is measured in the YCbCr 4:2:0 domain using the peak signal-

to-noise ratio (PSNR).  The PSNR (in dB) of a demosaicked image channel, Idem(i,j) with 

8 bit precision is calculated as: 

( ) ( )( ) 







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= =
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refdem jiIjiI
MN
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1 1

2

2

,,
1

255
log10  (3.20)  

where i denotes the row, j the column, M is the height of the channel, N is the width of 

the channel, and Iref(i,j) is the reference channel against which quality is measured. 

 The reference images were obtained by converting the full colour RGB images to 

YCbCr space with (2.1), filtering the Cb and Cr channels with a 9-tap FIR low-pass filter 

and downsampling.  The 9-tap filter closely approximates an ideal low-pass filter with 
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cut-off 0.5π radians/sample, so the reference images contain very little aliasing in the 

down-sampled chroma channels.  

 For the demosaicking methods that operate in RGB space, the following low-

complexity filter was used for filtering the chroma channels in the downsampling 

process: 

[ ]4/12/14/1=h  (3.21)  

 This filter provides a good tradeoff between complexity and limiting aliasing.   

 Tables 3.1, 3.2 and 3.3 show the PSNR (in dB) obtained with each demosaicking 

method in the Y, Cb and Cr channels, respectively.   In almost all cases, the proposed 

method gives higher PSNR than the other methods.  On average the proposed method 

gives about 1 dB higher PSNR in each channel than the RGB based methods in [6] and 

[9].   For all images, the proposed method gives far better performance (over 5 dB higher 

PSNR in luma) than the only other YUV 4:2:0 based demosaicking method presented in 

[31]. 
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Image Bilinear 
Method in 

[6] 

Method in 

[9] 

YUV 

Method in 

[31] 

Proposed 

1 29.58 35.99 35.97 30.90 37.43 

2 36.31 41.68 41.28 37.04 42.21 

3 37.45 43.44 43.40 38.17 44.32 

4 36.82 41.71 42.33 37.65 42.52 

5 29.60 37.49 37.09 30.85 38.36 

6 31.04 37.47 37.38 32.53 38.87 

7 36.59 43.60 42.42 36.88 43.92 

8 27.08 34.76 33.11 28.55 35.85 

9 35.67 42.75 41.55 36.57 43.81 

10 35.57 42.63 42.36 36.78 43.58 

11 32.33 38.57 38.44 33.58 39.65 

12 36.82 43.32 42.47 38.12 43.93 

13 26.90 32.18 33.51 28.18 33.57 

14 32.23 38.50 38.16 33.07 39.09 

15 35.98 40.32 41.43 36.64 41.26 

16 34.62 40.94 40.42 36.04 42.24 

17 35.17 41.04 41.50 36.31 42.11 

18 31.06 36.51 37.48 32.15 37.71 

19 31.49 39.75 37.38 32.94 40.94 

20 34.78 41.23 41.02 35.83 42.40 

21 31.69 37.80 38.00 32.90 39.18 

22 33.67 39.24 39.33 34.88 40.35 

23 38.21 44.58 43.75 38.69 44.86 

24 29.90 35.03 36.36 31.06 35.88 

Average 33.36 39.60 39.42 34.43 40.58 

Table 3.1: Y-PSNR comparison of different demosaicking methods (dB) 



41 

 

Image Bilinear 
Method in 

[6] 

Method in 

[9] 

YUV 

Method in 

[31] 

Proposed 

1 35.03 40.03 39.37 37.85 42.68 

2 41.73 45.01 44.25 42.46 45.48 

3 42.76 45.46 45.36 41.85 45.94 

4 43.45 45.69 46.07 43.31 47.56 

5 37.22 40.87 40.73 36.61 41.59 

6 36.17 41.30 40.63 38.29 43.35 

7 42.88 45.60 44.67 39.87 45.40 

8 32.05 38.44 35.73 33.49 40.35 

9 41.19 45.22 44.06 40.84 45.38 

10 41.53 45.61 45.21 41.64 46.17 

11 37.86 42.53 41.84 40.11 44.36 

12 41.97 46.35 45.15 43.01 46.60 

13 32.78 36.18 37.08 35.50 38.90 

14 37.75 40.60 40.03 36.09 40.35 

15 42.01 43.61 44.93 41.58 45.81 

16 39.10 44.32 43.15 41.03 45.68 

17 41.78 44.44 44.68 41.40 45.27 

18 37.09 40.29 40.76 37.83 41.75 

19 36.78 43.00 40.37 37.16 43.85 

20 40.64 43.91 43.45 40.73 44.38 

21 37.12 41.34 41.12 38.69 43.26 

22 39.12 42.17 41.80 39.15 42.57 

23 44.66 46.79 45.87 41.62 45.46 

24 35.23 38.04 38.95 36.15 39.53 

Average 39.08 42.78 42.30 39.43 43.82 

Table 3.2: Cb-PSNR comparison of different demosaicking methods (dB) 



42 

 

Image Bilinear 
Method in 

[6] 

Method in 

[9] 

YUV 

Method in 

[31] 

Proposed 

1 35.97 41.36 39.33 37.83 42.36 

2 39.88 42.04 40.62 38.55 41.53 

3 44.34 46.36 44.24 42.16 46.01 

4 41.18 42.36 41.40 39.13 41.90 

5 36.74 42.02 39.06 37.24 42.18 

6 38.93 42.77 40.77 39.24 43.76 

7 42.51 46.23 43.65 40.51 45.89 

8 30.25 39.29 35.19 34.03 40.03 

9 40.88 46.34 43.66 42.05 46.65 

10 42.03 46.30 44.23 42.24 46.45 

11 38.02 42.62 40.58 39.29 42.82 

12 42.70 46.10 44.27 42.51 46.03 

13 34.78 38.57 38.19 37.01 40.28 

14 37.92 40.29 38.41 36.37 39.57 

15 39.77 41.03 40.69 38.46 41.05 

16 43.35 45.92 43.92 42.13 46.68 

17 41.48 46.09 44.55 43.10 46.87 

18 37.58 41.40 40.24 38.57 42.05 

19 36.36 44.24 39.80 38.05 44.48 

20 40.53 45.86 43.03 42.60 46.41 

21 38.86 43.15 41.22 39.92 44.19 

22 38.27 42.23 41.00 39.01 42.36 

23 43.91 45.97 43.56 40.98 45.28 

24 37.12 40.32 39.72 37.58 40.71 

Average 39.31 43.29 41.31 39.52 43.56 

Table 3.3: Cr-PSNR comparison of different demosaicking methods (dB) 

 Since PSNR is not always an accurate measure of perceived image quality we also 

provide images for subjective quality comparisons.  Figure 3.4 and Figure 3.5 show 

cropped portions of images 6 and 8, respectively, and the result of applying each 

demosaicking method to the image.  For the RGB based demosaicking methods, the 

images have been converted to YCbCr 4:2:0 format using the filter in (3.21) for the 

chroma downsampling process.  Close visual inspection of the images show that the 
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proposed method produces fewer color artifacts and results in less blurring of edges than 

the other methods.  Also note how that despite providing competitive PSNR, the method 

in [9] produces unpleasing zipper artefacts along some edges (Figure 3.4d, Figure 3.5d). 
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Figure 3.4: Comparison of demosaicking methods on a cropped portion of image 6. 

(a) original image (b) bilinear (c) method in [6] (d) method in [9] (e) YUV method in [31] 

(f) proposed method 
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Figure 3.5: Comparison of demosaicking methods on a cropped portion of image 8. 

(a) original image (b) bilinear (c) method in [6] (d) method in [9] (e) YUV method in [31] 

(f) proposed method 
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3.4 Complexity Analysis 

 A key advantage of the proposed method is the computational complexity saved by 

directly producing YCbCr 4:2:0 output rather than performing demosaicking in RGB 

space and then converting to YCbCr 4:2:0.  Table 3.4 shows a summary of the number of 

operations per pixel in the CFA image needed for the proposed demosaicking method.  

Note there are some fractional values in Table 3.4 because many equations are not 

evaluated out at every pixel location.  The number of operations performed when 

evaluating equations (3.2) and (3.4) is variable depending on the result of the 

comparisons; only the worst case complexity is shown in Table 3.4. 

 For comparison, Table 3.5 presents a complexity analysis of the method in [9], which 

is one of the lowest complexity RGB based demosaicking algorithms reported in the 

literature.  This table shows the number of operations required for demosaicking with the 

method in [9] and then converting to YCbCr 4:2:0 format.  In this analysis, the simple 

filter in equation (3.21) is used for limiting aliasing in the Cb and Cr channels and an 

efficient downsampling scheme is used (where the filtering operations are performed at 

the lower sampling rate). 
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Step Addition Shift Multiplication 

Absolute 

Value Comparison 

Green interpolation  

(worst case) 9 2.5 0 2 1 

Low-pass KR, KB 5.5 1 0 0 0 

Generating chroma 0.5 0 1 0 0 

Calculating Luma 4 0 2.75 0 0 

Total (worst case) 19 3.5 3.5 2 1 

Table 3.4: Number of operations per pixel required for the proposed method. 

Step Addition Shift Multiplication 

Absolute 

Value Comparison 

Green Interpolation 4 1.5 0 0 0 

Red Interpolation 4 0.75 0 0 0 

Blue Interpolation 4 0.75 0 0 0 

RGB to YCbCr Conversion 6 0 9 0 0 

Filtering and downsampling 

rows, Cr 1 1 0 0 0 

Filtering and downsampling 

columns, Cr 1 1 0 0 0 

Filtering and downsampling 

rows, Cb 0.5 0.5 0 0 0 

Filtering and downsampling 

columns , Cb 0.5 0.5 0 0 0 

Total 21 6 9 0 0 

Table 3.5: Number of operations per pixel required for the demosaicking method in [9] plus 

conversion to YCbCr 4:2:0 format. 

 Comparison of Tables 3.4 and 3.5 shows that the proposed demosaicking method has 

lower complexity than the method in [9].  In the worst case, our method requires slightly 

fewer additions and shift operations.  More importantly, the proposed method uses far 

fewer multiplication operations, which are expensive to implement in the low cost DSP 

(digital single processor) chips typically used in digital cameras.  The multiplications are 

required for the RGB to YCbCr conversion, so our proposed method uses fewer 
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multiplications than performing any RGB based demosaicking method and subsequently 

converting to YCbCr space.  

 The demosaicking method in [6] has considerably higher complexity than the method 

in [9], so our method has much lower complexity than that of [6].  We are not aware of 

any demosaicking methods with complexity lower or equal to [9] that provide 

comparable image quality. 

3.5 Conclusions 

 In this chapter, we have presented a fast demosaicking algorithm that directly 

produces YCbCr 4:2:0 output.  Our method saves considerable computational complexity 

by avoiding the need for performing demosaicking in the RGB colour space and then 

converting from RGB to YCbCr 4:2:0 format.    

 The proposed method generates a full green channel, and low-pass filtered, down-

sampled red and blue samples.  The green channel contains the fine detail needed to 

generate a high quality luma channel, while the low-pass R-G and B-G values allow us to 

directly compute low-pass, down-sampled chroma channels. 

 The proposed method achieves much higher PSNR than the only other demosaicking 

method that produces luma and chroma output.  It also achieves better quality than fast 

RGB based demosaicking methods, with lower complexity than performing 

demosaicking in RGB space and then converting to YCbCr 4:2:0 format. 

 Our demosaicking method prepares the image (or video) for compression.   Thus, it 

would be used in the conventional camera workflow of first performing demosaicking 
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and then compressing the image/video with standard methods.  In performing 

demosaicking to YCbCr 4:2:0 format, the number of samples is increased by a factor of 

1.5, which is somewhat undesirable.  To avoid this, in the next chapter we present 

methods for compressing a CFA video prior to demosaicking, taking advantage of the 

smaller data size. 
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4 H.264 Based Compression of Bayer Pattern Video  

4.1 Introduction 

 The conventional approach to compressing CFA data (still image or video) is to first 

perform demosaicking and then compress the resulting full colour data. This approach is 

sub-optimal because the amount of data is expanded by a factor of three in the 

demosaicking stage, which increases the compression processing time and introduces 

redundancy that the compression stage must remove. To avoid these problems, 

compression can be carried out on the CFA data prior to demosaicking. 

 In this chapter two new methods are proposed for compressing CFA video data.  One 

uses the H.264 video coding standard and one uses a modified version of the H.264. 

H.264 is the latest major video coding standard and it provides significant improvements 

in coding efficiency over previous standards such as MPEG-2.  Basing our methods on 

H.264 allows us to exploit the latest powerful video coding tools. Our first proposed 

method compresses the CFA video with standard H.264 and achieves better quality 

(measured with mean-square error) than the demosaick-first approach at high bit-rates. 

Our second method further increases compression efficiency by introducing a modified 

motion compensation scheme into H.264, alleviating problems that arise due to aliasing 

in the CFA data. Both methods are suitable for devices such as digital camcorders where 

video is encoded with high quality. 

 The rest of the chapter is organized as follows. In Section 4.2, aliasing in CFA data 

and its negative effect on video coding are discussed, providing the motivation for our 
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modified motion compensation scheme. The proposed methods for compressing CFA 

video data are described in Section 4.3. Simulation results showing the performance our 

methods relative to the conventional demosaick-first approach are presented in Section 

4.4, along with a comparison of the complexity the different approaches. Conclusions are 

presented in Section 4.5.  

4.2 Impact of Aliasing on CFA Video Coding 

 Aliasing in video has been shown to negatively impact the coding of P frames [33]. If 

there is movement between frames the effect of aliasing will be different in each frame. 

This results in low correlation between frames, and hence large P-frame size. The 

negative effect of aliasing can be reduced by using sub-pixel accurate motion vectors 

together with adaptive interpolation filters [34]. 

 CFA data can contain severe aliasing [35].  Single sensor cameras usually use an 

optical filter to limit aliasing [5]. When selecting how much filtering to use, there is a 

trade-off between limiting aliasing and capturing fine image detail. Furthermore, since 

the Bayer pattern contains more green samples than red or blue, different amounts of 

filtering are needed to limit aliasing in the different colours. If enough filtering were used 

so that there was little aliasing in the red and blue channels, then significant detail would 

be lost from the green channel which is undesirable, and defeats the purpose of sampling 

green at a higher rate than red or blue. 

 An assumption sometimes made in demosaicking research is that enough optical 

filtering is done so that if a full colour image were captured, it would contain negligible 

aliasing; however sampling with the Bayer CFA introduces aliasing [36]. Other work 
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makes the assumption that significant aliasing occurs in the red and blue channels, but 

not in the green [10],[37]. 

 The effect of aliasing in CFA video is illustrated in Figure 4.1, which shows a frame 

of red data from the “Mobile and Calender” video, and a blowup of the highlighted 

region over four successive frames. Over these frames, the calendar is moving vertically. 

Notice how the moving portion, especially the number ‘3’, looks considerably different in 

each frame due to aliasing. 

 
 

  

Figure 4.1: A frame of the red channel from the “Mobile and Calender” video (top), and a 

blowup of the highlighted region over four successive frames (bottom), illustrating the affect 

of aliasing and the low correlation between frames. 

 Advanced demosaicking algorithms attempt to reduce the effects of aliasing in each 

colour channel by using information from the other colour channels [9],[10],[37],[38].  
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An example of this is shown in Figure 4.2, which presents the four frames of red data in 

Figure 4.1 after demosaicking has been performed with the method presented in [38].   

  
 

   

Figure 4.2: The four frames of red data in Figure 4.1 after demosaicking has been 

performed. 

 Demosaicking increases the amount of red data by a factor of four, so the frames in 

Figure 4.2 are bigger than in Figure 4.1.  We observe that there is considerably more 

temporal correlation in the frames after demosaicking than there is in the original CFA 

data.  Since each CFA frame is a subset of the corresponding demosaicked frame, the 

CFA frames can be effectively predicted from the demosaicked versions of the other 

frames. 
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4.3 Proposed Methods for CFA Video Compression 

 Both of our proposed methods involve dividing the CFA data into separate arrays of 

green, blue and red data, which are compressed in 4:2:2 sampling mode.  In our first 

method, standard H.264 is used for compressing the arrays of red, green and blue. In our 

second method, a modified motion compensation (MC) scheme is also applied, where 

demosaicking is performed on the reference frames within the encoder and decoder to 

reduce the negative effects of aliasing on P-frames.  The method of creating rectangular 

arrays of each colour and arranging the data for compression with H.264 is described in 

Section 4.3.1. The modified MC scheme used in our second method is described in 

Section 4.3.2. 

4.3.1 Pixel Rearranging 

 Most video compression standards, including H.264, can only compress video of 

rectangular shape.  So in order to compress the CFA data using H.264, the pixels must be 

rearranged into rectangular arrays.  The red and blue data are sampled in a rectangular 

manner, so they can easily be separated into arrays one quarter the size of the Bayer data. 

 In [17] two options for creating rectangular arrays of quincunx sampled data are 

proposed (Figure 4.3).  These methods are applied to luma samples after a color space 

conversion in [17], but they can also be applied to the green samples directly.  If a frame 

of Bayer pattern data has dimensions MxN (height, width), the structure separation 

method involves separating the green data into two arrays of size (M/2)x(N/2), one 

containing the even column samples and the other containing the odd column samples 

(Figure 4.3c).  Implementing this method in a video codec would require extensive 
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modifications to allow four channels to be compressed together rather than the usual 

three.  Also, downsampling the green data into two separate channels introduces further 

aliasing in each channel (in addition to the aliasing introduced due to Bayer sampling the 

green channel).  In [17] a filter is applied to the green data before downsampling to limit 

the aliasing.  However, applying filtering is undesirable since it removes high-frequency 

detail which cannot be recovered later. 
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Figure 4.3: Methods for forming rectangular arrays of luma data in [17]. (a) Original luma 

arrangement (b) Structure conversion (c) Structure separation 

 The structure conversion method in [17] involves merging the two green samples 

from every group of four Bayer pattern samples into a single column, resulting in a green 

channel of size Mx(N/2).  This method does not suffer from the aliasing problems of the 

structure separation method, however the merging process does distort the data 

somewhat.  In [19] the structure conversion method is used for compressing video, where 

they compress a green channel of size Mx(N/2) together with red and blue channels of 

size (M/2)x(N/2).  Since the relative dimensions of the three colour channels do not 

correspond to any sampling scheme supported in major video coding standards, a custom 

codec was used, where the motion vectors from the green channel are reused on the red 

and blue channels, with appropriate downsampling and scaling on the motion vectors. 
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 We proposed a different structure conversion method, where the samples are merged 

into rows.  Let f(i,j) be the value of the CFA data at spatial location (i,j) within the image, 

where i donotes the row and j the column.  Let R(i,j), G(i,j) and B(i,j) denote the arrays of 

red, green and blue data after conversion to separate arrays.  The color arrays can be 

expressed in terms of the CFA data by the following equations: 
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 The array G(i,j) has dimensions (M/2)xN, B(i,j) and R(i,j) have dimensions 

(M/2)x(N/2), as illustrated in Figure 4.4.  This approach allows the data to be compressed 

in 4:2:2 sampling mode, with green data in the luma channel and red and blue data in the 

chroma channels.  Since 4:2:2 sampling support was added to H.264 with the Fidelity 

Range Extensions (FRExt) [39], the CFA data can be compressed with H.264 achieving 

the same effect as in [19] (reusing motion vectors from the green channel on the red and 

blue data) without the need for a custom codec.   Our first proposed method simply 

consists of compressing the green, blue and red arrays given by (4.1) with standard H.264 

using 4:2:2 sampling. 
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Figure 4.4: Conversion from mosaic data into separate R, G and B arrays used in our CFA 

video compression methods. 

 Our first proposed method has the advantage of using standard H.264.  In the 

following section we describe a second proposed method which increases coding 

efficiency by using a modified motion compensation scheme, at the expense of increased 

complexity. 

4.3.2 Modified Motion Compensation 

 As discussed in Section 4.2, aliasing in CFA data negatively effects P-frame coding.  

In our second proposed method we minimize this problem by performing demosaicking 

on the reference frames in the encoder and decoder for the purposes of motion 

compensation.  Each P-frame of CFA data is predicted from the demosaicked reference 

frames, providing a better prediction for the frame being coded and hence lowering the 

bit-rate.   

 In H.264, I and P frames are used for predicting other frames of the video.  After a 

frame has been encoded, it is decoded within the encoder, and the decoded version of the 

frame is used for prediction.  In our method rather than directly using the decoded frame 
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for prediction, demosaicking is first performed on the decoded frame, and the 

demosaicked frame is used for prediction.  This increases the size of the green data by a 

factor of two and the red and blue data by a factor of four.  This is illustrated in Figure 

4.5a, which shows a block of pixels from a decoded frame, and the block after 

demosaicking.  The numbers in Figure 4.5a indicate the location of each of the original 

pixels in the demosaicked frame and the unlabeled pixels are generated in the 

demosaicking process. Any demosaicking method could be used on the reference frames.  

The choice of a particular method would depend on the application and the amount of 

complexity that can be tolerated.  Different demosaicking methods are evaluated for this 

purpose in Section 4.4.2. 

 

Figure 4.5: (a) Performing demosaicking on a block of pixels from a reference frame 

(b) Sampling the demosaicked reference frame to obtain a prediction for the block when the 

motion vector is (1,0) in full pel units 

 After demosaicking, all three colour channels are up-sampled by a factor of four in 

the horizontal and vertical directions to support quarter pel accurate motion vectors.  This 
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is done using the method defined in the H.264 standard for upsampling the luma channel 

(where a 6-tap FIR filter generates the half-pel samples, and bilinear interpolation is used 

to generate quarter-pel samples). RGB data has properties more similar to luma than 

chroma, so the luma upsampling method is used to give better performance. 

 In the H.264 reference encoder, motion estimation (ME) is done on the luma channel.  

When ME is performed on RGB data, the green channel is usually used for ME [14][15], 

since the green data is more high correlated with luma than red or blue. So in our second 

proposed method, ME is done on the green channel.  Consider a green pixel at location 

(iG, jG) in a CFA frame.  After demosaicking, this pixel will be located at position (2iG,jG) 

in the demosaicked frame if jG is even and position (2iG+1,jG) if jG is odd (Figure 4.5a).  

Let Ω denote the set of coordinates of the green pixels within a block in the CFA data.  A 

motion vector (mi, mj) is calculated for the block by minimizing the sum of absolute 

differences (SAD) given by: 
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where Gdem(i,j) is the demosaicked reference frame being used for prediction.  In equation 

(4.2), the demosaicked reference frame is being sampled with shape of the green data in 

the Bayer pattern, with the motion vector controlling the relative position of the 

sampling.  After a full pel motion vector has been found with (4.2), the motion vector is 

refined to quarter pel accuracy, as is done in the H.264 reference encoder [4] (this 

basically involves minimizing the SAD given by (4.2), only now letting mi and mj take on 

values in increments of 0.25 pixels). 
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 In our method, the motion vectors calculated from the green channel are also used on 

the red and blue channels.  A red pixel at location (iR,jR) will be moved to (2iR, 2jR+1) 

after demosaicking, and a blue pixel at (iB,jB) will be moved to (2iB+1, 2jB).  In order to 

obtain a prediction for a pixel in a CFA frame using motion compensation, the motion 

vector calculated is added to the corresponding position of the pixel in the demosaicked 

frame, and the demosaicked frame is sampled at that position.  Let Bdem(i,j), and Rdem(i,j) 

be the values of the demosaicked frame being used for prediction, and the motion vector 

for a block of CFA data be (mi, mj). Then the predictions for the CFA pixels in the block 

will be: 

( )
( )
( )

( ) ( )
( ) ( )

jRiRdemRRpred
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   (4.3) 

 As an example, consider the task of predicting the 8x4 block of CFA pixels in Figure 

4.5a in a future frame when the motion vector is (1,0) in full pel units. Figure 4.5b shows 

how the demosaicked frame is sampled to obtain a prediction for the block.  The white 

squares represent pixels that are obtained by edge replication. 

 In summary, our MC scheme uses demosaicked versions of reference frames to 

predict the CFA frame being coded.  This takes advantage of the increased temporal 

correlation of frames after demosaicking has been performed, without the need for 

compressing the larger demosaicked frames themselves. 



61 

4.4 Results 

4.4.1 Testing Methodology 

 To evaluate the performance of our compression schemes two videos from the SVT 

High Definition Test Set [40], CrowdRun and OldTownCross, were used in our 

simulations.  The CrowdRun sequence is a shot of hundreds of marathoners running 

through a park. It contains a high amount of motion due to the runners and also slight 

camera motion.  The OldTownCross sequence is an aerial shot of a European city 

containing camera motion.  Both videos contain large amounts of fine detail (high 

frequency image content).  Screenshots of the test videos are shown in Figure 4.6. 
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Figure 4.6: Screenshots of the test videos, CrowdRun (top) and OldTownCross (bottom). 
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 These videos were digitized at a resolution of 3840x2160, 16 bits per (RGB) colour 

plane, 50 frames/sec.  We down-sampled and cropped the videos to give 720x480, 8 bit 

RGB data at 25 frames/sec. This is the quality of video typically captured by consumer 

digital camcorders, our target application.  CFA videos were obtained by sampling the 

RGB videos with the Bayer pattern. 

 In all tests, 60 frames of each video were compressed, with I-frames inserted every 15 

frames. CABAC and B-frames were disabled to lower the encoding complexity (these 

features are not likely to be used in digital camcorders).  In the ME process, two 

reference frames were used and the search range was ±16 integer pixels. 

4.4.2 Demosaicking Algorithm Choice 

 Here we evaluate the effectiveness of different demosaicking algorithms for use in 

our modified motion compensation scheme.   

 Three different demosaicking algorithms were tested; bilinear interpolation, an edge-

sensing method by Hamilton and Adams using Laplacian second order correction terms 

[6]  (referred to as Laplacian), and a state-of-the-art method based on estimating luma 

from the CFA data [38].  These algorithms vary in complexity and the quality of image 

they produce; bilinear interpolation has very low complexity but gives the poorest image 

quality. The luma-based method gives much better image quality (in terms of mean-

square error) but has significantly greater computational cost.  Laplacian demosaicking is 

intermediate in both image quality and complexity.   
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 Rate-distortion curves obtained using different demosaicking algorithms for MC are 

shown in Figure 4.7.  Here, the PSNR of the CFA data itself is measured (as opposed to 

measuring quality after demosaicking has been performed).  Results are shown for our 

proposed MC scheme with each demosaicking algorithm, as well as compressing the 

CFA video with a standard H.264 encoder in 4:2:2 sampling mode (without our proposed 

MC scheme).    
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Figure 4.7: Plots of PSNR (of the CFA data) vs. bit rate for the two test videos obtained 

when different demosaicking algorithms are used for motion compensation. 
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 The results for both videos show there is substantial benefit in using our MC scheme.  

The bit-rate reductions for the CrowdRun sequence are about 4%, 10%, and 12% using 

bilinear, Laplacian and luma-based demosaicking, respectively.  Greater bit rate 

reduction is obtained on the OldTownCross sequence, up to 15% using bilinear, 43% 

using Laplacian and 48% using luma-based demosaicking.  The OldTownCross sequence 

experiences greater bit-rate reduction when our MC scheme is used because that video 

contains camera motion.  In general MC is very effective on videos with camera motion, 

because the picture experiences simple translational motion.  When the motion is more 

complicated, such as the motion the marathoners in the CrowdRun sequence, MC is less 

effective, and thus enhancing MC provides less benefit.  

 These results show that the more advanced demosaicking schemes provide significant 

bit-rate reductions over simple demosaicking such as bilinear.  Using Laplacian 

demosaicking for MC provides bit rates almost as low as the luma-based demosaicking 

method with considerably lower complexity, so Laplacian demosaicking is used in the 

rest of our tests. 

4.4.3 Quality Comparison Against Demosaick-First Approach 

 In this section we compare our two methods against the conventional demosaick-first 

approach.  When comparing to the demosaick-first approach, the quality of the final RGB 

video, after both compression and demosaicking have been performed, needs to be 

measured.  The quality measure used here is the Composite Peak Signal to Noise Ratio 

(CPSNR), which has been used in previous work on compressing CFA data [17],[19].  

The CPSNR is calculated as the standard PSNR, but with the mean-square error 
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evaluated across the red, green and blue colour channels.  The CPSNR for one frame of 

video with 8 bit data is given by: 
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where k denotes the colour component (R, G, or B),  Icomp(i,j,k) is the compressed video 

after demosaicking, and Iref(i,j,k) is the reference video against which quality is measured.  

The reference is taken as the video obtained by demosaicking the CFA data without any 

compression.  Thus, the reference video represents the best quality that can be obtained 

from the CFA data with a given demosaicking algorithm.  The CPSNR for a video is 

taken to be the average CPSNR of the frames in the video. 

 The proposed methods were compared against the conventional demosaick-first 

approach.  The demosaick-first results were obtained by demosaicking the CFA data 

(with the Laplacian method), converting from RGB to YUV and compressing with 

standard H.264.  Results are presented for the demosaick-first approach using both YUV 

4:2:0 and YUV 4:2:2 format during compression.  Plots of CPSNR vs. bit-rate for the two 

test videos are shown in Figure 4.8.  
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Figure 4.8: Plots of CPSNR (measured after compression and demosaicking) vs. bit rate. 
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 Both proposed methods outperform the conventional demosaick-first approach at 

high bit-rates.  This is primarily because the proposed methods compress data one third 

the raw size of the demosaick first approach.  The proposed methods do not perform well 

at low quality levels.  Highly compressing the CFA data removes detail necessary for 

demosaicking, and may introduce blocking artefacts which are interpreted as edges in the 

demosaicking process.  Consequently demosaicking does not work well on highly 

compressed data. This problem obviously does not arise when demosaicking is performed 

prior to compression. 

4.4.4 Complexity Comparison 

 In the conventional demosaick-first approach, a video of size MxN is compressed, 

usually in YUV 4:2:0 format, resulting in 1.5MN total samples. In either of our proposed 

methods, a video of size (M/2)xN is compressed in 4:2:2 format, which requires MN 

samples. Hence our proposed methods require two-thirds the number of samples to be 

compressed as the demosaick-first approach. Although the input video size is smaller in 

our proposed methods, the video will have more detail (high-frequency image content) as 

each frame has effectively been downsampled by a factor of two in the vertical direction. 

 The most computationally expensive operation of an H.264 video encoder is motion 

estimation (ME), which typically accounts for about 65% of the encoding time [41]. The 

complexity of ME varies greatly based on the algorithm used. If a full-search is used, the 

complexity of ME in either of our proposed methods will be about half that of the 

demosaick-first approach, since the luma channel has half the size. If a fast, content 

adaptive ME method is used, the ME complexity reduction obtained by using our 
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methods will be variable. Other significant functions that contribute to H.264 encoder 

complexity are intra prediction, interpolation, transform and quantization, loop filtering 

and entropy encoding [41]. With the exception of interpolation, the computational 

complexity of these functions varies depending on the video content. Generally video 

with more detail requires more computations. For these functions, our proposed methods 

will require fewer computations than the demosaick-first approach, but not by a factor of 

two-thirds since the smaller video will contain more detail. 

 The number of calculations for interpolation varies in our two methods. In Method 1 

(standard H.264), luma interpolation requires half the number of computations of the 

demosaick-first approach, and chroma interpolation requires the same number of 

operations, due to the relative channel sizes. In Method 2 (Modified MC), the luma 

interpolation filter is applied to all of the red, green and blue channels. Therefore the 

same number of luma interpolation calculations are required as in the demosaick-first 

approach, because the combined size of the R, G, and B channels is the same as the size 

of the luma channel in the demosaick-first approach. However, no chroma interpolation 

calculations are required in Method 2. Therefore fewer interpolations operations are 

required in both proposed methods than in the demosaick-first approach. 

 In Method 1 (using standard H.264), demosaicking does not have to be performed at 

the encoder, which saves some computations relative to the demosaick-first approach. In 

Method 2, demosaicking is performed at the encoder, so the same number of 

demosaicking calculations are required as in the demosaick-first approach. 
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 The most time consuming operations in H.264 video decoding are loop filtering, 

interpolation, inverse transform and quantization, and entropy decoding [42]. With the 

exception of interpolation, the amount of computations required for these operations is 

highly content and bit rate dependent. In general, videos with more detail require more 

computations. Hence the amount of computations required for the loop filter, inverse 

quantization and entropy decoding will be lower in the proposed method due to the 

smaller frame size, but not by a factor of two-thirds because the video will have more 

detail. Our proposed methods will require two-thirds the number of inverse transform 

calculations, because the amount of calculations required to perform the inverse 

transform is not content dependent. The relative number of interpolation calculations is 

the same at the encoder and decoder; so our proposed methods require fewer 

interpolation calculations than the demosaick-first approach at the decoder as well. In 

either of our proposed methods, the decoder will have to perform demosaicking, which it 

would not in the demosaick-first approach. The decoder complexity of our proposed 

methods relative to the demosaick-first approach will depend on the video coding options 

used and the demosaicking algorithm. 

 On average, H.264 decoding of a QCIF sized frame (176x144) requires 30-40 million 

RISC operations [43], which corresponds to about 1200-1600 operations per pixel. By 

comparison, the Laplacian demosaicking method in [6] requires about 60 operations per 

pixel (the exact number will be dependent on the hardware and software implementation 

details). Hence, if a computationally efficient demosaicking method is used, 

demosaicking will only take a small fraction, around 4-5%, of the decoding 

computations. This means that both proposed methods will have lower decoder 



72 

complexity than the demosaick-first approach, due to the smaller frame size of the 

encoded video. 

4.4.5 Comparison Against Method in [19] 

 In order to compare our proposed methods against the method in [19], we use two 

standard test videos, foreman and carphone, for which results are presented in [19].  

These videos are of QCIF resolution (176x144) and sampled at 30 frames/sec.  Both 

videos were compressed at three quality levels and the resulting bit-rates are summarized 

in Table 4.1.  The results for the method in [19] are taken directly from that paper.  Both 

of our methods give far lower bit rates than the method in [19].  The bit rate reductions 

achieved range from 68% to 83% for our first method using standard H.264, and 76% to 

90% for our second method using modified MC.  Because are methods are based on 

H.264, which is a highly optimized, efficient video coding standard, they achieve much 

better compression than the custom built method in [19]. 

Bit-rate (Kbps) 

Video 
CPSNR 

(dB) Method 

in [19] 

Proposed Method 1: 

Standard Encoder 

Proposed Method 

2: Modified MC 

29.4 1360 246 182 

32.5 2080 478 350 Foreman 

36.0 2780 882 664 

27.2 812 100 90 

30.0 1154 194 166 Carphone 

34.5 1850 458 370 

Table 4.1: Bit Rate Comparison of our proposed methods with the method in [19]. 



73 

4.5 Conclusions 

 In this chapter, we have proposed two methods for compressing Bayer pattern CFA 

video prior to demosaicking.   Our first method involves separating the CFA data into 

arrays of green, blue and red samples and compressing in 4:2:2 sampling with standard 

H.264.  In our second method, a modified motion compensation scheme is also used, 

where demosaicking is performed on the references frames in the encoder and decoder in 

order to alleviate problems due to aliasing in the CFA data.  Both proposed methods give 

better compression efficiency than the conventional demosaick-first approach at high bit-

rates, and much better performance than the only previously proposed method for 

compressing CFA video prior to demosaicking. 
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5 Conclusions and Future Work  

5.1 Conclusions 

 In this thesis, two means of jointly optimizing demosaicking and compression in 

single sensor cameras are investigated:  1) Creating a demosaicking algorithm that 

directly produces an image in the format used for compression (YCbCr 4:2:0), and 2) 

Compressing CFA video data prior to demosaicking, taking advantage of the smaller raw 

data size before demosaicking has been performed.    

 In Chapter 3, a new demosaicking method is proposed which directly generates an 

YCbCr 4:2:0 output image.  This allows the image to be directly compressed after 

demosaicking, avoiding the need for a separate stage where the image is converted from 

RGB to YCbCr space.  The proposed method provides better image quality than fast 

RGB based demosaicking methods and has lower computational complexity.  

 In Chapter 4, two methods for compressing colour filter array videos prior to 

demosaicking are proposed.  Our first method uses standard H.264, and involves 

separating the CFA data into arrays of green, blue and red which are compressed in 4:2:2 

sampling mode.  Our second method also uses GBR 4:2:2 sampling, but with a modified 

motion compensation scheme where demosaicking is performed on reference frames.  

This alleviates problems due to aliasing in the CFA data.  Both proposed methods given 

better compression efficiency than the standard demosaick-first approach at high bit-

rates, and give far better performance than the only other method for directly 

compressing CFA video.   
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5.2 Future Work 

 Our demosaicking method that produces YCbCr 4:2:0 output works strictly on still 

images.  If it were applied to a video sequence, the demosaicking would be done on each 

frame independently, only using information from the current frame.  When performing 

demosaicking on a video, additional information is available from other frames.  The 

demosaicking method could be altered to take into account temporal correlation within a 

sequence, which may improve performance.  

 In our work on compressing CFA video prior to demosaicking, we have relied on 

existing demosaicking methods for producing the final RGB video after demosaicking 

and compression.  Instead, the demosaicking could use knowledge of how the data was 

compressed.  Given knowledge of how a video has been degraded in the compression 

process, a demosaicking method could be designed to produce the highest quality image 

possible given the amount of compression that has been applied. 
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Appendix A – List of Acronyms 

AWB auto white balance 

CCD charge-coupled device 

CFA Colour filter array 

CIE Commission Internationale de l'Eclairage 

(International Commission on Illumination) 

CMOS Complementary Metal Oxide Semiconductor 

CPSNR Composite peak signal-to-noise ratio  

DCT Discrete cosine transform 

FIR  Finite impulse response  

JPEG Joint Photographic Experts Group 

MC Motion compensation 

ME Motion estimation 

MPEG Moving Picture Experts Group 

PSNR Peak signal-to-noise ratio 

sRGB standard red, green, blue (colour space) 

 


