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Abstract—In this paper, we propose a method to compute
linear sensitivity distribution factors (DFs) in near real-time. The
method does not rely on the system power flow model. Instead,
it uses only high-frequency synchronized data collected from
phasor measurement units to estimate the injection shift factors
through linear least-squares estimation, after which other DFs
can be easily computed. Such a measurement-based approach
is desirable since it is adaptive to changes in system operating
point and topology. We further improve the adaptability of
the proposed approach to such changes by using weighted and
recursive least-squares estimation. Through numerical examples,
we illustrate the advantages of our proposed DF estimation
approach over the conventional model-based one in the context
of contingency analysis and generation re-dispatch.

I. INTRODUCTION

In order to monitor and maintain operational reliability,

power system operators perform several static security anal-

yses. For example, the results of online N-1 contingency

analysis help operators determine whether or not the system

will meet operational reliability requirements in case of outage

in any one particular asset (e.g., a generator or a transmission

line), and further whether or not corrective actions, such as

generation re-dispatch in a constrained system, are required

[1], [2]. These studies may include repeated computations,

for each credible contingency, of power flow solutions using

the full nonlinear power flow model or a linearized model.

To reduce the computational burden of evaluating repeated

power flow solutions, linear sensitivity distribution factors

(DFs), such as injection shift factors (ISFs), power transfer

distribution factors (PTDFs), and line outage distribution fac-

tors (LODFs), are used to predict the effect of an operating

point change on the system [3]. For example, in the context

of N-1 contingency analysis, ISFs and LODFs are utilized, in

conjunction with an estimate of the system’s current operating

point, to predict the change in power flowing through trans-

mission lines in the event that an outage in certain generating

facilities or transmission lines occurs [3]. These predictions are

then used to determine whether or not any line loading limits

would be violated. In general, these online studies require the

maintenance of up-to-date and accurate internal system model

and external balancing area equivalents.
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Conventional model-based studies are not ideal since the

results depend on an accurate model with up-to-date network

topology, which may not be available due to erroneous teleme-

try from remotely monitored circuit breakers. For example,

in the 2011 San Diego blackout, operators could not detect

that certain lines were overloaded or close to being over-

loaded because the network model was not up-to-date [1].

Furthermore, the results from model-based studies may not be

applicable if the actual system evolution does not match any

predicted operating points due to unforeseen circumstances

such as equipment failure, large variations in generation or

load, or unpredictable levels of renewable generation. Thus,

conventional model-based techniques may no longer satisfy

the needs of monitoring and protection tasks and therefore, it

is important to develop power system monitoring tools that

are adaptive to changes in operating point and topology. In

this regard, phasor measurement units (PMUs) are an enabling

technology for the development of such measurement-based

monitoring tools.

Unlike current system measurements, PMUs measure volt-

ages, currents, and frequency at a very high speed (usually

30 measurements per second) [4], and phasors measured at

different locations by different devices are time-synchronized

[5]. In this paper, we propose a method to estimate linear

sensitivity DFs that exploits measurements obtained from

PMUs in near real-time without the use of a power flow

model of the system. In particular, we rely on real power bus

injection and line flow data obtained from PMUs, and the

small fluctuations inherent to load and generation to compute

the linear sensitivity DFs through the solution of a linear least-

squares estimation (LSE) problem.

Linear sensitivity DFs are widely known and used in power

systems analyses [3], [6]. Existing approaches to computing

DFs typically employ so-called DC approximations, which can

provide fast contingency screening [7]. They do not, however,

have the flexibility of adapting to changes in network topology

or generation and load variations, which can all affect the

actual linear sensitivities [8]. Recent attention has been given

to the computation of the LODF due to their prominent role

in revealing and ameliorating cascading outages [9], [10].

Additionally, work has been done in the area of detecting

line outages using PMU measurements [11], [12]. Such pro-

posed approaches still largely rely on a model of the system

and utilize the so-called DC approximation. In [13], phasor

measurements were used in online contingency analysis by

monitoring buses that had been classified as high-risk by an

offline study.
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This paper builds on preliminary work reported in [14]

and provides extensions in several directions. First, we utilize

a weighted least-squares (WLS) framework to improve the

adaptability of the proposed measurement-based approach by

placing more weight on recent measurements and less on

past ones. Second, since measurements would be acquired

sequentially in a practical setting, we implement the least-

squares estimator recursively so that the ISF estimates are

refined through each additional set of measurements obtained.

Further, we formulate two common power system analysis

applications that use DFs, contingency analysis and generation

re-dispatch, and showcase the advantages of the proposed

measurement-based approach on the 118-bus IEEE system.
The remainder of this paper is organized as follows. Sec-

tion II outlines the problem statement and describes the

conventional model-based solution. In Section III, we for-

mulate the proposed measurement-based estimation problem

approach and provide several LSE-based algorithms to solve

it; additionally, we show how to compute other DFs once

ISF estimates are obtained. In Section IV, we describe the

role of measurement-based DFs in several power systems

analysis applications, illustrating them via examples involving

the IEEE 14-bus system. In Section V, we demonstrate the

proposed ideas via a case study involving the IEEE 118-bus

system. Finally, in Section VI, we offer concluding remarks

and directions for future research.

II. PRELIMINARIES

Distribution factors are linearized sensitivities used in, e.g.,

online contingency analysis, generation re-dispatch, and con-

gestion relief [3]. A key distribution factor is the injection

shift factor (ISF), which quantifies the redistribution of power

through each transmission line following a change in gener-

ation or load on a particular bus with a slack bus constraint

included. In essence, the ISF captures the sensitivity of the

flow through a line with respect to changes in generation or

load. Other DFs include the power transfer distribution factor

(PTDF), the line outage distribution factor (LODF), and the

outage transfer distribution factor (OTDF) [7], which can all

be derived from the ISF.
Let L denote the set of transmission lines and B the set

of buses in the system; the ISF of line Lk-l ∈ L (assume

positive real power flow from bus k to l measured at bus

k) with respect to bus i ∈ B, which we denote by Ψi
k-l, is

the linear approximation of the sensitivity of the active power

flow in line Lk-l with respect to the active power injection at

bus i with the location of the slack bus specified and all other

quantities constant. Suppose Pi varies by a small amount ∆Pi

and denote by ∆P i
k-l the change in active power flow in line

Lk-l (measured at bus k) resulting from ∆Pi. Then, it follows

that

Ψi
k-l :=

∂Pk-l

∂Pi

≈
∆P i

k-l

∆Pi

. (1)

Traditionally, ISFs, along with other DFs, have been computed

offline based on a model of the power system, including its

topology and pertinent parameters. Next, we describe this

model-based approach to compute ISFs and motivate the need

for a measurement-based approach.

A. Model-Based Approach to ISF Computation

Consider a power system with n buses, and let Vi and θi,

respectively, denote the voltage magnitude and angle at bus i;

additionally, let Pi and Qi, respectively, denote the active and

reactive power injection (generator or load) at bus i. Then,

the static behavior of a power system can be described by the

power flow equations, which we write compactly as

g(x, P,Q) = 0, (2)

where x = [θ1, . . . , θn, V1, . . . , Vn]
T , P = [P1, . . . , Pn]

T ,

Q = [Q1, . . . , Qn]
T , and g : R2n × R

n × R
n → R

2n. In (2),

the dependence on network parameters, such as line series and

shunt impedances, is implicitly considered in the function g(·).
Suppose a solution for (2) is obtained at (x0, P0, Q0), i.e.,

g(x0, P0, Q0) = 0, and assume g(·) is continuously differen-

tiable with respect to x and P at (x0, P0, Q0). Let x = x0+∆x

and P = P0 + ∆P . Then, assuming that ∆P and ∆x are

sufficiently small, we can approximate g(x, P,Q0) as

g(x, P,Q0) ≈ g(x0, P0, Q0) + J∆x +D∆P, (3)

where

J =
∂g

∂x

∣

∣

∣

(x0,P0,Q0)
and D =

∂g

∂P

∣

∣

∣

(x0,P0,Q0)
.

Since g(x0, P0, Q0) = 0, and assume ∆x and ∆P are small,

we have that g(x, P,Q0) ≈ 0. Then, it follows from (3) that

0 ≈ J∆x +D∆P. (4)

Further, since J is the Jacobian of the power flow equations,

which we assume to be invertible around (x0, P0, Q0), we can

rearrange (4) to obtain

∆x ≈ −J−1D∆P. (5)

Next, we consider the active power flow through line Lk-l

as Pk-l = hk-l(x), where hk-l : R2n → R. Under the same

small ∆x assumption, we can obtain an expression for small

variations ∆Pk-l due to ∆x as follows:

∆Pk-l = c∆x, (6)

where c = ∂hk-l

∂x

∣

∣

x0

. Substituting (5) into (6), it follows that

∆Pk-l ≈ −cJ−1D∆P. (7)

The derivation of the sensitivity vector −cJ−1D relies on the

linearization of the nonlinear power flow equations around

an operating point and therefore it depends on the system

operating point.
For certain power system applications (such as congestion

relief), the so-called DC assumptions are further used to

simplify the AC linear sensitivities derived in (2)–(7) (see, e.g.,

[3]). Let B̃ = diag{bk-l}, a diagonal matrix whose entries are

bk-l, the susceptance of line Lk-l, for each Lk-l ∈ L. Also, de-

note the line-to-bus incidence matrix by A = [. . . , ak-l, . . . ]
T ,

where ak-l ∈ R
n is a vector in which the kth entry is 1 and

the lth entry is −1. Then, by using the DC approximations

[(i) the system is lossless, (ii) Vi = 1 p.u. for all i ∈ B, and

(iii) θi − θj << 1 for all i, j ∈ B [3]], the expression in (6)

simplifies to

∆Pk-l ≈ B̃k-lAB
−1∆P, (8)
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where B̃k-l is the row in B̃ that corresponds to line

Lk-l, and B = AT B̃A. Then, by defining Ψk-l =
[Ψ1

k-l, . . . ,Ψ
i
k-l, . . . ,Ψ

n
k-l]

T , the model-based linear sensitivity

factors for line Lk-l with respect to active power injections at

all buses are given by

Ψk-l = B̃k-lAB
−1. (9)

Under the DC assumptions, not only are the resulting DFs

inflexible against variations in system topology, but they also

remain constant through possible operating point variations

under one topology, e.g., generation and load fluctuations.

B. Problem Statement

The conventional model-based approach to ISF computation

outlined in (2)–(9) is not ideal since accurate and up-to-

date network topology, parameters, and operating point are

required. Moreover, under the DC assumptions, the model-

based ISFs do not vary with system operating changes. In

this paper, we aim to (i) eradicate the reliance on models for

computing DFs and, (ii) improve adaptability of computed

DFs to changes occurring in the system. With regard to

this, we propose a method to estimate DFs using only PMU

measurements obtained in near real-time without relying on a

power flow model of the system.

III. MEASUREMENT-BASED DF COMPUTATION APPROACH

In this section, we formulate the proposed measurement-

based method to compute the ISFs without relying on power

flow models. Subsequently, we describe three LSE-based

approaches to perform the computation. We illustrate the

validity of our proposed measurement-based ISF computation

approach in an example featuring the Western Electricity Co-

ordinating Council (WECC) 3-machine 9-bus system. Finally,

we describe steps to obtain other DFs, such as PTDFs, LODFs,

and OTDFs, once the ISFs are computed.

A. ISF Computation

Let Pi(t) denote the active power injection at bus i at time t;

similarly, for ∆t > 0 sufficiently small, let Pi(t+∆t) denote

the active power injection at time t + ∆t. Define ∆Pi(t) =
Pi(t + ∆t) − Pi(t); then, based on the definition of the ISF

in (1), we have that

Ψi
k-l ≈

∆P i
k-l(t)

Pi(t+∆t)− Pi(t)
. (10)

In order to obtain Ψi
k-l, we also need ∆P i

k-l(t), which are not

readily available from PMU measurements. We assume that

the net variation in active power through line Lk-l, denoted by

∆Pk-l(t), however, is available. We express this net variation

as the sum of active power variations in line Lk-l due to active

power injection variations at each bus i:

∆Pk-l(t) = ∆P 1
k-l(t) + · · ·+∆Pn

k-l(t). (11)

By substituting (10) into (11), we can rewrite (11) as

∆Pk-l(t) ≈ ∆P1(t)Ψ
1
k-l + · · ·+∆Pn(t)Ψ

n
k-l,

where Ψi
k-l ≈

∆P i

k-l

∆Pi

, i = 1, . . . , n. Suppose m +
1 sets of synchronized measurements are available. Let

∆Pi[j] = Pi((j + 1)∆t) − Pi(j∆t), and ∆Pk-l[j] =
Pk-l((j + 1)∆t) − Pk-l(j∆t), j = 1, . . . ,m. Then,

define ∆Pk-l = [∆Pk-l[1], . . . ,∆Pk-l[j], . . . ,∆Pk-l[m]]T ,

∆Pi = [∆Pi[1], . . . ,∆Pi[j], . . . ,∆Pi[m]]T , and Ψk-l =
[Ψ1

k-l, . . . ,Ψ
i
k-l, . . . ,Ψ

n
k-l]

T . Further, suppose m > n, then we

obtain the following overdetermined system:

∆Pk-l ≈
[

∆P1 · · · ∆Pi · · · ∆Pn

]

Ψk-l. (12)

For ease of notation, let ∆P represent the m × n matrix

[∆P1, . . . ,∆Pi, . . . ,∆Pn]. Then, the system in (12) is of the

form

∆Pk-l ≈ ∆PΨk-l. (13)

In (13), we hypothesize that the relationship between ∆Pk-l

and Ψk-l is approximately linear. Let e ∈ R
m denote the

combination of inherent deterministic error arising from the

linearization assumption and stochastic measurement error

arising from faulty PMU data. As is customary, we assume

the measurement error process is white with zero mean and

variance σ2 [15]. By explicitly representing these errors in the

formulation, (13) becomes

∆Pk-l = ∆PΨk-l + e. (14)

B. LSE-Based Algorithms for ISF Computation

We discuss three measurement-based algorithms to obtain

an estimate of Ψk-l by solving the overdetermined system

in (14). The first is the conventional LSE solution, followed by

WLS estimation, which weights certain measurements more

than others. Finally, we describe the recursive least-squares

(RLS) algorithm, which allows us to refine the ISF estimate

as more measurements are obtained.

1) Least-Squares Estimation: We can obtain the least-

squares estimate of the ISF vector for line Lk-l, Ψk-l =
[Ψ1

k-l, . . . ,Ψ
i
k-l, . . . ,Ψ

n
k-l]

T , by solving the following LSE

problem:

min
Ψk-l

eT e. (15)

The solution to this problem is given by (see, e.g., [16])

Ψ̂k-l = (∆PT∆P )−1∆PT∆Pk-l. (16)

In doing so, we make two key assumptions: (i) the ISFs are

approximately constant across the m + 1 measurements, and

(ii) the regressor matrix ∆P has full column rank.

2) Weighted Least-Squares Estimation: As stated previ-

ously, one of the assumptions we make in (15) is that the

ISFs are approximately constant across the estimation time

window. One way to eliminate this restriction and to obtain an

estimator that is more adaptive to operating changes is to place

more importance on recent measurements and less on earlier

ones, which may be out-of-date due to possible operating

point changes. Hence, we consider a WLS estimation problem

setting in which the objective function in (15) becomes

min
Ψk-l

eTWe, (17)
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Fig. 1: Network topology for WECC 3-machine 9-bus system.

where W is a positive definite symmetric matrix. The solution

to (17) is given by (see, e.g., [16])

Ψ̂k-l =
(

∆PTW∆P
)−1

∆PTW∆Pk-l. (18)

In our setting, the elements of the error vector e are un-

correlated; therefore the matrix W = [wij ] is diagonal. If

the variations in Ψk-l are slow compared to the dynamics

of the system, the generic method is WLS with exponential

forgetting factor [17], in which the more recent measurements

are preferentially weighted by setting wii = fm−i for some

fixed f ∈ (0, 1], where f is called a “forgetting” factor. If

f = 1, then all measurements are given equal weighting, as

in the conventional LSE objective function in (15). On the

other hand, if f < 1, then earlier measurements would not

contribute as much to the final estimate Ψ̂k-l as more recent

ones, i.e., earlier measurements are “forgotten” as more data

is acquired [17]. This is especially useful for the case in which

the system experiences a change in operating point during the

time window in which measurements are obtained.

3) Recursive Least-Squares Estimation: In practical im-

plementation, measurements would be obtained sequentially.

Therefore, instead of waiting to collect a large dataset (and

thus a longer period of time) before an estimate can be

obtained, we use the RLS scheme to solve the estimation

problem and update the estimate as more data is acquired [15].

As such, we consider one measurement set at a time, which

consists of ∆Pk-l[j] and ∆P [j], the j th element of ∆Pk-l and

the j th row of ∆P , respectively. Then, Ψ̂k-l[j], the j th ISF

estimate, can be obtained via the following recursive relation

[15]:

Ψ̂k-l[j] = Ψ̂k-l[j − 1] +Q−1[j]∆PT [j]
(

∆Pk-l[j]−∆P [j]Ψ̂k-l[j − 1]
)

, (19)

where Q[j] = fQ[j − 1] + ∆PT [j]∆P [j] and Q[0] = δI , δ

small. Further, the computationally expensive matrix inversion

in (19) may be avoided by invoking the Sherman Morrison

formula (a special case of the matrix inversion lemma). Let

R[j] = Q−1[j] and define so-called gain vector as

g[j] =
1

f +∆P [j]R[j − 1]∆PT [j]
R[j − 1]∆PT [j]. (20)

TABLE I: Comparison of ISFs obtained for Example 1.

Line
Actual [p.u.] Model-based [p.u.] WLS Estimation [p.u.]

Before After Before/After f = 1 f = 0.7
∆P4-5 -0.2970 -0.2046 -0.3196 -0.2145 -0.2203
∆P4-6 -0.1734 -0.1426 -0.1804 -0.0529 -0.1416
∆P7-8 +0.1838 +0.2121 +0.1804 +0.1116 +0.2066

Then, Ψ̂k-l[j] can be obtained via the following recursive

relation [15]:

Ψ̂k-l[j] = Ψ̂k-l[j − 1] +R[j]∆PT [j]
(

∆Pk-l[j]−∆P [j]Ψ̂k-l[j − 1]
)

, (21)

where R[j] = f−1 (R[j − 1]− g[j]∆P [j]R[j − 1]) and

R[0] = δ−1I .

Next, we illustrate the ideas presented above on LSE-based

solutions to the overdetermined system in (14) via an example.

Example 1 (3-Machine 9-Bus System): In this example, we

consider the WECC 3-machine, 9-bus system model (see,

e.g., [18]), the topology for which is shown in Fig. 1. In

order to simulate PMU measurements of slight fluctuations in

active power injection at each bus, we synthetically generate

power injection times-series data. To this end, we assume the

injection at bus i, denoted by Pi, can be modeled as

Pi[j] = P 0
i [j] + σ1P

0
i [j]v1 + σ2v2, (22)

where P 0
i [j] is the nominal power injection at bus i at instant j,

and v1 and v2 are pseudorandom values drawn from standard

normal distributions with 0-mean and standard deviations

σ1 = 0.1 and σ2 = 0.1, respectively. The first component

of variation, σ1P
0
i [j]v1, represents the inherent fluctuations

in generation and load, while the second component, σ2v2,

represents random measurement noise. In addition, in order to

capture the effect of a change in operating point, the active

load at Bus 6 linearly increases by 2.8 p.u. over the span

of 120 measurements, beginning at time instant j = 180,

with the generation at Bus 2 also increasing commensurately

by an equal amount at each time step. We assume this

change is undetected to highlight the value of the proposed

measurement-based method.

For each set of bus injection data, we compute the power

flow, with the slack bus absorbing all power imbalances, and

the active power flow through each line for that particular

time. Suppose a 0.5 p.u. increase is applied to G2 at bus 2

with the slack bus absorbing the resulting power imbalance.

Table I shows a comparison between the corresponding effect

on three lines computed from the actual power flow solution

(both before and after the change in operating point), the

linearized DC model-based approximation, and a solution to

our measurement-based method using the recursive implemen-

tation of WLS in (21), with forgetting factors f = 1 and

f = 0.7. Both measurement-based estimations are executed

at time instant j = 600 with the previous m = 600 mea-

surement sets. Since the operating point change is undetected

by operators, the model-based ISF estimate is computed using

the system model prior to the change. Note that the model-

based estimations remain constant for operating point changes

caused by varying load/generation. So the model-based esti-

mates in Table I are also valid after the operating point change.
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Fig. 2: Sensitivity of MSE to forgetting factor value in 3-

machine 9-bus system.

Columns 2 and 3 in Table I depict the changes in line flows

due to a 0.5 p.u. generation increase in G2 before and after the

operating point change, respectively. It is evident from Table I

that the recursive WLS estimation scheme (column 5) with

f = 0.7 is able to track the ISFs after operating point change

with significant higher accuracy than both the model-based

approach and the conventional LSE with f = 1. �

C. On Selection of the Forgetting Factor

There have been numerous proposed techniques to vary

the forgetting factor f in RLS (see, e.g., [19], [20]) in time-

varying systems. For example, we can vary f by monitoring

the error residual variance e2[j], where e[j] = ∆Pk-l[j] −
∆P [j]Ψ̂k-l[j] at each time instant j; when e2[j] increases, f

is decreased [19]. Intuitively, if the error is small, then either

the system has not undergone any changes or the estimated

ISFs correspond closely to the changes that it has undergone.

In either case, a reasonable strategy is to retain as much past

information as possible by choosing f close to unity. On the

other hand, if the error is large, then f should be chosen to be

smaller so as to shorten the effective memory of the estimator

until ISFs are readjusted and errors are small.

In general, when the forgetting factor is close to 1, RLS

achieves low misadjustment (roughly the noise in the resulting

estimate) and good stability, at the cost of reduced tracking

capability. On the other hand, tracking capability is improved

with a smaller forgetting factor, but misadjustment increases

and stability may be affected [20]. Since the thrust of the

current work is to propose a measurement-based approach to

compute ISFs, instead of focusing on the optimal choice of

a variable forgetting factor, we use a well-chosen constant

f (via, e.g., a sensitivity study to determine the value of f

that results in least estimation error) for each of the examples

and case studies to highlight the potential of our proposed

approach. Next, we present a sensitivity study with respect to

the choice of constant f via an example involving the WECC

3-machine 9-bus system.

Example 2 (3-Machine 9-Bus System): In this example, we

consider the same system and contingency scenario as in

Example 1 and perform the ISF computation for a range of

TABLE II: Comparison of ISFs obtained for Example 3.

Line
Actual WLS Estimation [p.u.]
[p.u.] j = 300 j = 400 j = 500 j = 600

∆P4-5 -0.2970 -0.0685 -0.2683 -0.2974 -0.3017
∆P4-6 -0.1734 -0.0567 -0.1758 -0.1730 -0.1747
∆P7-8 +0.1838 0.0395 0.1204 0.1781 0.1831

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

MSE — 0.6742 0.1265 0.0132 0.0086

f ∈ [0.5, 1]. For each value of f , we compare the resulting

predicted flow through all lines to the actual post-contingency

flows and compute the mean squared error (MSE). As shown

in Fig. 2, the optimal f , which results in the smallest MSE,

is around 0.95. In fact, a more granular sensitivity study done

for f ∈ [0.9, 1] shows that the optimal f in for this scenario is

0.97. This sensitivity study indicates that the forgetting factor

should be chosen to be fairly close to 1. �

D. On Managing Bad Data

PMU data may contain random errors arising from equip-

ment limitations in the measurement device and communi-

cation devices [21]. Detection and identification of bad data

are commonly performed after an estimate has been computed

by processing the measurement residuals, using schemes such

as the χ2-test and hypothesis testing, respectively [21]. Some

bad data, such as (i) negative voltage magnitudes, (ii) values

that are orders of magnitude too large or too small, and (iii)

vastly different currents in and out of a bus, can be removed

prior to ISF computation based on plausibility checks [21].

In this paper, we assume standard plausibility tests have been

applied to the PMU measurements before they are passed to

the LSE-based algorithms for ISF estimation. Moreover, the

effect of bad data can be reduced or eliminated by (i) setting

the forgetting factor to be smaller so that earlier, possibly

erroneous, data have less influence on the ISF estimation; and

(ii) conducting estimation over a sliding window in time so

that any erroneous data eventually become ineffectual as more

recent measurements are acquired.

Example 3 (3-Machine 9-Bus System): In this example, we

consider the same system as in Example 1, but with constant

operating point. We simulate 600 sets of measurements of

slight fluctuations in bus injections and compute the corre-

sponding line flows. We also inject additional random mea-

surement error with zero mean and σ = 0.5 from time instant

j = 201 to j = 300, without modifying the line flow mea-

surements accordingly. We estimate ISFs at 4 time instants,

j = 300, 400, 500, 600, using the previous 300 measurements

and with f = 0.97. Suppose the injection at bus 2 increases by

0.5 p.u., Table II shows the predicted real power flow through

a subset of lines due to this change as well as the MSE of

all predictions as compared to the actual quantities (shown in

column 2) obtained by solving the nonlinear power flow. As

is apparent from the MSEs in Table II, the predictions become

more accurate as new data is acquired and previous bad data

are “forgotten”, until the effects of the bad data are entirely

eliminated in the final column with j = 600. �
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E. Computation of Other Distribution Factors

Once the ISFs are obtained via online estimation, we

can compute other relevant linear sensitivity DFs. Next, we

describe the algorithm to obtain PTDFs, LODFs, followed by

OTDFs.

1) Power Transfer Distribution Factor: The PTDF, denoted

by Φij
k-l, approximates the sensitivity of the active power flow

in line Lk-l with respect to an active power transfer of a given

amount of power, ∆Pij , from bus i to j [7]. The PTDF can

be computed as a superposition of an injection at bus i and

a withdrawal at bus j, where the slack bus accounts for the

power imbalance in each case. Thus,

Φij
k-l = Ψi

k-l −Ψj
k-l, (23)

where Ψi
k-l and Ψj

k-l are the line flow sensitivities in line Lk-l

with respect to injections at buses i and j, respectively.

2) Line Outage Distribution Factor: The LODF, denoted

by Ξk′-l′

k-l , approximates the active power flow change in line

Lk-l due to the outage of line Lk′-l′ as a percentage of pre-

outage active power flow through Lk′-l′ [7]. Then, Ξk′-l′

k-l is

expressed as

Ξk′-l′

k-l =
Φk′l′

k-l

1− Φk′l′

k′-l′
=

Ψk′

k-l −Ψl′

k-l

1− (Ψk′

k′-l′ −Ψl′

k′-l′)
. (24)

3) Outage Transfer Distribution Factor: The OTDF, de-

noted by Γij
k-l,k′-l′ , approximates the sensitivity of the active

power flow in line Lk-l with respect to an active power transfer

of a given amount of power, ∆Pij , from bus i to j after the

outage of line Lk′-l′ [7]. Then Γij
k-l,k′-l′ is expressed as

Γij
k-l,k′-l′ = Φij

k-l + Ξk′-l′

k-l Φij
k′-l′ . (25)

In the special case that bus j is the slack bus, (25) simplifies

to

Γi
k-l,k′-l′ = Ψi

k-l + Ξk′-l′

k-l Ψi
k′-l′ . (26)

IV. APPLICATIONS OF MEASUREMENT-BASED

DISTRIBUTION FACTOR ESTIMATION

As stated previously, DFs are utilized in numerous power

system monitoring and protection applications. In this section,

we describe and formulate the role of measurement-based

Fig. 3: Network topology for IEEE 14-bus system [22].

DFs in contingency analysis and generation re-dispatch in a

security-constrained system. We illustrate the advantage of our

measurement-based method over the model-based one in these

applications through several examples. For all case studies

discussed in Sections IV and V, we generate synthetic PMU

measurements of power injections at each bus in the system

by using (22) in Example 1. For each set of bus injection

data, the active power flow through each transmission line is

computed to simulate line flow measurements.

A. Contingency Analysis

To maintain power system security, operators must ensure

that the system remains operable with the outage of any

single asset (such as a generating unit or transmission line)

at all times. In general, the procedure involves modeling all

“credible” outages, one scenario at a time, and checking all

lines and voltages in the network against their respective

limits [3]. This exhaustive procedure is repeated regularly

throughout the day as up-to-date measurements are procured

and, due to constantly changing system conditions, results

must be generated quickly to ensure operators are aware of

any potential violations. If a power flow model of the system

is available, one way to gain solution speed in contingency

analysis is to use DFs under the DC power flow assumptions

as described in Section II-A. In particular, we describe the role

of DFs in contingency analysis in the following.

1) Generator Outage Contingency: For ease of notation,

we assume there is at most one generator at each bus or that

multiple generators at one bus have been lumped into one

equivalent generator. In the event that an outage of a large

generator, which had been generating P 0
i (which corresponds

to active power flow of P 0
k-l in line Lk-l in the pre-contingency

state), occurs, the change in Pi would be

∆Pi = −P 0
i .

Suppose the loss of the generator at bus i were compensated

by governor action on other generators throughout the in-

terconnected system. Denote the proportion of ∆Pi that is

compensated by the j th generator as βj . Then, using ISFs, the

post-contingency flow on line Lk-l can be computed as

Pk-l = P 0
k-l +Ψi

k-l∆Pi −
∑

j∈B,j 6=i

Ψj
k-lβj∆Pi, (27)

where 0 ≤ βj ≤ 1 and
∑

j∈B,j 6=i βj = 1. This computation is

carried out for all lines Lk-l ∈ L, and corresponding line flow

limits Pmax
k-l are checked to alarm power system operators to

potential overloads. A common mechanism to assign values

to βj is to assume the remaining generators pick up the loss

of the generator at bus i in proportion to their maximum MW

rating as follows (see, e.g., [3]):

βj =
Pmax
j

∑

k∈B,k 6=i P
max
k

. (28)

In the case that the slack bus (bus 1) is assumed to compensate

for all lost generation due to the generator outage at bus i, in

(27), we set β1 = 1 and βj = 0 for all j 6= 1.
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TABLE III: Contingency analysis on 14-bus system with G2

outage.

Line Pre-contingency Post-contingency Pk-l [p.u.]

Lk-l P 0

k-l [p.u.] Actual Model-based Measurement-based

L1-2 1.5674 1.9228 1.9008 1.9226
L1-5 0.7587 0.8281 0.8253 0.8287
L2-3 0.7285 0.7173 0.7172 0.7177
L2-4 0.5601 0.5365 0.5366 0.5371
L2-5 0.4190 0.3871 0.3872 0.3877
L3-4 -0.2367 -0.2472 -0.2480 -0.2471
L4-5 -0.5953 -0.6263 -0.6282 -0.6265

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

MSE — — 0.0222 0.003

Example 4 (IEEE 14-Bus System): In this example, we

consider the benchmark IEEE 14-bus system from [22], the

topology of which is shown in Fig. 3. We examine the

contingency where the system loses the generator G2 due to

an outage, with the generator G1 picking up any resulting

power imbalance, i.e., β1 = 1 and βj = 0 for all j 6= 1, 2. In

the pre-contingency state, P 0
2 = 0.4 p.u. and, so to consider

the outage of G2, we set ∆P2 = −0.4 p.u. Table III shows

the pre-contingency and post-contingency flows from the full

power flow solution, the model-based approach, and the pro-

posed measurement-based approach for a subset of transmis-

sion lines in the system. As Table III shows, the proposed

measurement-based approach provides more accurate post-

contingency flows than the model-based. In fact, the MSE for

the post-contingency flows through all lines obtained via the

model-based approach is 0.0222, whereas the measurement-

based approach yields a MSE of 0.003. We will illustrate

in Example 5 that the proposed measurement-based method

is especially advantageous over the conventional model-based

approach for a case in which the system topology or operating

point has changed, unbeknownst to system operators. �

2) Line Outage Contingency: LODFs indicate the portion

of pre-outage flow in a line, after its outage, that is redis-

tributed onto remaining lines. Suppose in the pre-contingency

state, the active power flow in lines Lk-l and Lk′-l′ are P 0
k-l

and P 0
k′-l′ , respectively. Furthermore, consider a contingency

in which an outage occurs in line Lk′-l′ ; then, the post-

contingency flow in Lk-l, using LODFs in (24), can be

computed as

Pk-l = P 0
k-l + Ξk′-l′

k-l P 0
k′-l′ . (29)

Similar to the loss of generator study, the computation in (29)

is repeated for all lines Lk-l ∈ L. If no line constraints are

violated with any single line outage, we conclude the system

is N-1 secure with respect to line outages.

Example 5 (IEEE 14-Bus System): In this example, we be-

gin with the same base case system as in Example 4, the

line flows for which are denoted by P 0
k-l (see Table IV).

We consider a time window that contains m = 600 sets of

pseudo-measurements obtained via randomly perturbing the

active power injections at each bus. Suppose a line outage

occurs in L10-11, unbeknownst to system operators at sample

j = 100, perhaps because it is located in a neighboring

balancing area. Due to this undetected outage, the line flows

become P̃ 0
k-l as shown in the same table. Contingency analysis

continues to be conducted on the system using the LODFs

TABLE IV: Contingency analysis on modified 14-bus system

with outage in L4-5.

Line Pre-contingency [p.u.] Post-contingency Pk-l [p.u.]

Lk-l P 0

k-l P̃ 0

k-l
Actual Model-based

Measurement-based
f = 1 f = 0.8

L1-2 1.5674 1.5684 1.8004 1.7492 1.8170 1.7946
L1-5 0.7587 0.7582 0.5610 0.5774 0.5840 0.5629
L2-3 0.7285 0.7295 0.9065 0.8803 0.9035 0.9017
L2-4 0.5601 0.5617 0.9268 0.8751 0.9149 0.9128
L2-5 0.4190 0.4172 0.0933 0.1339 0.1231 0.1065
L3-4 -0.2367 -0.2358 -0.0717 -0.0850 -0.0749 -0.0767
L4-5 -0.5953 -0.6124 — — — —

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

MSE — — — 0.1878 0.0538 0.0465

computed based on the model of the original system, which

is no longer accurate due to the undetected L10-11 outage. For

the modified system, we present contingency analysis results

for the hypothetical case in which line L4-5 fails in Table IV

(columns 4–7). More specifically, we compare between pre-

and post-contingency (of L4-5) actual line flows, model-based

computed line flows, and measurement-based estimated line

flows. The post-contingency flows based on linear DFs (shown

in columns 5–7) are obtained as

Pk-l = P̃ 0
k-l + Ξ4-5

k-l P̃
0
4-5,

with Ξ4-5
k-l as given by the model-based or the measurement-

based approach, as appropriate.

By inspecting Table IV, which contains active power flow

data for a subset of the transmission lines in the 14-bus

system, we note that the measurement-based estimates are, on

average, more accurate than the model-based ones. By setting

the forgetting factor to f = 0.8, we are able to further refine

the LSE estimates to reflect the current system topology. The

MSEs are 0.1878, 0.0538, and 0.0465 for the post-contingency

flows through all lines obtained via the model-based approach,

LSE-based approach with f = 1, and LSE-based approach

with f = 0.8, respectively. This example highlights one of the

major advantages of the proposed measurement-based method,

which, unlike the conventional model-based approach, auto-

matically adapts to the current system topology and operating

point. �

B. Generation Re-Dispatch

Suppose the contingency analysis from Section IV-A re-

sulted in one or more violations of transmission line flow limits

in the event of a “credible” outage. For example, following

the outage of line Lk′-l′ , suppose the post-contingency active

power flow in line Lk-l, Pk-l, exceeds the maximum allowable

power transfer of Pmax
k-l , rendering the system N-1 insecure.

In this case, power system operators may dispatch out-of-

merit generators, i.e., more expensive units, so as to correct

the security violation. One way to achieve this is to solve

a security-constrained optimal power flow on a model of

the system with up-to-date measurements and state estimator

results [23]. However, this method requires an accurate model

that reflects current system topology and operating conditions.

An alternative approach is to employ ISFs in conjunction

with unit bid prices to select the most economical unit(s) to

resolve the potential line flow violation in the event of the



8

10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

Line Index

F
lo

w
E

rr
o
r

[p
.u

.]

 

 

Model-Based
LSE-Based

(a) Contingency analysis in the base case.
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(b) Contingency analysis with modified external system.

Fig. 4: 118-bus system contingency analysis for G12 outage: comparison between deviations away from actual post-contingency

flows resulting from the model- and measurement-based approaches.

corresponding contingency. The formulation of this alternative

approach, which is used by, e.g., PJM [24], is summarized

next.

Let γ̄ denote the dispatch rate determined by the economic

dispatch solution, where generator i with bid γi is dispatched

to meet the electricity demand if γi ≤ γ̄. Suppose the most

recent contingency analysis reveals that the system is not N-1

secure, with active power flow in line Lk-l at risk of overload.

Let ρi denote the so-called “$/MW effect” for unit i, where

ρi :=
γ̄ − γi

Ψi
k-l

. (30)

With the constraint on Pk-l, the unit with the lowest ρi is re-

dispatched to relieve the violation. The generation re-dispatch

for unit i∗, with the lowest ρi among all candidate generators,

is computed using OTDFs in (26) as

∆Pi∗ = Γi∗

k-l,k′-l′ (P
max
k-l − Pk-l) . (31)

Unlike the previous applications, we defer illustrating the

advantage of our proposed method over the model-based one

for this application to the next section.

V. CASE STUDIES

In this section, we use the proposed measurement-based DF

estimation approach in the IEEE 118-bus system for the appli-

cations to contingency analysis and generation re-dispatch de-

scribed in Section IV. The simulation tool MATPOWER [18]

is used throughout to compute relevant transmission line flow

measurements from pseudo-random bus injections. The system

is divided into two zones, where zone 1 consists of buses

indexed by B1 = {1 – 40, 113, 114, 115, 117} and zone 2

consists of buses with indices B2 = {41 – 112, 116, 118}. In

particular, we consider zone 1 as the internal system, whereas

zone 2 is a neighboring balancing area (external system) whose

operating point or topology changes may not be reported to

the internal system operator in a timely fashion so as to allow

zone 1 to adjust its network model accordingly. Through the

case studies, we show that the pre-calculated model-based

DFs may not be accurate if the system operating point and

network topology deviate sufficiently far away from those

at which the sensitivity factors were computed, while the

proposed measurement-based approach is able to adapt to

system changes. Since PTDFs are relatively insensitive to bus

injections and withdrawals if the topology is fixed [8], we

focus on undetected topology changes, such as line outages,

in the external system to highlight the value of the proposed

measurement-based approach to contingency analysis.
On the computational time: For all case studies in this

section involving the IEEE 118-bus system, we compute

ISFs using a time window that contains m = 500 sets of

measurements. On average, to obtain the ISFs of line Lk-l with

respect to all buses, denoted by Ψk-l, requires 0.1505 s. For

comparison, the standard LSE, as described in Section III-B1,

requires an average of 0.00225 s to compute Ψk-l using the

same set of measurement data. It is also worth noting that the

computation for Ψk-l can be done in parallel with ISFs of any

other line Ψk′-l′ .

A. Generator Outage Contingency

In this case study, we consider the outage of the generator

at bus 12, denoted by G12, as the candidate contingency under

two scenarios. In both, we validate the proposed measurement-

based approach by comparing post-contingency line flows

obtained via full nonlinear power flow solution and model- and

measurement-based ISF computations. After the G12 outage,

the pre-contingency generation is divided among three neigh-

boring generators, G10, G25, and G26, with the proportions

dictated by their maximum MW ratings as in (28).
1) Base Case: We assume the time window under con-

sideration contains m = 500 sets of measurements. As in

Example 1, the bus injection data Pi are simulated by adding

noise to the nominal value P 0
i as given in (22), with σ1 =

σ2 = 0.01. We obtain the benchmark post-contingency flows

for all lines in the internal system B1 by solving the nonlinear

power flow with the outage and re-distribution of pre-outage

power generation of G12. Figure 4a shows the deviation of the

post-contingency flows obtained via model- and measurement-

based approaches from the actual quantities for lines in the
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TABLE V: Actual pre- and post-contingency line flows in 118-

bus system.

Line Pre-contingency Post-contingency

Lk-l P 0

k-l [p.u.] P̃ 0

k-l [p.u.] Pk-l [p.u.]

L23-24 0.0828 0.0189 0.0344
L26-30 2.2371 2.2624 2.2564
L23-32 0.9298 0.9519 0.9465
L15-33 0.0731 0.1004 0.0930
L33-37 -0.1572 -0.1301 -0.1374
L34-36 0.3025 0.3115 0.3088
L34-37 -0.9431 -0.8590 -0.8849
L38-37 2.4337 2.6851 2.6145
L37-39 0.5491 0.7380 1.2548
L37-40 0.4402 0.6236 —

internal system. The measurement-based approach yields, on

average, more accurate results than the model-based one. In

fact, the MSE for the model-based solution is 0.0066, whereas

the measurement-based approach yields a MSE of 0.0015.

2) Modified External System: Suppose line outages have

occurred for L65-68 and L47-69, which are both in the external

system, unbeknownst to the internal system operators. Again,

we collect m = 500 sets of measurements from the modified

system, where the simulated bus injection data consist of

load/generation fluctuations with σ1 = 0.01, and measurement

noise with σ2 = 0.01. Again, we compare the errors resulting

from the model- and measurement-based approaches against

the benchmark nonlinear power flow solution in Fig. 4b. By

visual inspection, we note that the errors in some line flows

increase for the model-based approach, while they remain

similar to the base case for the measurement-based approach.

In fact, the MSE for the post-contingency flows obtained

via the model-based approach increases to 0.0086, while

those obtained via the measurement-based approach yields a

MSE of 0.0015 still. Additionally, we also computed ISFs

by linearizing the AC power flow model, as −cJ−1D in (7).

The MSE for the post-contingency flows obtained via the AC-

model-based approach is about equal to those obtained via the

measurement-based approach. Therefore, we conclude that the

error yielded by the measurement-based method is mostly due

to error inherent to the linearization process.

B. Line Outage Contingency

Here, we consider the outage of line L37-40 in the internal

system as the candidate in contingency analysis. We begin

with the original base case system at time j = 1. Suppose, at

time j = 200, outages occur in lines L41-42 and L42-49 in the

external system. We solve the full nonlinear power flow and

obtain the active line flows in the base case system (denoted

by P 0
k-l), the modified system with undetected outages in

the external area (denoted by P̃ 0
k-l), and the post-contingency

modified system with the additional outage of line L37-40

(denoted by Pk-l). The resulting power flows through a subset

of internal system transmission lines are shown in Table V.

In Table VI, we reproduce the actual post-contingency flows

from Table V in column 2. Using the pre-contingency flows

for the modified system, P̃ 0
k-l, and the LODFs computed

from the base case system topology, the model-based post-

contingency flows are computed and shown in column 3 of

Table VI. The MSE for the post-contingency flows through

TABLE VI: Comparison of post-contingency flows in 118-bus

system with undetected outages in L41-42 and L42-49.

Line Actual Model-based Measurement-based [p.u.]
Lk-l [p.u.] [p.u.] j = 500 j = 800

f = 1 f = 0.98 f = 1
L23-24 0.0344 0.0497 0.0523 0.0296 0.0360
L26-30 2.2564 2.2509 2.2499 2.2589 2.2564
L23-32 0.9465 0.9410 0.9402 0.9481 0.9459
L15-33 0.0930 0.0860 0.0842 0.0933 0.0908
L33-37 -0.1374 -0.1445 -0.1462 -0.1372 -0.1396
L34-36 0.3088 0.3066 0.3064 0.3093 0.3085
L34-37 -0.8849 -0.9049 -0.9125 -0.8855 -0.8928
L38-37 2.6145 2.5585 2.5446 2.6274 2.6052
L37-39 1.2548 1.1697 1.1451 1.2673 1.2346
L37-40 — — — — —

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

MSE — 0.1187 0.1650 0.0287 0.0266

all internal system transmission lines obtained via the model-

based approach is 0.1187.

Suppose at time j = 500, contingency analysis is conducted

using the previous m = 500 sets of measurements, which in-

cludes the loss of external lines at j = 200. As in Section V-A,

the simulated bus injection data consist of load/generation

fluctuations with σ1 = σ2 = 0.01. Using simulated bus

injection and line flow data, we estimate ISFs and compute

LODFs with forgetting factors f = 1 and f = 0.98, the post-

contingency flows for which are listed in columns 4 and 5 in

Table VI, respectively. While the unweighted LSE produces

post-contingency flows that are similar to the model-based

computation, weighted LSE with f = 0.98 matches the actual

post-contingency line flows quite well, as shown in Table VI.

In fact, the MSE for the post-contingency internal system line

flows obtained via unweighted LSE is 0.1650, while those

obtained via the weighted LSE yields a MSE of 0.0287.

For comparison, suppose the same contingency analysis is

performed at time j = 800, using the previous m = 500
sets of measurements, during which the topology does not

change further since the previous external system line outages.

The post-contingency flows resulting from estimation of ISFs

using unweighted conventional LSE are shown in column 6

of Table VI. Again, these computations match the actual post-

contingency flow well and the MSE for the post-contingency

internal system line flows is 0.0266 in this case.

C. Generation Re-Dispatch

In this case study, we consider the outage of transformer

between buses 37 and 38, denoted by T37-38, as the candidate

contingency with undetected external system outage of lines

L41-42 and L42-49. Using the same set of measurement data as

contingency analysis performed at j = 800 from Section V-B,

we illustrate the advantage of the proposed measurement-based

approach over the model-based one.

For this case study, we use the generator cost data available

in the 118-bus MATPOWER case. Upon performing economic

dispatch, we find the dispatch rate to be γ = $39.38/MWh.

With the undetected external system line outages, we conduct

contingency analysis with the hypothetical T37-38 outage,

with the real power flow through line L15-33 summarized

in Table VII. Next, suppose that the thermal limit of line
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TABLE VII: Contingency analysis on modified 118-bus sys-

tem with outage in T37-38.

Line Pre-contingency [p.u.] Post-contingency Pk-l [p.u.]

Lk-l P 0

k-l P̃ 0

k-l Actual Model-based Meas-based

L15-33 0.0470 0.0752 1.0378 0.9001 1.0742

TABLE VIII: Choosing generator to relieve L15-33 overload

on modified 118-bus system with outage T37-38.

Gi γi ISF Ψi

15-33 ρi [$/MW Effect]
[$/MWh] Model-based Meas-based Model-based Meas-based

G34 40.05 -0.0627 -0.0620 10.6688 10.7909
G36 40.10 -0.0650 -0.0666 11.0480 10.7933
G40 40.00 -0.0566 -0.0707 10.9217 8.7546

TABLE IX: Comparison of model- and measurement-based

approaches to relieve L15-33 overload on modified 118-bus

system with outage T37-38.

Approach Gi∗ ∆Pi∗ [MW] P15-33 [p.u.] Cost [$/hr]

Model G34 32.55 0.9365 1314
Meas G40 25.55 0.9604 1028

L15-33 is 1 p.u. Then the system is not N-1 secure under

the T37-38 contingency. Note that while the measurement-

based method flags this violation, the model-based com-

putation is unable to do so. Based on the ISFs for line

L15-33, there are three out-of-merit generators in zone 1—

G34, G36, and G40—that can be dispatched to relieve the

thermal overload. By applying (30) to these generators, using

both the model- and measurement-based ISFs, we obtain

the value of ρi for each unit (see Table VIII). According

to the computation of ρi done with the model-based ISFs,

G34 should be used to relieve the constraint on line L15-33,

whereas the computation using the measurement-based ISFs

dictates that G40 ought to be dispatched. The cost functions

for these generators are C(P34) = 0.01P 2
34 + 40.05P34 and

C(P40) = 0.01P 2
40 + 40.0P40. Table IX shows a comparison

between the re-dispatch resulting from the model- versus

measurement-based approaches using (31). Indeed, by solving

the nonlinear power flow for both scenarios and the resulting

total generation cost, while both scenarios relieve the post-

contingency flow violation in line L15-33, we confirm that the

dispatch of G40 produces the lower cost.

VI. CONCLUDING REMARKS

In this paper, we presented a method to estimate DFs

through LSE, which does not rely on the system power

flow model, using PMU measurements collected in real-

time. Beyond eliminating the power flow model, we show

that the proposed measurement-based approach provides more

accurate results than the model-based approximations and can

adapt to unexpected system topology and operating point

changes. Further, we improve the adaptability of the proposed

technique by incorporating WLS and place more weight on

recent measurements and less to past ones. We also implement

the estimation scheme recursively so that ISF estimates are

refined with each additional set of measurements obtained.

Further work includes analysis of the optimal choice for the

forgetting factor in the context of LSE-based DF estimation

and accurate estimation of DFs in the presence of corrupted

measurements or the availability of only a subset of measure-

ments. Also, the measurement-based method necessitates an

over-determined system. Hence, an avenue for future work

would be to devise algorithms that estimate the DFs accurately

using fewer measurements.
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