
1

Optimal Regulation of Virtual Power Plants
Emiliano Dall’Anese, Member, IEEE, Swaroop Guggilam, Student Member, IEEE, Andrea Simonetto, Member,

IEEE, Yu Christine Chen, Member, IEEE, and Sairaj V. Dhople, Member, IEEE

Abstract—This paper develops a real-time algorithmic frame-
work for aggregations of distributed energy resources (DERs) in
distribution networks to provide regulation services in response to
transmission-level requests. Leveraging online primal-dual-type
methods for time-varying optimization problems and suitable
linearizations of the nonlinear AC power-flow equations, we
believe this work establishes a system-theoretic foundation to
realize the vision of distribution-level virtual power plants. The
optimization framework controls the output powers of dispatch-
able DERs such that, in aggregate, they respond to automatic
generation control and/or regulation-services commands. This is
achieved while concurrently regulating voltages within the feeder
and maximizing customers’ and utility’s performance objectives.
Convergence and tracking capabilities are analytically established
under suitable modeling assumptions. Simulations are provided
to validate the proposed approach.

Distribution systems, virtual power plants, real-time opti-
mization, optimization with feedback.

I. INTRODUCTION

Traditional approaches for regulating frequency and main-
taining reliable operation of transmission systems leverage pri-
mary frequency response, automatic generation control (AGC),
and regulation services provided by large-scale synchronous
generators. In the future, dispatchable distributed energy re-
sources (DERs) are envisioned to supplement generation-side
capabilities, by providing additional flexibility in regulating
frequency and maintaining reliable system operation [1], [2].
Towards realizing this vision, we develop an algorithmic
framework for DER aggregations in distribution feeders to em-
ulate a virtual power plant that effectively provides regulation
services to the bulk system while guaranteeing power quality
in the distribution network.

The main idea and technical approach are outlined with
respect to the illustrative system in Fig. 1. The objective is
to develop a real-time optimization architecture for DERs, so
that the active power at the feeder head, P0, is adjusted in
real time to track setpoint P0,set (while we focus on active
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Fig. 1. Proposed architecture: output powers of the DERs (Pi’s, Qi’s) are
regulated in real time so that the active power at the feeder head, P0 follows
the setpoint reference P0,set while maximizing customers’ and utility’s
performance objectives and ensuring that operational limits are enforced.

power, the framework can be extended to consider reactive-
power setpoints too). For example, P0,set can be an AGC
signal (scaled by a given feeder participation factor), a ramping
signal, or a 5-minute dispatch commanded by the transmission
system operator (e.g., flexible ramping products) [2]. The real-
time algorithm is designed to track the setpoint P0,set at the
feeder head, while concurrently: i) maximizing customers’ and
utility’s performance objectives, and ii) ensuring that oper-
ational limits are enforced throughout the feeder. The algo-
rithm is developed with the aid of online primal-dual-gradient
methods applied to double-smoothed Lagrangian functions [3],
[4] while relying on suitable linear approximations of the AC
power-flow equations to bypass their nonlinearity. As shown
in Fig. 1, the resultant operational strategy involves collecting
measurements of pertinent voltages and powers in real time.
These measurements and the setpoint P0,set are then utilized
to dispatch individual DERs. Convergence and tracking capa-
bilities of the proposed algorithms are analytically established.

Prior works in this context have considered controlling
aggregations of DERs such as thermostatically controlled
loads [5]–[7] and other deferrable loads (e.g., pool pumps) [8]
to track given power setpoints at the substation. A control
framework for scheduling and provisioning of frequency re-
serves by aggregations of commercial buildings is proposed
in [9]. Strategies to manage fleets of electric vehicles to
provide services to the main grid are investigated in [10]. A
framework for modeling of flexible loads as virtual batteries
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is proposed in [11]. However, the optimization and control
strategies proposed in [5]–[10] are network-agnostic, in the
sense that they assume that all DERs are connected to one
electrical node and power flows in the network are ignored.
Further, analytical tracking results in time-varying operational
conditions are not available in the majority of those works.
While this simplifies the design of optimization and control
strategies, such strategies do not allow for the regulation of
voltage levels throughout the feeder. On the other hand, the
proposed methodology enables tracking of power setpoints at
the substation while enforcing voltage limits. An economic
dispatch model is considered in [12], where distributed con-
trollers are designed to meet a certain load profile over a finite
time horizon while minimizing an aggregate cost; stability
of the distributed algorithm is analyzed in a continuous-
time setting (and, hence, the effects of communication delays
and discrete-time operations are not included) and for time-
invariant conditions.

A virtual-power-plant profit-maximization problem over a
24-hour period is considered in [13], based on an economic-
dispatch model, and a stochastic adaptive optimization ap-
proach for virtual power plants participating in the day-ahead
and the real-time energy markets is proposed in [14]. How-
ever, [13], [14] require solving optimization problems to con-
vergence (i.e., they provide an offline solution method), and are
not applicable to real-time control of DERs. A centralized real-
time controller for distribution systems is proposed in [15],
[16], based on projected-gradient methods; it is shown that the
closed-loop system converges on average to a predetermined
objective. Compared to [15], [16], our proposed framework
affords a distributed implementation, it is based on an online
primal-dual method (instead of barrier-type functions, which
may lead to prologued constraint violations), and it is shown
to be stable under dynamic operational conditions. The online
algorithm in [17] does not utilize measurements of voltage
magnitudes and powers at the substation; therefore, it may
nor enforce voltage regulation and it may fail in tracking
setpoints at the substation. Furthermore, the algorithm in [17]
considers a diminishing stepsize rule, which is not suitable for
the dynamic setting considered in the present paper.

A similar controller design strategy is proposed in [18];
however, the algorithm in [18] does not utilize measurements
of the output powers of the DERs. In contrast, the proposed
method is based on measurements of the DERs’ output powers
to promote adaptability and cope with slow-responding DERs.
Compared to [18], the present paper provides suitable conver-
gence claims for the considered tracking problem, it provides
a more general approximate model for voltage magnitudes,
and it provides an approximate model for the power flows at
the substation. Finally, a real-time distributed algorithm for
the optimal power flow problem is proposed in [19]; however,
the distributed algorithm relies on nested loops (thus imposing
stringent communication constraints) and it is applicable only
to radial (balanced) distribution systems. Relative to [19],
the proposed method requires a much simpler communication
strategy, and it is applicable to generic systems with mesh or
radial topologies.

The remainder of this manuscript is organized as follows.

Section II outlines preliminaries and system model. The real-
time algorithm is described in Section III, numerical results
are presented in Section IV, and concluding remarks are
in Section V. Additional modeling details, an extension to
multiphase systems, and proofs are provided in the Appendix.

II. PRELIMINARIES

A. Distribution-network Model

Consider a distribution feeder comprising N + 1 nodes
collected in the set N ∪ {0}, N := {1, . . . , N}, and lines
represented by the set of edges E := {(m,n)} ⊂ (N ∪
{0}) × (N ∪ {0}).1 Let Vn ∈ C and In ∈ C denote the
phasors for the voltage and the current injected into node n,
respectively, and define the N -dimensional complex vectors
v := [V1, . . . , VN ]T ∈ CN and i := [I1, . . . , IN ]T ∈ CN . Node
0 denotes the secondary of the distribution transformer. Using
Ohm’s and Kirchhoff’s circuit laws, the following relationship
can be established:[

I0
i

]
=

[
y00 yT

y Y

] [
V0
v

]
, (1)

where Y ∈ CN×N , y ∈ CN×1, and y00 ∈ C are formed
based on the system topology and the π-equivalent circuit of
the distribution lines (see, e.g., [20, Chapter 6] for additional
details on distribution line modeling). Finally, V0 denotes
the voltage at the secondary of the transformer/substation.
A constant-power load model is utilized, and P`,n and Q`,n
denote the real and reactive demands at node n ∈ N [20].
The active and reactive powers flowing into the feeder at the
substation are denoted as P0 and Q0.

Let G ⊆ N be a set of nodes where DERs are located, and
denote by Pi and Qi the real and reactive powers injected by
the DER located at node i ∈ G. We denote as Yi ⊂ R2 the
set of possible setpoints (Pi, Qi) for DER i; the set Yi ⊂ R2

captures hardware and operational constraints of the DER i,
and it is assumed to be convex and compact. Some examples
are provided next.
Photovoltaic (PV) systems: Let P avi denote the available real
power from a PV system and let Si be the rated apparent
capacity. Then, the set Yi is given by:

Yi =
{

(Pi, Qi): 0 ≤ Pi ≤ P avi , P 2
i +Q2

i ≤ S2
i

}
.

The set Yi is time varying since P avi depends on underlying
irradiance conditions (it can be obtained via, for example,
forecasting algorithms). The set Yi can also be modified to
account for power factor constraints.

1Upper-case (lower-case) boldface letters will be used for matrices (column
vectors); (·)T for transposition; (·)∗ complex-conjugate; and, (·)H complex-
conjugate transposition. <{·} and ={·} denote the real and imaginary parts of
a complex number, respectively, and j :=

√
−1. |·| denotes the absolute value

of a number or the cardinality of a set. For a given N × 1 vector x ∈ RN ,
‖x‖2 :=

√
xHx; diag(x) returns a N × N matrix with the elements of

x in its diagonal. Further, projY{x} denotes the projection of x onto the
convex set Y . Given a matrix X ∈ RN×M , xm,n denotes its (m,n)-th
entry, Xn,· denotes the nth row, and ‖X‖2 denotes the `2-induced matrix
norm. ∇xf(x) returns the gradient vector of f(x) with respect to x ∈ RN .
Finally, 1N denotes the N × 1 vector with all ones, and 0N denotes the
N × 1 vector with all zeros.
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Energy storage systems: The set Yi for an energy storage
system is given by:

Yi =
{

(Pi, Qi): P
min
i ≤ Pi ≤ Pmaxi , P 2

i +Q2
i ≤ S2

i

}
,

for given limits Pmini , Pmaxi . These limits are updated during
the operation of the battery based on the state of charge. For
example, of the battery is fully charged, then Pmini < 0 and
Pmaxi = 0.
Variable frequency drives: For DERs such as water pumps and
supply fans of commercial HVAC systems, the set Yi can be
described as:

Yi =
{

(Pi, Qi): P
min
i ≤ Pi ≤ Pmaxi , Qi = 0

}
,

for given limits Pmini , Pmaxi . These limits can be fixed or
updated by local controllers on a regular basis [8].
Fuel cells: The set Yi is given by:

Yi =
{

(Pi, Qi): 0 ≤ Pi ≤ Pmaxi , P 2
i +Q2

i ≤ S2
i

}
for given constant parameters Pmaxi and Si.

The operating region of small-scale diesel generators can
be modeled using box constraints. For DERs with discrete
levels of output powers (e.g., electric vehicle chargers with
discrete charging levels), Yi represents the convex envelope
of the possible operating points; see e.g., [16].

B. Approximate models for the Power-flow Equations

Let sinj := [S1, . . . , SN ] ∈ CN collect the net powers
injected at nodes N , where Si = Pi −P`,i + j(Qi −Q`,i) for
i ∈ G, and Si = −P`,i − jQ`,i for i ∈ N\G. Then, using (1),
the complex-power injections can be compactly written as

sinj = diag (v) i∗ = diag (v) (Y∗v∗ + y∗V ∗0 ) . (2)

Assume that node 1 is connected to the substation via a
distribution line, and recall that the power entering the feeder
is given by S0 = V0I

∗
01, where I01 is the current flowing on the

distribution line (0, 1). Particularly, with y01 ∈ C denoting the
admittance of line (0, 1), ysh00 ∈ C any passive shunt elements
connected to node 0, and ysh01 the shunt component of the
line (0, 1), I01 is given by I01 = y01(V0 − V1) + y0V0, with
y0 = g0 + jb0 := ysh00 + ysh01. Thus, S0 can be rewritten as

S0 = |V0|2(y∗01 + y∗0)− V0(y∗01V
∗
1 ) . (3)

Unfortunately, the nontrivial nonlinearities in (2) and (3) hin-
der the possibility of seeking analytical closed-form solutions
to v, P0, and Q0 (as a function of the network topology and
composition, power injections, and voltage V0).

To facilitate the design and analysis of computationally-
tractable controllers that afford a real-time implementation,
the proposed approach will therefore leverage pertinent lin-
earization approaches for (2)–(3). Particularly, we will utilize
the following linear approximation of the nodal-voltage mag-
nitudes |v| (where the absolute value is taken entry-wise) and
P0, Q0 as a function of the real and reactive power injections:

|v| ≈ Apinj + Bqinj + c , (4)[
P0

Q0

]
≈Mpinj + Nqinj + o , (5)

where pinj := <{sinj} and qinj := ={sinj}. The model
parameters A ∈ RN×N , B ∈ RN×N , M ∈ R2×N ,
N ∈ R2×N , c ∈ RN , and o ∈ R2 can be obtained
using suitable linearization methods for the AC power-flow
equations. For example, one can leverage the approximation
method proposed in [21], the method based on a first-order
linear manifold approximant described in [22], [23], or the
so-called “LinDistFlow” approximation [24]. In the Appendix,
we will provide an extension of the approach of [21] to derive
a more general approximate model for voltage magnitudes
and powers at the substation. When the network model is not
known, regression methods can be utilized based on real-time
measurements of v, P0, Q0, and sinj (see, e.g., the recursive
least-squares method in [25]).

The approximate model (4)–(5) facilitates the design of
computationally-affordable algorithms. However, power set-
points obtain from (4)–(5) may cause violations of electrical
limits. Section III will then show how to leverage appropri-
ate measurements to enforce electrical limits while enabling
effective tracking of setpoints at the substation.

III. FEEDER AS A VIRTUAL POWER PLANT

A. Problem Formulation

Control actions are performed in a discrete-time fashion
at time instants {tk = kτ}k∈N, where τ > 0 is the time
required to compute one closed-loop iteration of the control
strategy illustrated in Fig. 1. The value of τ is limited by
communication delays involved in collecting measurements of
voltages and powers at the substation and when broadcasting
the signal d to the individual DERs. Typically, τ can be
on the order of subseconds to seconds [16], [18]. We start
by formalizing a time-varying optimization problem to model
operational objectives and constraints at each time instant tk.
To this end, define the following quantities related to voltage
magnitudes and power at the substation (derived from (4)
and (5)):

gtk
n

(p,q) := V min − ctkn −
∑
i∈G

(atkn,iPi + btkn,iQi), (6a)

gtkn (p,q) :=
∑
i∈G

(atkn,iPi + btkn,iQi) + ctkn − V max, (6b)

P tk0 (p,q) :=
∑
i∈G

(mtk
1,iPi + ntk1,iQi) + otk1 , (6c)

where it follows from (4) and (5) that:

ctkn := ctkn −
∑
i∈N

(atkn,iP
tk
`,i + btkn,iQ

tk
`,i), (7a)

otk1 := otk1 −
∑
i∈N

(mtk
1,iP

tk
`,i + ntk1,iQ

tk
`,i) . (7b)

Let P tk0,set be the setpoint specified for the active power at the
substation at time tk (with a positive sign representing power
flowing into the feeder) and assume that the active power at
the feeder head must track P tk0,set within a given tracking error
Etk > 0; that is,

htk |P tk0 (p,q)− P tk0,set| ≤ Etk , (8)
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where htk = 1 if the feeder is requested to follow the setpoint
P tk0,set and htk = 0 otherwise. With these preliminaries in
place, consider the following optimization problem:

(P1
tk) min

p,q

∑
i∈G

f tki (Pi, Qi) (9a)

subject to Pi, Qi ∈ Ytki , ∀ i ∈ G (9b)

htk(P tk0 (p,q)− P tk0,set) ≤ Etk , (9c)

− htk(P tk0 (p,q)− P tk0,set) ≤ Etk , (9d)

gtk
n

(p,q) ≤ 0, ∀n ∈M (9e)

gtkn (p,q) ≤ 0, ∀n ∈M (9f)

where constraints (9e)–(9f) enforce voltage regulation
(see (6a)–(6b)) at the M nodes in the set M ⊂ N where
measurements of the voltage magnitudes can be obtained.
Functions f tki (·) can capture a variety of operational objectives
for both the DERs and the utility/aggregator.

Problem (9) defines a sequence of time-varying optimal
DER output-power setpoints {popt,tk ,qopt,tk}k∈N. However,
solving problem (9) at each time tk in a batch fashion to
compute the optimal DER output-powers is not feasible in
practice. In fact, i) due to underlying computational and
communication limits, it is possible that problem (9) may not
be solved within τ seconds (especially if distributed solution
strategies are utilized); and, ii) since problem (9) relies on
approximate linear models, its solution may lead to voltage
violations and poor tracking performance.

In the next section, we will develop a computationally
affordable online algorithm that continuously pursues the
optimal solution trajectory of (9). With the aid of appropriate
measurements, the algorithm enables effective tracking of
setpoints at the substation while enforcing voltage regulation.

B. Proposed Algorithm

To begin the algorithm design, we first establish a few
pertinent technical assumptions regarding (9):

Assumption 1. Function f tki (Pi, Qi) is convex and
continuously differentiable for each i ∈ G and for
each tk. Define further the gradient map f tk(p,q) :=
[∇T

[P1,Q1]
f tk1 (P1, Q1), . . . ,∇T

[PNG ,QNG ]
f tkNG (PNG , QNG )]T.

Then, f tk : R2NG → R2NG is Lipschitz continuous with
constant L over Ytk := Ytk1 × . . .× YtkNG for all tk. �

Assumption 2. For all tk ≥ 0, there exist {Pi, Qi ∈ Ytki }i∈G
such that constraints (9c)–(9f) can be satisfied. �

Since (9c)–(9f) are linear in p,q, Assumption 2 implies that
Slater’s condition holds. If equality constraints are included
in (P1

tk), then Assumption 2 must be properly modified to
presuppose the existence of a strictly feasible solution.

The proposed algorithm leverages primal-dual-gradient
methods applied to regularized Lagrangian functions [3], [4],
[18]. Let γtk := [γtk1 , . . . , γ

tk
M ]T and µtk := [µtk1 , . . . , µ

tk
M ]T

collect the dual variables associated with (9e) and (9f), re-
spectively; similarly, let λtk and ζtk be the Lagrange multi-
pliers associated with the constraints (9c)–(9d). With d :=

DER i

DER j

dtk

dtk

dtk

Controllable DER

Measurement unit

Node 0

Voltage measurements {|V̂ tk
i |}

P̂ tk
0

P̂ tk
j , Q̂tk

j

P tk
0,set

(12a)-(12d)

(12e)

(12e)

Fig. 2. Operating principles of the control framework (12) when implemented
in a distributed fashion. Every τ seconds, measurements of voltage magnitudes
and powers at the feeder head are acquired, setpoints for the feeder head are
received (if any), and power commands of the DERs are updated via (12).

{γ,µ, λ, ζ}, consider the following regularized Lagrangian
function associated with (P1

tk):

Ltk(p,q,d) :=
∑
i∈G

f tki (Pi, Qi)

+
∑
n∈M

(
γng

tk
n

(p,q) + µng
tk
n (p,q)

)
+ λ

[
htk
(
P tk0 (p,q)− P tk0,set

)
− Etk

]
+ ζ

[
htk
(
P tk0,set − P tk0 (p,q)

)
− Etk

]
+
ν

2

∑
i∈G

(P 2
i +Q2

i )−
ε

2
‖d‖22, (10)

where the constants ν > 0 and ε > 0 appearing in the
regularization terms are design parameters. Based on (10),
consider the following time-varying saddle-point problem:

max
d∈R2M+2

+

min
p,q∈Ytk

Ltk(p,q,d) (11)

and denote by p∗,tk ,q∗,tk ,d∗,tk the unique primal-dual op-
timizers of (10) at time tk. In lieu of (9), the proposed
algorithm will track solutions of the time-varying saddle-point
problem (11). In general, the solutions of (9) and (11) are
expected to be different whenever ν 6= 0 and/or ε 6= 0.
However, the advantages of (11) include desirable convergence
properties that improve the ability to track P tk0,set, and the
possibility of acknowledging cost functions {f tki }i∈G that
are not strongly convex [3], [4]. The discrepancy between
popt,tk ,qopt,tk ,dopt,tk and p∗,tk ,q∗,tk ,d∗,tk can be bounded
as in [3, Lemma 3.2] (particularly, the gap between the two
solutions is proportional to

√
ε).

Integral to the algorithm is the collection of the following
measurements at each time tk:
(m1) V̂ tkn : measurement of the voltage V tkn at each n ∈M;
(m2) P̂ tk0 : measurement of the active power at the feeder head;
(m3) P̂ tki , Q̂

tk
i : measurement of the active and reactive output

powers of DER i ∈ G.
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Based on measurements (m1)–(m3), the sequential execu-
tion of the following steps defines the proposed algorithm:

Real-time Virtual-power-plant Regulation

[S1a] Collect voltage-magnitude measurements {|V̂ tkn |}n∈M.
[S1b] Collect measurement of P̂ tk0 .
[S2a] For all n ∈M, update γtk+1

n and µtk+1
n as follows:

γtk+1
n = projR+

{
γtkn + α

(
V min − |V̂ tkn | − εγtkn

)}
(12a)

µtk+1
n = projR+

{
µtkn + α

(
|V̂ tkn | − V max − εµtkn

)}
(12b)

[S2b] For the feeder head, if htk = 1 update dual variables as
follows:

λtk+1 = projR+

{
λtk + α(P̂ tk0 − P tk0,set − Etk − ελtk)

}
(12c)

ζtk+1 = projR+

{
ζtk + α(P tk0,set − P̂ tk0 − Etk − εζtk)

}
(12d)

[S3a] Measure output powers P̂ tki , Q̂
tk
i at each DER i ∈ G.

[S3b] Update power setpoints at each DER i ∈ G as:[
P
tk+1

i

Q
tk+1

i

]
= projYtki

{[
P tki
Qtki

]
− α∇[Pi,Qi]Ltk(p,q,d)|

P̂
tk
i ,Q̂

tk
i ,d

tk+1

}
, (12e)

[S3c] Dispatch setpoints to each DER i, and return to [S1a].

Steps [S1]–[S3] are performed at each time tk. The stepsize
α is a design parameters chosen as explained in Section III-C.
The steps in (12) can be implemented in one of two ways:
• Centralized implementation: Steps [S1]–[S3] are im-
plemented centrally at the utility/aggregator. The util-
ity/aggregator collects measurements of voltages, DER output
powers, and P tk0 , executes steps (12), and relays the power
setpoints P tki , Q

tk
i to each DER i ∈ G.

• Distributed implementation: As illustrated in Fig. 2,
steps [S1]–[S2] are performed at the utility/aggregator, while
step [S3] is implemented locally at individual DERs. The
utility/aggregator collects measurements of voltages and P tk0 ,
computes dtk+1 , and subsequently broadcasts dtk+1 . Each
DER updates P tki , Q

tk
i based on dtk+1 and the (local) mea-

surements P̂ tki , Q̂
tk
i .

The setpoints for the power at the feeder head P tk0,set
and the target accuracy Etk are specified (and continuously
updated) by the Independent System Operator (ISO) based
on transmission-system operating requirements and ISO-utility
market agreements.

The ability of the updates to track the optimizers z∗,tk :=
{p∗,tk ,q∗,tk ,d∗,tk} of (11) will be analytically established
and numerically verified next.

C. Convergence of Algorithm

In this section, convergence of the updates in (12) is estab-
lished. Begin by noticing that there exists a constant Gg such
that ‖∇[p,q]g

tk(p,q)‖2 ≤ Gg and ‖∇[p,q]g
tk(p,q)‖2 ≤ Gg

for all p,q ∈ Ytk and for all tk, where gtk(p,q) ∈ RM

and gtk(p,q) ∈ RM are vectors stacking all the functions
gtk
n

(p,q), n ∈ M, and gtkn (p,q), n ∈ M, respectively. Also,
define the scalar G0 such that ‖∇[p,q]P0(p,q)‖ ≤ G0 for
all p,q ∈ Ytk and tk. Then, define the constant G :=
max{Gg, G0}. For example, since functions gtk(p,q) and
gtk(p,q) are linear [c.f. (4) ], a possible bound Gg could be
Gg = ‖[A B]‖2. Similarly, G0 = ‖[MT

1,·N
T
1,·]

T‖2 and, thus,
G = max{‖[A B]‖2, ‖[MT

1,·N
T
1,·]

T‖2} (we recall that M1,·
and N1,· denote the row 1 of matrices M and N, respectively).
This constant will be used next in the convergence result for

the proposed algorithm.
With respect to the measurements (m1)–(m3), the following

are assumed:
Assumption 3. There exists a scalar 0 ≤ ep < +∞ such that:∥∥∥∥[ ptk

qtk

]
−
[

p̂tk

q̂tk

]∥∥∥∥
2

≤ ep (13)

for all tk, k ∈ N. �

Assumption 4. There exist constants 0 ≤ ev < +∞ and 0 ≤
e0 < +∞ such that

‖(Atkptkinj + Btkqtkinj + atk)− |v̂tk |‖2 ≤ ev (14)

|(M1,·p
tk
inj + N1,·q

tk
inj + otk1 )− P̂ tk0 | ≤ e0 (15)

for all tk, k ∈ N. �

Assumption 3 provides a bound for the discrepancy between
the commanded setpoint (P tki , Q

tk
i ) and the actual output

powers of each DER i [16], [17], [26]. Particularly, the
output powers may not coincide with the commanded setpoints
P tki , Q

tk
i because: i) measurements may be prone to error, ii)

the settling time of the DER output-powers may be larger
than τ [17], or iii) Ytki may represent only an estimate of
the actual operating region [16]. Assumption 4 accounts for
measurement and linearization errors. Steps in (12) represent
a modified online primal-dual-gradient method applied to the
saddle-point problem (11) where actual measurements from
the distribution system replace the mathematical models for
voltages and powers in (9c)–(9f). When using measurements
(m1)–(m3) in (12), the optimal and dual updates involve
inexact gradient steps [27]. Based on this observation, the error
in the setpoint computation is bounded in the following lemma.

Lemma 1: Let {ptk+1
ex ,q

tk+1
ex } be the (exact) primal iter-

ates given by replacing {p̂tk , q̂tk} with {ptk ,qtk} in (12e).
Suppose that Assumptions 1 and 3 hold. Then, whenever
{p̂tk , q̂tk} 6= {ptk ,qtk}, the error in the gradient in (12e)
is such that:∥∥∥∥[ ptk

qtk

]
−
[

ptkex
qtkex

]∥∥∥∥
2

≤ α(L+ ν)ep (16)

where L is the Lipschitz constant of the gradient map
f tk(p,q). �

The main convergence result is established next.
Theorem 1: Consider the sequence {ztk} := {ptk ,qtk ,dtk}

generated by (12). Let Assumptions 1–4 hold and suppose that,
for fixed positive scalars ε, ν > 0, the stepsize α > 0 is chosen
such that

ρ(α) :=
√

1− 2αmin{ν, ε}+ α2B < 1 (17)



6

where B = (L + ν + 4G)2 + 4(G + ε)2. Then the sequence
{ztk} converges Q-linearly to z∗,tk = {p∗,tk ,q∗,tk ,d∗,tk} up
to the asymptotic error bound given by:

lim sup
tk→∞

‖ztk − z∗,tk‖2 =
1

1− ρ(α)

(
αe+ σ

)
(18)

where e :=
√

(L+ ν)2e2p + 2e2v + 2e20 and σ ≥ 0 a given
constant such that ‖z∗,tk+1 − z∗,tk‖ ≤ σ for all tk ≥ 0. �

The result (18) bounds the maximum discrepancy between
the DER setpoints generated by the algorithm (12) and the
time-varying optimizer of (11) at any time tk. The bound (18)
is a function of the parameters α, ε, and ν as well as the
measurement and linearization errors. The parameters α, ε,
and ν can be chosen to satisfy condition

0 < α < 2
min{ε, ν}

B
=

min{ε, ν}
(L+ ν + 4G)2 + 4(G+ ε)2

to achieve Q-linear convergence.
The bound (18) depends on the underlying dynamics of

the distribution system through σ. Particularly, σ captures
the maximum difference between the solutions of (11) at
two consecutive time instants tk and tk+1 [4]; in the current
problem formulation, variations in z∗,tk are due to changes
in the powers injected/consumed by non-controllable assets
[cf. (7)], time-varying setpoints P tk0,set, possibly time-varying
cost functions {f tki (Pi, Qi)}, and variations in the voltage
limits When z∗,tk varies slowly in time, bound (18) becomes
tighter. Expression (18) provides an asymptotic bound for the
tracking error; in the Appendix, we discuss how to obtain
an upper bound on the tracking error at each iteration. The
result (18) can also be interpreted as input-to-state stability,
where the optimal trajectory {z∗,tk} of the time-varying prob-
lem (9) is taken as a reference. Finally, notice that when e = 0
and σ = 0, the algorithm converges to the solution of the static
optimization problem (11).

The proof of Theorem 1 is provided in the Appendix.
Although (18) is related to the time-varying solution of the
linearized problem (9), ongoing efforts are looking at estab-
lishing similar bounds against the time-varying solution of the
nonconvex nonlinear counterpart to (9).
Remark 1 (local DER controller) The algorithm (12) produces
setpoints (P tki , Q

tk
i ) ∈ Ytki for the output powers of the DERs.

It is assumed that the DERs are endowed with controllers
that are designed so that, upon receiving the setpoint, the
output powers are driven to the commanded setpoints. Relevant
dynamical models for the output powers of inverters operating
in a grid-connected mode are discussed in e.g., [28], [29] and
can be found in datasheets of commercially available DERs.
Assumption 3 accounts for measurement errors and bounds the
discrepancy between the commanded setpoint and the actual
output power when updates of the setpoints may be performed
faster than the DERs’ settling times; Assumption 3 is valid,
for example, when the DER’s response to a step-change in the
setpoint follows a first-order model [28], [29].
Remark 2 (feasibility of powers at the substation) Assump-
tion 2 implies that the setpoints for the active power at the
substation are feasible. The set of feasible setpoints for the

active and reactive power at the substation can be assessed
(and optimized) by solving suitable optimization problems
at a slower time scale. See, for example, the multi-period
optimization problem proposed in [30]. The feasible setpoints
P tk0,set can be computed based on the operating regions for
DERs Ytki as well as given operational limits. An alternative
approach to assess the flexibility of aggregations of DERs is
presented in [31].

IV. NUMERICAL EXPERIMENTS

A. Test Case 1

Consider a modified version of the IEEE 37-node test feeder
shown in Fig. 3. The modified network is obtained by con-
sidering a single-phase equivalent, and by replacing the loads
on phase “c” specified in the original dataset with real load
data measured from feeders in a neighborhood called Anatolia
in California during a week in August 2012 [32]. Time-
series data for the non-controllable loads have a granularity
of 1 second and are plotted in Fig. 4. Line impedances and
shunt admittances are adopted from the original dataset. With
reference to Fig. 3, it is assumed that eighteen PV systems are
located at nodes 4, 7, 10, 13, 17, 20, 22, 23, 26, 28, 29, 30, 31,
32, 33, 34, 35, and 36. The rating of these inverters are 300
kVA for i = 3, 350 kVA for i = 15, 16, and 200 kVA for the
remaining ones. The generation profiles are simulated based on
the real solar irradiance data available in [32] and have a gran-
ularity of 1 second. As an instance, the power available from
a PV system with capacity 50 kW is reported in Fig. 4. The
dynamics of the output powers of the inverters are modeled
using a first-order system; different values for the time constant
of the first-order system will be considered throughout this
section. Energy storage systems are placed at nodes 3 and
25, their maximum state of charge is 200 kWh, capacity is
50 kVA, and charging and discharging efficiencies are set to
90%. With these simulation settings, overvoltage conditions
would occur if the PV inverters operate according to business-
as-usual practices (that is, unity power factor and maximum
power point). This give us the opportunity to corroborate the
ability of the proposed algorithm to track setpoints for the
active power at the substation, while concurrently enforcing
voltage regulation. The voltage limits Vmax and Vmin are set
to 1.05 pu and 0.95 pu, respectively.

For the controllers illustrated in Fig. 2, the parameters
are set as ν = 10−3, ε = 10−4, and α = 0.1. The
target optimization objective (9a) is set to f tkn (Pn, Qn) =
cp(P

tk
av,n − P tkn )2 + cq(Q

tk
n )2 for PV systems (with P tkav,n

denoting the maximum real power available at PV system n)
and f tkn (Pn, Qn) = cp(P

tk
n )2 + cq(Q

tk
n )2 for the batteries.

The coefficients are set to cp = 3, cq = 1 for the PV
systems and cp = 1, cq = 1 for the batteries. With these
functions, the PV systems minimize the power curtailment
while the batteries minimize the deviation from a prescribed
charging/discharging profile. Functions {f tkn }, however, could
accommodate a variety of alternative performance objectives,
including the rewards from ancillary service provisioning [33],
[34] (to be maximized). The only requirement for each func-



7

1

23

4 5

6

7

8910

11 12 13

14

1516

17

18

19

20

21

2223

24

25

26

272829

30

31

32

33

34 3536

Fig. 3. IEEE 37-node feeder. The boxed nodes represent the location of PV
systems and circles represent the location of battery systems for Test Case 1.
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Fig. 4. Profile of loads and power available from the PV systems.

tion f tkn is to be convex and with a Lipschitz gradient in its
domain.

Throughout this section, the proposed controllers are com-
pared against a strategy where the active output powers of
DERs are modified to track setpoints P tk0,set via the following
rule (performed every τ seconds):

P tk+1
n = projYtkn

{
P tkn − γn(P tk0,set − P̂ tk0 )

}
(19)

where γn ≥ 0 is a pre-determined DER participation factor;
for subsequent discussions, define γ :=

∑
n∈G γn. The control

rule (19) is network agnostic and may lead to violations of
voltage limits. Thus, (19) is complemented with a Volt/VAr
heuristic with slope 1 and no deadband.

Assume that setpoints P tk0,set are received from 12:00 to
14:00 and they are depicted in red in Fig. 5. The trajectory
{P tk0,set} includes a mix of 5-minute setpoints, 1-minute set-
points, ramp signals, and a command to keep P0(t) fixed
for 1 hour and 5 minutes. Before 12:00 and after 14:00,
htk = 0 and the objective is to provide voltage regulation.
Figure 5 illustrates the active power P0(t) at the feeder head
achieved with the proposed controllers when τ = 330 ms.
Negative values for P0(t) indicate reverse power flows. It can
be seen that the controllers (12) are such that P0(t) closely
tracks P tk0,set. A magnified version is provided in Fig. 6 to
better illustrate the tracking accuracy. The trajectory for P tk0,set
illustrated in Fig. 5 might not be realistic; however, such
hypothetical trajectory is utilized in this test case in order to
comprehensively test the tracking performance of the proposed
framework for a variety of dispatch commands.

The tracking performance of the controllers (12) is com-
pared with the strategy (19) in Fig. 7. The coefficients γn are
set as γn = γ/|G| for a prescribed γ. When γ ≤ 1, (19)
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Fig. 5. Power at the substation P0(t) achieved with the proposed algorithm.
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Fig. 6. Trajectory of P0(t) from 12:00 to 12:30.
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Fig. 7. Comparison with the controller (19) for various participation factors.

successfully tracks the setpoints P tk0,set and may converge to
the new setpoint faster than the proposed controller when
γ = 1. On the other hand, when γ > 1, (19) exhibits
overshoot behavior that prevents the feeder from following
ramping commands. This implies that to set γ properly, one
requires knowledge of the number of participating DERs; on
the other hand, the stepsize α in (12) depends only on given
(and fixed) problem parameters. It is also worth reiterating
that the strategy (19) does not address the voltage regulation
problem and does not minimize functions {f tkn (Pn, Qn)} as
demonstrated next.

Figure 8 illustrates the voltage profiles obtained with the
proposed controllers. The profiles are compared with the
case where the controller (19) is complemented with a local
Volt/VAr rule and with the case where the proposed algorithm
is inplemented in a network-agnostic (NA) fashion; that is,
voltage constraints are discarded, M = −I, N = 0, and
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Fig. 10. Performance of the proposed control scheme for different values of
τ and time constants of the inverters.

o = 0. It can be seen that the proposed controllers enforce
voltage regulation, and a flat voltage profile is obtained; on the
other hand, the solution (19)+Volt/VAr may not confine volt-
ages within bounds. The NA implementation exhibits similar
tracking performances but leads to voltage violations. Figure 9
illustrates the cost

∑
n f

tk
n (Pn, Qn) achieved by the proposed

solution. It can be seen that, by encapsulating optimization
objectives, the proposed method systematically achieves lower
operational costs compared to the heuristic (19)+Volt/VAr.

Finally, Fig. 10 demonstrates the tracking capabilities
of (12) for different values of τ and inverter time constants. We
see that the proposed method is resilient to slow-responding
DERs, and ensures tracking accuracy even when the dynamics
of the inverters are on the order of 1 s. On the other hand, the

12:00 12:05 12:10 12:15 12:20 12:25 12:30 12:35

Time 

-300

-250

-200

-150

-100

-50

0

P
0
(t
)
[k
W

]

Setpoint

Proposed

(19), γ = 1

Fig. 11. Performance of the proposed algorithm in Test Case 2. Solution (19)
is not stable for γ = 2 and it is not plotted.

tracking performance deteriorates when the time τ required to
perform one closed-loop iteration in Fig. 2 increases.

In this test case, the average computational time for
step (12e) was 0.17 ms on a MacBook with a 3.1 GHz Intel
Core i7 and 16 GB 1867 MHz DDR3. Similar computational
times were obtained for the update of the dual variables.

B. Test Case 2

We now consider a test case with a mix of residential-
scale PV inverters with capacities of 3kVA and 5kVA, and
commercial-scale PV installations with capacities of 10kVA,
50kVA and 100kVA. The number of PV inverters per node
along with their aggregate capacity is summarized in Table I.
We also consider three utility-scale energy storage systems, as
summarized in Table I.

TABLE I
PV AND STORAGE SYSTEMS FOR TEST CASE II.

PV system
Node Units Total Capacity [kVA]

4 5 23
7 7 25

17 4 20
20 4 20
22 4 20
23 4 20
26 4 120
28 2 20
29 2 20
30 2 20
33 2 20
34 2 20
35 3 20
36 3 300

Energy storage systems
Node Units Total Capacity [kWh]

3 1 200
25 1 50
36 3 200

Fig. 11 shows the tracking performance of proposed algo-
rithm (12). The performance is compared with the strategy (19)
when the coefficients γn are set as γn = γ/|G|, with γ = 1.
Both algorithms exhibit good tracking capabilities, with a
relative error of 2.25% and 2.1%. However, (19) leads to
instability when γ = 2 (and it is not plotted for ease of
readability).



9

12:00 12:05 12:10 12:15 12:20 12:25 12:30 12:35

Time 

-300

-250

-200

-150

-100

-50

0

P
0
(t
)
[k
W

]

Proposed, 0.3 seconds

Optimization, 30 seconds

Optimization, 1 minute

Setpoint

Fig. 12. Comparison with an offline optimization solution where power set-
points are commanded to the DERs only upon convergence of the algorithm;
different convergence times are simulated.
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Fig. 13. Performance of the proposed algorithm when a setpoint for the active
power at the substation is not feasible. The setpoint P tk

0,set = −950 kW given
between 12:10 and 12:15 is not feasible.

Fig. 12 compares the tracking capabilities of the proposed
real-time algorithm with an offline optimization solution where
power setpoints are commanded to the DERs only upon
convergence of the algorithm; see e.g., [9], [13], [14], [21]. It
is assumed that the offline optimization method can converge
to a solution in 30 seconds and in 1 minute respectively. The
linearized optimal power flow method proposed in e.g. [21] is
utilized. It can be seen that the optimization-based approach
is not able to track the specified setpoints for the power at the
substation, and the relative error is of 37% when a 30-second
update is considered; this is because this approach cannot cope
with variations in the non-controllable loads within the update
interval. Further, it can be seen that approximation errors of
the linearized model (5) introduce a bias in the tracking error.

Fig. 13 illustrates the case where a setpoint for the active
power at the substation is not feasible. Particularly, the setpoint
P tk0,set = −950 kW given between 12:10 and 12:15 is not
feasible, in the sense that the powers generated by the PV
systems and the powers injected into the feeder by the batteries
in aggregate are not sufficient for the power at the substation
to reach P tk0,set. As expected, it can be seen that the algorithm
is not able to track the setpoint −950 kW at the substation;
however, once a new feasible setpoint is given, the algorithm
drives the active power at the substation at the desired value.
It is worth pointing out that the solution (19) would not be
able to track the setpoint −950 kW, and offline optimization
solvers [9], [13], [14], [21] would not return a solution for the
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Fig. 14. Performance of the proposed control scheme for different values of
τ and time constants of the inverters in Test Case II.

DERs’ output powers.
Finally, Fig. 14 demonstrates the tracking capabilities

of (12) for different values of τ and inverter time constants.
Similar to the results obtained in Test Case I, the proposed
method is resilient to slow-responding DERs. On the other
hand, for higher values of τ , the controllers respond in a
slower manner to variations in the non-controllable loads and
irradiance.

To further validate the performance gains with respect to an
NA implementation, we consider an additional test case where
distribution lines feature shunts elements; in the IEEE 37-node
test feeder, this introduces a more pronounced diversification
of the coefficients in the matrix M in (5). The tracking error
of the proposed method turned out to be 1.8%, whereas the
NA implementation exhibited a tracking error of 6.9%. The
tracking error was computed by taking the time average of
|P tk0 −P tk0,set|/P tk0,set. Overall, the proposed network-cognizant
implementation allows one to tightly control voltages within
limits while achieving higher tracking performance.

V. CONCLUDING REMARKS

This paper developed an algorithmic framework to enable
distribution networks to emulate a virtual power plants that
respond to regulation requests received from the transmission
system. The controllers adjust the output powers of individual
DERs in response to setpoints for the power at the feeder head,
while concurrently regulating voltages within the feeder and
maximizing customers’ and utility’s performance objectives.
With respect to stability and tracking capabilities, analytical
results were presented. Numerical experiments corroborated
the analytical findings and assessed the tracking performance
for different speeds of updates for the DER’s commanded
powers. It is shown that the proposed method is resilient to
slow-responding DERs, and ensures tracking accuracy even
when the dynamics of the inverters are on the order of seconds.
It is also shown that the proposed approach outperforms
traditional offline optimization approaches.

Future research endeavors will broaden the applicability of
the proposed algorithm to account for DERs with discrete
power commands (including on/off decisions), and will look
at the development of real-time algorithm for nonconvex
problem formulations. Finally, notice that the proposed real-
time algorithm is in fact a myopic control strategy. We will
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then pursue the development of online algorithms for time-
varying multi-period optimization problems.

APPENDIX

A. Linear approximation

The parameters of the AC power-flow approximations (4)–
(5) can be computed (and periodically updated) in multiple
ways. Suitable linearization methods for the AC power-flow
equations, such as the methods outlined in [21], [23] and the
the so-called LinDistFlow approximation [24] can be utilized.
Alternatively, the model parameters can be estimated via
regression-based methods such as the online RLS algorithm,
based on real-time measurements of voltages and powers
flows. In this section, an example for a linear approximation
method of the AC power-flow equations is outlined; partic-
ularly, we broaden the approach of [21] to provide a more
general approximation of voltage magnitudes and derive an
approximate relationship between powers at the substation
and net injected powers throughout the feeder. For ease of
exposition, the temporal index tk is dropped.

Central to the linearization approach is to express the volt-
ages v as v = vnom+ve, where vnom is some nominal-voltage
vector (i.e., the linearization point) determined a priori, and
entries of ve capture perturbations around vnom. With vnom

appropriately determined, we need to solve for ve that satisfies
the following equation:

s = diag (vnom + ve) (Y∗(vnom + ve)
∗ + y∗V ∗0 ) . (20)

Expanding (20), one gets

s = diag (vnom) Y∗v∗nom + diag (vnom) Y∗v∗e

+ diag (ve) Y∗v∗nom + diag (ve) Y∗v∗e

+ diag (vnom) y∗V ∗0 + diag (ve) y∗V ∗0 .

(21)

Neglecting the second-order term diag (ve) Y∗v∗e , and recog-
nizing that

diag (ve) Y∗v∗nom = diag (Y∗v∗nom) ve,

diag (ve) y∗V ∗0 = V ∗0 diag (y∗) ve, (22)

and reorganizing terms, (21) can be compactly rewritten as

Γve + Ξv∗e = s− snom, (23)

where Γ ∈ CN×N , Ξ ∈ CN×N , and snom ∈ CN are given by

Γ := diag (Y∗v∗nom + y∗V ∗0 ) , (24)
Ξ := diag (vnom) Y∗, (25)

snom := diag (vnom) (Y∗v∗nom + y∗V ∗0 ) . (26)

The next step consists solving for the voltage perturbation
vector ve, using which one can recover an approximation to
the actual solution v. Thus, decomposing all quantities in (23)
into their real and imaginary parts, one can solve for <{ve}
and ={ve} (and hence, for ve) from[

<{ve}
={ve}

]
= H

[
pinj

qinj

]
−H

[
pnom

qnom

]
, (27)

where pnom := <{snom},qnom := ={snom} ∈ RN denote
the active- and reactive-power injected into the network at

the nominal voltage, vnom, and H ∈ R2N×2N is defined as
follows:

H :=

[
<{Γ}+ <{Ξ} −={Γ}+ ={Ξ}
={Γ}+ ={Ξ} <{Γ} − <{Ξ}

]−1
. (28)

To aid subsequent discussions, we will find it useful to denote
the N × N blocks that H is composed of by H(11), H(12),
H(21), and H(22). In particular, this allows one to express

<{ve} = H(11)pinj + H(12)qinj + hr, (29a)

={ve} = H(21)pinj + H(22)qinj + hi, (29b)

where hr := −H(11)pnom − H(12)qnom and hi :=
−H(21)pnom −H(22)qnom.

Next, we leverage (27) to obtain (4). Begin by expressing:

v = vnom + ve = diag
(

ejθnom

)
|vnom|+ ve. (30)

Then, left multiplying (30) by diag(e−jθnom) we obtain:

diag(e−jθnom)v = |vnom|+ diag(e−jθnom)ve (31)

= diag(|vnom|)
(
1N + diag

(
e−jθnom

)
diag (|vnom|)−1 ve

)
.

Considering the (element-wise) magnitude on both sides
above, it follows that:

|v| = diag(|vnom|)
∣∣∣1N + diag

(
e−jθnom

)
diag (|vnom|)−1 ve

∣∣∣ .
(32)

Consider the approximation |1N+ν| ≈ 1N+<(ν) for |ν| ≺≺
1N (element-wise) where ν ∈ CN . Since ve represents a small
perturbation around vnom, it is reasonable to assume that∣∣∣diag

(
e−jθnom

)
diag (|vnom|)−1 ve

∣∣∣ ≺≺ 1N . (33)

Therefore, from (32), it follows that |v| ≈ |vnom| +

<
{

diag(e−jθnom)ve

}
and, finally, from (27) one has that

|v| = |vnom|−ΘnomH

[
pnom

qnom

]
+ΘnomH

[
pinj

qinj

]
, (34)

where H is defined in (28), and we define Θnom ∈ RN×2N
as Θnom := [diag(cos(θnom)) diag(sin(θnom))] . Notice
that (34) expresses the vector of node-voltage magnitudes as
a linear function of the active- and reactive-power injections
in the network. Equation (4) can be obtained upon setting
c = |vnom|−ΘnomH[pT

nom,q
T
nom]T and appropriately includ-

ing the entries of matrix ΘnomH into A and B.
Approximation (5) is derived next. With {ei ∈ RN}Ni=1

denoting the vector basis for RN , it follows that V1 can be
rewritten as V1 = eT

1(vnom + <{ve}+ j={ve}) and, thus:

S0 = |V0|2(y∗01 + y∗0)

− V0[y∗01(eT
1(vnom + <{ve}+ j={ve}))∗] . (35)

Substituting (29) in (35) and rearranging terms, the approxi-
mate linear relationship (5) between the power at the feeder
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head S0 = P0 + jQ0 and the net power injections pinj,qinj

can be derived by setting M, N, and o as:

[
M
N

]
=


−ψ1 0 ψ2 0
ψ2 0 ψ1 0
0 −ψ1 0 ψ2

0 ψ2 0 ψ1




H
(11)
1,·

H
(12)
1,·

H
(21)
1,·

H
(22)
1,·

 , (36)

o = |V0|2
[

1 1 0 0
0 0 −1 −1

] [
g01, g0, b01, b0

]T

+

[
−ψ1 ψ2 −ψ1 ψ2

ψ2 ψ1 ψ2 ψ1

]
<{Vnom,1}
={Vnom,1}

−H
(11)
1,· pnom −H

(12)
1,· qnom

−H
(21)
1,· pnom −H

(22)
1,· qnom


where the following scalars have been defined for brevity:

ψ1 = |V0|(cos(θ0)g01 + sin(θ0)b01) (37)
ψ2 = |V0|(cos(θ0)b01 − sin(θ0)g01) . (38)

It is worth pointing out that the linear model presented in
this subsection can be extended to the multiphase unbalanced
case. For example, the fixed-point methodologies presented
in [35] can be utilized to derive approximate linear relation-
ships of voltage magnitudes and powers at the substation
in multiphase settings. Alternatively, the first-order Taylor
method proposed in [22] can be utilized.

B. Proof of Lemma 1

Recall that the exact update of the primal variables can
be obtained by replacing the power measurements {p̂tk , q̂tk}
with the iterates {ptk ,qtk} in (12e); that is,[

p
tk+1
ex

q
tk+1
ex

]
= projYtk

{[
ptk

qtk

]
− α∇[p,q]Ltk(p,q,d)|ptk ,qtk ,dtk

}
(39)

where Ytk = Ytk1 × . . . × YtkN is the Cartesian prod-
uct of the operating regions of the DERs. For brevity, let
utk := [(ptk)T, (qtk)T]T and utkex := [(ptkex )T, (qtkex )T]T;
further, collect the measured output powers in the vec-
tor ûtk := [(p̂tk)T, (q̂tk)T]T and recall that dtk =
[(γtk)T, (µtk)T, λtk , ζtk ]T. Leveraging the non-expansive
property of the projection operator, and using the bounds in
Assumption 1 and 3, it follows that∥∥utk − utkex

∥∥
2

≤
∥∥α (Ltk(u,d)|utk ,dtk − Ltk(u,d)|ûtk ,dtk

)∥∥
2

(40a)

=
∥∥α (f tk(u)|utk − f tk(u)|ûtk + ν(utk − ûtk)

)∥∥
2

(40b)

≤ α
∥∥f tk(u)|utk − f tk(u)|

û4
tk

∥∥
2

+ αν
∥∥utk − ûtk

∥∥
2

(40c)

≤ αL
∥∥utk − ûtk

∥∥
2

+ αν
∥∥utk − ûtk

∥∥
2

(40d)

≤ αLep + ανep (40e)

where the first term on the right hand side of (40d) follows
from the Lipschitz continuity of the gradient map f tk(p,q).
Step (40e) then follows from (13).

C. Proof of Theorem 1

Begin by defining the following time-varying operator Φtk :

Φtk : {ztk} 7→


∇[p,q]Ltk(p,q,d)|ptk ,qtk ,dtk
−(gtk(ptk ,qtk)− εγtk)
−(ḡtk(ptk ,qtk)− εµtk)

−(P0(ptk ,qtk)− P tk0,set − E − ελtk)

−(P tk0,set − P0(ptk ,qtk)− E − εζtk)

 ,
where γtk and µtk are vectors collecting the dual variables
{γtkn } and {µtkn }, respectively, and ztk := [(utk)T, (dtk)T]T,
with utk = [(ptk)T, (qtk)T]T. The map Φtk represents the
counterpart of (12) when the voltage and power measurements
are replaced by functions gtk(·), ḡtk(·), and P0(·) evaluated
at the most-up-to-date iterates ptk and qtk . Recall that, since
Yttk is compact and gtk(p,q) ∈ RM and ḡtk(p,q) ∈ RM are
linear in p,q, it follows that there exists a constant Gg such
that ‖∇[p,q]g

tk(p,q)‖2 ≤ Gg and ‖∇[p,q]ḡ
tk(p,q)‖2 ≤ Gg

for all p,q ∈ Ytk and for all tk. Further, there exist a scalar
G0 such that ‖∇[p,q]P0(p,q)‖2 ≤ G0 for all p,q ∈ Ytk and
tk. Let G = max{Gg, G0}. Then, the following holds.

Lemma 2: The map Φtk is strongly monotone with constant
η = min{ν, ε}, and Lipschitz over Ytk×R2M+2 with constant
B̄ = [(L+ ν + 4G)2 + 4(G+ ε)2]

1
2 . �

Strong monotonicity can be shown by noticing that:

(Φtk(z1)−Φtk(z2))T(z1 − z2)

≥ ν‖u1 − u2‖22 + ε(‖γ1 − γ2‖22 + ‖µ1 − µ2‖22
+ |λ1 − λ2|22 + |ζ1 − ζ2|2) (41a)
≥ min{ν, ε}‖z1 − z2‖2 (41b)

where (41a) was derived by using the facts that: i) the
regularized Lagrangian is strongly convex with constant ν for
all tk, and ii) the term

−gtk(u1) + gtk(u2)
−ḡtk(u1) + ḡtk(u2)
−P0(u1) + P0(u2)
P0(u1)− P0(u2)


T

(u1 − u2)

leads to a quadratic form that is not strongly convex. Lipschitz
continuity of the map in its domain can be shown by noticing
that:

‖Φtk(z1)−Φtk(z2)‖2
≤(L+ ν)‖u1 − u1‖2 + 2(Gg +G0)‖u1 − u1‖2

+ ε‖γ1 − γ2‖2 + ε‖µ1 − µ2‖2 + ε|λ1 − λ2|+ ε|ζ1 − ζ2|

+

M∑
i=1

(|γ1,i − γ2,i|‖∇ug
tk
i ‖2 + |µ1,i − µ2,i|‖∇uḡ

tk
i ‖2)

+ |λ1 − λ2|‖∇uP0‖2 + |ζ1 − ζ2|‖∇uP0‖2 (42a)
≤(L+ ν + 2Gg + 2G0)‖u1 − u1‖2

+ ε‖γ1 − γ2‖2 + ε‖µ1 − µ2‖2 + ε|λ1 − λ2|+ ε|ζ1 − ζ2|
+G0(‖γ1 − γ2‖2 + ‖µ1 − µ2‖2)

+G0(|λ1 − λ2|+ |ζ1 − ζ2|) (42b)

where we used the fact that ‖∇xh(x1) − ∇xh(x2)‖2 = 0
when the function h(x) is linear in x to derive (42a), and
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we used Hölder inequality to obtain (42b) from (42a). With
G = max{Gg, G0} and using Hölder inequality, it follows
that

‖Φtk(z1)−Φtk(z2)‖2 ≤ B̄‖z1 − z1‖2 . (43)

The results of Lemma 2 are utilized next to prove the bound
in (18). To this end, define the time-varying operator Φtk

e as:

Φtk
e : {ztk} 7→


∇[p,q]Ltk(p,q,d)|p̂tk ,q̂tk ,dtk
−(V min1− |v̂tk | − εγtk)
−(|v̂tk | − V max1− εµtk)

−(P̂ tk0 − P tk0,set − E − ελtk)

−(P tk0,set − P̂ tk0 − E − εζtk)

 ,

where v̂tk is a vector collecting measurements of the voltage
collected at time tk. Using Φtk

e , the steps of the algorithm can
be compactly rewritten as

ztk+1 = projYtk×RM+ ×RM+ ×R+×R+

{
ztk − αΦtk

e (ztk)
}
. (44)

By standard optimality conditions, the optimizer is a
fixed point of the iterations (44), i.e., z∗,tk−1 =
projYtk−1×RM+ ×RM+ ×R+×R+

{
z∗,tk−1 − αΦtk(z∗,tk−1)

}
. con-

sider then writing:

‖ztk − z∗,tk−1‖2 =∥∥∥projYtk−1×RM+ ×RM+ ×R+×R+

{
ztk−1− αΦtk−1

e (ztk−1)
}

−projYtk−1×RM+ ×RM+ ×R+×R+

{
z∗,tk−1 − αΦtk−1(z∗,tk−1)

}∥∥∥
2
(45)

and utilize the non-expansivity property of the projection
operator to obtain

‖ztk − z∗,tk−1‖2 ≤ ‖ztk−1 − αΦtk−1
e (ztk−1)

− z∗,tk−1 + αΦtk−1(z∗,tk)‖2 . (46)

By utilizing real measurements in the map Φtk−1
e (ztk−1), it

follows that:

Φtk−1
e (ztk−1)−Φtk−1(ztk−1) = etk−1 (47)

where the vector etk captures measurement errors as well as
model mismatches, and it is defined as:

etk :=


∇[p,q]Ltk(ptk ,qtk ,dtk)−∇[p,q]Ltk(p̂tk , q̂tk ,dtk)

gtk(ptk ,qtk)− (V min1− |v̂tk |)
ḡtk(ptk ,qtk)− (|v̂tk | − V max1)

P0(ptk ,qtk)− P̂ tk0
−P0(ptk ,qtk) + P̂ tk0

 .
From an optimization standpoint, the vector etk models errors
in the computation of the gradients that are due to mea-
surements of voltages and powers at the substation. From
Assumption 3 and Assumption 4, and using the result of
Lemma 1, the norm of etk can be bounded as:

‖etk‖22 ≤ (L+ ν)2e2p + 2e2v + 2e20 . (48)

The proof now follows steps similar to [18]. Particularly,
expand the right-hand side of (46) as

‖ztk−1−αΦtk−1(ztk−1)−z∗,tk−1+αΦtk−1(z∗,tk−1)−αetk−1‖2 ≤
‖ztk−1 − αΦtk−1(ztk−1)− z∗,tk−1 + αΦtk−1(z∗,tk−1)‖2+

‖αetk−1‖2 . (49)

Using the results of Lemma 2, we can write

‖ztk−1 − αΦtk−1(ztk−1)− z∗,tk−1 + αΦtk−1(z∗,tk−1)‖22 ≤
(1− 2αη + α2L2

ν,ε)‖ztk−1 − z∗,tk−1‖22. (50)

and, by putting together the results in (46), (50), and (48), we
have that

‖ztk − z∗,tk−1‖2 ≤ α
√

(L+ ν)2e2p + 2e2v + 2e20

+

√
1− 2αη + α2B̄2‖ztk−1 − z∗,tk−1‖2. (51)

Let ρ(α) :=
√

1− 2αη + α2B̄2 and notice that B in (18) is
given by B = B̄2. Given a constant σ ≥ 0 such that ‖z∗,tk+1−
z∗,tk‖ ≤ σ for all tk ≥ 0, and by using the triangle inequality,
it follows that

‖ztk − z∗,tk‖2 = ‖ztk − z∗,tk − z∗,tk−1 + z∗,tk−1‖2
≤ ‖ztk − z∗,tk−1‖2 + σ

≤ ρ(α)‖ztk−1 − z∗,tk−1‖2 + αe+ σ. (52)

If ρ(α) < 1, then (52) is a contraction and (18) readily follows.
Notice that an upper bound on the tracking error at each

iteration can be obtained from (52).

D. Application to multiphase systems

Consider an approximate linear model

|v| ≈ Apinj + Bqinj + c , (53)[
P a0 , Q

a
0 , P

b
0 , Q

b
0, P

c
0 , Q

c
0

]T ≈Mpinj + Nqinj + o , (54)

where v collects the voltages per phase and per node, pinj and
qinj are vectors collecting the net injected active and reactive
powers per phase and per node (with A, B, M, N, a, o
of appropriate dimensions), and where (Pφ0 , Q

φ
0 ) denote the

active and reactive powers flowing into the feeder on phase
φ. Model (53)–(54) can be obtained as shown in [22], [35]
or by following steps similar to Appendix A. Suppose that a
setpoint for for active power at the substation on each phase
is given at time tk, and denote the 3× 1 vector collecting the
setpoints as ptk0,set := [P a,tk0,set, P

b,tk
0,set, P

c,tk
0,set].

With (Pφ,tki , Qφ,tki ) denoting the setpoint for a DER at
phase φ ⊆ {a, b, c} of node i, consider the implementation
of algorithm (12) per phase and node shown next:
[S1a] Collect voltage-magnitude measurements
{|V̂ φ,tkn |}φ⊆{a,b,c},n∈M.
[S1b] Collect measurement of P̂φ,tk0 , φ = {a, b, c}.
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[S2a] For every phase φ of node n ∈M, update γφ,tk+1
n and

µ
φ,tk+1
n as follows:

γφ,tk+1
n = projR+

{
γφ,tkn + α

(
V min − |V̂ φ,tkn | − εγφ,tkn

)}
(55a)

µφ,tk+1
n = projR+

{
µφ,tkn + α

(
|V̂ φ,tkn | − V max − εµφ,tkn

)}
(55b)

[S2b] For the feeder head, if htk = 1 update dual variables
associated with each phase as:

λφ,tk+1 = projR+

{
λφ,tk + α(P̂φ,tk0 − Pφ,tk0,set − Etk − ελφ,tk)

}
(55c)

ζφ,tk+1 = projR+

{
ζφ,tk + α(Pφ,tk0,set − P̂φ,tk0 − Etk − εζφ,tk)

}
(55d)

[S3a] Measure output powers P̂φ,tki , Q̂φ,tki at DER at phase φ
of i ∈ G.
[S3b] Update power setpoints for each DER as:[

P
φ,tk+1

i

Q
φ,tk+1

i

]
= projYφ,tki

{[
Pφ,tki

Qφ,tki

]
− α∇[Pφi ,Q

φ
i ]
Ltk(p,q,d)|

P̂
φ,tk
i ,Q̂

φ,tk
i ,dtk+1

}
, (55e)

[S3c] Command setpoints to each DER and return to [S1a].
The convergence result (18) of Theorem 1 applies to the

algorithm (55) upon redefining the error bound e0 in Assump-
tion 4 as:

‖M̌ptkinj + Ňpqtkinj + ǒtk − p̂tk0 ‖2 ≤ e0 (56)

where p̂tk0 := [P̂ a,tk0 , P̂ b,tk0 , P̂ c,tk0 ]T, M̌ and Ň are matrices
collecting the rows 1, 3, and 5 of matrices M and N,
respectively, and ǒtk := [otk1 , o

tk
3 , o

tk
5 ]T.
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