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Abstract—Power flow formulated with a distributed slack bus
involves modeling the active-power output of each generator with
three elements: a nominal injection modulated by a fraction of
the net-load imbalance allocated via a participation factor. This
setup acknowledges generator dynamics and system operations,
but it has long been plagued by ambiguous and inconsistent
interpretations of its constituent elemental quantities. In this
paper, we establish that, with the: i) nominal active-power
injections set to be the economic dispatch setpoints, ii) partici-
pation factors fixed to be the ones used in automatic generation
control, and iii) net-load imbalance considered to be the total
load and loss unaccounted in economic dispatch, the power
flow solution best matches results from a simulation of the
system differential algebraic equation (DAE) model. Numerical
case studies tailored to the New England test system validate
the analysis by demonstrating that solutions obtained from a
distributed slack formulation offer lower errors (with respect to
DAE-model simulations) compared to the exhaustive set of all
single slack bus choices.

Index Terms—Automatic generation control, distributed slack
bus, economic dispatch, participation factors, power flow.

I. INTRODUCTION

TO the best of our knowledge, the first documented version
of the standard textbook power flow problem with a

single slack bus is presented in a 1956 paper by J. B. Ward
and H. W. Hale [1]. The notion of a slack bus appears in
earlier works [2], [3], and its use seems to have been standard
in network analyzer studies (a form of analog simulation for
power networks) as implied in [1]. A common justification
for requiring a slack bus in the power flow problem is that,
since the network losses are unknown prior to solving for
system states, one cannot specify the power injected at all
generator buses. Thus, the power output at one generator is left
unspecified and determined as part of the power flow solution.
This rationale was perfectly aligned with load frequency
control schemes used in the first half of the twentieth century,
when it was standard practice for a single generator per area to
provide frequency regulation [4]. In support of this hypothesis,
we quote the following remark by E. E. George from the
Discussion section of [1]:

“The slack machine is the regulating generator
which controls frequency or tie-line loading, and
which cannot be scheduled in megawatt output until
the difference between total generation and total
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Fig. 1: Generator active-power injections are modeled as P ◦
g + πgψ in the

distributed slack bus formulation. This paper uncovers appropriate values for
P ◦

g , πg, and ψ, so that bus voltage magnitudes and phase angles solved from
the power flow match steady-state results from a dynamic simulation.

load plus loss is calculated, or measured by teleme-
ters, or balanced by a frequency controller.”

With the introduction of tie-line bias control circa 1948
through the efforts of N. Cohn and R. Brandt [4], [5], the
industry shifted to using multiple generators to regulate fre-
quency in a given area. Consequently, the power flow problem
formulated with a single slack bus no longer aligned with
generator dynamics and system operations. This motivated
the conceptualization of the distributed slack bus. The first
publication on the topic appears to be a 1971 M.S. thesis
advised by F. C. Schweppe [6]. In it, a heuristic strategy
is proposed to allocate system loss to generators through
successive iterations of power flow solution algorithms.

The underlying premise of formulating the power flow
problem with a distributed slack bus is to model the active-
power output of each generator g, as follows:

P ◦g + πgψ,

where P ◦g is a nominal active-power injection, πg is a partici-
pation factor, and ψ is the net-load imbalance. (See Fig. 1 for
an illustration.) While P ◦g and πg are assumed to be known for
all generators, ψ is an unknown slack variable that is solved as
part of the power flow problem. Power flow solved with the
above formulation can yield system states, i.e., bus voltage
magnitudes and phase angles, that are in agreement with the
simulation of a nonlinear differential algebraic equation (DAE)
model simulated unto steady state. This is contingent on
choosing correct values for the elemental quantities P ◦g , πg,
and ψ—a task that is challenged by the complexity of present-
day power system operations, system controllers, generator
dynamics, and nonlinearities rife in the constituent models.

We examine a collection of synchronous generators and
constant-power loads dispersed over multiple control areas
with a standard automatic generation control (AGC) system
for frequency regulation and tie-line bias control. Generator
references are determined by allocating the net-load imbalance
(beyond that acknowledged by economic dispatch) in propor-
tion to AGC participation factors to eliminate the area control
error. The main result of the paper is summarized below:
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For the most accurate estimate of system states in
steady state from the power flow equations, i) P ◦g
should correspond to the setpoint from economic
dispatch, ii) πg should be set to the AGC participation
factor, and iii) ψ should be interpreted as the sum of
net load and losses unaccounted in economic dispatch
for the corresponding control area.

The statement above invokes variables and control signals
across a wide range of temporal and spatial scales: the nominal
setpoint derives from slow timescale optimization (economic
dispatch), the participation factor is native to fast(er) timescale
control (AGC), and the slack variable is specified for a
potentially vast geographical expanse (a control area). Our
analysis demonstrates that such a cohesive and unified ex-
amination across spatio-temporal scales is key to precisely
formulating the distributed slack bus. Undeniably, this work
has significant pedagogical relevance. Topics pertinent to the
main result of this paper (i.e., generator models, AGC, and
economic dispatch) are individually covered in detail in pop-
ular undergraduate- and graduate-level textbooks (e.g., [7]–
[9]). With minimal incremental effort, they can be weaved
together to construct the distributed slack version of the power
flow problem so that curriculum on this fundamental topic is
standardized and aligned with prevailing operational practices.

We provide next, a brief overview of pertinent literature.
In [10], participation factors for the distributed slack bus
are chosen based on a perturbation analysis of a classical
economic dispatch problem. Our analysis reveals that such a
choice would yield accurate results for system states only if
the AGC participation factors were also set the same way.1

In [13], the distributed slack bus participation factors are
determined from combined cost and reliability criteria. While
passing remarks reference selecting participation factors based
on AGC, there is no technical discussion on (or justification
for) the choice. By and large, the lack of consensus on problem
formulation is starkly obvious in the literature. Consider, for
instance, that the gamut of participation factors referenced
in [14]–[19] includes those attributable to economic dispatch,
AGC action, governor control, and inertial response. An an-
alytical treatment that justifies the choice of all elemental
components of the distributed slack bus (i.e., the nominal
active-power injections, the participation factors, and the slack
variable) is notably absent. While the potential of obtaining
accurate estimates of system states agnostic to the choice of a
single slack bus has driven the incorporation of the distributed
slack bus in optimal power flow and economic dispatch [20]–
[25], inconsistent interpretations and choices of variables that
are key to a precise problem formulation are recurring con-
cerns. We also bring to attention a wide body of literature
on the solvability of power flow equations, including [26]–
[33], which largely disregards the impact of system operations
and generator dynamics that can be readily addressed with a
distributed slack bus. Several forays in distribution networks

1Selecting AGC participation factors based on a perturbation analysis of
the companion economic dispatch routine encourages economic optimality
between successive dispatch updates [9]. However, there is no indication that
this is followed in practice (see, e.g., [11], [12]).

have been made [34]–[36], but we omit a detailed review
of these works since our focus is on transmission networks.
Finally, we note that software packages like Powerworld [37]
and PSAT [38] support distributed slack formulations with
customizable participation factors. (Based on the analysis in
this paper, we would advocate for the default choice to be the
AGC participation factors.)

The literature surveyed above reveals several gaps. First,
limited effort has been expended in precisely teasing out the
impact of generator dynamics and system operations on the
power flow problem in general, and on the distributed slack bus
formulation in particular. Second, interpretations of the net-
load imbalance, generator setpoints, and participation factors
have been shrouded in ambiguity, which has limited their
applicability and hindered widespread adoption. Finally, the
connections to economic dispatch and AGC have not been
clearly explained. This has meant that participation factors for
the distributed slack bus—while unambiguously attributable
to AGC dynamics—have frequently been interpreted incor-
rectly in an economic context. With the main result of the
paper summarized previously, we address these gaps in the
literature. Our conclusions follow from examining the swing,
turbine governor, and AGC dynamics in steady state. The
analysis is temporally situated between successive executions
of economic dispatch, so that the net-load imbalance and gen-
erator active-power setpoints assume precise and quantifiable
interpretations. While a reduced-order model of machine and
controller dynamics for generators is leveraged for analysis,
numerical validation is provided with simulations involving
detailed two-axis generator, governor and exciter controls, and
network models that preserve losses, nonlinear elements, and
higher-order behavior [39].

The remainder of this paper is organized as follows. The
system DAE model and power flow problem formulation with
a single slack bus and the distributed slack bus are overviewed
in Section II. Interpretation and justification for the values
of the nominal generator setpoints, participation factors, and
the slack variable are provided in Section III. In Section IV,
we provide a suite of case studies to validate the analysis.
Concluding remarks are presented in Section V.

II. PRELIMINARIES

This section first presents the system dynamical model (cov-
ering network power balance equations, generator dynamics,
AGC, and economic dispatch). The single and distributed slack
variants of the power flow problem are then overviewed.

A. Network Power Balance and Generator Dynamical Models

Consider an AC electric power network with buses indexed
by elements in set N . Let G ⊆ N and L ⊂ N denote the
subsets of generator and load buses, respectively. The network
is divided into control areas indexed by elements in set A.
Buses situated in control area a ∈ A are denoted by N a ⊆ N ,
and corresponding generator and load buses by Ga ⊆ G and
La ⊆ L, respectively. Let Vk [p.u.] and θk [rad] denote the bus
voltage magnitude and phase angle at bus k, and let Pk [p.u.]
and Qk [p.u.] denote the active- and reactive-power injections
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(originating from a generator, load, or neighboring control
area via tie-line flow) at bus k, respectively.2 The algebraic
power flow equations capture the balance of injected active
and reactive power. For bus k ∈ N a, a ∈ A, these take the
form

Pk = Vk
∑

j∈N a

Vj(Bkj sin θkj +Gkj cos θkj), (1)

Qk = Vk
∑

j∈N a

Vj(Gkj sin θkj −Bkj cos θkj), (2)

where θkj := θk − θj , and Gkj [p.u.] and Bkj [p.u.] denote
the real and imaginary parts of the (k, j) entry in the network
admittance matrix, respectively. We adopt the constant power
model for loads and the classical model for generators [39].
Then, Pk and Qk in (1)–(2) are assumed to be known and fixed
for all load buses, while for generator buses they are given
by EgVg

X′
g

sin(δg− θg) and EgVg

X′
g

cos(δg− θg)− V 2
g

X′
g
, respectively,

where Eg [p.u.] is the magnitude of the constant voltage source
behind transient reactance X ′g [p.u.], and δg [rad] denotes the
rotor electrical angular position for generator g.

The generator electromechanical dynamics are described by
the swing equation augmented with a first-order turbine gov-
ernor model. Dynamic states for generator g include δg [rad],
electrical frequency, ωg [rad/s], and the turbine mechanical
power, Pm

g [p.u.]. Their evolution is governed by

δ̇g = ωg − ωs, (3)
Mgω̇g = Pm

g − Pg, (4)

τgṖ
m
g = P r

g − Pm
g −

1

Rgωs
(ωg − ωs) , (5)

where Mg [s2/rad] denotes the inertia constant; τg [s],
Rg [p.u.], and P r

g [p.u.] are the governor time constant, droop
constant, and reference setpoint, respectively; ωs [rad/s] is
the synchronous frequency; and Pg [p.u.] is the active power
injected at generator bus g as described by (1) [39]. We do
not consider voltage dynamics in the analytical developments,
rather, we treat the generator terminal voltage, Vg [p.u.],
as an input (in practice, it is governed by exciter control
and a voltage regulator). The system DAE model comprises
appropriate instances of (1)–(2) (for all load buses) and (1),
(3)–(5) (for all generator buses). Load active- and reactive-
power injections, generator reference setpoints, and generator
terminal voltages are inputs to the model.

B. AGC and Economic Dispatch
In each control area, AGC action modulates generator

active-power outputs to eliminate frequency deviations (that
may arise, e.g., from load fluctuations not acknowledged in
economic dispatch) and satisfy scheduled net tie-line flow.
Next, we describe one particular instance of a practical imple-
mentation for the same. For generator g ∈ Ga, the reference,
P r

g , (see (5)) is given by

P r
g = P ?

g + αg

(
ξa −

∑

j∈Ga

P ?
j

)
, (6)

2In the remainder of the paper, quantities related to a generator bus (or a
generator) are indexed by subscript g, a load bus by `, and a generic bus by k.

where P ?
g is the economic dispatch setpoint, αg is the AGC

participation factor (chosen such that
∑

g∈Ga αg = 1), and
ξa [p.u.] is the AGC state. The evolution of ξa is governed by

ξ̇a = −ξa −ACEa +
∑

g∈Ga

Pg, (7)

where ACEa is the area control error that accounts for devia-
tions in net tie-line flows with neighboring control areas from
their scheduled values as well as frequency deviations from
the synchronous value [9], [40]. Typically, the area control
error is defined as

ACEa := (P a
tl − P a?

tl )−Ba(ωa − ωs), (8)

where P a
tl and P a?

tl denote the actual and scheduled net tie-line
flows away from control area a, respectively, Ba < 0 is the
area bias factor, and ωa denotes the prevailing frequency [9],
[41]. While practical setups differ on how ωa is computed from
measurements, we assume it is the average electrical frequency
of all generators in control area a, i.e.,

ωa =
1

|Ga|
∑

g∈Ga

ωg, (9)

where |Ga| denotes cardinality of the set Ga. As discussed
previously, P ?

g , g ∈ G, are optimizers of a network-wide
economic dispatch problem, which we assume takes the form

minimize
Pg, g∈Ga, a∈A

∑

a∈A

∑

g∈Ga

Cg(Pg)

subject to
∑

a∈A

∑

g∈Ga

Pg =
∑

a∈A
P a?
load,

(10)

where Cg(·) [$/hr] denotes the cost function for generator g
and P a?

load is the look-ahead net load for control area a (without
accounting for system loss or real-time load fluctuations).
The precise formulation of the economic dispatch problem is
not critical to subsequent developments; the only variables of
importance in the context of the distributed slack formulation
are the optimizers, P ?

g , g ∈ G. These may result from a more
detailed rendition of the optimization problem in (10).

C. Single and Distributed Slack Variants of Power Flow

The combination of the power balance equations, generator
electromechanical dynamics, AGC, and economic dispatch
dictates the evolution of system states. If one solely cares
about their values in steady state, the general solution strategy
is to focus on the algebraic power balance equations since the
alternative of performing time-domain simulations of a DAE
model (such as the one given by (1)–(8)) unto steady state
is not computationally commensurate. A major challenge in
this regard is to determine the active-power outputs from the
generators in steady state since these depend on dynamic and
static state variables (δg and Vg, θg, respectively).

The standard workaround for the above problem is to:
i) assume that generator active-power outputs are fixed to
some nominal setpoints, and ii) attribute all unforecasted load
variations and unmodeled system loss to one generator. This
recovers the power flow problem with a single slack bus. The
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distributed slack bus alternative involves modeling the active-
power balance at each generator bus g as follows:

P ◦g + πgψ = Vg

∑

j∈N a

Vj(Bgj sin θgj +Ggj cos θgj), (11)

where P ◦g is a nominal active-power injection, πg is a partic-
ipation factor, and ψ denotes the slack that is to be allocated
amongst all generators. Similar to the standard power flow
formulation with a single slack bus, the nominal active-power
injection, P ◦g , and the voltage magnitude, Vg, are fixed at gen-
erator buses (as are the active- and reactive-power injections at
load buses). Unspecified voltage magnitudes and phase angles
are solved from power flow.

III. FORMALIZING THE ELEMENTS OF THE
DISTRIBUTED SLACK BUS

In Section III-A, we uncover appropriate values for P ◦g ,
πg, and ψ, so that the power flow solution yields estimates
of bus voltage magnitudes and phase angles that best match
results from DAE simulations executed through to steady state.
First, we show that the nominal active-power injection, P ◦g ,
should correspond to the optimizer from the economic dispatch
problem in (10):

P ◦g = P ?
g . (12)

Second, the appropriate choice for the participation factor, πg,
is the AGC participation factor that appears in (6), i.e.,

πg = αg. (13)

Finally, the slack variable, ψ, is shown to be the sum of all
active-power load and loss not acknowledged in economic
dispatch for the control area to which the generator belongs.
In particular,

ψ = ∆P a := ∆P a
load + P a

loss, (14)

where ∆P a is the net-load imbalance for control area a, given
by the sum of unaccounted load ∆P a

load and loss P a
loss. These

are defined as

∆P a
load :=

∑

`∈La

P` − P a?
load, (15)

P a
loss :=

∑

k∈N a

(
V 2
k Gkk + 2

∑

j∈N a

VkVjGkj cos θkj
)
. (16)

Figure 2 illustrates the system architecture and the main
result. The optimization, control, and physical layers of the
system are shown in Fig. 2(a). During periods of steady-
state operation between successive economic dispatch updates
(see Fig. 2(b)), specifying the active-power injection for each
generator bus as P ?

g +αg∆P a (see Fig. 2(c)) in the power flow
equations yields the best estimate of bus voltage magnitudes
and phase angles. To explain what ∆P a precisely represents,
suppose Fig. 2(b) illustrates system frequency through the
course of the following stylized changes. The economic dis-
patch problem (10) is executed at some initial time with the
load perfectly known. The system then settles to steady state
following minor dynamic fluctuations during which losses
are compensated. At a later time instant, there is a non-
trivial step increase in the system net load. Following this, the

area a = 1P 1⋆
load+ area a = 2 P 2⋆

load+

P ⋆
1

P r
1 P r

3P r
2 P r

4
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2 P ⋆

3 P ⋆
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Fig. 2: (a) Illustration of economic dispatch and AGC architecture for a power
system with two control areas. (b) [not to scale] Sketch of prevailing frequency
in a control area. Steady-state operation (shaded gray) is punctuated by
dynamic excursions that may arise due to new economic dispatch setpoints or
load changes. (c) Power flow formulation with distributed slack bus. Modeling
injections of generator buses as P ?

g + αg∆P a in the algebraic power flow
equations yields the best estimates for bus voltage magnitudes and phase
angles during periods of steady state between economic dispatch updates.

system returns to steady state after (sustained and significant)
AGC action. With this in mind, consider solving the power
flow problem with a distributed slack bus during the two
periods of steady-state operation shaded in gray. In the first
steady-state period following the initial execution of economic
dispatch, ∆P a only represents the unaccounted losses. In the
second one, ∆P a encompasses both the load change and
accompanying change in loss.

After establishing the main result in Section III-A, in
Section III-B we overview the algebraic equations, known
variables, and unknown variables in the distributed slack bus
power flow problem.

A. Establishing the Main Result: (12)–(14)

To show (12)–(14), we have to examine aggregate dynamics
in each control area. Summing (4)–(5) over all generators in
area a and appending companion AGC dynamics in (7) yields

∑

g∈Ga

Mgω̇g =
∑

g∈Ga

Pm
g − P a

gen, (17)
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∑

g∈Ga

τgṖ
m
g = ξa −

∑

g∈Ga

(
Pm

g +
1

Rgωs
(ωg − ωs)

)
, (18)

ξ̇a = −ξa −ACEa + P a
gen, (19)

where we have used the fact that
∑

g∈Ga αg = 1, and

P a
gen :=

∑

g∈Ga

Pg (20)

is the total active power generated in control area a. Since the
power flow problem is solved to obtain system states in steady
state, we consider the aggregate dynamics for each control
area a, i.e., (17)–(19), at some time instant t = tss when
ω̇g(tss) = Ṗm

g (tss) = 0 ∀ g ∈ Ga, and ξ̇a(tss) = 0:3

0 =
∑

g∈Ga

Pm
g (tss)− P a

gen, (21)

0 = ξa(tss)−
∑

g∈Ga

(
Pm

g (tss) +
1

Rgωs
(ωg(tss)− ωs)

)
, (22)

0 = −ξa(tss)−ACEa(tss) + P a
gen. (23)

Substituting (9) in (8) for time t = tss yields

ACEa(tss)=(P a
tl(tss)−P a?

tl )− Ba

|Ga|
∑

g∈Ga

(ωg(tss)− ωs). (24)

Summing (21)–(23) over all control areas and appropriately
substituting (24), we get
∑

a∈A

(
P a
tl(tss)−P a?

tl +
∑

g∈Ga

( 1

Rgωs
− Ba

|Ga|

)
(ωg(tss)− ωs)

)
= 0.

(25)
Since losses in transmission lines are negligible, it follows that

∑

a∈A
P a
tl(tss) ≈ 0. (26)

Furthermore, assuming that the scheduled tie-line flows out
of a control area match those into the area (with opposite
direction), we get: ∑

a∈A
P a?
tl = 0. (27)

With (26) and (27), (25) simplifies as
∑

a∈A

∑

g∈Ga

(
1

Rgωs
− Ba

|Ga|

)
(ωg(tss)− ωs) = 0. (28)

Since all flows in the network are constant in steady state,
it follows that δ̇g(tss) = θ̇g(tss) ∀ g ∈ G, and θ̇g(tss) =
θ̇k(tss) ∀ k ∈ Ng, where Ng denotes the set of buses electri-
cally connected to bus g. Furthermore, the electric network is
connected, which renders δ̇g(tss) =: ∆ωss ∀ g ∈ G. From (3),
this implies ωg(tss) = ωs+∆ωss ∀ g ∈ G. Then, (28) becomes

∆ωss

∑

a∈A

∑

g∈Ga

(
1

Rgωs
− Ba

|Ga|

)
= 0. (29)

Since Rg > 0 and Ba < 0, we see from (29) that ∆ωss = 0.
This further implies ωg(tss) = ωs ∀ g ∈ G. Indeed, AGC action
restores the frequency of each generator (and therefore, the

3In what follows, x(tss) denotes the value that variable x assumes at time
instant tss.

prevailing frequency of each area) back to the synchronous
value. Summing (21)–(23) with ωg(tss) = ωs, we see that
ACEa(tss) = 0. Substituting this into (23) yields

ξa(tss) = P a
gen =

∑

g∈Ga

P ?
g + ∆P a, (30)

where the total active power generated in control area a, P a
gen,

is expressed as the sum of the optimizers from economic
dispatch, P ?

g , g ∈ Ga, (see (10)), and the net-load imbalance,
∆P a (see (14)). Next, substituting (6) into (5), and recognizing
that Ṗm

g (tss) = 0 and ωg(tss) = ωs, we get

Pm
g (tss) = P ?

g +αg

(
ξa(tss)−

∑

j∈Ga

P ?
j

)
= P ?

g +αg∆P a, (31)

where the second equality above follows by substituting (30).
Finally, rearranging terms in (4) for time t = tss, we get

Pg(tss) = Pm
g (tss)−Mgω̇g(tss) = P ?

g + αg∆P a, (32)

where the second equality follows from (31) and setting
ω̇g(tss) = 0. This establishes the main result in (12)–(14).

Remark 1 (Subset of Generators Participate in AGC): Con-
sider the setting where only generators in a subset Ga′ ⊆ Ga

participate in AGC in control area a. It follows that αg =
0 ∀ g ∈ Ga \ Ga′ in (6), with

∑
g∈Ga′ αg = 1. Using the same

analytical procedure as above, we recover πg = αg ∀ g ∈ Ga′,
and πg = 0 ∀ g ∈ Ga \ Ga′, as the corresponding participation
factors for the distributed slack bus. Only generators that
participate in AGC have nonzero participation factors. This
is intuitive, since the remainder of the generators have their
active-power outputs fixed to economic dispatch setpoints. For
ease of exposition, in the remainder of the paper, all generators
in a control area are assumed to partake in AGC. �

Remark 2 (Impact of AGC on Net Tie-line Flow): The anal-
ysis in Section III-A demonstrates that AGC action in control
area a enforces ACEa(tss) = 0 and ωg(tss) = ωs ∀ g ∈ Ga.
Substituting these into (24), we observe that the steady state
net tie-line flow out of the control area matches its scheduled
value, i.e., P a

tl = P a?
tl . This yields the power balance constraint

P a?
tl =

∑

k∈N a

∑

j /∈N a

−V 2
k Gkj+VkVj(Bkj sin θkj+Gkj cos θkj),

(33)
which must be satisfied by the power flow solution (obtained
from single or distributed slack variants) in all control areas. �

Remark 3 (No AGC): For completeness, Appendix A ex-
amines the special case where generators only participate in
primary frequency control. We establish that the correct inter-
pretation for the slack variable, ψ, is the net-load imbalance
unaccounted by economic dispatch over all control areas,
and that the participation factor, πg, is the governor-based
participation factor. The nominal active-power injection, P ◦g ,
remains the optimizer from economic dispatch. Governor-
based participation factors have been leveraged to form a
distributed slack bus (see, e.g., [15], [17], [19]), albeit, with
limited analytical justification. Also, interpretations for the
nominal active-power injections and slack variable for this
special case are not provided in these prior efforts. �
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B. Power Flow Formulation with Distributed Slack Bus

We now overview the algebraic equations as well as
known and unknown variables in setting up power flow
with a distributed slack bus. The problem is formulated and
solved across all control areas while acknowledging the sched-
uled tie-line flow out of and the net-load imbalance within
each control area. As in the single slack formulation, each
bus k ∈ N is associated with four variables: voltage magnitude
and phase angle Vk, θk, and net active- and reactive-power in-
jections Pk, Qk. For load bus ` ∈ L, P`, Q` are known, V`, θ`
are unknown, and we must acknowledge both the active- and
reactive-power balance equations (1)–(2). For generator bus
g ∈ G, Vg is fixed while θg is unknown, and we only consider
the active-power balance equation (11). Note that P ◦g and πg

are assumed to be known (P ◦g = P ?
g , the economic dispatch

setpoint, and πg = αg, the AGC participation factor). On the
other hand, ψ = ∆P a depends on the control area that the
generator belongs to, and, ∆P a, a ∈ A are left as unknowns.
Furthermore, we need to impose (33) for each control area to
capture AGC action. Recall that scheduled net tie-line flows
out of control areas are assumed to satisfy

∑
a∈A P

a?
tl = 0;

thus, only |A| − 1 instances of (33) are necessary.
Collecting active-power balance equations at all load and

generator buses, reactive-power balance equations at load
buses, and net tie-line flow equations for |A| − 1 control
areas, we obtain a total of 2|L| + |G| + |A| − 1 algebraic
equations. Without loss of generality, we set the voltage phase
angle at one generator bus, say g ∈ G, as the system angle
reference, i.e., we assume θg = 0. Then, we have a total of
2|L|+ |G|+ |A|−1 unknowns: V`, θ`, ` ∈ L, θg, g ∈ G\{g},
and ∆P a, a ∈ A. The resultant system of nonlinear algebraic
equations can be solved using iterative algorithms like the
Newton-Raphson method. To ensure broad applicability of the
analytical developments, the DC power flow problem with
a distributed slack bus for cases with and without AGC is
presented in Appendix B.

IV. CASE STUDIES

We examine the New England 39-bus 10-machine test
system. Case studies demonstrate that solutions obtained from
a distributed slack AC power flow are in excellent agreement
with time-domain simulations of the system DAE model. We
also compare solutions with the standard single slack bus
option, and find that the distributed slack formulation consis-
tently yields lower errors with no added computation time. The
DAE simulations are performed in PSAT [38] using a detailed
two-axis model along with governor and exciter controls for
each synchronous generator [39]. (Recall that our theoretical
developments employed a swing equation model augmented
with a turbine governor for analytical convenience.) Custom
MATLAB code implements the Newton-Raphson algorithm
to solve the distributed slack power flow as described in
Section III-B.

A. Simulation Setup

The system one-line diagram is depicted in Fig. 3. The
network is split into two control areas belonging to the

1

2

3

4

5

6

7

8

9

10

11
12

13
14

15

16

17
18

19

20

21

22

23

24

25
26

27

28 29
30

35

3633343231

38

37

39

area a = 1

area a = 2

Fig. 3: One-line diagram for the New England test system.

set A = {1, 2}, with area 1 containing generator buses
G1 = {30, 37, 38} and area 2 containing generator buses
G2 = {31, . . . , 36, 39}. Generator parameters and nominal
load values are sourced from the PSAT data file in [38], and
the generator active-power injections therein (reproduced in
Table I) are assumed to be the economic dispatch setpoints P ?

g ,
g ∈ G. Without loss of generality, we set AGC participation
factors to be proportional to the generator capacities.4 Nu-
merical values are reported in Table I. The scheduled net tie-
line flow between the control areas is taken to be the sum
of steady-state flows across lines (1, 39), (3, 4), and (17, 16).
For the simulations, we introduce uniform increases/decreases
for all loads and compare bus voltage magnitudes and phase
angles obtained from the post-disturbance steady state of the
DAE simulation with those resulting from the power flow
problem formulated with: i) the distributed slack bus, and ii) an
exhaustive combination of single slack bus choices.

B. Accuracy and Computation Time

Box-and-whisker plots in Figs. 4–5 depict error distributions
obtained from the power flow solutions compared to DAE
simulations for the cases of ±10% uniform change in load
active-power withdrawals. Boxes contain data points between
first and third quartiles, and whisker ends indicate minimum
and maximum values. Case indices referenced in the x axes in
Figs. 4–5 correspond to slack bus choices detailed in Table II.

An inspection of the results in Fig. 4 reveals that the
power flow problem formulated with the distributed slack
bus yields bus voltage magnitudes, phase angles, and active-
power flows that match the DAE simulations very well (hence
validating the analytical developments). The distributed slack
bus formulation offers significantly greater accuracy compared
to all single slack bus alternatives, and this is also the case for
voltage phase angles solved from the distributed slack variant
of the DC power flow as shown Fig. 5. Note that results from
the distributed slack simulations are plotted with reference to
the y axes on the left of the plots while the single slack results
are with reference to the y axes on the right.

4The choice of the AGC participation factors is inconsequential to the
analytical developments and case studies as long as the participation factors
for the distributed slack bus match them.
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Fig. 4: Distribution of errors in (a)(d) voltage magnitudes, (b)(e) voltage phase angles, and (c)(f) line active-power flows, from AC power flow, for scenarios of
uniform load change of +10% in (a)–(c) and −10% in (d)–(f). Case 0 corresponds to the distributed slack bus formulation, while Cases 1–21 are exhaustive
combinations of single slack bus choices (detailed in Table II). The y axes on the left apply to Case 0, while the ones on the right apply to Cases 1-21.
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Fig. 5: Distribution of errors in phase angles from DC power flow for scenarios
of uniform load change of +10% in (a) and −10% in (b). Case 0 corresponds
to the distributed slack bus formulation, while Cases 1–21 are exhaustive
combinations of single slack bus choices (detailed in Table II). The y axes
on the left apply to Case 0, while the ones on the right apply to Cases 1-21.

For +10% and −10% uniform load changes, our custom
MATLAB code takes 0.47 s and 0.55 s, respectively, to con-
verge to the solution of the power flow problem with a dis-
tributed slack bus. PSAT simulations take 10.34 s and 10.81 s,
respectively, to reach steady state. Notably, the power flow
problem formulated with the distributed slack bus converges
in the same time as taken to solve the single slack version.

V. CONCLUDING REMARKS

This paper formalizes choices for the elemental constituents
(nominal active-power injections, participation factors, and
net-load imbalance) that appear in the distributed slack bus
formulation. The main result is tailored to networks with AGC
for frequency regulation and tie-line bias control. Corollaries
covering the case where generators only participate in primary
frequency control and the DC power flow formulation with a
distributed slack bus are also provided.

APPENDIX

A. Primary Frequency Control Only

In the problem formulation outlined in Section III-B, sup-
pose AGC is omitted and tie-line flows are not regulated.
Collecting active-power balance equations at generator and

TABLE I: Generator economic dispatch setpoints and AGC participation factors for the New England test system.

Area 1 Area 2
Generator at Bus g 30 37 38 31 32 33 34 35 36 39

Economic Dispatch Setpoint, P ?
g [p.u.] 2.50 5.40 8.30 6.78 6.50 6.32 5.08 6.50 5.60 10.0

AGC Participation Factor, αg 0.4212 0.2284 0.3503 0.1361 0.1459 0.1312 0.1103 0.1383 0.1167 0.2214

TABLE II: Explanation of cases: Case 0 corresponds to the power flow problem formulated with the distributed slack bus and is labeled “Distributed.” The
remaining cases correspond to power flow problems formulated with an exhaustive combination of single slack bus options for the two control areas. For
instance, in Case 4, the generators at buses 30 and 34 (in control areas 1 and 2, respectively) are chosen as slack buses.

Case 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Area 1 Distributed 30 30 30 30 30 30 30 37 37 37 37 37 37 37 38 38 38 38 38 38 38
Area 2 Distributed 31 32 33 34 35 36 39 31 32 33 34 35 36 39 31 32 33 34 35 36 39
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load buses as well as reactive-power balance equations at load
buses yields 2|L| + |G| algebraic equations, with as many
unknowns: V`, θ`, ` ∈ L, θg, g ∈ G \ {g}, and the net-
load imbalance for the entire system, ∆P (defined analogously
to (14), except without the notion of control areas). Following
a procedure similar to Section III-A, we get that in steady state
at time t = tss,

ωg(tss) = ωs

(
1− ∆P∑

j∈G R
−1
j

)
, (34)

Pg(tss) = P ?
g +

R−1g∑
j∈G R

−1
j

∆P. (35)

Comparing (35) with the left-hand side of (11), we see that the:
i) nominal active-power injection, P ◦g = P ?

g , ii) appropriate
choice for the participation factor,

πg =
R−1g∑
j∈G R

−1
j

=: ρg, (36)

which is referred to in the literature as the governor-based
participation factor, and iii) correct interpretation for the slack
variable, ψ, is the system-wide net-load imbalance, ∆P .

B. DC Power Flow

Designate bus g ∈ G as the angle reference, i.e., θg = 0.
Collect generator active-power injections at buses g ∈ G in
vector PG , and active-power components of loads at buses ` ∈
L by PL. Let us further denote the vector of unknown
voltage phase angles at the generator buses g ∈ G \ {g} by
θG\{g}, and at load buses by θL. Let BN\{g} ∈ R|N |×|N|−1

denote the matrix obtained by removing all shunt elements
and the g-th column of the imaginary part of the network
admittance matrix. The standard DC power flow equations can
be expressed as follows:

[
PG
PL

]
= −BN\{g}

[
θG\{g}
θL

]
. (37)

We now discuss the solution of the above equations with a
distributed slack bus for the cases with and without AGC.

1) With AGC: Denote P ?
G to be the vector that collects

economic dispatch setpoints of all generators, and define
∆PA := [∆P 1, . . . ,∆P |A|]T. Following the developments in
Section III-A, we substitute Pg = P ◦g + πgψ = P ?

g + αg∆P a

for entries of PG in (37) and rearrange terms to get

[
P ?
G
PL

]
= −

[
A BN\{g}

]



∆PA
θG\{g}
θL


 , (38)

where
A =

[
αG1 · · · αG|A|

0|L| · · · 0|L|

]
, (39)

with the g-th entry of αGa ∈ R|G| being αg if g ∈ Ga and 0
otherwise, and 0|L| being the |L|-dimensional all-zeros vector.
Assuming the system to be lossless, voltage magnitudes to be
unity, and angle differences in (33) to be small, we get

P a?
tl =

∑

k∈N a

∑

j /∈N a

Bkj(θk − θj). (40)

Collecting (38) and net tie-line flow equations (40) for |A|−1
control areas, we obtain a system of |G|+ |L|+ |A|− 1 linear
equations, from which we solve for as many unknowns: θg,
g ∈ G \ {g}, θ`, ` ∈ L, and ∆P a, a ∈ A.

2) Primary Frequency Control Only: Following the devel-
opments in Appendix A, we substitute Pg = P ◦g + πgψ =
P ?

g + ρg∆P for entries of PG in (37) and rearrange terms
appropriately to get

[
P ?
G
PL

]
= −

[
ρ BN\{g}

]



∆P
θG\{g}
θL


 , (41)

where the g-th entry of ρ ∈ R|N | is ρg if g ∈ G and 0
otherwise. The system of |G| + |L| equations in (41) can be
solved for the unknowns θg, g ∈ G \ {g}, θ`, ` ∈ L, and ∆P .
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