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Abstract—Given the uncertainty in load demand and renew-
able energy sources, the distribution network reconfiguration
(DNR) problem is a stochastic mixed-integer nonlinear opti-
mization program with a running time that scales exponentially
with the number of sectional and tie line switches. Stochastic
optimization techniques require knowledge of the stochastic
processes of the uncertain parameters, which may not be avail-
able in practice. This paper addresses both the scalability and
uncertainty issues in solving the DNR problem by developing a
deep reinforcement learning (DRL) algorithm that determines the
optimal topology using a transformer deep neural network (DNN)
architecture, and subsequently solves an AC optimal power flow
(OPF) problem to satisfy the operation constraints. A neural
combinatorial optimization algorithm is applied to train the
DNN, which penalizes infeasible solutions. Simulations on a 119-
bus test system show that our proposed algorithm can obtain
a near-optimal solution to the stochastic DNR problem with a
small gap (i.e., 4.7% on average) from the objective value of
the deterministic DNR problem. When compared with existing
learning-based DNR algorithms in the literature, our proposed
algorithm can obtain at least 11% lower objective value. We
demonstrate the scalability of our proposed algorithm in larger
systems with 595, 1190, and 3570 buses.

Keywords: deep reinforcement learning, distribution network
reconfiguration, neural combinatorial optimization algorithm,
optimal power flow, transformer deep neural network.

I. INTRODUCTION

Dynamic reconfiguration of distribution networks is an
effective approach for distribution network operators (DNOs)
to enable network operation to be more resilient, especially
during times with greater power demand, intermittent power
supply, or transmission line failures. The solution of the dis-
tribution network reconfiguration (DNR) problem determines
the status of the sectional and tie line switches to change the
network topology. The DNR problem is typically formulated
as a mixed-integer optimization program with the objective of
minimizing the power losses, switching equipment wear-and-
tear, cost of load interruption, and operation cost of backup
generators, subject to the network operating constraints [1].

Remote-control switches play a crucial role in the reconfig-
uration of distribution networks. Although present-day distri-
bution networks are still far from the extensive remote-control
switching capability considered in this paper, industry efforts
demonstrate a noticeable upward trend towards promoting
and developing remote-control solutions for the distribution
network automation. For example, Siemens [2] has developed
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a suite of distribution automation products that enable remote
monitoring and control of switches with advanced features
such as high-speed fault isolation and voltage regulation.
Another example is the SCADA-mate switching system devel-
oped by S&C Electric Company [3], which allows for remote
operation of the distribution networks to enhance efficiency
and controllability. Other contributors such as Schneider Elec-
tric [4], Hubbell Power Systems [5], and G&W Electric
[6] are proposing remote-control solutions to make the grid
more adaptable and resilient. Moreover, Switched Source [7],
has proposed advanced switching technologies to enhance
distribution networks flexibility, making the system restoration
faster and automated. Additionally, companies such as Allied
Power and Control [8] and Caterpillar [9] are broadening
the applications of remote-control switches with a range of
solutions from panel-mounted devices to advanced switchgear
systems. These industry efforts suggest growing recognition
of long-term advantages of such investments to justify the
initial costs of installing a large number of remote-control
switches. Moreover, they signal broader adoption of remote-
control switches useful for DNR in the near future.

The uncertainty in renewable energy sources and price
responsive loads becomes more difficult to mitigate when
the topology reconfiguration actions affect the operation of
the distribution network in future time intervals due to inter-
temporal operating constraints (e.g., constraint on the number
of switching actions, ramp constraint for the backup diesel
generators [10]). Furthermore, to guarantee a feasible network
topology solution that satisfies system operating constraints,
the DNR problem should embed the nonlinear AC power flow
equations as constraints [11]–[13]. The consideration for the
AC power flow equations and the uncertainty in generation and
load render the DNR problem to be a stochastic mixed-integer
nonlinear program (MINLP), which is difficult to solve.

There have been a number of efforts to solve the DNR
problem with uncertainty in generation and load demand. We
divide our review of the related work into two main categories.
The first line of research focuses on applying optimization
techniques such as approximate dynamic programming [14],
stochastic optimization [15], [16], robust optimization [17],
[18], second-order cone programming (SOCP) [19], [20],
model predictive control [21], branch-and-bound algorithm
[22], convex relaxation [23], and heuristic methods [24]–[29]
to solve the DNR problem with uncertainty in generation and
load demand. However, the aforementioned techniques require
stochastic models of uncertain parameters. Furthermore, due to
the computational complexity of the combinatorial optimiza-
tion problems, it is a challenge to apply these techniques in
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large-scale distribution systems with many buses and switches.
The second line of work addresses the potential limitations

of optimization-based methods by applying learning-based
algorithms to solve the DNR problem. Li et al. in [30]
applied reinforcement learning to solve a multi-objective DNR
problem, but the uncertainty in the generation and load demand
was not considered. Huang et al. in [31] deployed deep
convolutional neural networks to select a near-optimal network
topology in the DNR problem with short-term voltage stability
constraints. However, short-term planning does not guarantee
long-term optimal operation of the distribution network with
uncertainty in generation and load demand. To address long-
term operation, Gao et al. in [32] applied deep reinforcement
learning (DRL) with the actor-critic method to solve the DNR
problem. Wang et al. in [33] developed a DNR algorithm using
deep Q-learning with perturbations of the network weights to
improve exploration during training. Zhang et al. in [34] stud-
ied DNR for service restoration in distribution networks and
applied imitation learning to leverage prior information about
the uncertain parameters. The proposed approaches in [32]–
[34] are based on off-policy training method with historical
data for power flow in different configuration scenarios of the
distribution network, which may not be available in practice.
Hence, the aforementioned algorithms may not guarantee a
feasible power flow in the distribution network. To incorporate
real-time variability of the uncertain parameters into the policy
learning and decision-making, Li et al. in [35] proposed a
safe DRL algorithm that hinges on constrained on-policy
training method for the operation of the distribution networks.
Moreover, Wang et al. in [36] developed a deep learning
algorithm with on-policy approach to train a graph neural
network that integrates the topology information of distribution
networks into the learning and reconfiguration process. The
algorithms proposed in [35] and [36] incorporate all network
constraint violations as a penalty term in the objective func-
tion. While this strategy aids in penalizing infeasible solutions,
the learning process can become highly sensitive to the penalty
arising from constraint violations. This sensitivity can lead to
diminished learning efficacy, particularly in large distribution
networks, where understanding the feasibility of the action
space in accordance with the network constraints is crucial
for operation in practical distribution networks.

Unlike [32]–[34], in this paper, we take into account the
distribution network constraints during the learning process to
guarantee a feasible AC power flow solution to the DNR
problem. Different from [35] and [36], our method integrates
network constraints into an AC optimal power flow (OPF)
problem, penalizing only infeasible binary solutions. This
targeted approach facilitates the learning of feasible switch op-
erations, load management, and backup generator deployment.
Moreover, distinct from our previous work [37] that develops
a fast optimization solver for the day-ahead unit commitment
problem, the focus of this paper is online decision making
for real-time distribution network reconfiguration. While [37]
assumes a deterministic load forecast is available, the proposed
DRL-based algorithm accounts for uncertain demand and re-
newable generation without explicit probabilistic or statistical
model. The main contributions of this paper are as follows:

• DRL-based Algorithm Design: To tackle the uncertainty
in the renewable generation and load demand, we for-
mulate a Markov decision process (MDP) and develop
a DRL algorithm with actor-critic method to solve the
DNR problem. We use two deep neural networks (DNNs)
corresponding to the policy and relative value function
for the expected average cost, respectively. A multi-
layer perceptron DNN for the critic computes the relative
value function. For the policy, we develop a transformer
DNN architecture [38], [39], in order to obtain the set
of optimal binary variables associated with the switches,
interrupted loads, and operating backup diesel generators.
We demonstrate that the solution to the relaxed version of
the DNR problem can be used as an input for the policy
network to accelerate the learning process. The trained
actor and critic DNNs can be used to determine a near-
optimal solution to the DNR problem in each time slot.

• Feasibility of AC Power Flow Constraints: It is difficult
to obtain a policy that satisfies the AC power flow
constraints. We decouple the tasks of obtaining a feasible
power flow in the distribution network and obtaining
binary variables. We apply a neural combinatorial op-
timization algorithm to train the policy DNN, which
penalizes infeasible power flow solutions. To tackle the
nonconvex AC power flow constraints, we apply convex
relaxation techniques to transform the original DNR
problem into an SOCP for a given binary solution. Thus,
a single instance of SOCP can be solved in polynomial
running time to obtain a feasible power flow, even in
large-scale distribution networks.

• Performance Evaluation: Simulations are performed on a
119-bus distribution system to evaluate the performance
of the proposed algorithm. Results show that the actor
and critic DNNs can be trained in about 5000 iterations,
which is acceptable for learning with historical sample
data. We show that by performing multiple rounds of
forward propagation, the trained policy DNN always
obtains a feasible solution for the binary variables and
power flow in the distribution network. Results also show
that the solution obtained by our proposed algorithm
is near-optimal with an average gap of 4.7% from the
optimal solution of a deterministic DNR problem with
complete information about future load demand and re-
newable generation in ten days. When compared with the
algorithm in [32], the gap between the expected average
cost with our proposed algorithm is 11% smaller. Also,
our proposed algorithm outperforms the approaches in
[35] and [36], which penalize all operation constraints,
by achieving 24.5% lower expected average cost. We also
demonstrate the scalability of our proposed algorithm by
solving the stochastic DNR problem in large test systems
with 595, 1190, and 3570 buses.

The remainder of this paper is organized as follows. In Section
II, we formulate the DNR problem as an MDP. In Section III,
we propose a DRL algorithm to solve the underlying MDP.
Section IV evaluates the performance of the proposed algo-
rithm via simulations. We conclude the paper in Section V.
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II. MDP FORMULATION OF THE DNR PROBLEM

Consider a distribution network consisting of a set of buses
N = {1, . . . , N} and a set of transmission lines L ⊆ N ×N .
Let N sub ⊂ N denote the set of substation buses. We use
N− = N \ N sub to denote the set of buses other than the
substation buses. Bus n ∈ N− may be connected to a backup
diesel generator or renewable sources, e.g., photovoltaic (PV)
systems or wind energy conversion systems. The network
reconfiguration can be performed as part of a long-term plan
with look-ahead flexibility in anticipating operational issues,
e.g., power supply shortage in substation buses and failure
in branches. Hence, we consider the DNR problem with an
infinite operation horizon denoted by a set T = {1, 2, . . . } of
time slots with equal duration ∆t (e.g., 15 minutes). The
inherent variability of renewable energy sources, combined
with the unpredictable nature of load demands, can affect the
network’s operational dynamics. Thus, by integrating these
sources of uncertainty, our approach aims to provide a more
practical and adaptive solution for the DNR problem. We
formulate the DNR problem as an MDP with expected average
cost [40, Ch. 3] because the state of the distribution network
in the next time slot depends only on the state in the current
time slot and the operation action taken. This study introduces
a comprehensive framework for DNR that incorporates not
only switch operations but also the deployment of backup
generators and the management of flexible loads during de-
mand peaks or power deficit. The proposed approach is aligned
with real-world operational goals of DNOs to maintain secure
and resilient distribution systems. We develop a DRL algo-
rithm that learns to guarantee the inter-temporal constraints
and results in a near-optimal solution while satisfying power
flow constraints. Next, we describe the system state, action,
operating constraints, policy, cost, and relative value function.

A. System State

Variables pertinent to the feasibility of network reconfigura-
tion in time slot t ∈ T include the state for the switches, loads,
backup generators, renewable sources, and supplied power
from substation buses. The DNO determines the topology of
the distribution network in time slot t by setting the binary
variable αmn,t ∈ {0, 1} to close (i.e., αmn,t = 1) or open
(i.e., αmn,t = 0) the switch on line (m,n) ∈ L. In order to
mitigate the practical wear-and-tear cost of closing or opening
the switches, we impose the limit tsw for the number of time
slots between two consecutive status changes for a switch on
line (m,n) ∈ L. We define the binary variable λmn,t ∈ {0, 1}
to indicate whether the status of a switch on line (m,n) ∈ L is
changed in time slot t (i.e., λmn,t = 1) or not (i.e., λmn,t = 0).
We also define the auxiliary variable Λmn,t ∈ [0, 1] as the
indicator that whether the status of a switch on line (m,n) ∈ L
is changed in the previous tsw− 1 time slots (i.e., Λmn,t > 0)
or not (i.e., Λmn,t = 0). As part of the control action in
time slot t, binary variable dn,t ∈ {0, 1} indicates whether
to serve (dn,t = 1) or disconnect (dn,t = 0) the load at
bus n ∈ N−. Let PDn,t

and QDn,t
, respectively, denote

the active-power and reactive-power components of the load
demand at bus n in time slot t. Backup diesel generators can

be used in case of generation shortage. The binary variable
un,t ∈ {0, 1} indicates whether the diesel generator at bus
n ∈ N− is on (un,t = 1) or off (un,t = 0) in time slot t.
Let PGn,t

and QGn,t
, respectively, denote the active-power

and reactive-power outputs of the backup generator at bus n
in time slot t. Let P r

Gn,t
and Qr

Gn,t
, respectively, denote the

active- and reactive-power outputs of the renewable sources at
bus n in time slot t. Let P sub,max

Gn,t
denote the upper limit for the

active-power supply at the substation bus n ∈ N sub in time t.
The system state in time slot t ∈ T includes the status of the

switches at the end of previous time slot t−1, the on/off status
and the setpoint of backup generators at the end of previous
time slot t− 1, the active- and reactive-power components of
the load and the renewable generation, and the upper limit for
the active-power supply at substation buses in current time slot
t. We define system state in time slot t as st = ((αmn,t−1,
λmn,t−1, Λmn,t−1, (m,n) ∈ L), (un,t−1, PGn,t−1

, PDn,t
,

QDn,t
, P r

Gn,t
, n ∈ N−), (P sub,max

Gn,t
, n ∈ N sub)). We use

S to denote the set of system states. Let x(st) and x(st),
respectively, denote the values taken by scalar and vector
variables x and x in state st ∈ S in time slot t ∈ T .

B. Action and Operating Constraints

The action in state st ∈ S includes the decision variables to
control the switches, backup generators, loads, and power flow
in the distribution network. Given st ∈ S, the binary decision
variables include

αmn(st), un(st), dn(st) ∈ {0, 1}, (m,n) ∈ L, n ∈ N−. (1)

We assume that the DNO has complete knowledge regarding
the network’s topology. This assumption allows us to make
informed decisions about reconfiguration, ensuring that the
resulting network configuration is both feasible and optimized
for the given operational conditions. The distribution network
typically operates in a radial topology and must remain con-
nected. That is, by considering an arbitrary bus as the root
bus, any subset of buses should not be isolated from the root.
We set bus N to be the root bus. We define binary variable
βmn(st), (m,n) ∈ L and use the following spanning tree
constraints in state st ∈ S:∑
(m,n)∈L

αmn(st) = N − 1, (2a)

∑
(m,n)∈L

βmn(st)−
∑

(n,k)∈L

βnk(st) = 1, n ∈ N \ {N}, (2b)

∑
(m,N)∈L

βmN (st)−
∑

(N,k)∈L

βNk(st) = −N + 1, (2c)

0 ≤ βmn(st) ≤ αmn(st), (m,n) ∈ L. (2d)

Constraint (2a) is a necessary condition for a radial topology
for the distribution system, ensuring that the network is
connected but with no cycles. Constraints (2b)−(2d) guarantee
that no subset of buses is isolated from reference bus N to
maintain the connectivity of the distribution network.

The limit tsw for the number of time slots between two
consecutive status changes for a switch on line (m,n) ∈ L
imposes an inter-temporal constraint

∑t
t′=t−tsw

∣∣αmn(st′) −
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αmn(st′−1)
∣∣ ≤ 1 for t′ > 1. It implies that the switching

action for a switch on line (m,n) ∈ L in the current time
slot t depends on the switching actions in the previous tsw

time slots. To formulate the problem as an MDP, we perform
some algebraic manipulations to obtain a set of inter-temproal
constraints that only contain the decision variables for the
current time slot t and the previous time slot t − 1. If the
value of the auxiliary variable Λmn(st) = 0, then the status
of a switch on line (m,n) ∈ L has not been changed in the
previous tsw−1 time slots. Therefore, the status of the switch
on line (m,n) ∈ L can be changed in time slot t. Otherwise,
the status of the switch on line (m,n) ∈ L remains unchanged
in time slot t. We have the following inter-temporal constraints
for the switch on line (m,n) ∈ L in time slot t ∈ T :

Λmn(st) = max
{

0, (Λmn(st−1)− ε)(1− λmn(st−1))
}

+ λmn(st−1), (3a)
λmn(st) + Λmn(st) ≤ 1, (3b)

λmn(st) =
∣∣αmn(st)− αmn(st−1)

∣∣, (3c)

where ε = 1/tsw is a positive constant.
Let Pmin

Gn
and Pmax

Gn
, respectively, denote the lower and upper

limits for the active-power output of the diesel generator at
bus n ∈ N−. We denote the maximum ramp-up and ramp-
down rates for the diesel generator at bus n by ru

n and rd
n,

respectively. For n ∈ N− and st ∈ S, we have

un(st)P
min
Gn
≤ PGn

(st) ≤ un(st)P
max
Gn

, (4a)
PGn

(st)− PGn
(st−1) ≤ un(st−1) ru

n, (4b)

PGn
(st−1)− PGn

(st) ≤ un(st−1) rd
n. (4c)

As a synchronous generator, the loading capability of the
diesel generator at bus n determines the limit for its reactive-
power output. The loading capability is obtained by the limits
for the generator armature current, field current, and under-
excitation [41, Ch. 5]. For n ∈ N− and st ∈ S, we have(
PGn

(st)
)2

+
(
QGn

(st)
)2 ≤ un(st)

(
Pmax
Gn

(st)
)2
, (5a)(

PGn
(st)

)2
+
(
QGn

(st)−Qf
Gn

)2 ≤ (Qmax
Gn
−Qf

Gn

)2
, (5b)(

PGn
(st)

)2
+
(
QGn

(st)−Qe
Gn

)2 ≤ (Qe
Gn
−Qmin

Gn

)2
, (5c)

where Qmin
Gn

and Qmax
Gn

, respectively, denote the lower and upper
limits for the reactive-power output of the diesel generator at
bus n, and Qf

Gn
and Qe

Gn
are positive and negative constant

parameters, respectively, which depend on the stator and rotor
heat limits of the diesel generator at bus n.

The reactive-power output of the renewable source at bus n
is limited by lower bound Qr,min

Gn
and upper bound Qr,max

Gn
. For

n ∈ N− and st ∈ S, we have

Qr,min
Gn
≤ Qr

Gn
(st) ≤ Qr,max

Gn
. (6)

The active-power supply at the substation bus n ∈ N sub is
limited by P sub,max

Gn
(st) in state st. We have

0 ≤ P sub
Gn

(st) ≤ P sub,max
Gn

(st), st ∈ S, n ∈ N sub. (7)

Next, we describe the power flow constraints imposed by
the distribution network. In our framework, we assume com-
plete and accurate information concerning the parameters of

network transmission lines and the admittance matrix. This de-
tailed knowledge enables us to precisely compute power flows
and losses, ensuring that the reconfiguration decisions adhere
to the operational constraints of the distribution system. We
use the lumped-element Π model for transmission lines [42].
Let rmn and xmn, respectively, denote the series resistance
and reactance for line (m,n)∈L. Let gn and bn, respectively,
denote the shunt conductance and susceptance for bus n ∈ N .
Let Pmn(st) and Qmn(st), respectively, denote the active- and
reactive-power flow on line (m,n) ∈ L from bus m to bus n
in state st. Let Vn(st) denote the voltage phasor of bus n in
state st. We define variable zn(st) = |Vn(st)|2 as the squared
voltage magnitude of bus n in state st. Let Imn(st) denote the
current phasor for line (m,n) in state st. We define variable
`mn(st) = |Imn(st)|2 as the squared current magnitude for
line (m,n) in state st. Let Qsub

Gn
(st) denote the reactive-power

injected into the substation bus n ∈ N sub in state st. We have
the following active- and reactive-power balance equations:

P inj
n (st) =

∑
(n,k)∈L

Pnk(st)−
∑

(m,n)∈L

(
Pmn(st)

− rmn`mn(st)
)

+ gnzn(st), n ∈ N , (8a)

Qinj
n (st) =

∑
(n,k)∈L

Qnk(st)−
∑

(m,n)∈L

(
Qmn(st)

− xmn`mn(st)
)

+ bnzn(st), n ∈ N , (8b)

where P inj
n (st) and Qinj

n (st), respectively, are the active- and
reactive-power injected into bus n ∈ N . For substation bus
n ∈ N sub, we have P inj

n (st) = P sub
Gn

(st) and Qinj
n (st) =

Qsub
Gn

(st). For bus n ∈ N−, we have P inj
n (st) = PGn

(st) +

P r
Gn

(st) − dn(st)PDn(st) and Qinj
n (st) = QGn(st) +

Qr
Gn

(st)− dn(st)QDn
(st).

Given system state st, the difference of the squared voltage
magnitudes for the buses on line (m,n) ∈ L is obtained as
zm(st)− zn(st) = (r2mn + x2mn)`mn(st)− 2

(
rmnPmn(st) +

xmnQmn(st)
)
. This equality constraint is equivalent to the

following two inequality constraints for (m,n) ∈ L:

zm(st)− zn(st) ≤M
(
1−αmn(st)

)
+ (r2mn + x2mn)`mn(st)

− 2
(
rmnPmn(st) + xmnQmn(st)

)
, (9a)

zm(st)− zn(st) ≥ −M
(
1−αmn(st)

)
+(r2mn+x2mn)`mn(st)

− 2
(
rmnPmn(st) + xmnQmn(st)

)
, (9b)

where M is a sufficiently large parameter (e.g., M = 103). The
squared apparent power flow from bus m to bus n, (m,n) ∈ L,
in state st ∈ S, can be obtained as follows:

`mn(st) zm(st) =
(
Pmn(st)

)2
+
(
Qmn(st)

)2
. (10)

We denote the lower and upper limits of the voltage mag-
nitude at bus n ∈ N by V min

n and V max
n , respectively. Let Imax

mn

denote the upper limit of the current magnitude in line (m,n).
The following constraints express the limits on the voltage
magnitude of buses and current magnitude of lines in st ∈ S:

(V min
n )2 ≤ zn(st) ≤ (V max

n )2, n ∈ N , (11a)

`mn(st) ≤ αmn(st)(I
max
mn )2, (m,n) ∈ L. (11b)
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In summary, the action in state st ∈ S is defined as
vector a(st) = ((αmn(st), βmn(st), λmn(st), Qmn(st),
`mn(st), (m,n) ∈ L), (un(st), PGn(st), QGn(st), Qr

Gn
(st),

dn(st), n ∈ N−), (P sub
Gn

(st), Qsub
Gn

(st), n ∈ N sub), (zn(st),
n ∈ N )). Given state st ∈ S, let A(st) denote the feasible
action space defined by constraints (1)−(11).

C. Policy and Immediate Cost

We consider a stationary random policy as π = (π(s), s ∈
S), where π(s) = (π(a(s) | s), a(s) ∈ A(s)) specifies the
probability π(a(s) | s) of choosing a feasible action a(s) ∈
A(s) in a given state s ∈ S.

The objective of the DNR problem is to jointly mini-
mize the network losses along with the costs of switching
equipment wear-and-tear, operating the backup generators,
and interrupting loads. The network losses in state st can
be obtained as

∑
(m,n)∈L rmn`mn(st). We scale the network

losses by a weighting coefficient ηloss (in $/kW) to convert
into a monetary unit. The switching cost in state st can be
obtained as

∑
(m,n)∈L µ

switch
mn

∣∣αmn(st)− αmn(st−1)
∣∣, where

µswitch
mn is a nonnegative weighting coefficient in monetary unit

that captures the cost incurred by closing or opening the
switch on line (m,n) ∈ L. The operation cost of a backup
generator at bus n with generation level PGn(st) in state st
can be modelled by a linear function cn1PGn

(st)+cn0 un(st),
where cn0 and cn1 are nonnegative coefficients [43]. The load
interruption cost (referred to as the value of lost load (VoLL)
[44, Ch.13]) in state st can be computed as

∑
n∈N−(1 −

dn(st))ω
load
n PDn(st), where the nonnegative weighting coef-

ficient ωload
n (in $/kW) captures the interruption cost of the

load at bus n. A critical must-run load at bus n would have
a large value of ωload

n , whereas a flexible load at bus n would
have a small value of ωload

n . The immediate cost with action
a(st) in state st is obtained as follows:

c(st,a(st)) =
∑

(m,n)∈L

(
ηloss rmn`mn(st)

+ µswitch
mn

∣∣αmn(st)− αmn(st−1)
∣∣ )+

∑
n∈N−

(
cn1PGn

(st)

+ cn0 un(st)+
(
1−dn(st)

)
ωload
n PDn

(st)
)
. (12)

Via weighting factors ηloss, µswitch
mn , (m,n) ∈ L, and ωload

n , n ∈
N−, the immediate cost in (12) offers a balance between
the operational needs of the distribution network and the
associated cost.

D. Relative Value Function

We define the expected average cost for a given policy π
as follows:

ρπ = lim
T→∞

Eπ
{

1

T

T∑
t=1

c(st,a(st))

}
, (13)

where Eπ{·} is the expectation over selecting feasible actions
for the given policy π. The expected average cost in (13) is
bounded and does not depend on the initial state if we assume
that the process is ergodic, i.e., the probability of reaching

any state from any other is nonzero [40, Ch. 11]. For a given
policy π, we define the relative value function as follows:

V π(s) =

∞∑
t′=0

Eπ
{
c(st+t′ ,a(st+t′))− ρπ

∣∣∣ st = s
}
. (14)

We define the transition probability Pr(s′ | s, a(s)) from state
s to s′ with action a(s). The DNO aims to obtain policy
π such that the relative value function is minimized over
all states s ∈ S . This is equivalent to solving the following
Bellman equations:

PMDP : V π(s) + ρπ = minimize
a(s)∈A(s)

{
c(s,a(s)) +∑

s′∈S
Pr
(
s′ | s, a(s)

)
V π(s′)

}
, ∀ s ∈ S.

Obtaining an optimal policy that solves problem PMDP is
challenging. The action a(st) obtained by policy π(st) is a
combination of binary variables and continuous variables for
power flow in the distribution network. Moreover, the feasible
action space A(st) includes constraints with binary variables
and the nonconvex constraint (10) for the apparent power
flow in distribution lines. To address this challenge, we divide
the action vector a(st) into vectors φ(st) = ((αmn(st),
(m,n) ∈ L), (un(st), dn(st), n ∈ N−)) consisting of
binary variables and ψ(st) = ((βmn(st), λmn(st), Qmn(st),
`mn(st), (m,n) ∈ L), (PGn(st), QGn(st), Qr

Gn
(st), n ∈

N−), (P sub
Gn

(st), Qsub
Gn

(st), n ∈ N sub), (zn(st), n ∈ N ))
consisting of continuous variables. We decouple the tasks of (i)
obtaining the action vector φ(st) for the status of the switches,
backup generators, and loads, and (ii) obtaining the action
vector ψ(st) for a feasible power flow in the distribution
network. Furthermore, we rewrite the immediate cost (12) as
follows:

c(st,a(st)) = c1(st,φ(st)) + c2(st,ψ(st)), st ∈ S, (15)

where
c1(st,φ(st)) =

∑
(m,n)∈L

µswitch
mn

∣∣∣αmn(st)− αmn(st−1)
∣∣∣

+
∑

n∈N−

(
cn0 un(st) +

(
1− dn(st)

)
ωload
n PDn

(st)
)
,

and
c2(st,ψ(st)) =

∑
(n,m)∈L

ηlossrnm`mn(st) +
∑

n∈N−
cn1PGn

(st).

Decoupling the tasks of obtaining the action vectors φ(st)
and ψ(st) enables us to define a modified policy π̃ = (π̃(s),
s ∈ S) that determines only an optimal action vector φ(st)
consisting of binary decision variables in state st ∈ S and
obtains the cost c1(st,φ(st)). Then, given φ(st), the DNO
solves an OPF problem to obtain the action vector ψ∗(st) that
satisfies power flow constraints (3a)−(11). Let Ψφ(st)(st) de-
note the feasible action space defined by constraints (3a)−(11)
for the given φ(st) in state st. The DNO solves the following
optimization problem to obtain the optimal variable ψ(st) for
the given vector φ(st) and modified policy π̃:

Popf,π̃
φ(st)

: minimize
ψ(st)

c2(st,ψ(st))
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subject to ψ(st) ∈ Ψφ(st)(st).

The modified policy π̃ aims to minimize the expected
average cost in (13). Hence, in problem PMDP, we can replace
the original policy π with the modified policy π̃ to determine
the optimal value of the expected average cost ρπ̃ and relative
value function V π̃(s), s ∈ S . Obtaining the modified policy
π̃ that solves problem PMDP is still challenging, since the state
transition probabilities Pr(s′ | s, a(s)), s, s′ ∈ S may not
be available. In the next section, we develop a DRL-based
algorithm based on actor-critic method to gradually update
both the relative value function and the modified policy
without any knowledge of the state transition probabilities.

III. ALGORITHM DESIGN

In this section, we propose a DRL algorithm based on actor-
critic method that learns and improves the policy through in-
teraction with the dynamic changes of the distribution system
to solve problem PMDP. Our proposed DRL algorithm is a
compelling approach to solve problem PMDP. Unlike stan-
dard optimization-based approaches, it can effectively manage
uncertainty issues, inter-temporal constraints, and large num-
ber of variables, all pertinent to distribution networks. The
algorithm gradually learns from the network’s dynamics to
optimize the use of remote-control switches, backup gener-
ators, and interruptible loads to achieve long-term economic
efficiency and operational reliability of the distribution net-
work. In the proposed DRL algorithm, there are two DNNs
corresponding to the actor and critic, respectively. The actor
DNN obtains action φ(st) in state st ∈ S, and the critic
DNN assesses these actions by estimating the relative value
function, guiding the actor towards better policy decisions.
Fig. 1 summarizes the interactions between the actor and
critic DNNs during the training phase.

A. Motivation and Overview

In our proposed DRL algorithm, the actor network utilizes
a transformer architecture. The promising computational ben-
efits of transformer networks in solving large-scale combina-
torial optimization problems (in, e.g., [38], [39]) motivate us
to apply such an architecture to model the actor DNN. The top
portion of Fig. 1 details the proposed transformer architecture
for the actor DNN. The transformer network has an encoder-
decoder architecture with attention mechanism, which can
obtain the modified policy π̃ that solves problem PMDP.
By adapting the transformer’s sequence-to-sequence prediction
capabilities, the actor DNN can capture the complexities of
the distribution network’s topology and operating conditions.
For the actor DNN, the input sequence, which encapsulates
the current state of the distribution network, is transformed
through the attention and feed-forward layers to produce an
output sequence that represents the binary control decisions
for the switches, generators, and loads. Subsequently, the
continuous variables are obtained by solving an OPF problem
to ensure adherence to the network’s operating constraints. The
critic DNN processes the system’s state and outputs the relative
value function, which evaluates the policy’s performance by

Figure 1. Illustration of the proposed algorithm and the interaction between
the actor and critic DNNs. The actor DNN is based on transformer architecture
consisting of an encoder and a decoder with multi-head attention mechanism.
The critic DNN is based on multi-layer perceptron architecture.

predicting the expected return. By embedding the transformer
architecture within the actor DNN, we enable the DRL algo-
rithm to learn and adapt policies that are both feasible and
near-optimal for the DNR problem.

B. Algorithm Training

We denote the network parameter vector of the actor DNN
by θ. We use a DNN with MLP architecture and network
parameter ϑ for the critic that receives the system state st ∈ S
as the input and returns the relative value function V π̃(st,ϑ)
as the output. Without loss of generality, we can set the
training epoch for the actor and critic DNNs to one time slot.
To train the actor and critic DNNs for a sufficiently large
number of states, we consider a batch S train

t ⊆ S of system
states in training epoch t. The DNO observes the system
state st ∈ S train

t and computes the temporal difference (TD)
error δ(ϑt−1, st, st−1) for the critic network parameter ϑt−1,
current state st, and previous state st−1. We have

δ(st, st−1,ϑt−1) = c(st−1,a(st−1))− ρπ̃t−1
+ V π̃(st,ϑt−1)− V π̃(st−1,ϑt−1). (16)

We use δ(ϑt−1) = (δ(st, st−1,ϑt−1), st ∈ S train
t , st−1 ∈

S train
t−1) to denote the vector of TD errors. The network param-

eters for the actor and critic DNNs are updated as follows:

θt = θt−1+γa
t δ

T(ϑt−1)∇θ ln π̃
(
φ(st−1)

∣∣ st−1,θ)∣∣∣
θ=θt−1

,

(17a)

ϑt = ϑt−1+γc
t δ

T(ϑt−1)∇ϑV π̃(st−1,ϑ)
∣∣∣
ϑ=ϑt−1

, (17b)
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where ∇ is the gradient operator and δT(·) denotes the
transpose of vector δ(·). Parameters γa

t and γc
t , respectively,

are the step size for the actor and critic updates in time slot t.

C. Input Sequence for the Actor DNN

In general, the input sequence for the actor DNN should
provide information about the switches, backup generators,
load demands, and the topology of the distribution network.
We construct the input sequence sin

t from the solution to
the relaxed version of the DNR problem in state st. The
relaxed DNR problem provides a lower bound for the global
optimal solution to the original DNR problem. The optimal
solution to the relaxed DNR problem has implicit information
about the open/closed state of the switches, on/off state of
the backup generators, and connected/disconnected state of the
loads in state st. Hence, the optimal solution to the relaxed
DNR problem is a suitable choice for the input sequence sin

t .
To formulate the relaxed DNR problem, we relax constraint
(1) to allow variables αmn(st), (m,n) ∈ L, un(st) and
dn(st), n ∈ N−, to take values within the interval [0, 1].
Thus, we have

0 ≤ αmn(st), un(st), dn(st) ≤ 1, (m,n)∈L, n∈N−. (18)

Furthermore, we relax equality constraint (10) and include the
following inequality constraint in the constraint set:

`mn(st) zm(st) ≥ Pmn(st)
2+Qmn(st)

2, (m,n) ∈ L. (19)

We construct the feasible action space Arelax(st) from the
original action space A(st) by replacing constraints (1) and
(10) by constraints (18) and (19), respectively. We solve the
following relaxed DNR in system state st ∈ S train

t :

PDNR,relax(st) : minimize
a(st)

c(st,a(st))

subject to a(st) ∈ Arelax(st).

The relaxed DNR problem PDNR,relax(st) is an SOCP and
can be solved efficiently with polynomial time complex-
ity. Let arelax(st) denote the optimal solution to problem
PDNR,relax(st). From arelax(st), we can extract φrelax(st) =
((αrelax

mn (st), (m,n) ∈ L), (urelax
n (st), d

relax
n (st), n ∈N−)) to

construct the input sequence sin
t . Thus, as shown in Fig. 1, the

input sequence passes through the line and bus embeddings in
the encoder that, respectively, convert (αrelax

mn (st), (m,n)∈L)
and (urelax

n (st), d
relax
n (st), n ∈ N−) to a high dimensional

embedding through a linear projection. The encoder returns
the embedded information to the decoder. The decoder uses
masking mechanism in the attention layer to account for
inter-temporal constraints (e.g., (3a) and (4)). The decoder is
executed repeatedly for |L|+2|N−| times to obtain the output
sequence sout

t consisting of the binary decision variables for
the status of the switches, backup diesel generators, and loads.

D. Feasible Power Flow

For the given vector φ(st), the OPF problem Popf,π̃
φ(st)

is
solved to determine the action vector ψ(st) in state st.
However, problem Popf,π̃

φ(st)
may not have a feasible solution

for the given φ(st). We address the infeasibility of problem
Popf,π̃
φ(st)

during the training process. We introduce decision
variable ∆αmn(st), ∆un(st), and ∆dn(st) for the switch
on line (m,n) ∈ L, and the generator and load connected
to bus n ∈ N−, respectively. Let vector ψp(st) = (ψ(st),
(∆αmn(st), (m,n) ∈ L), (∆un(st), ∆dn(st), n ∈ N−)) de-
note the new decision variable. For the given vector φ(st), we
construct a new action space Ψp

φ(st)
(st) in three steps. First,

we include the following constraints in the constraint set:

0 ≤ αmn(st) + ∆αmn(st) ≤ 1, (m,n) ∈ L, (20a)
0 ≤ un(st) + ∆un(st) ≤ 1, n ∈ N−, (20b)
0 ≤ dn(st) + ∆dn(st) ≤ 1, n ∈ N−. (20c)

Second, in (2)−(11), we replace variables αmn(st), un(st),
and dn(st) with αmn(st)+∆αmn(st), un(st)+∆un(st), and
dn(st)+∆dn(st) for (m,n) ∈ L, n ∈ N−. Third, we replace
constraint (10) by constraint (19). We then define a modified
objective function cp

2(st,ψ
p(st)) in state st as follows:

cp
2(st,ψ

p(st)) = c2(st,ψ(st)) + κ
(∑

(m,n)∈L
∣∣∆αmn(st)

∣∣
+
∑

n∈N−
(∣∣∆un(st)

∣∣+∣∣∆dn(st)
∣∣)), (21)

where κ is a positive weight coefficient. The penalty term in
(21) with weighting coefficient κ enables Algorithm 1 (to be
presented in the next subsection) to distinguish between fea-
sible and infeasible solutions of the DNR problem during the
training process. However, if κ is set to a large number, then
Algorithm 1 may converge to a policy with higher expected
average cost, because a large penalty for infeasible solutions
avoid the actor DNN to explore and obtain a policy with lower
expected average cost. Problem Popf,π̃

φ(st)
is transformed into the

following optimization problem:

Popf–p,π̃
φ(st)

: minimize
ψp(st)

cp
2(st,ψ

p(st))

subject to ψp(st) ∈ Ψp
φ(st)

(st).

Problem Popf–p,π̃
φ(st)

always has a feasible solution for a given
φ(st). We have the following proposition.

Proposition 1: If the original AC OPF problem Popf,π̃
φ(st)

is
feasible for φ(st), then by increasing the weight coefficient
κ, the global optimal solution of problem Popf–p,π̃

φ(st)
approaches

the global optimal solution of the original problem Popf,π̃
φ(st)

.

Proof: Suppose that the original AC OPF problem Popf,π̃
φ(st)

is feasible for φ(st) and let ψ∗φ(st)(st) denote its global
optimal solution. Define vector ψp,∗

φ(st)
(st) = (ψ∗φ(st)(st),

(∆αmn(st), (m,n) ∈ L), (∆un(st), ∆dn(st), n ∈ N−))
for ∆αmn(st) = 0, (m,n) ∈ L, ∆un(st) = 0, and
∆dn(st) = 0, n ∈ N−. Vector ψp,∗

φ(st)
(st) is a feasible

solution to the penalized OPF problem Popf–p,π̃
φ(st)

. Given that
κ exceeds the norm of the gradient at ψ(st) = ψ∗φ(st)(st),
i.e., κ >

∣∣∣∣∇ψ(st)c2(st,ψ(st))
∣∣∣∣
ψ(st)=ψ∗φ(st)

(st)
, then any

divergence from the feasible solution ψ∗φ(st)(st), characterized
by nonzero deviations in ∆αmn(st) for (m,n) ∈ L, ∆un(st),
or ∆dn(st) for n ∈ N−, would result in a larger objective
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Algorithm 1: DRL-based DNR Algorithm.
1 Set t := 1, ε := 10−6.
2 Initialize neural network parameters θ1 and ϑ1 randomly.
3 Select the batch S train

1 ⊆ S of initial system states randomly.
4 repeat
5 Observe the system state st ∈ S train

t .
6 if t 6= 1 then
7 Determine the TD error according to (16).
8 Obtain the updated θt according to (17a).
9 Obtain the updated ϑt according to (17b).

10 end
11 Compute input sequence sin

t corresponding to state st ∈ S train
t

for the actor DNN by solving problem PDNR,relax(st).
12 Set φ(st), st ∈ S train

t to the output sequence sout
t , which is

obtained by forward propagation in the actor DNN.
13 Obtain ψp(st), st ∈ S train

t by solving problem Popf–p,π̃
φ(st)

.
14 Compute immediate cost c(st,a(st)) for state st ∈ S train

t .
15 Obtain the updated ρπ̃t according to (22).
16 t := t+ 1.
17 until || δ(ϑt−1)− δ(ϑt−2) || ≤ ε, t ≥ 3;

function value for problem Popf–p,π̃
φ(st)

. This completes the proof
that ψp,∗

φ(st)
(st) is the global optimal solution of problem

Popf–p,π̃
φ(st)

. �

The DNO solves problem Popf–p,π̃
φ(st)

. Obtaining the im-
mediate cost c(st,a(st)) = c1(st,φ(st)) + cp

2(st,ψ
p(st)),

we can compute the average immediate cost ct =
1
|S train

t |
∑
st∈S train

t
c(st,a(st)). Then, the expected average cost

is updated as follows:

ρπ̃t = ρπ̃t−1 + γe
t

(
ct − ρπ̃t−1

)
, (22)

where γe
t is the step size in time slot t.

E. Algorithm Description

Algorithm 1 describes our proposed DNR algorithm. Lines
1 and 2 correspond to the algorithm initialization. In Line
3, we randomly select the batch S train

1 ⊆ S of initial system
states in time slot t = 1. In Line 5, the DNO observes the
system state st ∈ S train

t in current time slot t. If time slot
t = 1, then Lines 7 to 9 for the actor and critic update are
not executed. For t > 1, in Line 7, the DNO computes the
TD error δ(ϑt−1, st, st−1) according to (16). In Lines 8 and
9, the network parameters for the actor and critic DNNs are
updated according to (17a) and (17b), respectively. In Line 11,
problem PDNR,relax(st) is solved to obtain the input sequence
sin
t for the actor DNN. In Line 12, the output sequence sout

t

is obtained by the forward propagation in the actor DNN. In
Line 13, the penalized OPF problem Popf–p,π̃

φ(st)
is solved to

obtain ψp(st), st ∈ S train
t . In Line 14, the immediate cost

c(st,a(st)) for state st ∈ S train
t is determined. In Line 15, the

expected average cost ρπ̃t is updated according to (22). Next
time slot begins in Line 16. In Line 17, the stopping criterion
for Algorithm 1 is given. In an offline training approach, the
infeasibility of a solution does not halt our proposed algorithm,
allowing continuous updates of neural network parameters as
per Lines 8 and 9 of Algorithm 1. However, in real-time
operation of the distribution network, if the trained actor DNN

outputs an infeasible action, we can leverage the softmax
layer to iterate forward propagation until a feasible action is
achieved. The effectiveness of this approach is demonstrated
via numerical case studies presented in Section IV-B.

In the design of Algorithm 1, we assume complete informa-
tion about the network topology and transmission parameters.
While this enables well-informed decisions, the DNO may not
have complete or up-to-date information. Continuous learning
and adaptation are essential for the algorithm’s long-term
efficacy, accommodating changes in load patterns, renewable
generation, and network architecture. Additionally, while sim-
ulations provide a controlled environment for validation, real-
world deployment requires evaluation of the obtained solution
to guarantee robustness and applicability.

IV. PERFORMANCE EVALUATION

In this section, we first evaluate the performance of the
proposed DRL-based algorithm in solving the DNR problem
for an 119-bus distribution system, which has one substa-
tion and 133 branches including 118 sectionalizing switches
and 15 tie line switches. Fig. 2 shows one-line diagram of
the test system. The data for the test system is sourced
from [45]. We assume all lines are switchable to evaluate
Algorithm 1 under a worst-case scenario with large action
space. The duration of each time slot is set to 15 minutes.
This system has approximately 4 × 1015 feasible topological
configurations, which demonstrates the complexity of solving
the DNR problem to obtain the optimal configuration. We
set tsw to be equal to 2 for all switches. We use the per-
unit (pu) system for our analysis. The base power of the
system is 500 MVA. The limit for the current magnitude of
lines is set to 1.05 pu. The lower limit and upper limit on
the bus voltages are 0.95 pu and 1.05, respectively. In the
objective function of the DNR problem, we set the weighting
coefficients ηloss = $500/MW, µswitch

mn = $50, (m,n) ∈ L.
The weighting coefficient ωload

n , n ∈ N− is uniformly sampled
at random from the interval [$1/kW, $10/kW] to obtain the
cost of load interruption. For the backup diesel generator at
bus n ∈ N−, we obtain the generation cost coefficients cn0
and cn1, n ∈ N− at random from normal distributions with
mean values $1 and $0.1/kW, and standard deviations $0.5
and $0.05/kW, respectively. We set parameter Pmax

Gn,t
to 50%

of the average active load (over all samples) at that bus. Also,
we set parameters ru

n and rd
n to 20% of Pmax

Gn,t
for the backup

generator at bus n ∈ N−. We use the data from [41, Section
5.4] to model the loading capability of the generators for the
reactive-power generation.

Obtaining the load demand samples involves two steps. The
first step is to scale the active- and reactive-power loads given
in [45] and obtain the daily average load profile for each
bus. As shown in Fig. 3, we consider two different scaling
factors corresponding to two types (i.e., type 1 and type 2)
of loads. Type 1 captures residential load demands with peak
load between 6 pm and 11 pm, and type 2 models commercial
load demands with peak load between 11 am and 6 pm. We
obtain the average load profiles by randomly scaling the load
demands at 75% of the buses with type 1 scaling factor and
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Figure 2. 119-bus test feeder with 118 sectionalizing switches, 15 tie line
switches, 5 buses (i.e., buses 2, 54, 68, 102, and 117) with wind generators,
and 5 buses (i.e., buses 8, 24, 77, 98, and 102) with PV panel.

at 25% of the buses with type 2. The second step is to use
the average load profile at each bus to randomly sample the
data for the active load per time slot. That is, we scale the
historical load demand data from Ontario, Canada power grid
database [46], from January 1, 2021 to March 31, 2022, such
that the average value at each time slot is equal to the average
load for that bus. Also, we consider a fixed power factor to
obtain the samples for reactive load at each bus.

We assume that five buses are connected to PV panels,
each with nominal capacity of 300 kWh and five buses
are connected to wind turbines, each with nominal capacity
of 1000 kWh. To obtain the samples for the output power
of the renewable generators, we scale down the available
historical data from Ontario, Canada power grid database [46],
such that the maximum generation level becomes equal to
the aforementioned nominal capacity. To obtain the random
samples for maximum active-power supply at substation bus
(i.e., bus 119), P sub,max

Gn,t
, we consider two scenarios: (i) the

value of P sub,max
Gn,t

is sufficiently large to meet the total load in
all time slots, and (ii) the value of P sub, max

Gn,t
is lower than the

total load in a particular time slot.
For the critic DNN, we consider a multi-layer perceptron

consisting of three hidden layers with 10 nodes and leaky
rectified linear unit (ReLU) activation function. The actor
DNN has a transformer architecture, where the attention layers
have 8 heads. The dimension of the bus and line embeddings
is set to 128. The dimension of the feed forward layers in the
encoder and decoder is set to 512. We perform simulations us-
ing Python/PyTorch and Python/CVXPY with MOSEK solver
[47] on the Digital Research Alliance of Canada platform [48]
with 16 CPUs and 4 GPUs.

A. Algorithm Convergence

We train Algorithm 1 for 7000 iterations. For Algorithm 1 to
converge, the update of the actor operates on a slower time-
scale than the critic, to ensure that the critic has sufficient

12 am 2 am 4 am 6 am 8 am 10 am 12 pm 2 pm 4 pm 6 pm 8 pm 10 pm 12 am
0

0.25

0.5

0.75

1

1.25

1.5

Figure 3. Load scaling factor during one day for type 1 (blue) and type 2
(red) load demands.

Figure 4. (a) TD error and (b) expected average cost per time slot versus
iteration number for a 119-bus test system.

time to evaluate the current policy. That is, for some positive
constant d, we have

∑∞
t=1(γa

t/γ
c
t)

d < ∞ [49]. Hence, we
set the step sizes in Algorithm 1 to γc

t = 5/t0.5, γa
t = 10/t,

and γe
t = 50/t0.5. For the training process in Algorithm 1,

we consider the batch of |S train
1 | = 100 initial system states

randomly. The TD error gradually approaches zero in about
5000 iterations, as shown in Fig. 4(a), which indicates the
convergence of Algorithm 1 in the training phase. Meanwhile,
Fig. 4(b) shows that the expected average cost converges to
$1581 per time slot.

B. Solution Feasibility and Optimality

We compare the convergence of the expected average cost
with κ = 102 and κ = 106 in Fig. 5(a). With κ = 102,
the actor DNN obtains a policy with lower expected average
cost. With κ = 106, a larger penalty is incurred for infeasible
solutions, which enforce the actor DNN not to explore the
action space efficiently and obtain a policy with lower ex-
pected average cost. In addition to properly set the weighting
coefficient κ, we can run forward propagation for multiple
rounds in the test process and select the feasible solution with
the smallest objective value. In particular, the softmax layer in
the output of the actor DNN provides a probability distribution
for the possible actions in output sequence. Hence, by perform-
ing multiple rounds of forward propagation, the actor DNN
can result in multiple choices as the final solution. Then, we
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Figure 6. Expected average cost for Algorithm 1 (dashed line) and MISOCP
(bar graph) with forecast window between zero and 48 hours.

can select the one with the smallest objective value, or repeat
forward propagation until a feasible solution is obtained. To
justify this approach, in Fig. 5(b), we show an example for the
cost at 6 am versus the number of rounds that we run forward
propagation in the actor DNN to select the solution with the
lowest objective value. Results demonstrate that if we run
forward propagation for one round, then it is possible to obtain
an infeasible solution. However, by increasing the number of
forward propagation rounds, we can obtain a feasible and near-
optimal solution with a smaller objective value, while keeping
the running time to be less than 3 seconds.

Next we study the optimality of the solution obtained by
Algorithm 1. For comparison, we consider the objective value
of the DNR problem PDNR, when the DNO can forecast
the renewable generation and load demand during a pre-
specified time window. With complete information about the
renewable generation and load demand, problem PDNR can be
transformed into a deterministic mixed-integer SOCP (MIS-
OCP), which can be solved using MOSEK solver. In Fig.
6, we compare the expected average cost for Algorithm 1
and the deterministic MISOCP with forecast window from
zero to 48 hours. When the forecast window is zero, then
the DNO solves PDNR at the beginning of each time slot
t ∈ T . When the forecast window is 48 hours, then the
DNO solves PDNR every two days with complete information

about the renewable generation and load demand for the next
48 hours. On the other hand, Algorithm 1 is based on DRL
that can gradually learn a near-optimal policy to deal with the
inter-temporal constraints and stochastic processes behind the
uncertain renewable generation and load demand. The results
in Fig. 6 show that the objective value obtained by Algorithm
1 is 18.97% lower than the objective value of the deterministic
DNR with the forecast window of zero. The gap between the
objective values obtained by Algorithm 1 and the objective
value of the deterministic DNR with the forecast window of
two days is only 8.36%. Moreover, the objective value ob-
tained by Algorithm 1 is approximately equal to the objective
value of the deterministic DNR with the forecast window
of 16 hours. In other words, with Algorithm 1, the DNR
problem can be solved as if we have complete information
about the renewable generation and load demand for 16 hours.
This demonstrates that Algorithm 1 can effectively address the
uncertainty issues and obtain a near-optimal solution to the
DNR problem with generation and load uncertainty.

C. Comparison with Existing DNR Algorithms

Next, we compare the performance of Algorithm 1 with
the batch-constrained DRL algorithm from [32]. Moreover,
we evaluate the effectiveness of our penalized OPF method,
outlined in Section III-D, in training the actor and critic DNNs.
This approach is compared with the alternative strategies in
[35] and [36], which apply penalties to all operational con-
straint violations. For fair comparison, we apply the algorithm
in [32] to solve problem PMDP with expected average cost in
(13) and relative value function in (14). The algorithm in [32]
uses an off-policy approach to learn a control policy from
a given set of historical operational data (i.e., configurations
and power flow for the underlying distribution network). The
historical operational data contain relevant information about
the state, action, and cost in the MDP for the DNR problem.
The DNO can learn a batch-constrained policy, which is
limited to the state-action pairs contained in the historical data.
Similar to [32], we assume at most one pair of switch status
change per time slot and obtain the historical configuration
and power flow data by simulating 104 different scenarios.

Fig. 7(a) shows the total load demand and total supplied
energy over 10 consecutive days. The total load is greater
than the total supplied energy in days 3, 4, 9, and 10. Hence,
during some time slots, a number of loads are interrupted and
some backup diesel generators are operated to maintain the
generation-load balance. In Fig. 7(b), we compare the expected
average cost from day one to day ten for the DNR with
complete information, Algorithm 1 with DRL, algorithm in
[32] with batch-constrained DRL, greedy algorithm, and DNR
with penalizing all operation constraints as in [35] and [36].
The DNR with complete information provides a lower bound
for the expected average cost, because we solve a deterministic
MISOCP with complete information about load demands and
renewable sources for ten days. In the greedy method, we
solve a deterministic MISOCP at every time slot with limited
information about load demand and renewable generation in
that time slot. Fig. 7(b) shows that the gap between the
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expected average cost with our proposed algorithm and the
DNR with complete information is 4.7% on average (varies
between 2% in days 1 and 6, and 12% in days 3 and 10). The
gap is larger for days with greater load demand than supplied
energy, since it is more difficult to obtain a near-optimal
solution for the network configuration, set of interrupted loads,
and set of operating backup generators under uncertainty about
load demands and renewable generators. Moreover, Fig. 7(b)
shows that the gap between the expected average cost with our
proposed algorithm and that in [32] is at least 11% (for day
10). The relatively poor performance of the algorithm in [32]
in solving the DNR problem is due to the off-policy approach
with historical operational data and the limit of at most one
pair of switching action per time slot. However, in Algorithm
1, the proposed policy DNN with transformer architecture can
address multiple switching actions to obtain a near-optimal
binary solution for the status of the switches.

In our final comparison, we assess the efficacy of using
the proposed penalized OPF method detailed in Section III-
D to train the actor and critic DNNs against an alternative
strategy that penalizes all operational constraint violations, as
employed in the proposed safe DRL algorithm in [35] and
the proposed deep learning algorithm in [36]. This alterna-
tive approach involves incorporating violations of operational
constraints (4)−(11) directly into the objective function as
penalties. While both techniques facilitate the gradual learning
of feasible solutions by the DNNs, our findings, as illustrated
in Fig. 7(b), reveal a significant advantage in using the penal-
ized OPF approach, which achieves a 24.5% lower objective
value on average. The poorer performance of the method
that penalizes all operating constraints is due to its overly
conservative exploration strategy that any violation incurs
substantial penalties, making the learning process sensitive to
constraint violations. In contrast, our proposed algorithm, by
focusing penalties solely on infeasible binary solutions within
the OPF framework, effectively guides the neural network in
learning to select feasible actions for switch operations, load
management, and the activation of backup diesel generators.

D. Demonstrating Algorithm Scalability

To study the scalability of Algorithm 1, we construct test
systems with 595, 1190, and 3570 buses by connecting 5, 10,
and 30 119-bus feeders, respectively, via branches between two
random buses with tie line switch, resistance of 0.01 pu, and
reactance of 0.001 pu. This scenario helps to demonstrate the
performance of Algorithm 1 in large test systems with multiple
substation buses. Fig. 8 shows that, by using Algorithm 1,
the expected average cost per time slot converges to the
suboptimal solution in 8200 iterations, 15000 iterations, and
35000 iterations in test systems with 595, 1190, and 3570
buses, respectively. When compared with our original case
study (i.e., 119-bus test system), the number of iterations for
convergence is higher in these large test systems, because
the policy DNN needs to adjust the policy according to the
time-varying load demand and renewable generation, and the
operation constraints in a larger systems. Despite a higher
number of iterations for convergence, Algorithm 1 can still
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Figure 7. (a) Total daily load demand and total supplied energy; and (b)
expected average cost per day for the DNR with complete information, Algo-
rithm 1, algorithm in [32] with batch-constrained DRL, greedy method, and
DNR with penalizing all operating constraints as in [35] and [36].

Figure 8. Expected average cost for the test systems with 595, 1190, and
3570 buses.

be used for large test systems, since it can be executed
in an offline manner given historical data. With appropriate
training data, Algorithm 1 can learn the dynamics of different
distribution networks varying in size or having different opera-
tional constraints. To enhance the adaptability of the proposed
algorithm, one can use transfer learning techniques [50], where
the knowledge from a small system can serve as a foundation
to train the model for a large system.

V. CONCLUSION

In this paper, we studied DNR problem under uncertainty in
the load demand and renewable generation. We accounted for
network topology, backup generator operation, emergency load
interruption, and distribution network constraints. To address
the uncertainty issues, we developed a DRL algorithm with
actor-critic method. To obtain binary decision variables, we
decoupled the tasks of (i) obtaining the action vector for the
status of the switches, backup generators, and loads and (ii)
obtaining the action vector for a feasible power flow in the
distribution network. We designed a transformer-based archi-
tecture for the policy DNN. To address the non-convexity of
power flow constraints, we transformed the problem of updat-
ing neural network parameters into a sequence of SOCPs. Via
numerical simulations in an 119-bus test system, we showed
that the fast convergence of the proposed DRL algorithm to
a near-optimal solution with an average gap of 4.7% from
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the optimal solution of the deterministic DNR with complete
information about future load demand and renewable genera-
tion. Moreover, the expected average cost with our proposed
algorithm is at least 11% lower than the expected average cost
with an existing DNR algorithm in the literature. Our analysis
demonstrated the superiority of the proposed penalized OPF
approach with 24.5% lower objective value when compared
to the alternative approaches the literature, which impose
penalties on all operational constraint violations. Furthermore,
the proposed algorithm scales well to solve the DNR problem
in large test systems with 595, 1190, and 3570 buses. For
future work, we will consider the incomplete information
about distribution network architecture, both in formulating
the DNR problem and in developing a learning algorithm.
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