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Abstract—In this paper, we propose a method to compute
linear sensitivity distribution factors (DFs) in near real-time
without relying on a power flow model of the system. Specifically,
we compute the injection shift factors (ISFs) of a particular line
of interest with respect to active power injections at all buses
(all other DFs can be determined from ISFs). The proposed
ISF estimation method relies on the solution of an underdeter-
mined system of linear equations that arise from high-frequency
synchronized measurements obtained from phasor measurement
units. We exploit a sparse representation (i.e., one in which
many elements are zero) of the vector of desired ISFs via
rearrangement by electrical distance and an appropriately chosen
linear transformation, and cast the estimation problem into a
sparse vector recovery problem. As we illustrate through case
studies, the proposed approach provides accurate DF estimates
with fewer sets of synchronized measurements than earlier
approaches that rely on the solution of an overdetermined system
of equations via the least-squares errors estimation method.

I. INTRODUCTION

Existing tools for online power system operational reliability
and health monitoring rely on a system model obtained offline,
constructed from the transmission network, line parameters,
and historical and forecasted power generation and demand
[1]. For example, real-time contingency analysis (RTCA)
determines whether or not the system will meet operational
reliability requirements in the case of outage in any one
particular system asset (e.g., a transmission line or generator),
a condition known as N-1 security [2]. Using an up-to-
date system model, operators can perform RTCA by repeated
solutions of nonlinear power flow problems. An alternative to
repeated computations of the nonlinear power flow solution is
to use linear sensitivity distribution factors (DFs), such as in-
jection shift factors (ISFs) and line outage distribution factors
(LODFs), to predict the effect of a hypothetical operating point
change on the system [3]. In the case that N-1 security criterion
is not satisfied, DFs can also be used to re-dispatch generators
to relieve transmission line loading [4]. Conventionally, ISFs
are obtained offline, for some nominal operating point, from a
power flow model—all other DFs can be obtained from ISFs;
hence we refer to analysis tools that rely on DFs computed
offline using the power flow model as “model-based”. In this
paper, we propose a method to estimate ISFs in near real-time
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using PMU measurements without relying on a power flow
model of the system; hence we refer to analysis tools that rely
on DFs obtained this way as “measurement-based”.

Model-based online analysis tools are not ideal since their
results rely on an accurate model that reflects up-to-date
network topology and parameters, which may not be available
due to erroneous records or telemetry. The results of model-
based analyses lack the flexibility of adapting to unexpected
changes in network topology or variations in generation and
load, all of which can affect the power flow solution signifi-
cantly, and in turn any corrective actions established based on
them. For example, in the 2011 San Diego blackout, operators
could not detect that certain lines were overloaded or close
to being overloaded because the network configuration in the
model was not up-to-date [1]. Thus, traditional model-based
techniques may no longer satisfy the needs of monitoring
and protection tasks; therefore there exists an impetus to shift
away from model-based analyses and to develop measurement-
based power system online analysis tools that are adaptive to
changes in operating point and topology [1], [2]. With respect
to this, phasor measurement units (PMUs) are an enabling
technology for the development of such measurement-based
online analysis tools. For example, the authors in [5]–[7]
proposed the use of PMU measurements (along with a model
of the power system) for detecting line outages.

In accordance with the vision described above to shift
away from model-based analyses, in [8], [9], we proposed a
measurement-based method to estimate DFs by finding the
solution of a system of linear equations formulated using
active power bus injection and line flow data obtained from
PMU measurements. Specifically, in [9], we considered an
overdetermined system, with more equations than unknown
ISFs, and obtained the solution via linear least-squares errors
(LSE) estimation. While the method is shown to accurately
compute ISFs, even in the presence of undetected system
topology and operating point changes, the LSE estimation
problem formulation necessitates at least as many sets of syn-
chronized measurements as unknown ISFs. For a large power
system, such a restriction may be ill-advised in, e.g., RTCA,
since power systems are constantly undergoing changes and
operators often need to quickly determine whether or not the
current system is secure. To address this issue, we propose
an accurate and efficient method to recover the ISF solution
using fewer sets of measurements than unknown ISFs. To this
end, we exploit a sparse representation (i.e., one in which
many elements are zero) of the vector of desired ISFs, solve
for the transformed sparse representation, and finally compute
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the original ISFs by applying the inverse transformation. The
work presented in this paper, for the most part, assumes
that all buses within the monitored region are equipped with
PMUs. Admittedly, present-day power systems are still far
from having such a rich set of available phasor measurement
devices; however, incentives to invest in the deployment of
such measurement infrastructure are driven by preliminary
demonstrations of its potential benefits in monitoring, pro-
tection, and control capabilities (see, e.g., [10]). Moreover,
today, in addition to PMU installations, synchronous phasor
measurement capabilities are available as standard features in
many protective relays, meters, and recorders [11].

This paper builds on preliminary work reported in [12],
providing extensions in several directions. First, we introduce
an alternative method to sparsify ISFs based on electrical
distance using only the network Z-bus matrix. This method is
advantageous over the one proposed in [12] in that, like the
measurement-based ISF computation, the electrical distance
is independent of slack bus location. Second, we explore
two algorithms to recover the sparse ISF representation, and
compare their performances in terms of computation time and
accuracy. Further, we deploy the method to two large case
studies, showcasing its scalability. Finally, the requirement that
active power injection data must be available at all buses is
relaxed so that only a subset of them are needed.

The remainder of this paper is organized as follows. Sec-
tion II describes the measurement-based ISF estimation prob-
lem setup, and the LSE-based solution proposed in [8]. Sec-
tion III introduces the sparse representation solution approach
that we propose in this paper, illustrating it via an example
involving the IEEE 14-bus system. In Section IV, we formulate
two algorithms to solve the ISF estimation problem using
fewer sets of synchronized measurements than number of
unknowns. In Section V, we present case studies involving the
IEEE 300-bus and the Polish 2383-bus systems, and highlight
the effectiveness of the proposed ISF estimation method. We
provide a variation that uses a subset of measurements to
estimate ISFs in Section VI. Finally, in Section VII, we offer
concluding remarks and directions for future research.

II. PRELIMINARIES

Distribution factors are linearized sensitivities used in, e.g.,
contingency analysis and transmission loading relief [4]. A
key distribution factor is the injection shift factor (ISF),
which quantifies the redistribution of power through each
transmission line in a power system following a change in
generation or load on a particular bus in the system. In essence,
the ISF captures the sensitivity of the flow through a line with
respect to changes in generation or load. In this section, we
provide the mathematical definition of the ISF and introduce
relevant notation. We also summarize the ISF estimation
approach proposed in [8], and conclude by highlighting its
main drawback.

A. Injection Shift Factor Definition

The ISF of line Lk-l (assume positive active power flow
from bus k to l) with respect to bus i, denoted by Ψi

k-l, is a

linear approximation of the sensitivity of the active power flow
in line Lk-l with respect to the active power injection at bus
i, with the slack bus defined and all other quantities constant.
Then, based on the definition,

Ψi
k-l :=

∂Pk-l

∂Pi
. (1)

Let Pi(t) and Pi(t + ∆t), respectively, denote the active
power injection at bus i at times t and t + ∆t, ∆t > 0 and
small. Define ∆Pi(t) = Pi(t + ∆t) − Pi(t), and denote by
∆P i

k-l(t) the change in line Lk-l active power flow resulting
from ∆Pi(t). Then, it follows from (1) that

Ψi
k-l ≈

∆P i
k-l(t)

∆Pi(t)
. (2)

B. Injection Shift Factor Estimation

In order to obtain Ψi
k-l, we need ∆P i

k-l(t), which is not
readily available from PMU measurements. We assume that
the net variation in active power through line Lk-l, denoted by
∆Pk-l(t), however, is available from PMU measurements. We
express this net variation as the sum of active power variations
in line Lk-l due to active power injection variations at each
bus i:

∆Pk-l(t) = ∆P 1
k-l(t) + · · ·+ ∆Pn

k-l(t). (3)

Equivalently, by substituting (2) into (3), we can rewrite (3)
as

∆Pk-l(t) ≈ ∆P1(t)Ψ1
k-l + · · ·+ ∆Pn(t)Ψn

k-l,

where Ψi
k-l ≈ ∆P i

k-l
∆Pi

, i = 1, . . . , n. Suppose m +
1 sets of synchronized measurements are available. Let
∆Pi[j] = Pi((j + 1)∆t) − Pi(j∆t), and ∆Pk-l[j] =
Pk-l((j + 1)∆t) − Pk-l(j∆t), j = 1, . . . ,m; and de-
fine ∆Pk-l = [∆Pk-l[1], . . . ,∆Pk-l[j], . . . ,∆Pk-l[m]]T , and
∆Pi = [∆Pi[1], . . . ,∆Pi[j], . . . ,∆Pi[m]]T . Let Ψk-l =
[Ψ1

k-l, . . . ,Ψ
i
k-l, . . . ,Ψ

n
k-l]

T ; then, it follows that

∆Pk-l ≈
[
∆P1 · · · ∆Pi · · · ∆Pn

]
Ψk-l. (4)

For ease of notation, let ∆P represent the m × n matrix
[∆P1, . . . ,∆Pi, . . . ,∆Pn]; then, the system in (4) can be
compactly written as

∆Pk-l ≈ ∆PΨk-l. (5)

As we proposed in [8], if m ≥ n, then (5) is an overdeter-
mined system, and we can solve for Ψk-l via LSE estimation
as follows:

Ψ̂k-l = (∆PT ∆P )−1∆PT ∆Pk-l. (6)

However, for a large system with many buses, it may not
be prudent to require such a large number of datasets before
an estimate can be computed. Further, the adaptability of the
measurement-based approach to system changes would be im-
proved if fewer sets of data are required. Thus, in Sections III–
V, we focus on solving for Ψk-l in (5) when m < n, i.e.,
obtaining a solution when (5) is an underdetermined system
of equations. In Section VI, we discuss a modification to
the proposed method and solve for Ψk-l with active power
injection data available at fewer than n buses.



3

Fig. 1: Network topology for IEEE 14-bus system [16].

III. A SPARSE REPRESENTATION APPROACH

The computation approach presented in this paper is in-
spired by the field of compressive sensing (CS) (see, e.g.,
[13]), and its applications to image processing, where a typical
problem is to compress a large image (i.e., to reduce irrelevant
or redundant image data in order to store or transmit the
image efficiently), and subsequently reconstruct the image
from its compressed representation. [Recently, CS ideas have
been applied to the identification of multiple line outages
in power systems [6].] CS theory asserts that, by exploiting
their sparsity, certain classes of signals can be recovered
from fewer samples or measurements than those needed in
traditional methods such as LSE estimation (see, e.g., [14],
[15]). Specifically, the problem of recovering a sparse signal
can be cast as one where the objective is to minimize the
l0-norm1 of the signal to be recovered.

A. Sparsifying the Vector of Injection Shift Factors

In our setting, the signal of interest, the ISF vector Ψk-l, is
not necessarily sparse; therefore, we search for an appropriate
linear coordinate transformation M , such that ck-l = MΨk-l,
where ck-l is a sparse vector, i.e., one in which many elements
are zero. While there may exist numerous possible transforma-
tions that achieve the aforementioned objective, in this work,
we use an intuitive approach based on electrical distances.

In order to compute Ψk-l with m < n measurements, we
first reorder its entries by the electrical distance of each bus to
the line Lk-l, a main advantage of which is its independence
from the slack bus location. Then, we apply a difference
transformation (to be defined below) to the reordered signal.
This leads to a sparse representation of the ISF vector, which
allows us to cast the ISF estimation problem into a sparse
vector recovery problem. Once this problem is solved, we
apply the inverse difference transformation to the resulting
sparse vector estimate to obtain an estimate of the ISF vector.

1) Reordering by electrical distance: We assume that, prior
to online estimation, we have a base-case system model that
consists of all relevant nominal system topology, parameter,
and operating point information. Using this model, we perform

1For a vector with finite support, the l0-norm is defined as the number of
its entries that are nonzero (see, e.g., [13]).

a one-time computation of the electrical distance from each
bus to line Lk-l. The derivation below is provided in [17],
where the concept of electrical distances was used to allocate
the cost of transmission to generators and loads.

Denote the bus admittance matrix by2 Y = [Yik]. Then,
apply Kirchhoff’s current law at each bus and express the
current injected into each bus i from the ground node as

Ii =

n∑
k=1

YikVk, (7)

where Vk, k = 1, . . . , n, is the voltage at node k. Let Z =
[Zki] = Y−1, then the voltage at node k can be expressed as

Vk =

n∑
i=1

ZkiIi. (8)

On the other hand, the current through the line connected from
node k to l is

Ik-l = (Vk −Vl)yk-l + Vky
sh
k-l, (9)

where yk-l is the admittance of the line connecting nodes k
and l, and ysh

k-l is the shunt admittance at node k. Substituting
(8) into (9), we obtain

Ik-l =

(
n∑

i=1

ZkiIi −
n∑

i=1

ZliIi

)
yk-l +

n∑
i=1

ZkiIiy
sh
k-l,

and after rearranging, we obtain

Ik-l =

n∑
i=1

[
(Zki − Zli)yk-l + Zkiy

sh
k-l

]
Ii.

Then, the electrical distance between bus i and line Lk-l is
given by [17]:

aik-l = (Zki − Zli)yk-l + Zkiy
sh
k-l. (10)

We sort the vector Ψk-l according to the electrical distance
as defined in (10), and denote the rearranged vector as Ψk-l,s,
i.e.,

Ψk-l,s = [Ψ1
k-l,s, . . . ,Ψ

i
k-l,s, . . . ,Ψ

n
k-l,s]

T ,

such that index i ≤ j if |aik-l| ≥ |ajk-l|. The intuition behind
this particular approach is as follows: the injections at buses
that are electrically far away from line Lk-l often have little
effect on the active power flow through line Lk-l as compared
to nearer ones. Hence, after reordering of the nodes based on
electrical distance, we assume that the sorted signal, Ψk-l,s,
is characterized by smooth segments separated by sporadic
jumps. Therefore, the difference between consecutive elements
is likely small; as detailed below, this is the premise upon
which we define a linear transformation that results in a sparse
representation of Ψk-l,s.

2Bolded symbols denote complex-valued quantities.
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(b) Sparse signal after difference transformation.

Fig. 2: IEEE 14-bus system: ISFs of line L2-3 with respect to each node pre- and post-transformation.

2) Applying a difference transformation: This transforma-
tion is defined via the difference between consecutive elements
of Ψk-l,s:

cik-l = Ψi
k-l,s −Ψi+1

k-l,s, cnk-l = Ψn
k-l,s. (11)

In matrix form, the difference transformation, defined in (11),
can be written as

ck-l = MΨk-l,s,

where M = [mij ], with mij = 1 if j = i, mij = −1 if j =
i+ 1, and mij = 0, otherwise. Let Ψ̂k-l,s denote the estimate
for Ψk-l,s. If the difference transformation in (11), indeed,
results in ck-l being sparse, we can then exploit ideas from
CS to compute the estimate ĉk-l using m < n measurement
data sets, and then apply the inverse difference transformation,
M−1, to recover Ψ̂k-l,s as

Ψ̂k-l,s = M−1ĉk-l. (12)

Next, we illustrate the effectiveness of the difference trans-
formation in (11), in conjunction with the electrical distance-
based reordering, for sparsifying an ISF vector.

Example 1 (IEEE 14-Bus System): Consider the IEEE 14-
bus system (see, e.g., [16]), the one-line diagram for which is
shown in Fig. 1. We compute the model-based linear sensitiv-
ity ISF vector of line L2-3, Ψ2-3, using the partial derivative
definition in (2) (see Table I, column 2) by linearizing the
nonlinear AC power flow equations. This is the benchmark
value to which we compare any estimation results in the
remainder of the paper.

After reordering by electrical distance, we plot these model-
based ISFs in Fig. 2a and list them in column 3 of Table I.
While the rearranged signal is fairly smooth except at buses
1, 12, and 13, this vector has only one zero element (at the
reordered bus 14). In order to get a sparse representation, we
apply the difference transformation defined in (11) to the sig-
nal shown in Fig. 2a, and obtain the signal depicted in Fig. 2b
(also recorded in Table I, column 4), which contains many
zero or near-zero elements with the same sharp edges as in
Fig. 2a. We note that the resulting post-transformation vector
ck-l is approximately sparse, i.e., there may be many negligible
near-zero (instead of exactly-zero) elements, as shown in

Fig. 2b. In this regard, CS has been widely and successfully
applied to the compression and recovery of large images,
which may only admit approximately sparse representations
(see, e.g., [18]). In Section IV, we will describe algorithms
that can closely estimate approximately sparse signals (see,
e.g., [15]). Additionally, through examples and case studies
in Sections IV–V, we will show that approximate sparsity is
sufficient to recover ISFs. �

3) On the effect of model error: The electrical distance-
based reordering described in Section III-A1 is the only
component in the proposed method that relies on an offline
model of the system. Thus, we comment on the effect of
model error on the sparsity of the resulting transformed ISF
vector ck-l. First, we note that the electrical distance metric
depends only on the system topology and line and shunt
admittance values, not the load or generation levels. Therefore,
we focus on the effect of topology errors, which can arise
either due to base-case model error or contingencies. Small
deviations away from the base-case topology, such as the
outage of one or (at most) two lines, do not drastically affect
the resulting transformed ISF vector sparsity, especially for
large-scale systems. Next, we illustrate this with an example
involving the IEEE 14-bus test system.

Example 2 (IEEE 14-Bus System): We consider the same
system as in Example 1. We compute the model-based linear
sensitivities, Ψ2-3, for each case with undetected outage of any
one line in the system (with the exception of line L2-3 itself
and line L7-8, which islands the system). For each of these
scenarios, we observe the corresponding Ψ2-3,s using the index
order obtained in Example 1 and note that the sparsity pattern
is preserved except in the case of undetected L1-2 outage. �

4) On managing bad data: PMU data may be corrupted
by random errors that arise from equipment limitations in the
measurement and communication devices [19]. Some grossly
inadequate data, such as (i) negative voltage magnitudes, (ii)
values that are orders of magnitude too large or too small,
and (iii) vastly different currents in and out of a bus, can
be removed prior to ISF computation based on plausibility
checks [19]. In this paper, we assume that standard plausibility
tests were applied to the PMU measurements before being
passed to the proposed algorithms for ISF estimation. Since the



5

TABLE I: Comparison of ĉ2-3 for the IEEE 14-bus system obtained through Examples 1-3.

i Ψi
2-3 Ψi

2-3,s ci2-3 ĉi2-3 (via Algorithm 1) ĉi2-3 (via Algorithm 2) ĉi2-3 (via LSE)
m = 7 m = 10 m = 13 m = 7 m = 10 m = 13 m = 14 m = 20

1 0 -0.5719 -0.4082 -0.2916 -0.4178 -0.4094 -0.3924 -0.4154 -0.4111 -0.4124 -0.4080
2 0.0279 -0.1637 -0.0074 -0.2286 0 -0.0051 -0.0003 -0.0010 -0.0037 -0.0020 -0.0069
3 -0.5719 -0.1563 0 0.1971 -0.0085 -0.0005 0.0001 -0.0002 -0.0012 -0.0025 0.0001
4 -0.1637 -0.1563 -0.0039 -0.0202 0 -0.0023 -0.0001 -0.0051 -0.0023 -0.0009 -0.0041
5 -0.1115 -0.1524 -0.0030 -0.0040 0.0010 -0.0063 -0.0000 -0.0036 -0.0054 -0.0070 -0.0013
6 -0.1304 -0.1494 -0.0004 0 -0.0049 0.0010 -0.0108 -0.0012 0.0002 0.0002 -0.0011
7 -0.1563 -0.1491 -0.0087 0 -0.0011 -0.0046 -0.0015 -0.0013 -0.0036 0.0002 -0.0118
8 -0.1563 -0.1404 -0.0039 -0.0082 0 -0.0089 -0.0123 -0.0077 -0.0084 -0.0104 -0.0021
9 -0.1524 -0.1366 -0.0021 0 -0.0130 0 0.0000 -0.0001 -0.0011 -0.0018 -0.0011
10 -0.1494 -0.1345 -0.0041 0 0 -0.0030 -0.0003 -0.0032 -0.0027 -0.0022 -0.0050
11 -0.1404 -0.1304 -0.0189 -0.1587 -0.0219 -0.0175 -0.0244 -0.0163 -0.0174 -0.0169 -0.0189
12 -0.1345 -0.1115 -0.1394 0 -0.1414 -0.1408 -0.1328 -0.1416 -0.1409 -0.1417 -0.1393
13 -0.1366 0.0279 0.0279 0 0.0315 0.0270 0.0290 0.0252 0.0269 0.0273 0.0279
14 -0.1491 0 0 0 0.0002 -0.0010 -0.0072 -0.0016 -0.0011 -0.0017 0.0003

||ĉ2-3 − c2-3||2 0.3761 0.0225 0.0087 0.0265 0.0138 0.0094 0.0147 0.0043

proposed method exploits the difference between consecutive
measurements, it is immune against errors that involve con-
stant offsets. Moreover, the effect of bad data can be reduced or
eliminated by conducting estimation over a shortened sliding
window in time so that any erroneous data eventually become
ineffectual as more recent measurements are acquired.

B. Sparse ISF Vector Recovery Problem

Through reordering and transforming the original ISF vector
Ψk-l, we assume the post-transformation signal ck-l to be
sparse (this was illustrated in Example 1). Since the elements
of Ψk-l have been sorted by electrical distance, we also
rearrange the columns of ∆P accordingly, and denote this
reordered matrix as ∆Ps. With this, we transform the original
problem of estimating Ψk-l such that (5) is satisfied, to the
problem of estimating ck-l such that

∆Pk-l = Φck-l (13)

is satisfied, where Φ = ∆PsM
−1 is the so-called measurement

matrix. Since ck-l is assumed to be a sparse vector, we can cast
the ISF vector estimation problem as an optimization program

Pk−l[1], ..., Pi[1], ..., Pi[m+ 1]

∀ i = 1, ..., nPk−l[m+ 1]

Reorder 
columns

∆Ps

αk−l

∆Pk−l

∆Pk−l = Φck−l

Algorithm 
1 or 2

ĉk−l

M−1

Ψ̂k−l,s

Fig. 3: Proposed ISF estimation procedure.

where the objective is to minimize ||ck-l||0—the number of
nonzero elements in ck-l:

min
ck-l
||ck-l||0

subject to ∆Pk-l = Φck-l.
(14)

The general procedure of the proposed ISF estimation method
described above is outlined in Fig. 3.

Remark 1: In general, the ISFs of another line Lk′-l′ , Ψk′-l′ ,
can be computed from the same set of power injection data
as used to compute Ψk-l. We need to replace ∆Pk-l in (13)
with ∆Pk′-l′ , corresponding to the new line of interest. At the
same time, we reorder the columns of ∆P according to the
electrical distance away from line Lk′-l′ to compute the new
measurement matrix Φ associated with line Lk′-l′ . This pro-
cedure can be extended to any set of lines of interest. In other
words, we can determine ISFs of multiple lines in parallel, by
reusing the power injection data ∆P with measurements of
active power flow across each line of interest. �

A sufficient condition for a stable solution to (14) for κ-
sparse (where κ is the exact, or maximum number of nonzero
entries) ck-l is that the matrix ∆Ps satisfies the restricted
isometry property (RIP) [15]. The RIP can be achieved with
high probability by selecting ∆Ps as a random matrix, the
elements of which are independent and identically distributed
(i.i.d.) random variables drawn from a Gaussian distribution,
if m ≥ ακ log(n/κ), for some positive α < 1 [13], [18].
In our setting, the matrix ∆Ps is constructed from active
power injection measurements at all (or a subset of all) buses,
and therefore cannot be designed beforehand. However, small
variations in the active power injections at each bus can be
attributed to random fluctuations in electricity consumption by
end users. Hence, we model the measurements of active power
injection at each bus with a Gaussian probability density func-
tion, as described in Example 3. Moreover, since we assume
the power injection fluctuations at each bus are independent,
the entries in ∆P (and hence ∆Ps) are, indeed, i.i.d. random
variables drawn from a Gaussian distribution. Furthermore,
the measurement matrix Θ = ∆PsΛ is i.i.d. Gaussian; thus, it
has the RIP with high probability regardless of the choice of
orthonormal basis Λ [18]. An example of such an orthonormal
basis is the wavelet basis, used commonly in image compres-
sion applications. Note that even though the transformation
M−1 is only a basis, not an orthonormal one, we find the
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sparse vector recovery results to be satisfactory as evidenced
through system case studies.

The problem in (14) is NP-hard (nondeterministic polyno-
mial time-hard) due to the unavoidable combinatorial search
[13]. There are numerous classes of computational techniques
for solving sparse approximation problems; two major ones
are greedy pursuit methods and convex relaxation methods
[20], which we describe in the next section as they apply to
the solution of (14).

IV. COMPUTATION OF POST-TRANSFORMATION ISF
VECTOR VIA SPARSE METHODS

In our setting, the signal of interest, the ISF vector Ψk-l, is
not necessarily sparse. Therefore, as described in Section III,
we find an appropriate linear coordinate transformation M
that results in ck-l, which is approximately sparse. With this
approximate sparsity assumption, we solve (14) via greedy
pursuit and convex relaxation algorithms.

Greedy pursuit algorithms refine a solution iteratively by
choosing one or more components of ∆Ps that yield the
greatest improvement until a convergence criterion is met.
Convex relaxation algorithms replace the combinatorial prob-
lem in (14) with a convex optimization problem by relying on
the close approximation of the l1-norm to the l0-norm when
the vector is sparse. In this section, we consider one specific
algorithm from each of these two major classes, namely the
orthogonal matching pursuit (OMP) in the class of greedy
pursuit algorithms, and a log-barrier algorithm in the class
of convex relaxation algorithms.

A. Orthogonal Matching Pursuit

The central idea behind OMP is to successively build a
set of the most likely locations of the nonzero terms in the
desired vector, ck-l, and then estimate the values of these
nonzero entries. OMP is attractive owing to its algorithmic
simplicity and provably good approximation accuracy [21].
In this section we describe this algorithm as it applies to
finding sparse solutions for (14); its pseudocode is provided
in Algorithm 1.

In the pth iteration of OMP, column np of Φ, which is
most correlated with the approximation error (or residual)
at the current step, is identified and added to the set of
columns, denoted by Ωp−1, that contains column indices that
have already been chosen and added in steps 1 to p − 1.
Since the algorithm chooses column np by comparing the
correlation between all columns of Φ with the current residual,
we normalize the columns of Φ so that each column has unit
norm. Denoting this new normalized matrix by Φ̃, each of its
columns can be expressed as

ϕ̃i =
ϕi

||ϕi||2
, (15)

where ϕi is the ith column of Φ. To satisfy the constraint
in (13), let c̃ik-l = cik-l||ϕi||2, for each i = 1, . . . , n. Corre-
sponding to the columns selected via correlation, the indices
in Ωp also represent the locations of the nonzero entries in
c̃k-l. The values of these nonzero entries are estimated via LSE

Algorithm 1
Input: ∆Pk-l ∈ Rm, Φ̃ ∈ Rm×n.
Output: A sparse vector x ∈ Rn

1: Initialize. Set residual r0 = ∆Pk-l, index set Ω0 = ∅, and
counter p = 1

2: while ||rp||2 > ε do
3: Identify. Find column np of Φ̃ that is most strongly

correlated with the residual rp−1:
np = arg maxi |ϕ̃T

i rp−1|,
and set Ωp = Ωp−1 ∪ np.

4: Estimate. Find the best values with the columns
chosen so far:
xp = arg miny ||∆Pk-l − Φ̃Ωp

y||2.
5: Update. rp = ∆Pk-l − Φ̃xp
6: Set. p← p+ 1
7: end while

using only the columns of Φ̃ present in Ωp. The orthogonality
in this algorithm’s namesake manifests itself in the LSE step in
that the chosen columns in Ωp are orthogonal to the residual
rp, and hence these columns will never be chosen again in
successive iterations. Finally, the residual is updated based on
the new estimation for c̃k-l as follows:

rp = ∆Pk-l − Φ̃xp,

where xp denotes the pth estimate for c̃k-l, which contains p
nonzero entries. This procedure described above is repeated
until some stopping criterion.

There are several natural choices for the stopping criterion
(see, e.g., [21]). Here we describe two that are relevant to the
problem addressed in this paper. First, if the sparsity of the
vector ck-l is unknown, i.e., the number of nonzero entries in
the unknown vector is not known a priori, we can terminate the
iterations when a sufficiently small residual magnitude ||rp||2
has been reached, or when p = m, whichever occurs sooner.
On the other hand, if the exact sparsity, or an upper bound to
the sparsity of ck-l is known a priori, we may set the algorithm
to halt after a fixed number of iterations p = κ. In Algorithm 1,
we assume no sparsity information is known a priori and
set the stopping criterion to depend on the magnitude of the
approximation residual.

An additional variation: Suppose, prior to online estimation
using OMP, we had conducted either offline model-based
studies or online LSE-based computations to obtain base-
case ISFs and applied the difference transformation described
in (11) to them. We may be privy to not only the sparsity
level of the transformed ISF vector representation, but also the
locations of the nonzero entries. In this case, we may reach
an estimate for c̃k-l in one iteration in Algorithm 1.

Finally, let ˆ̃ck-l represent the estimate for c̃k-l. We recover
the estimate for ck-l, denoted by ĉk-l, as

ĉik-l =
ˆ̃cik-l

||ϕi||2
, for each i = 1, . . . , n. (16)
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B. A Log-Barrier Algorithm

Another approach to solve the sparse approximation prob-
lem in (14) is to replace the l0-norm with the l1-norm, yielding
the following convex optimization problem:

min
ck-l
||ck-l||1

subject to ∆Pk-l = Φck-l,
(17)

where ||ck-l||1 :=
∑n

i=1 |cik-l|; a problem known as basis
pursuit, which admits tractable algorithmic solutions (see,
e.g., [18], [22]). This program is very effective in recovering
signals that are only approximately sparse [23]. While there
exists more computationally competitive gradient-based algo-
rithms to solve (17) with very sparse solutions (see e.g., [24]),
interior-point methods are used due to their insensitivity to
the solution sparsity and robustness against cases of very slow
performance or outright failure, which are prevalent in their
gradient-based counterparts [20].

To further account for measurement errors that may arise
from equipment non-idealities, we relax the equality constraint
in (17) to a quadratic constraint. The modified optimization
problem is as follows:

min
ck-l
||ck-l||1

subject to ||∆Pk-l − Φck-l||2 ≤ ε,
(18)

where ε is a user-specified parameter that may depend on
the level of measurement noise expected from the PMU
data. It has been shown that for a sufficiently sparse vector
ck-l, with ∆Pk-l = Φck-l + e, for some small error term
||e||2 ≤ ε, the solution ĉk-l to (18) is close to ck-l, i.e.,
||ck-l− ĉk-l||2 < Cε, where C is a small constant [15]. Further,
to obtain a differentiable objective function, we re-cast the
problem in (18) to the following second-order cone program
(SOCP) (see, e.g., [25]):

min
ck-l,u

n∑
i=1

ui

s.t. fi(ck-l, u) = cik-l − ui ≤ 0, i = 1, . . . , n,

fn+i(ck-l, u) = −cik-l − ui ≤ 0, i = 1, . . . , n,

f2n+1(ck-l, u) =
1

2

(
||∆Pk-l − Φck-l||22 − ε2

)
≤ 0,

(19)

where u = [u1, . . . , un]T , and ck-l = [c1k-l, . . . , c
n
k-l]

T are the
decision variables. In order to solve (19), we follow the log-
barrier algorithm described in [26], and summarized below;
the pseudocode for this algorithm is provided in Algorithm 2.
This algorithm expects an initial guess that lies within the
feasible region, as delineated by the constraints in (19). In
our simulations presented in the remainder of this paper,
we choose the starting point for ck-l to be the one that
minimizes ||ck-l||2, namely, (ck-l)0 = ΦT (ΦΦT )−1∆Pk-l.
The initial point for each ui, i = 1, . . . , n, must satisfy
−ui ≤ ci ≤ ui. The most straightforward starting point may
be to set ui0 = maxi |(ck-l)

i
0|, for all i = 1, . . . , n. In our

simulations, the initial condition for each ui is obtained as
follows:

ui = 0.95|cik-l|+ 0.1 max
i
|cik-l|.

The main idea behind the log-barrier method is to transform
(19) into an unconstrained optimization program by incorpo-
rating the inequality constraints into the objective function via
a penalty function. The ideal penalty function assumes the
value 0 if the constraint is satisfied and ∞ otherwise. Since
such a function is discontinuous and nondifferentiable, we
approximate it using a logarithm relation and transform (19)
into the following unconstrained optimization problem:

min
z
f(z) =

n∑
i=1

ui +
1

τp

2n+1∑
i=1

− log (−fi(z)) , (20)

where z = [cTk-l, u
T ]T , τp > τp−1, and p denotes the log-

barrier algorithm iteration index (note that the logarithmic
function approaches the ideal penalty function as τp increases).

Let z = zp + ∆z. At each iteration p of the log-barrier
algorithm, we form a quadratic approximation of the objective
function in (20) as follows:

f(zp + ∆z) ≈ f(zp) + fz
∣∣
zp

∆z + ∆zTHz

∣∣
zp

∆z, (21)

where

fz =
[
0 · · · 0 1 · · · 1

]T − 1

τp

2n+1∑
i=1

1

fi(z)
∇fi(z)

and

Hz =
1

τp

2n+1∑
i=1

[
1

f2
i (z)
∇fi(z) (∇fi(z))T −

1

fi(z)
∇2fi(z)

]
.

The quadratic approximation in (21) is minimized when

fz
∣∣
zp

+Hz

∣∣
zp

∆z = 0, (22)

a system of equations that can be solved via Newton’s method
for ∆z. In each log-barrier iteration p, the Newton inner-loop
is initialized with zp−1 from the previous log-barrier step and
so the solution to (22) can be acquired with just a few iterations
of Newton’s method. If m and n are large, it may be difficult
or infeasible to form the matrix Hz and then solve the linear
system in (22). However, since (22) is symmetric and positive
definite, we can always solve it using a matrix-free method
such as the conjugate gradient method [25].

It can be shown that the duality gap associated with z∗(t)
and the dual λ∗(t) is (2n+ 1)/τ (see e.g., [26], Ch. 11). As
a consequence, we have, at the pth iteration of the log-barrier
algorithm, that

n∑
i=1

uip −
n∑

i=1

ui
∗ ≤ 2n+ 1

τp
. (23)

Therefore, the natural stopping criterion of this algorithm is to
check whether or not the duality gap has reached a predefined
small quantity, η. We note, further, that if τp is an increasing
sequence, then zp → z∗ as τp →∞.

Example 3 (IEEE 14-Bus System): Here, we consider the
same system as in Example 1, and use the two algorithms
described above to compute estimates for c2-3, in conjunction
with simulated PMU data.

For the remainder of this paper, in order to simulate PMU
measurements of slight fluctuations in active power injection



8

Algorithm 2
Input: ∆Pk-l ∈ Rm, Φ ∈ Rm×n.
Output: A sparse vector z∗ ∈ Rn

1: Initialize. Set z0 within feasible region, τ1, tolerance η,
multiplier µ, and counter p = 1

2: while (2n+ 1)/τp > η do
3: Newton Step. Solve (20) with zp−1 as initial guess

and compute zp = zp−1 + ∆z
4: Update. z∗ = zp and τp+1 = µτp
5: Set. p← p+ 1
6: end while

at each bus, we synthesize power injection times-series data
as follows; the injection at bus i, denoted by Pi, is

Pi[j] = P 0
i [j] + σ1P

0
i [j]v1 + σ2v2, (24)

where P 0
i [j] is the nominal power injection at bus i at instant j,

and v1 and v2 are pseudorandom values drawn from standard
normal distributions with 0-mean and standard deviations
σ1 = 0.1 and σ2 = 0.1, respectively. The first component
of variation, σ1P

0
i [j]v1, represents the inherent fluctuations

in generation and load, while the second component, σ2v2,
represents random measurement noise. For each set of bus
injection data, we compute the power flow, with the slack bus
absorbing all power imbalances, and the active power flow
through each line for that particular time. For this example,
we produced 21 sets of active power injection and flow data
to obtain 20 sets of power fluctuation data and used the first
m sets for each case described below.

We compare the results obtained with Algorithm 1 (for ε =
10−5), and Algorithm 2 (for η = 10−5), to those obtained
with conventional LSE estimation (see Table I). The model-
based benchmark transformed ISFs, c2-3, are listed in column
4 (and also plotted in Fig. 2b). Estimates of c2-3, denoted by
ĉ2-3, are computed with m < n sets of measurements, and are
listed in columns 5–10. Finally, we sparsify the LSE-based ISF
vector estimate that results from (6) by using 14 and 20 sets of
measurements, and list the elements of the transformed vectors
in columns 11 and 12 in Table I, for m = 14, 20, respectively.

By inspecting Table I, we conclude that Algorithm 2
achieves higher accuracy than Algorithm 1, which is verified
by comparing the l2-norm of the error in each estimate as
compared to the benchmark model-based c2-3, as shown in the
last row. Further, Algorithm 2 with m = 10, 13 leads to more
accurate estimates than those obtained using the LSE-based
approach with m = 14. On the other hand, with Algorithm 1,
only the estimate obtained with m = 13 is superior to the
LSE-based approach with m = 14. However, we note that the
estimate obtained using the LSE-based method with m = 20 is
more accurate than all of the estimates obtained with m < n.
Thus, there is some tradeoff between the level of accuracy and
the number of measurements required. In this example, the
reduction in the number of required measurements to achieve
accuracy level comparable to the LSE-based method is not
significant. However, as we show in Section V, via large-scale
test cases, this reduction becomes more notable as the size of
the system grows.

TABLE II: Comparison between Ψ̂k-l and Ψk-l for several lines
in the IEEE 300-bus system.

Line ||Ψ̂k-l −Ψk-l||2
L272-268 m = 110 m = 120 m = 130 m = 140

via Algorithm 1 0.0676 0.0693 0.0551 0.0777
via Algorithm 2 0.0320 0.0341 0.0271 0.0279

via LSE m = 305 m = 350 m = 400 m = 600
0.5891 0.0962 0.0678 0.0339

L30-73 m = 190 m = 210 m = 230 m = 250
via Algorithm 1 0.0640 0.0649 0.0517 0.0494
via Algorithm 2 0.0320 0.0323 0.0268 0.0288

via LSE m = 305 m = 350 m = 400 m = 600
0.2719 0.0372 0.0236 0.0162

L112-148 m = 230 m = 250 m = 270 m = 290
via Algorithm 1 0.9216 0.8255 0.7809 0.0964
via Algorithm 2 0.0849 0.0716 0.0377 0.0474

via LSE m = 305 m = 350 m = 400 m = 600
0.1414 0.0289 0.0168 0.0116

While ISF estimation results for other lines are not shown,
they can be computed from the same set of power injection
data as was used to compute Ψ̂2-3 above. We only need to
replace ∆Pk-l in (13) with the vector that results from flow
measurements that correspond to the new line of interest. At
the same time, we reorder columns of ∆P according to the
electrical distance away from the new line of interest. �

V. CASE STUDIES

In this section, we further illustrate the concepts presented
in Sections III and IV using the IEEE 300-bus test system
and the 2383-bus Polish power system. The simulation tool
MATPOWER [27] is used throughout to compute relevant
transmission line flow measurements from some synthetic
power injection profiles generated using (24).

A. IEEE 300-Bus System

For this case study, we focus on the ISFs of lines L272-268,
L30-73, and L112-148 with respect to each bus in the system.
These lines are selected because they are typical of ISF vectors
in the system corresponding to three different levels of ck-l
sparsity, with c272-268 most sparse and c112-148 least. Using
a model of the system, we first compute benchmark values
for Ψ272-268, Ψ30-73, and Ψ112-148 based on the definition
of the ISF in (2), to which we compare estimates obtained
via greedy pursuit, convex relaxation, and LSE algorithms.
These original ISF vectors, ordered by the somewhat arbitrary
network diagram designation (see, e.g., [16]), is neither sparse
nor particularly smooth. As in Example 3, we simulate PMU
measurements of slight fluctuations in active power injection
at each bus via (24), from which we obtain the matrix ∆P ,
the regressor matrix used in ISF estimation for any line of
interest. Next, we reorder the elements of each ISF vector by
the electrical distance of each node to the line of interest and
subsequently the columns of ∆P to obtain ∆Ps. Furthermore,
we compute the power flowing through each of lines L272-268,
L30-73, and L112-148 for each set of bus injection data. From
these computations, we obtain observation vectors ∆P272-268,
∆P30-73, and ∆P112-148, which are then substituted into (13)
to solve via Algorithms 1 and 2.

To assess the effectiveness of our proposed sparse vector
recovery methods, we choose several values of m < n, cor-
responding to the number of synchronized data sets available.
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(a) Sparsity of pre-transformation Ψk-l vectors.
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(b) Sparsity of post-transformation ck-l vectors.

Fig. 4: Polish 2383-Bus System: Sparsity of pre- and post-transformation ISFs.

For each test case, we select m rows from ∆P , reorder
columns of ∆P by electrical distance away from line Lk-l, and
finally multiply by the inverse difference transformation matrix
to obtain the measurement matrix Φ, as in (13). Combined
with active line flows computed via MATPOWER, we solve
the sparse vector recovery problem in (13) using the two
algorithms described in Section IV: Algorithm 1 in the class of
greedy pursuit algorithms (with ε = 10−5), and Algorithm 2 in
the class of convex optimization algorithms (with η = 10−5).
The resulting vectors are sparse representations, denoted by
ĉk-l, of the ISF vector estimates, denoted by Ψ̂k-l,s, which
we obtain by applying the inverse difference transformation
to ĉk-l, as described in (12). For comparison, we also obtain
estimates Ψ̂k-l directly using the LSE-based method described
in [8]. Finally, we evaluate the accuracy of these three methods
against the benchmark ISF vectors obtained via direct model-
based computation using the definition in (2). The results are
described below and summarized in Table II.

In the case of line L272-268, we compute estimates via
Algorithms 1 and 2 with m = 110, 120, 130, 140, and LSE
with m = 305, 350, 400, 600. Algorithm 2 results in higher
accuracy with only 130 sets of synchronized measurements
than LSE with 600 sets. On the other hand, in the case of line
L30-73, the estimate obtained via Algorithm 2 with 230 sets
of measurements is about as accurate as that obtained using
LSE with 400 sets. Regrettably, in the case of line L112-148,
estimates obtained via the proposed sparsity-exploiting meth-
ods with as many as 290 sets of measurements are unable to
surpass those obtained via the LSE method with as few as
350 sets. This decline in performance can be attributed to the
sparsity level of the post-transformation ISF vector, ck-l. In
this case study, c272-268 is the most sparse, followed by c30-73,
and then c112-148. For lines for which the post-transformation
ISF vector is not sparse, it may be prudent to search for an
alternate representation that is sparse.

We also note that, in general, estimates obtained via Algo-
rithm 2 are more accurate than those via Algorithm 1 using
the same observation matrix. This stems from the interior
point convex optimization’s insensitivity to the sparsity of the
solution, so it is able to produce good estimates even for non-

sparse solutions, given enough measurement sets. As we show
in the next case study involving the 2383-bus Polish power
system, while Algorithm 2 may be more robust, Algorithm 1
is more superior if the solution is sparse.

B. Polish 2383-Bus System

For this large-scale test case with 2896 lines, we evaluate the
effectiveness of the electrical distance-based method proposed
in Section III to sparsify ISF vectors as well as the algorithms
described in Section IV to estimate resulting sparse vectors.

1) Sparsify via electrical distance-based method: We con-
sider the benchmark ISFs for all lines in the system computed
by linearizing the nonlinear AC power flow equations. We
obtain a measure for the sparsity of the pre-transformation
ISF vector Ψk-l by counting the number of nonzero elements
in each normalized ISF vector with3

κΨk-l = #

{
i ∈ [1, n] :

|Ψi
k-l|

||Ψk-l||∞
> 0.005

}
. (25)

Similarly, we obtain a comparable sparsity measure for the
post-transformation vector ck-l with

κck-l = #

{
i ∈ [1, n] :

|cik-l|
||ck-l||∞

> 0.005

}
. (26)

The sparsity measures in (25) and (26) for all lines are
visualized as histograms in Fig. 4a and Fig. 4b, respectively.
By comparing the aforementioned figures, we note that there
is an increase in the number of vectors with fewer nonzero
entries in the post-transformation ck-l’s in Fig. 4b as compared
to the pre-transformation Ψk-l’s in Fig. 4a. In fact, κck-l < 600
for 92% of the lines, whereas κΨk-l < 600 for 54%. Also,
we note that the pre-transformation ISF vectors of many lines
are already highly sparse, as shown by the leftmost bar in
Fig. 4a. This is in agreement with the intuition that, in a
large-scale system, many line flows are significantly affected
by only a small number of nodal injections. In these cases,
the transformation proposed in Section III does not affect the
sparsity of the corresponding post-transformation ISF vector.

3#A denotes the cardinality of set A.
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TABLE III: Comparison between Ψ̂k-l and Ψk-l for the Polish
2383-bus system case study.

Line ||Ψ̂k-l −Ψk-l||2
L53-52 m = 500 m = 600 m = 700 m = 800

via Algorithm 1 0.0490 0.0480 0.0413 0.0402
via Algorithm 2 0.0562 0.0516 0.0459 0.0391

TABLE IV: Timing comparison for Polish 2383-bus system
case study.

Line Execution Time [s]
L53-52 m = 500 m = 600 m = 700 m = 800

via Algorithm 1 0.2798 0.4502 0.5263 0.7828
via Algorithm 2 15.5302 13.7511 15.8118 16.1992

2) Sparse ISF vector recovery: To illustrate the effective-
ness of the proposed estimation algorithms, we consider the
ISFs of line L53-52 with respect to each of the 2383 buses in the
system. Due to the size of this test system and the resulting
exorbitant simulation time, we refrain from computing Ψ̂k-l
estimates directly using the LSE-based method. As in the 300-
bus case study, we exploit a sparse representation of the ISF
vector and compute estimates via Algorithm 1 (for ε = 0.01),
and Algorithm 2 (for η = 10−5). Then we compare these to
benchmark ISF obtained using the model-based approach; the
results are shown in Table III. Here, unlike in the 300-bus
case study, the solution is highly sparse and so Algorithm 1
results in more accurate ISF estimates than Algorithm 2 from
the same synchronized measurement sets (except for the case
m = 800). Also, as shown in Table IV, Algorithm 1 incurs
much lower computation time than Algorithm 2. Next, we
further take advantage of the sparsity of the solution and offer
a modification to the proposed algorithms.

VI. ISF ESTIMATION WITH A SUBSET OF MEASUREMENTS

One of the technical restrictions the framework presented
thus far is that bus injection measurements are required at all
buses in the system. In a practical setting, however, the entire
set of PMU measurements may not be wholly available at
every sample time. Fortunately, since bus injections at buses
that are geographically or electrically distant from the line of
interest would likely not have a significant effect on its flow,
it is prudent to assume the ISFs of the line Lk-l with respect
to a subset of buses are negligible in magnitude. To this end,
denote the set of all buses in the system as B. Suppose we
are interested in the flow across the line Lk-l, where k, l ∈
B1 ⊆ B. With these definitions, we consider the following
modification to (5):

∆Pk-l =
[
∆PB1 ∆PBc

1

] [ΨB1

k-l

Ψ
Bc

1

k-l

]
,

with Bc1 := B\B1 and where ∆PB1
and ∆PBc

1
represent

the active power injection fluctuation at buses in B1 and Bc1,
respectively. Similarly, ΨB1

k-l and Ψ
Bc

1

k-l represent the ISFs of
line Lk-l with respect to buses in B1 and Bc1, respectively.
Now, suppose B1 contains buses such that entries of Ψ

Bc
1

k-l are
negligibly small compared to those of ΨB1

k-l, then we obtain

∆Pk-l = ∆PB1ΨB1

k-l + θ, (27)

where θ = ∆PBc
1
Ψ
Bc

1

k-l can be viewed as a measurement error.

TABLE V: Comparison between Ψ̂k-l and Ψk-l for the Polish
2383-bus system case study using a subset of data.

Line ||Ψ̂k-l −Ψk-l||2
L53-52 m = 500 m = 600 m = 700 m = 800

via Algorithm 1 0.0509 0.0482 0.0440 0.0420
via Algorithm 2 0.0579 0.0525 0.0565 0.0632

TABLE VI: Timing comparison for Polish 2383-bus system
case study using a subset of data.

Line Execution Time [s]
L53-52 m = 500 m = 600 m = 700 m = 800

via Algorithm 1 0.2547 0.4706 0.6899 0.9705
via Algorithm 2 18.6132 15.6137 17.2752 19.7156

In order to select the number of buses to include in B1, i.e.,
n1 = #B1, we consider the post-transformation ISF vector ck-l
obtained from the model-based sensitivities Ψk-l. Specifically,
n1 can be chosen such that

|cik-l|
||ck-l||∞

< γ, ∀ i > n1,

for some user-defined γ > 0. Even though this modification
reduces the number of measurements required, PMU measure-
ments must be available at all n1 buses in B1.

Example 4 (Polish 2383-Bus System): To illustrate ideas
presented above, we consider ISFs of line L53-52 in the
Polish power system again. Here, n1 = 1000 buses that are
electrically nearest to line L53-52 are chosen to be in B1,
corresponding to γ ≈ 0.005. As shown in Tables V and VI, the
performance of this reduced case is similar to the case with full
knowledge of all bus injection data, both in accuracy as well as
computation time. There are just as many nonzero elements
in the reduced case as before; hence, we would not expect
a significant reduction in computation time. Moreover, PMU
measurements are required at all n1 buses in B1. However, the
advantage of using a subset of bus injection measurements lies
in the reduction in the number of measurements required and
consequently communication overhead incurred. �

VII. CONCLUDING REMARKS

In this paper, we presented a method to estimate a vector of
ISFs by exploiting a sparse representation of it, and solving for
the sparse vector via greedy pursuit and convex optimization.
An advantage of the proposed method is that it does not rely on
a power flow model of the system, but instead only uses PMU
measurements collected in real-time. A direct consequence
is that the proposed method is also independent of slack
bus location designation. Apart from eliminating the power
flow model, we show that the proposed measurement-based
approach provides accurate estimates of the ISFs using fewer
measurements than those obtained using LSE.

We illustrate the application of this method to the IEEE
14- and 300-bus system power flow models, from which
comparisons are made between results obtained via greedy
pursuit, convex optimization, and LSE. We also demonstrate
the scalability of the proposed method via the Polish 2383-bus
system model.
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As future work, we plan to conduct more rigorous analysis
of the exact or a lower bound to the number of measure-
ment sets required in the proposed underdetermined solution
framework. Additionally, future work should investigate other
transformations to sparsify the ISF vector for cases in which
the proposed electrical distance-based method is inadequate.
Moreover, we may be able to apply the estimated ISFs for de-
tecting model-related errors and for obtaining reduced system
equivalents. Also of interest are modifications to our proposed
method to accommodate measurement configurations based on
existing optimal PMU placement methods.
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