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Abstract—The increased penetration of renewable resources,
such as wind and solar, into existing power systems introduces
significant uncertainties in the generation side. We propose
a method to assess whether power system static state vari-
ables, i.e., bus voltage magnitudes and angles, remain within
acceptable ranges (with some confidence level), as dictated by
system operational requirements, while the system is subject to
variations in electricity generation arising from the uncertain
nature of renewable resources. These variations are assumed to
be unknown but constrained to lie (with some confidence level)
within some bounded set. Through set operations, we propagate
this set through the power flow model, and the result is another
set that contains the possible values that (with some confidence
level) the state variables (voltage magnitudes and angles) may
take. The proposed method is applied to the IEEE 34-bus, and
123-bus benchmark distribution systems.

I. INTRODUCTION

The motivation for this work stems from the push toward

environmentally responsible electricity generation, which re-

quires an increased penetration of renewable resources of

electricity, such as wind and solar, into existing power systems.

Since these resources are intermittent, variable, and difficult

to forecast accurately, they introduce additional sources of

uncertainty to power systems. This presents notable chal-

lenges in system operations across different time-scales—

from day-ahead scheduling to automatic generation control.

Furthermore, since renewable resources vary in rated power

output and point of grid interconnection, they affect power

systems at different voltage levels—from transmission to dis-

tribution. For example, wind farms are usually connected at

the transmission level, whereas small-scale solar installations

are usually connected at the distribution level. The focus of

this work is on the impact of uncertainty from renewable-based

electricity generation connected to distribution systems. In this

regard, this paper proposes an analytically tractable method to

assess whether system static state variables, i.e., bus voltage

magnitudes and angles, remain within acceptable ranges for

all possible electric power generation profiles arising from

renewable-based electricity sources.

Deterministic power flow analysis, which provides the com-

plex bus voltages given a predetermined generation and load

profile at a particular instant in time, is the fundamental

tool used by power engineers to determine a snapshot of the

power system static states. However, we may be interested in
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the static states over a range of possible generation profiles

to capture the uncertainty associated with renewable-based

electricity generation. Previous approaches to assess the effects

of uncertainty in the power flow solution can be grouped

into probabilistic and set-theoretic methods. In probabilistic

power flow analysis (see, e.g., [1]), uncertainties in load and

generation are modeled as random variables, which results

in the power flow solution also being described by random

variables. Both numerical and analytical methods have been

proposed to address the probabilistic power flow problem [2],

[3], [4], [5]. Also, subsequent research has addressed the

issues of efficiency and accuracy in calculating the probability

density functions of the bus voltages and line flows [6],

[7], [8], [9], [10]. In set-theoretic methods, as applied to

study the effect of uncertainty on the power flow solution

(see, e.g., [11]), some system parameters and variables are

assumed to be unknown, but constrained to lie within a

bounded set. For example, in interval analysis [12], [13], [14],

[15], it is assumed that some line parameters and loads take

values within a symmetric polytope; the resulting power flow

solution is then constrained to some symmetric polytope as

well. This method has a disadvantage in that this polytope,

which contains the set of all possible solutions, may be overly

conservative and contains non-solutions.

This paper considers the set-theoretic approach to uncer-

tainty modeling. In our methodology, uncertain variations in

renewable-based generation can be viewed as forecast error,

which can be bounded (with some confidence level) around

the nominal forecast.1 For example, the power produced by a

rooftop solar installation can be assumed to lie within some

interval around a nominal power output value, which may be

based on forecasted solar insolation level. Then, the set of all

renewable-based power generation profiles can be described

by a parallelotope (i.e., the generalization of a parallelepiped

in three dimensions to higher dimensions). This parallelotope

is then bounded by the intersection of a family of ellipsoids,

each of which is tight to the parallelotope in a particular

direction. Using set operations, each of these ellipsoids is

propagated through a model of the power system, which is

obtained by linearizing the nonlinear power flow equations.

The result is a family of ellipsoids that bound the bus voltage

magnitudes and angles. The intersection of this family of

ellipsoids approximates the set that describes (with some

confidence level) the possible bus voltage magnitude and angle

1This method is adopted by some system operators to account for uncer-
tainty in wind-based power [16].
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realizations. To determine whether renewable-based power

generation variability has a significant impact on the power

system static performance, we verify that the intersection of

this family of ellipsoids is contained within the region of the

static state space defined by system operational requirements,

e.g., minimum and maximum bus voltage values.

In this paper, we build on our preliminary results reported

in [17], extending and improving them in several directions.

First, we generalize the input uncertainty set model, which

fully accounts for correlation between power injection at

different buses as well as asymmetrical uncertainty around a

nominal forecast. Additionally, we incorporate a generalized

optimization routine, based on the criteria of minimum-trace

or minimum-span in an arbitrary direction, to obtain a family

of ellipsoids, whose intersection bounds the set of uncertain

renewable generation. The optimization routine is general

enough to account for correlation between power injections

and asymmetrical uncertainty. Furthermore, we expand the

performance metric to assess not only the excursions of the

voltage magnitudes and angles, but also functions thereof, e.g.,

active power flows through transmission lines. The scalability

of our proposed method to a large number of uncertain

power injections is also evinced. We demonstrate these new

features in various combinations through several additional

case studies. Lastly, we compare the computation time of our

method to obtain bounds on the complex bus voltages to that

of obtaining nonlinear and linearized power flow solutions.

The remainder of this paper is organized as follows. Section

II introduces the fundamental ideas to uncertainty modeling

used throughout the paper and illustrates the concepts with a

simple example. In Section III, we tailor the ideas presented

in Section II to evaluate the impact on system performance of

variable generation. Section IV applies the proposed method-

ology to several benchmark systems, including the IEEE 34-

bus and 123-bus test systems. In Section V, we compare the

computation time of our method with those of the linearized

and nonlinear power flow solutions for the cases presented in

Section IV. Concluding remarks are presented in Section VI.

II. PRELIMINARIES: STATIC LINEAR SYSTEM ANALYSIS

In this section, we introduce the basic notions for set-

theoretic uncertainty modeling in static linear systems. These

techniques are then tailored in Section III to the (nonlinear)

power flow problem. To motivate subsequent discussions,

consider the linear circuit of Fig. 1. Using Kirchhoff’s laws,

we obtain the following linear relationship between Vs and

iload (referred to as system inputs), and the variables v2 and

i1 (referred to as system states):

[

v2
i1

]

=

[

R2

R1+R2
− R1R2

R1+R2

1

R1+R2

R2

R1+R2

]

[

Vs

iload

]

. (1)

Suppose that the possible values of system inputs Vs and iload
are not perfectly known except for some upper and lower

bounds. Then, the objective is to characterize the set of all

possible values that the system states v2 and i1 can take given

all possible values that the system inputs can take. We describe

next a set-theoretic framework to accomplish this objective.

Vs

R1

iload

i1

+

v2

-

R2

i2+ v1 -

Fig. 1: DC circuit.

A. Unknown-But-Bounded Uncertainty Model

Consider a static linear system described by

x = Hw, (2)

where x ∈ R
r are the system states, w ∈ R

s are the system

inputs, and H ∈ R
r×s. Assume that the values w can take

are unknown but bounded, i.e., the possible values of w
are contained in some closed and bounded set W ⊆ R

s.

Furthermore, we assume that W is a parallelotope, i.e., the

generalization of a parallelogram in two dimensions or a

parallelepiped in three dimensions to any dimension s > 3
(see, e.g., [18]), which can be defined as

W = {w : w = w0 +
s

∑

j=1

αjgj , − 1 ≤ αj ≤ 1}, (3)

where w0 ∈ R
s is the parallelotope’s center, and

{g1, g2, . . . , gs} is a set of independent vectors in R
s. The

center w0 may be interpreted as the nominal operating point

of the system in (2) while the set W captures the uncertainty

in w around w0.

Analogous to the parallelogram, which has two pairs of

parallel sides, or a parallelepiped, which has three pairs of

parallel faces, a parallelotope has s pairs of parallel hyper-

faces, with each pair {G+

i ,G−
i } defined by

G+

i = {w : w = (w0 + gi) +
∑

j 6=i

αjgj ,−1 ≤ αj ≤ 1},

G−
i = {w : w = (w0 − gi) +

∑

j 6=i

αjgj ,−1 ≤ αj ≤ 1}.
(4)

1) Significance of the shape of input uncertainty set: It

is important to note that the shape of the parallelotope W
captures, to a certain extent, some important features of the

uncertain input w. For example, if the vectors {g1, g2, . . . , gs}
form an orthogonal basis, then W is a rectangular parallelo-

tope. In this case, the shape of W suggests that the value

any particular entry of w takes on does not provide additional

information on the values that any other entries of w can take,

i.e., the entries of w are not correlated. [In a probabilistic

setting, the correlation between two random variables can be

precisely defined through, e.g., the correlation coefficient. In

the context of this work, as our uncertainty model is not

probabilistic, we use the term correlation in a broad sense to

describe an existing relation between mathematical variables

which tend to vary or occur together.]

On the other hand, if the vectors {g1, g2, . . . , gs} do not



3

Uncorrelated
Negatively

Correlated

Positively 

Correlated

Fig. 2: Significance of input uncertainty set shape.

form an orthogonal basis, then the angle φij between each pair

of gi and gj determines the skewness of W in certain direc-

tions and can be considered as an indicator of how particular

entries of w tend to vary together, i.e., they are correlated. [In

a probabilistic setting, a similar relationship exists between

correlation and orthogonality of random vectors.] In general,

larger | cos(φij)| is indicative of higher level of correlation

between wi and wj , while the sign of cos(φij) indicates

whether they are positively or negatively correlated. For the

2-dimensional case, the ideas described above are graphically

illustrated in Fig. 2. In the context of this paper, these ideas

are important for, e.g., capturing spatial correlation effects

between renewable-based power injections.

2) Propagation of input uncertainty set to system states:

Given the static linear system in (2) and the input uncertainty

set W defined in (3), the objective is to obtain a set X ⊆ R
r (or

an upper-bounding approximation) that contains all possible

values that x can attain. In order to achieve this, we first

approximate the parallelotope W by the intersection of a

family of ellipsoids, E = {E1, E2, . . . , Ej , . . . }, each of which

upper bounds W , i.e.,

w ∈ W ⊆
⋂

i

Ei, (5)

with

Ei = {w : (w − w0)
TΨ−1

i (w − w0) ≤ 1}, (6)

where Ψi is a positive definite matrix known as the shape

matrix and w0 is the center of the ellipsoid Ei. Now, the

problem reduces to propagating each ellipsoid Ei through (2)

with the objective of obtaining a set Fi that contains all

possible values of x that result from all possible values that

w can take. Since w ∈ W ⊆ Ei, ∀i, it immediately follows

that x ∈ X ⊆ Fi, ∀i, and hence,

x ∈ X ⊆
⋂

i

Fi. (7)

Furthermore, it turns out that ellipsoids are closed under linear

transformations; therefore, the set Fi is also an ellipsoid and

can be defined as

Fi = {x : (x− x0)
TΓ−1

i (x − x0) ≤ 1}, (8)

where x0 = Hw0 and Γi = HΨiH
T (see, e.g., [19]). The

ideas introduced above are graphically depicted by Fig. 3 for

a two-dimensional system with a rhomboidal input set W —

upper bounded by the intersection of two ellipsoids, E1 and

E2, which map to F1 and F2, respectively. As shown in the

figure, the intersection of F1 and F2 contains the set X . The

Uncertain Inputs System States

Fig. 3: Ellipsoids E1 and E2 bounding W (the set of all possible

values that w can take), and corresponding ellipsoids F1 and

F2 bounding X (the set of all possible values that x can take).

accuracy of the upper-bounding approximation of X provided

by (7) depends on the choice of the ellipsoids in the family E =
{E1, E2, . . . , Ej , . . . } upper bounding the set W ; we discuss

this issue next.

B. Obtaining Input Set Ellipsoidal Bounds

In this section, we provide a method to obtain a fam-

ily of ellipsoids whose intersection provides a tight over-

approximation of the input set W . We also provide an al-

ternative for upper bounding the input set W with a single

ellipsoid E0; this alternative is computationally more efficient,

and, as we show in the case-study section, might suffice in

some practical cases.

1) Family of tight upper-bounding ellipsoids: The approach

to obtaining a family of ellipsoids E = {E1, E2, . . . , Ej , . . . }
whose intersection tightly upper bounds W is to choose

each Ei to contain W while minimizing its projection onto

some direction defined by a unitary vector ηi normal to the

hyperplanes H+

i and H−
i that contain G+

i and G−
i , respectively.

The idea behind this choice is as follows. The projection of Ei
onto the direction defined by ηi is in fact the distance between

the two most outer points of Ei that lie in a straight line

defined by ηi. Similarly, the distance between G+

i and G−
i

can be obtained by computing the distance between any two

points contained in H+

i and H−
i that also lie in a straight line

defined by the vector ηi. Thus, by minimizing the projection

of the ellipsoid onto the direction defined by ηi, we obtain an

ellipsoid that is tight to the hyper-faces G+

i and G−
i of W .

This is graphically represented in Fig. 4 and formalized in the

subsequent discussion.

From (4), it follows that the hyperplanes H+

i and H−
i that

Fig. 4: Hyperplanes (H+

i , H−
i ) and directions of minimum

span (ηi).
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Fig. 5: DC circuit’s input and state ellipsoidal bounds.

contain G+

i and G−
i , respectively, are defined by

H+

i = {w : ηTi [w − (w0 + gi)] = 0},

H−
i = {w : ηTi [w − (w0 − gi)] = 0},

(9)

where ηi is the normal unitary vector defining the hyperplane

H+

i , i.e., ηi is orthogonal to {g1, g2, . . . , gi−1, gi+1, . . . , gs}
and points outwards with respect to W . Then, ηi is the vector

normal to the hyperplane H+

i that contains the corresponding

hyper-face of the parallelotope as defined in (4). The projection

of the ellipsoid Ei = {w : (w−w0)
TΨ−1

i (w−w0) ≤ 1} onto

the direction defined by ηi is given by πEi
(ηi) = 2

√

ηTi Ψiηi
[20]. Thus, the problem of obtaining Ei can be cast into an

optimization program as follows:

minimize

subject to

√

ηTi Ψiηi

vTΨ−1

i v ≤ 1; ∀v ∈ V ,
√

ηTj Ψiηj ≤ kj ; ∀j 6= i,

(10)

where V is the set of vertices of W , and kj is the maximum

length of the semi-axis in the ηj direction. The first inequality

enforces that the resulting Ei contains W (the set V can be

obtained from (4) by choosing the αi’s to be 1 and −1).

The second set of inequalities constrains the projection of Ei
onto the directions defined by the vectors normal to all other

hyperplanes H+

j , j 6= i and are included for solvability.

Example 1 (DC Circuit): Consider the circuit in Fig. 1,

with the relation between inputs, Vs and iload, and states, v2
and i1, as given in (1). Let R1 = R2 = 2 Ω; then (1) has the

same form as (2) with

x =

[

v2
i1

]

, H =

[

0.5 −1.0
0.25 0.5

]

, w =

[

Vs

iload

]

.

Suppose that each entry in w is not perfectly known, except

that they can vary within certain bounds: Vs ∈ [4.9 5.1] and

iload ∈ [1.9 2.1], that is, the source voltage Vs and load current

iload are assumed to vary ±0.1 V and ±0.1 A around the

nominal values of 5 V and 2 A, respectively. Thus, W is a

rectangle, as shown in Fig. 5(a). Now in order to obtain the

set X bounding the system states, we first bound W with the

intersection of two ellipsoids E1 and E2 (each of which is tight

along an axial direction) as follows: w ∈ W ⊆ (E1 ∩ E2); the

entries of the corresponding shape matrices Ψ1 and Ψ2 are

given in Table I. For each input-bounding ellipsoid Ei, i =
1, 2, we compute corresponding ellipsoids Fi, i = 1, 2, both

of which bound X . Additionally, we repeatedly sample the

input space W to calculate the corresponding exact solution

of the states using (1). The resulting ellipsoids Fi, i = 1, 2,

along with the exact solutions (depicted with points), are

shown in Fig. 5(b). By inspecting the figure, it is evident

that the intersection of the state-bounding ellipsoids provides

a tight bound on the exact set to which the states x belong.

More precisely, x ∈ X ⊆ (F1 ∩ F2), where F1 and F2 are

the system state-bounding sets that correspond to input sets

E1, and E2, respectively. The accuracy of the state-bounding

set approximation increases as more ellipsoids are used to

bound the input space. However, as evidenced in Fig. 5(b),

just two ellipsoids F1 and F2 establish a reasonably accurate

approximation to the exact bounding set for this example. �

2) Single upper-bounding ellipsoid: While the method de-

scribed in (10) provides in general an accurate approximation

of the input set W by obtaining a family of ellipsoids

E = {Ei, i = 1, . . . , s}, it requires solving the optimization

program in (10) for each of input-bounding ellipsoids, up to

the dimension of the input set, s; this computation can be

parallelized using, e.g., the MATLAB parallel toolbox. In this

regard, tightly upper bounding W results in a very accurate

upper-bound on the set X . If the purpose of the analysis is

to verify whether or not X is fully contained in a region Φ
of the state space defined by some performance requirements

(we further elaborate on this in Section III-C), then it may

not be necessary to obtain all the ellipsoids in the family

E but just a subset Eq ⊆ E . Then, if we compute q < s
ellipsoids using (10), and verify that the resulting Fi’s are

such that ∩q
i=1Fi ⊆ Φ, we do not need to compute the

remaining s−q Ei’s (and the corresponding Fi’s) as it follows

TABLE I: Entries of shape matrix Ψi defining Ei, i = 0, 1, 2.

Ψi(1, 1) Ψi(1, 2) = Ψi(2, 1) Ψi(2, 2)
E0 0.02 0 0.02

E1 0.09 0 0.011

E2 0.011 0 0.09
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that X ⊆ ∩s
i=1Ei ⊆ ∩q

i=1
Ei ⊆ Φ. An advantage of this

procedure is that, after each new ellipsoid is obtained, we

can check whether the intersection of Fi’s satisfies operational

constraints and stop when the condition is met.

Following the ideas above, in some cases, it may be

convenient to obtain a single bounding ellipsoid for W and

conduct the analysis for just this ellipsoid. While any of the

ellipsoids in the family E = {Ei, i = 1, . . . , s} would serve

this purpose, recall that each Ei ∈ E is tight to W in a

particular direction defined by ηl in the sense that projection of

of the ellipsoid onto the direction defined by ηl is minimal, but

its projection onto other directions ηi, i 6= l might be much

larger than the actual projection of W onto that direction.

Thus, an alternative to this problem is to obtain an ellipsoid

E0 = {w : (w − w0)
TΨ−1

0 (w − w0) ≤ 1} that minimizes the

sum of the projections onto all directions defining the semi-

axes of E0, which is equivalent to minimizing the sum of the

squared semi-axes of E0 [20]. The sum of the squared semi-

axis of E0 is given by the τE0
= trace(Ψ0). Thus, the problem

of obtaining E0 can be cast into an optimization program:

minimize

subject to

trace(Ψ0)

vTΨ−1

0 v ≤ 1, ∀v ∈ V .
(11)

As we will show in subsequent case studies, the corresponding

F0 that results from (8) is a good first approximation to the

exact set that bounds all possible values that the system states

can take. Additionally, if F0 is contained within the state-space

region Φ defined by system operational requirements, we can

conclude that X ⊆ F0 ⊆ Φ and no further analysis is needed.

Finally, another alternative to the single ellipsoid E0 bound-

ing W that is optimal in some sense is to choose E0 = {w :
(w−w0)

TΨ−1
0 (w−w0) ≤ 1} such that its volume is minimal.

The volume of an ellipsoid is given by vE0
= cn

√

det(Ψ0),
where cn is some constant that depends on s (the dimension

of the input space). Again the problem of finding E0 can

be cast into an optimization program by replacing the cost

function in (11) by c(Ψ0) = cn
√

det(Ψ0). In our earlier

work in power system uncertainty analysis, we have used this

optimality criterion [17].

Example 2 (DC Circuit): Consider again the DC circuit in

Fig. 1. We bound W with a minimum-trace ellipsoid E0 =
{w : (w−w0)

TΨ−1

0 (w−w0) ≤ 1}, where w0 = [5 V 2 A]T ,

and Ψ0 with entries given in Table I; this ellipsoid is plotted

in Fig. 5(a) with a solid trace. Now, we can obtain a single

ellipsoid F0 = {x : (x − x0)
TΓ−1

0 (x − x0) ≤ 1} that bounds

the values of x for all w ∈ E0. The shape matrix of this

ellipsoid is given by

Γ0 = HΨ0H
T =

[

0.025 −0.0075
−0.0075 0.00625

]

,

and the center is given by x0 = [0.5 0.25]T . While this

minimum-trace ellipsoid does not produce as tight of a bound

to the values that the system states can take as the intersection

of the minimum-projection ellipsoids in Example 1, it provides

a good first approximation to the exact state-bounding set. �

III. POWER SYSTEM UNCERTAINTY MODEL

In this section, we tailor the ideas described in Section II

to study the impact of uncertainty in renewable-based elec-

tricity generation on power system static states, i.e., voltage

magnitudes and angles. Renewable-based power generation is

described by an unknown-but-bounded uncertainty model. The

power flow equations are linearized around a nominal operat-

ing point that results from the nominal renewable-based power

generation profile. Then, assuming the uncertainty around the

nominal power generation profile is small, the linearized model

can be used to approximate the set that bounds all possible

values that the system states can take.

A. Power Flow Model

As stated in the Introduction, the focus of the paper is on

assessing the impact of renewable-based electricity generation

connected to distribution systems. As of today, such systems

are, in general, mostly radial with a single source of power

injection (see, e.g., [21]). However, in order to make the

framework general, when formulating the power flow model,

we consider the possibility of having a meshed network with

multiple sources of power (both conventional and renewable).

Let Vi, and θi denote the voltage magnitude and angle of

bus i. Additionally, denote by P g
i and Qg

i the generation of

real and reactive power at bus i. Similarly, denote by P d
i and

Qd
i the demand of real and reactive power at bus i. Then,

P = Vi

n
∑

k=1

Vk [Gik cos(θi − θk) +Bik sin(θi − θk)] ,

Q = Vi

n
∑

k=1

Vk [Gik sin(θi − θk)−Bik cos(θi − θk)] ,

(12)

where P = P g
i − P d

i , and Q = Qg
i − Qd

i ; Gik and Bik are

the real and imaginary parts of the (i, k) entry in the network

admittance matrix, respectively. Assume that bus 1 is the slack

bus, and let m denote the number of PQ buses in the system.

After removing the active and reactive power equations for the

slack bus, and the reactive power equations for the PV buses

from (12), we can write the remaining equations as

u+ w = f(x) + v, (13)

where the function f : R
n+m−1 7→ R

n+m−1 takes into

account the known bus voltages in the PV buses, and V1

and θ1 for the slack bus. In (13), x ∈ R
n+m−1 represents

unknown quantities to be solved for, and includes Vi and θi
for PQ buses and θi for PV buses; u ∈ R

n+m−1 contains

active power injections in PV buses arising from conventional

sources, w ∈ R
n+m−1 contains renewable-based active power

generation in both PV and PQ buses, and reactive power

injections in PQ buses; v ∈ R
n+m−1 contains the demand

of active power in PV buses, and demand of both active and

reactive power injections in PQ buses. Note that in (13), the

entries of u corresponding to reactive power balance equations

in PQ buses are zero. Similarly, in (13), the entries of w and

v corresponding to buses without renewable-based generation

and load, respectively, are also zero.
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Fig. 6: Four-bus system with renewable power injection.

Since load forecast is, in general, more accurate than

renewable-based generation forecast [22], we assume that the

uncertainty in load v is negligible compared to that in w;

therefore, in (13), uncertainty only enters into w (however,

the methodology can be easily extended to include uncertainty

in load forecast). Thus, let w0 denote the nominal value that

w takes, resulting from forecast. Then, following the ideas

described in Section II, we assume that the values of w
are not perfectly known but belong to a parallelotope W
centered around w = w0. Here, it is important to note that

the bounds on the variations in w around w0 are determined

by the forecast error; thus, to be precise, W describes the

values that w can take with certain confidence level α, i.e.,

Pr{w ∈ W} = α. As already discuss in Section II, the

skewness of W is an indicator of the correlation between

renewable-based generation at particular buses. Additionally,

the distance between pairs of parallel hyper-faces determines

the level of uncertainty in generation.

Example 3 (Four-bus system): In order to illustrate the

ideas discussed above, we consider the four-bus system shown

in Fig. 6 with renewable-based resources connected to buses

2, 3, and 4. Following the notation in (3), the input set W
that describes the uncertain renewable-based power injection

is defined by w0 = [P 0
g2 P 0

g3 P 0
g4]

T = [0.4 0.3 0.5]T and

g1 = [0.08 0 0]T , g2 = [0.05 0.03 0]T , g3 = [0 0.07 0.04]T ,

and is shown in Fig. 7(a). From Fig. 7(b), we can conclude

that the uncertainty in Pg3 and Pg4 are positively correlated.

Similarly, Fig. 7(c) shows that the uncertainty in Pg2 and Pg3

are also positively correlated. On the other hand, Pg2 and Pg4

are uncorrelated, as exemplified by the projection in Fig. 7(d).

Here, bus 1 is the slack bus with a voltage of 0.995∠0◦; the

nominal forecast w0, the nominal load v0, and the power flow

solution x0 for w0 and v0 are given in Table II. �

B. Linearized Model

Now, given the power flow model in (13) and the set W
describing the uncertainty in renewable-based generation, the

objective is to obtain a set X ⊆ R
n+m−1 that contains all

possible values that x can take. In general, given the nonlinear

TABLE II: Four-bus system nominal power flow solution.

w0

P 0

g2
Q0

g2
P 0

g3
Q0

g3
P 0

g4
Q0

g4

0.4 0 0.3 0 0.5 0

v0
P 0

l2
Q0

l2
P 0

l3
Q0

l3
P 0

l4
Q0

l4

0.8 0.25 0.5 0.1 0.9 0.5

x0

V 0

2
θ0

2
V 0

3
θ0

3
V 0

4
θ0

4

0.987 −0.124◦ 0.972 −0.273◦ 0.965 −0.302◦

0.2
0.4

0.6
0.2

0.4
0.4

0.5

0.6

Pg2 [p.u.]Pg3 [p.u.]

P
g
4

[p
.u

.]

(a) 3-D view.
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(b) Projection onto Pg3 and Pg4.
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(c) Projection onto Pg2 and Pg3.
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(d) Projection onto Pg2 and Pg4.

Fig. 7: Four-bus system input uncertainty set.

nature of the mapping f(·), it is not a trivial task to obtain X ;

thus we resort to approximating X by a set that results from

applying the model obtained from linearizing (13).

Let x = x0 + ∆x, where x0 denotes the solution to (13)

with w = w0, u = u0, and v = v0, and ∆x results from

∆w := w − w0 with w ∈ W . Let ∆u := u − u0 denote the

change in active power arising from conventional sources at

PV buses in response to ∆w. Then, for ∆w sufficiently small,

we have

∆u+∆w ≈ J∆x, (14)

where J = ∂f
∂x

∣

∣

∣

x0

, with f(·) as defined in (13), denotes the

power flow Jacobian. Now, we specify how ∆u changes with

∆w. The simplest choice is to assume that ∆u does not change

with ∆w, the interpretation for which is that the slack bus

is responsible for balancing the system. Another option that

reflects more accurately the power balancing process in the

network, which is along the lines used by the authors in [23]

to formulate the so-called governor power flow, is to assume

that the power generated by the ith conventional power source

changes with ∆w proportionally to the total active power

imbalance introduced by ∆w. Thus, let ∆ui denote the ith

entry of ∆u, and ∆wj denote the jth entry of ∆w; then,

∆ui =
γi

∑

l∈A

γl

∑

j

∆wj , (15)

where A contains the indices of all the power sources (includ-

ing the slack bus), and the γl’s are some positive constants that

define how each power source responds (in terms of providing

active power) to the net change in renewable-based generation.

Note that in (15), although, we only consider the PV buses,

by including the slack bus in the definition of A, we also

ensure that, beyond providing for losses, the slack bus also

participates in power mismatch balancing. Now, we write (15)

compactly as

∆u = B∆w, (16)

where B = [bij ], with bij = γi∑
l∈A

γl
, ∀j, which we can
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combine with (13) to obtain

(I +B)∆w ≈ J∆x. (17)

As stated before, J is the power flow Jacobian evaluated at

x = x0, which is guaranteed to exist and be invertible if the

power flow converges to that solution. Thus, near the nominal

solution x0,

∆x ≈ M∆w, (18)

where M = J−1(I +B). It is important to note that in radial

systems with a single power source, B = 0; thus M = J−1.

Since we assume that W is a parallelotope centered around

w = w0, it follows that ∆w ∈ ∆W , where ∆W is a

parallelotope with the same shape and orientation as W but

centered around w = 0, i.e., in geometric terms, ∆W results

from a translation of all the points in W a distance ‖w0‖2 in

the direction of −w0. Then, the linearized model in (18) has

the same form as (2); thus in line with the ideas presented in

Section II, we bound ∆W as follows:

∆W ⊆
⋂

i

∆Ei, (19)

with ∆Ei = {∆w : ∆wT∆Ψ−1

i ∆w ≤ 1}, where ∆Ψi is a

positive definite matrix. Then, it follows from (7) that

∆x ∈ ∆X ⊆
⋂

i

∆Fi. (20)

with ∆Fi = {∆x : ∆xT∆Γ−1

i ∆x ≤ 1}, where ∆Γi =
M∆ΨiM

T . Finally, we can approximate X , i.e., the set that

contains all possible values that x can take as

X ≈ {x0} ⊕∆X , (21)

where ⊕ denotes the vector sum of the sets {x0} and ∆X .

Since Pr{w ∈ W} = α, i.e., W captures the values that

w takes with confidence level α, then Pr{x ∈ X} ≈ Pr{x ∈
{x0} ⊕∆X} = Pr{w ∈ {w0} ⊕∆W} = Pr{w ∈ W} = α,

i.e., X , which can be accurately approximated by {x0}⊕∆X ,

contains the possible values that x can take with a confidence

level that is approximately equal to α. In all numerical

examples that follow we do not specify α as the focus is

to show how to obtain the approximation of X once W is

specified and to analyze the accuracy of this approximation.

0.985 0.986 0.987 0.988 0.989
0.964

0.968

0.972

0.976

0.98

V2 [p.u.]

V
3

[p
.u

.]

 

 

F0

F1,F2

Exact Solution

Fig. 8: Four-bus test system: nonlinear power flow solutions

and state-bounding ellipsoids.

Example 4 (Four-bus system): Consider the four-bus sys-

tem of Example 3. Following the ideas in Section II-B,

we bound the set ∆W that results from the W displayed

in Fig. 7 with i) a minimum-trace ellipsoid ∆E0, and ii)

two ellipsoids ∆E1 and ∆E2 that are tight to ∆W in the

directions defined by η1 = [0.2853 − 0.4755 0.8322]T , and

η2 = [0 0.4961 − 0.8682]T . We then compute the corre-

sponding ellipsoids F0 = {x0} ⊕ ∆F0, F1 = {x0} ⊕ ∆F1,

and F2 = {x0} ⊕ ∆F2, that bound all possible values that

∆x can take, and depict them in Fig. 8. For comparison,

we also solve the exact nonlinear power flow equations for

different w’s sampled from W ; the corresponding solutions

are depicted as points in Fig. 8. Note that the intersection

of the ellipsoids obtained from the linearized power flow

equations accurately bound the collection of nonlinear power

flow solution points. In this case, the minimum-trace ellipsoid

F0 provides a reasonably accurate approximation for X . �

C. Performance Requirements Verification

In a power system, static performance requirements include

constraints in the form of interval ranges on i) the values that

system states can take, and/or ii) the values that functions of

these states can take. For example, bus voltage magnitudes

are generally required to remain within ±5% of its nominal

value. Also, transmission line flows, which can be obtained as

a function of the states, are constrained by maximum capacity

limits. Thus, once X ≈ {x0} ⊕ ∆X is obtained, we can

verify (with a confidence level α) whether a system meets

all its performance criteria for the renewable-based generation

scenario described by W .

Let z = h(x) define some performance metric of interest,

where h : R
n+m−1 7→ R

p, and let Φ denote a set in R
p

defined by performance requirements. Then, for the system to

meet all its performance criteria, the set Z that results from

X and the mapping h(·), i.e., Z = {z : z = h(x), x ∈ X},

must be contained in Φ. As already mentioned, unless h(·) is

linear, mapping a set through a nonlinear function is not an

easy task. Therefore, as before, we resort to linearization to

obtain Z ≈ {z0} ⊕ ∆Z , where z0 = h(x0), and then check

whether or not {z0} ⊕∆Z ⊆ Φ.

1) Requirements on the values that system states can take:

In this case z = x; thus, performance requirements constrain

the values that the state x can take to some region of the state

space Φ defined by the symmetric polytope

Φ = {x : |πT
i (x− x0)| ≤ 1 ∀i = 1, . . . , n+m− 1}, (22)

where πi ∈ R
n is a unitary vector parallel to the ith axis.

Since z = x, then Z = X ; thus in order to verify that the

system meets performance requirements for any w ∈ W , we

need to verify whether or not {x0}+∆X ⊆ Φ.

There may be situations in which performance requirements

are only imposed on q ≤ n+m− 1 state variables. In order

to capture this situation, we can define z = Nx, where N is a

q×(n+m−1) matrix whose entries are zero or one depending

on the entries of x that correspond to state variables over which

performance requirements are imposed. In particular, for each

i = 1, . . . , q, there is some li (corresponding to the variable
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xli ), satisfying 1 ≤ li ≤ n +m − 1, li 6= lj, i 6= j, and such

that N(i, j) = 0, j 6= li, and N(i, li) = 1. For this case, Z ≈
{z0} ⊕ ∆Z , with ∆Z = {∆z : ∆z = N∆x, ∆x ∈ ∆X}.

Then, from (20), it follows that

∆z ∈ ∆Z ⊆
⋂

i

∆Gi. (23)

with ∆Gi = {∆z : ∆zT (N∆ΓiN
T )−1∆z ≤ 1}. By defining

N to be a 2×(n+m−1) or a 3×(n+m−1), the resulting Gi’s

are 2- or 3-dimensional ellipsoids—an important consideration

when visualizing the results of higher-order systems.

2) Requirements on the values that functions of the states

can take: The procedure described above can be extended to

the general case where z = h(x), for some h : Rn+m−1 7→
R

p defining some performance metrics of interest, e.g., active

power flow through transmission lines. In this case,

Φ = {z : |πT
i (z − z0)| ≤ 1 ∀i = 1, . . . , p}. (24)

where z0 = h(x0), and πi ∈ R
s with all its entries equal

to zero except for the ith, which is equal to one. Now, for

∆x = x− x0 and ∆z = z − z0, we have

∆z ≈ L∆x, (25)

where L = ∂h
∂x

∣

∣

x0

. In the particular case when h(·) relates

the system states and line power flows, the entries of the

matrix T = LM are in fact the generation shift factors (see,

e.g., [24]). Finally, in this case, we have Z ≈ {z0} ⊕ ∆Z ,

with ∆Z = {∆z : ∆z = L∆x, ∆x ∈ ∆X}, and the same

procedure described in (23), replacing N by L, can be used

to obtain a tight upper bound on ∆Z .

Example 5 (Four-bus system): Consider the four-bus sys-

tem of Examples 3 and 4. We assess whether or not the

excursions in states V2 and V3 violate static performance

requirements. By visual inspection of Fig. 8, note that F0

is entirely contained within the space defined by voltage

requirements and hence we can conclude that the system does

not violate any voltage constraints. Also as expected, the set

X to which all x0 + ∆x belong is more tightly bounded by

the intersection of the ellipsoids F0, F1, and F2 than by F0

alone, as shown in the figure.

Next, we assess whether or not the active power flow

through lines 1 (from bus 1 to 2) and 2 (from bus 2 to 3)

0.6 0.8 1 1.2 1.4
0.2

0.4

0.6

0.8

1

h1 [p.u.]

h
2

[p
.u

.]
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Fig. 9: Four-bus test system: nonlinear line flow solutions and

corresponding bounding ellipsoids.

violate corresponding requirements. The matrix T = [tij ] of

generation shift factors is

T =

[

−1.0070 −1.0212 −1.0265

−0.0005 −1.0123 −1.0175

−0.0002 −0.0007 −1.0032

]

,

where each entry tij represents the sensitivity of the ith line

flow with respect to the active power injection at the jth

bus. In Fig. 9, we plot the line flow bounding ellipsoid F0,

corresponding to the minimum-trace input-bounding ellipsoid

E0, along with F1 and F2, corresponding to E1 and E2,

respectively. We also plot the exact line flow solution points

obtained from the nonlinear power flow equations by sampling

the input space; note that all these points are contained in F0

and F1 ∩ F2. �

D. Asymmetric Input Uncertainty Set

The input uncertainty model considered so far assumes

that w takes on values in a parallelotope W centered around

some nominal value w0, i.e., there is an underlying symmetry

assumption in the bounds around w0 that constrain the possible

values of power injections of each renewable-based generator.

In this section, we discuss how to extend the ideas presented

so far to the case where the bounds constraining w are

not symmetrically centered around w0. We generalize the

definition of the input set W in (3) to be

W = {w : w = w0+

s
∑

j=1

αjgj, βj−1 ≤ αj ≤ βj+1}, (26)

where each βj takes on some value in the interval [−1, 1].
Whenever βj 6= 0 for some j, the resulting set is no longer

centered around the nominal value w0, i.e., some of the hyper-

faces of W defining the bounds on w are no longer equidistant

from the center w0. As defined in (26), the set W can capture,

scenarios with asymmetries in the forecast error.

As before, given (13) and the set W in (26), the objective

is to obtain a set X that contains all possible values that x can

take. In order to do so, the ideas discussed in Section III-B can

be tailored to the new setting where W is no longer centered

around w0. The first step is to redefine the input set as follows:

W = {w : w = w∗
0 +

s
∑

j=1

γjgj , − 1 ≤ γj ≤ +1}, (27)

where w∗
0 = w0 +

∑s
j=1

βjgj , i.e., W is a parallelotope

symmetrically centered around w∗
0 = w0 +

∑s
j=1

βjgj . The

rest of the procedure is similar to the one described in (14)–

(21), with w∗
0 and x∗

0 replacing w0 and x0, respectively,

resulting in

X ≈ {x∗
0} ⊕∆X ⊆ {x∗

0} ⊕
⋂

i

∆Fi, (28)

where ∆Fi is as defined in (20) and ∆X = {∆x : ∆x =
M

∑s
j=1

γigi}
Example 6 (Four-bus system): Consider the four-bus sys-

tem introduced in Example 3, with asymmetrical input bounds

of β1 = 0.286, β2 = −0.5, and β3 = 0.167 corresponding to

g1 = [0.07 0 0]T , g2 = [0 0.06 0]T , and g3 = [0 0 0.12]T ,
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Fig. 10: Four-bus system: nonlinear line flow solutions and

bounding ellipsoids for asymmetrical power injection forecast.

respectively. Applying the procedure just described, we obtain

w∗
0 to be [0.42 0.27 0.52]T . We bound the input set W with

a minimum-volume ellipsoid E0, and two ellipsoids E1 and

E2 that are tight along the directions defined by η1 = g1
‖g1‖

and η2 = g2
‖g2‖

. In Fig. 10, we plot the resulting bounding

ellipsoids F0, F1, and F2, along with nonlinear power flow

solutions obtained by sampling the input space. �

E. Very Large Variations in Renewable-Based Power

Up to this point, we have only considered cases with suffi-

ciently small uncertainty variations in renewable-based power

injections around some nominal forecast w0, for which the use

of (14)—a linearization of the power flow equations around

a single x0 resulting from w0—is justified. This approach

can be justified when the variations in renewable-based power

injections are interpreted as the forecast error (with some

confidence level α) around the nominal forecast w0. In some

cases, however, we may be interested in characterizing the

values that bus voltage magnitudes and angles can take for the

worst-case variability scenario, i.e., when the power injected

by each renewable-based resource i can vary between 0 and

its maximum power output wi (in this case, α = 1). In this

section, we extend the ideas presented thus far to the cases

where the variations in w may not be sufficiently small for

the single linearization around x0 approach to be sufficiently

accurate.

Consider the input uncertainty set W (a parallelotope) as

defined in (3); this set can be described as the union of a

finite collection of l disjoint subsets {W̃1, W̃2, . . . , W̃l}, i.e.,

W =
⋃l

i=1
W̃i, where W̃i

⋂

W̃j = ∅, ∀i 6= j. While the

shape of the W̃i’s could be arbitrary as long as they form a

partition of W , we choose them to be parallelotopes with the

same shape and orientation as W and all of equal size; the

idea is graphically depicted in Fig. 11 for a two-dimensional

set. The centers of all the W̃i’s can be obtained from (3) and

are given by

C = {w : w =w0 +

s
∑

j=1

αjgj , αj = ±(1 + 2k)/(2nj),

k = 0, 1, ..., nj − 1}, (29)

where 2nj is the number of segments into which the segment

that spans the set W in the direction of the j th axis is divided.

Fig. 11: Input uncertainty set partition.

Then, W̃i, which corresponds to w0i ∈ C, is described by

W̃i = {w : w = w0i+

s
∑

j=1

αjgj, −1/(2nj) ≤ αj ≤ 1/(2nj)}

Each W̃i is constructed, via appropriate choice of nj , so that

the variations in w around w0i are sufficiently small such that

∆w ≈ Ji∆x, where Ji is the power flow Jacobian evaluated at

x = x0i , i.e., the power flow solution that corresponds to w0i .

In this way, the problem is divided into several subproblems.

By applying the same ideas in Section III-B to each W̃i, we

obtain X̃i, the set that bounds all bus voltage magnitudes and

angles corresponding to variations in W̃i. Finally, the set X
that bounds all possible values that bus voltage magnitudes

and angles can take as a result of W is given by

X =

l
⋃

i=1

X̃i. (30)

Example 7 (Four-bus system): Consider the four-bus sys-

tem introduced in Example 3. Let the input set W be defined

by w0 = [P 0
g2 P

0
g3 P

0
g4]

T = [0.4 0.3 0.5]T and g1 = [0.4 0 0]T ,

g2 = [0 0.3 0]T , g3 = [0 0 0.5]T , i.e., renewable-based power

injections vary between 0 and wi = 2w0. Applying the ideas

introduced for large input variations, we divide the uncertainty

interval in each renewable generator into two equal-length

segments such that W =
⋃8

i=1
W̃i. We then bound each W̃i

with a minimum-trace ellipsoid Ẽi. The resulting ellipsoids are

projected onto the subspace defined by the Pg2-Pg3 plane and

shown in Fig. 12(a). We have also included the minimum-

trace bounding ellipsoid for the original uncertainty set W ,

E0, along with the input space sample points for computing

the nonlinear power flow solutions. Figure 12(b) shows the

corresponding state-bounding ellipsoids F̃i (computed from

each Ẽi), the state-bounding ellipsoid F0 (computed from E0),

and the nonlinear power flow solutions projected onto the sub-

space defined by the V2-V3 plane. From this large variability

case study, we conclude that bounding set X can indeed be

approximated to a high-fidelity by X =
⋃8

i=1
X̃i ⊆

⋃8

i=1
F̃i.

In the detail of Fig. 12(b), we note that one of the F̃i’s captures

one of the nonlinear power flow solution points that F0 fails

to capture. Thus the union of the F̃i’s indeed provides a more

accurate approximation than the one provided by F0.

We could also have utilized the ideas presented earlier

to bound each W̃i with multiple ellipsoids and take the

intersection of the resulting state-bounding ellipsoids to obtain

an even more accurate upper-bound to each of the sets X̃i. In

this example, by considering only single bounding ellipsoids

for W and the W̃i’s, we capture negative power injections,

which is not realistic; however, in order to avoid cluttering

the figures, we choose not to exercise these ideas. �
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(b) State-bounding ellipsoids and exact solution points.

Fig. 12: Four-bus input and state ellipsoidal bounds.

IV. CASE STUDIES

In this section, we illustrate the concepts developed in

Sections II and III by presenting the results for a 34-bus and a

123-bus system. These benchmark test systems, with a power

base of 100 kVA and a voltage base of 4.16 kV, are taken from

the IEEE PES Distribution System Analysis Subcommittee

[25], which are modified to include power injection at a subset

of buses. For each case study, we linearize the system, and

using set operations, propagate uncertainty in renewable-based

generation through the linearized model. Then, we examine the

impact of uncertainty on bus voltage magnitudes and angles.

A. 34-bus System

The one-line diagram and complete description for this

system can be found in [25]. For this system, we assume that

renewable-based electricity resources are installed at buses 3,

7, 10, 15, 18, 23, 27, 29, 30, and 34, with a nominal real

power injection of 1 p.u. and an uncertainty of ±50% (±0.5
p.u.) around the nominal value. We bound the power injection

space with a minimum-trace ellipsoid and compute the cor-

responding state-bounding ellipsoid. The resulting ellipsoid is

projected onto the V2-V34 plane and shown in Fig. 13(a). We

also sample the input power injection space and obtain the

corresponding solutions of the linearized power flow as well

as the exact solutions of the nonlinear power flow and depict

them with squares and circles, respectively. As expected, the

resulting ellipsoidal bounding set F0 contains all the linearized

power flow solutions with the extrema coinciding with the

edge of the ellipsoid. The linearization is fairly accurate; only

one nonlinear solution corresponding to the lower extreme

point of the input sample space is not contained in the

linearized solution set. For this case study, we computed the

percent error between the voltage magnitudes obtained through

linearized power flow and nonlinear power flow for each

sample point and found the maximum to be only 3.14%. From

the figure, we can also conclude that for the uncertainty levels

selected, a portion of the input space maps to a region in the

solution state space that violates the voltage constraints of 1.05

p.u., which are depicted with dashed lines.

Now suppose the nominal real power injection is 0.4 p.u.

at the same buses and that the uncertainty of the power

injections at the affected buses have correlation. Using the

notation developed in (3), we present the nonzero entries of

the gi’s in Table III (each gi is a 66-dimensional vector).

In this case, we bound the input power injection with a

minimum-volume ellipsoid and compute the corresponding

state-bounding ellipsoid. The result is shown in Fig. 13(b)

along with the linearized and exact nonlinear power flow

solutions. We conclude that for the the power injection and

uncertainty levels chosen, no voltage magnitude violations for

buses 2 and 34 are detected.
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(a) Uncorrelated renewable-based power injections with variability of
±50% around each nominal value of 1 p.u.
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(b) Correlated renewable-based power injections with variability around
each nominal value of 0.4 p.u.

Fig. 13: 34-bus system: nonlinear and linearized power flow solutions, and state-bounding ellipsoid projections.
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TABLE III: 34-bus System: Correlated Power Injections.

j 3 7 10 15 18 23 27 29 30 34

g3(j) 0.2 0 0 0 0 0 0 0 0 0.2
g7(j) 0 0.2 0 0 0 0 0 0 0 0
g10(j) 0 0 0.2 0 0 0 0 0 0 0
g15(j) 0 0 0 0.2 0 0 0 0 0 0
g18(j) 0 0 0.2 0 0.2 0 0 0.2 0 0
g23(j) 0 0.2 0 0 0 0.2 0 0 0 0
g27(j) 0 0 0 0 0 0 0.2 0 0 0
g29(j) 0 0 0 0.2 0 0 0 0.2 0 0
g30(j) 0 0 0 0 0 0.2 0 0 0.2 0
g34(j) 0.2 0 0 0 0 0 0.2 0 0 0.2

B. 123-bus System

A full description of the IEEE 123-bus test feeder can be

found in [25]. In this case study, we show how the ellipsoidal

method can be applied to asymmetrical uncertainties in the

forecast. Table IV specifies where renewable-based electricity

resources are installed along with their respective nominal

power outputs and uncertainties in power injection. After

applying the method proposed in Section III-D for handling

asymmetrical forecast uncertainties, we bound the set of

possible power injections with four ellipsoids, one of which,

E0, is minimum-trace, and the other three, E1, E2, and E3, are

bounding ellipsoids tight in the directions representing the real

power injections at buses 96, 110, and 123, respectively.

Corresponding to each input ellipsoid E0, E1, E2, and E3,

we obtain four bounding ellipsoids for the set containing the

variations in x, whose projections onto the V103-V123 plane are

shown in Fig. 14(a) as F0, F1, F2, and F3, respectively. The

intersection of all ellipsoids in Fig. 14(a) provides a tighter

bound for the linearized power flow system states than any

one ellipsoid alone and is a better approximation for the exact

bounding set of the nonlinear power flow system states.

Furthermore, we plot the exact power flow solutions (de-

picted as circles in Fig. 14(a)) computed by sampling the

extrema of the input space. As in the 34-bus case, all of

the solution points lie within the intersection of the ellipsoids

except for one lower extreme point, which can be attributed

to the error resulting from linearization. Again, we computed

the maximum error of the voltage magnitudes between the

linearized power flow and nonlinear power flow to be only

1.428% for this case study. Therefore, with this particular level

of uncertainty in power injection, the linearization provides an

accurate estimate for the nonlinear power flow solutions.

In addition, corresponding to each input ellipsoid described

above, we obtain four bounding sets containing the variations

in real line flow, whose projections onto h2 (flow on line 2

from bus 2 to 3) and h102 (flow on line 102 from bus 73 to 103)

are shown in Fig. 14(b). Again, we display the exact line flow

quantities computed by sampling the input space (depicted as

points). In this case, the intersection of the line flow bounding

ellipsoids in Fig. 14(b) contains all line flow variations.

In order to demonstrate the scalability of our method to

systems with a large number of uncertain power injections,

we have computed the state-bounding ellipsoids for cases

where renewable-based electricity resources are installed at

15 buses, 30 buses, 50 buses, and 70 buses. For each of these

test cases, we assume that all renewable-based nominal power

injections are 1.0 p.u., with variability levels ranging between

±10% (±0.1 p.u.) and ±70% (±0.7 p.u.). Figure 15 shows

the projections of the state-bounding ellipsoids computed from

the minimum-trace input-bounding ellipsoids along with the

voltage constraint bounds. In addition, for the case with

renewable-based generation in 15 buses shown in Fig. 15(a),

we include the nonlinear power flow solutions to show that

our method does indeed provide a high-fidelity ellipsoidal

approximation to the actual reach set. For the other three

cases in Figs. 15(b)–15(d), we do not include the nonlinear

power flow solutions due to computational power limitations

0.97 0.98 0.99 1 1.01 1.02

0.96

0.97

0.98

0.99

1

1.01

1.02

V103 [p.u.]

V
1
2
3

[p
.u

.]

 

 

F0

F1,F2,F3

Exact Solution
Voltage Constraints

(a) Ellipsoidal bounds and exact solutions of system states.
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(b) Ellipsoidal bounds and exact solutions of line flows.

Fig. 14: 123-bus system: nonlinear power flow solutions and projections of state- and line-flow-bounding ellipsoids for

asymmetrical power injections.

TABLE IV: 123-bus System: Data for Renewable-Based Asymmetrical Power Injections.

Bus 80 95 96 103 108 110 115 121 122 123

Nominal Value [p.u.] 1.5 1 1.5 1 1 1.5 1 1 1 1.5

Positive Variation [p.u.] 0.4 0.6 0.2 0.4 0.4 0.1 0.1 0.1 0.2 0.4

Negative Variation [p.u.] 0.8 0.2 0.7 0.7 0.6 0.5 0.3 0.7 0.5 0.5
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(a) Ellipsoidal bounds and exact solutions for uncertainty at 15 buses.
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(b) Ellipsoidal bounds for uncertainty at 30 buses.
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(c) Ellipsoidal bounds for uncertainty at 50 buses.
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(d) Ellipsoidal bounds for uncertainty at 70 buses.

Fig. 15: 123-bus system: projections of state-bounding ellipsoids for different number of buses with renewable-based power.

of our computer platform (Intel Core 2 Quad 8400 processor

at 2.66 GHz). Note that for the cases in Figs. 15(c)–15(d),

variability in renewable-based generation may result in voltage

violations.

V. PERFORMANCE EVALUATION

In this section, the computation time of our method is

evaluated against those of solving the linearized and nonlinear

power flows. For the ellipsoidal method, we provide the

amount of time required to obtain the minimum-volume ellip-

soid enclosing the input uncertainty space W and to compute

the corresponding state-bounding ellipsoid approximation. The

computation times presented for the nonlinear and linearized

power flow solutions are for values corresponding to the

vertices of W .

The computation times required for each of the three test

cases in Section IV are shown in Table V. As the number

of buses increases, the time required to compute the nonlinear

power flow solutions corresponding to the vertices of W grows

much more quickly than that required for the linearized power

flow and the ellipsoidal method. Furthermore, although the

results are not shown, if interior points of the input space are

also sampled, then significantly longer times are required for

obtaining the corresponding nonlinear and linearized power

flow solution points. Table VI presents a detailed timing

breakdown for the ellipsoidal method, which includes the

time required to obtain the ellipsoid that bounds the input

uncertainty space and to compute the corresponding state-

bounding ellipsoid. From the data, it is clear that most of

the time spent for the ellipsoidal method involves finding the

input-bounding ellipsoid through an optimization algorithm. If

the input uncertainty ellipsoid is calculated a priori, then the

time required for computing the corresponding state-bounding

ellipsoid is about an order of magnitude less than that required

to obtain linearized power flow solution points.

Table VII shows the average computation times required

for computing the input- and state-bounding ellipsoids for the

123-bus system with renewable-based generation in 15, 30,

50, and 70 buses. While we can obtain the nonlinear power

flow solutions in a timely fashion (about 3 hours) for up to 15

buses with renewable-generation, our ellipsoidal-based method

does not have such scalability restrictions. This observation

is evidenced by the computation times for each of the case

studies; as the number of uncertainties in the system increases,

the computation times for our method remain nearly constant.

This observation can be attributed to the fact that as the number

of buses with uncertain power injections increases, the size of

the shape matrices describing the input- and state-bounding

ellipsoids remains the same. Lastly, we want to point out that

the times listed in Table VII are several orders of magnitude

different from the computation times presented in Table VI

because, for the large-scale uncertainty case studies, we have

used a different computational method for obtaining the shape

matrices of the minimum-trace bounding ellipsoids that takes

advantage of the symmetry in the the input uncertainty space.
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TABLE V: Comparison of Overall Computation Times [s] for

for 4-, 34-, and 123-bus Systems.

4-bus 34-bus 123-bus

Ellipsoid 1.297 2.960407 2.625423

Linear Approx. 0.000201 0.007308 0.043741

Nonlinear PF 0.100909 13.457959 173.809595

TABLE VI: Input and State-Bounding Ellipsoid Computation

Times [s] for 4-, 34-, and 123-bus Systems.

4-bus 34-bus 123-bus

Input Ellipsoid 1.296980 2.96 2.620066

State Ellipsoid 0.000022 0.000407 0.005357

TABLE VII: 123-bus System: Computation Times [s] for

Different Number of Buses with Renewable-Based Power.

15-bus 30-bus 50-bus 70-bus

Input Ellipsoid 0.00182 0.00199 0.00175 0.00178

State Ellipsoid 0.01707 0.01727 0.01707 0.01778

Total Time 0.0189 0.0192 0.0188 0.0195

VI. CONCLUDING REMARKS

This paper proposes a method to assess the impact of

renewable resource electricity generation uncertainty on power

system static performance. We model renewable generation as

unknown-but-bounded power injections and formulate a set-

theoretic method to obtain the worst-case deviations of static

system states. This method allows us to determine whether

system variables, e.g., bus voltage magnitudes and angles,

or functions of these variables, e.g., power flows through

transmission lines, remain within specified ranges as dictated

by operational requirements.

As shown in the test cases, the set bounding the system

states computed with our method matches closely to those

obtained from repeatedly solving the nonlinear power flow

for different power injections associated with various levels

of uncertainty. We have also shown, with a 123-bus test

case, that our method is scalable with the dimensionality

and size of the system. It is computationally attractive since

linear approximations are used and only several ellipsoids are

required to establish an accurate approximation to the actual

bounding set. As the number of buses increase, the nonlinear

power flow takes much longer to compute than our method,

which is also quite versatile in the sense that we can easily

incorporate uncertainty in real and reactive power generations

and demands alike.

Further work may include an analysis of the limits of the

small-signal approximation to the power flow model. In this

regard, we may wish to bound the higher-order Taylor series

terms to obtain more accurate bounds for the variations in

systems states caused by even deeper penetration levels than

those considered in the case studies of this paper. An error

analysis on the linear approximation can be conducted by

bounding the higher-order terms of a Taylor series expansion

with the Lagrange remainder. By including the higher-order

terms, we might be able to capture solution points that may

lie outside of the set obtained from the linearized model.
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