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Abstract—To address battery dispatch optimization (BDO)
for an electric vehicle (EV) aggregator, this paper develops
a decentralized mixed-integer least-squares (DMILS) approach
formulated with a master-problem and multiple sub-problems
based on decomposition via the alternating direction method
of multipliers (ADMM) algorithm. The aggregator’s master-
problem aims to coordinate the Lagrange multiplier vector in all
sub-problems, whilst each EV’s sub-problem concentrates on its
individual BDO solution using the updated Lagrange multipliers.
To accelerate solution convergence, disjunctive cuts for battery
operation are incorporated into the proposed DMILS approach.
Given parallel computation of sub-problems and a well-designed
warm-start strategy, numerical case studies demonstrate that the
proposed DMILS approach converges to a solution with the same
objective function value as a benchmark centralized counterpart
in only several iterations, thus incurring lower computation time
and minor communication overhead.

Index Terms—Battery dispatch optimization, decentralized
mixed-integer least-squares, disjunctive cut, EV aggregator

I. INTRODUCTION

E lectric vehicles (EVs) primarily serve the purpose of
enabling mobility without tailpipe emissions, thus repre-

senting an integral component of the zero-carbon energy tran-
sition. At present, EVs can also be equipped with bidirectional
vehicle-to-grid (V2G) charging capability, enabling EV owners
to sell excess energy stored in their vehicle batteries back to
the distribution network (DN) [1]. Aggregators interface the
distribution system and end users, including distributed gener-
ation, flexible loads, battery storage, and EVs, to contribute
to reliable and efficient operation of DNs. For simplicity,
we assume that an aggregator coordinates only EVs with
V2G contracts and performs the day-ahead battery dispatch
optimization (BDO) to schedule charging and discharging
power from the EVs following an aggregate signal prescribed
by the distribution system operator (DSO) [2], [3].

Typically, the battery operation in the BDO problem is for-
mulated as a mixed-integer linear programming (MILP) prob-
lem to satisfy charge-discharge complementary constraints
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that avoid solutions with simultaneous charging and discharg-
ing [2]. However, an aggregator generally manages a large
population of EVs, leading to a large number of binary
variables in the BDO model. In place of the linear objective
function, a quadratic objective function in least-squares form
can be adopted to track the prescribed aggregate power signals.
The resultant BDO problem becomes a large-scale mixed-
integer quadratic program (MIQP), the solution of which poses
significant computational challenge.

In the existing literature, there are two general lines of
research that address the computational challenge associated
with solving the BDO problem, the first involving model ap-
proximations and the second being decentralized computation
approaches. Prior work in model approximations typically
employs the relaxation of binary variables. For example,
the H-representation convex hull (HCH-LP) approach in [2]
applies a tightened constraint to approximate the nonconvex
complementary constraint while relaxing all binary variables.
References [3] and [4] propose a physically realizable BDO
approach without binary variables, which renders a near-
optimal solution. However, approximations based in binary
variable relaxation do not offer theoretical guarantees in sat-
isfying the charge-discharge complementary constraints, and
only with integer variables in the BDO problem can these
constraints be strictly satisfied.

Generally speaking, decentralized solution approaches as-
sign computational tasks across individual EVs, and as such,
they are highly scalable alongside the proliferation of EVs. For
example, [5] proposes a distributed coordination mechanism
between EV demands and V2G-based capability is trans-
formed into an iterative price-based coordination algorithm
for aggregators, and [6] uses the Benders decomposition to
optimize distribution system operation involving EV aggre-
gators. However, the BDO model in these references is over
simplified as a linear problem with relaxed binary variables,
which may result in simultaneous charge-discharge solutions.
The Lagrange relaxation used in [7] optimally coordinates the
charging power signals in different parking decks, but it does
not consider discharging actions and thus the corresponding
solution does not apply to V2G-based BDO problems. In-
stead, decentralized approaches to address V2G-based BDO
problems also include heuristic algorithms, such as the whale
optimization algorithm [8] and water-filling-based algorithm
[9], [10]. The whale optimization algorithm relies heavily on
suitable tuning of hyperparameters. The water-filling-based
algorithm requires optimal charging/discharging power objec-
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tives for different EVs, but such prior information may not be
available before solving the BDO problem. Also, the relaxation
of equality constraints into the Lagrangian function in the
water-filling-based algorithm may result in infeasible solutions
that do not satisfy the equality constraints.

Unlike aforementioned approaches, this paper addresses
the computational challenge of solving the BDO problem
by drawing inspiration from [11] that employs disjunctive
convex hull relaxation (DCHR), albeit for the problem of
distribution network reconfiguration. Similar to [11], we divide
the feasibility space of the BDO problem with valid disjunctive
cuts that can then reduce the search space without resorting
to binary variable relaxation. Furthermore, we develop the
decentralized mixed-integer least-squares (DMILS) approach
based on alternating direction method of multipliers (ADMM)
in conjunction with a warm-start strategy that leads to reduced
computation time and convergence in only several iterations.

II. PROBLEM FORMULATION AND DISJUNCTIVE CUTS

In this section, we formulate the BDO problem of an EV
aggregator and develop disjunctive cuts for single EV battery
operation.

A. BDO Problem of an EV Aggregator
Suppose that all EVs are available over a predefined time

horizon for EV aggregators with the architecture shown in
Fig. 1(a). Let P t

c,i and P t
d,i respectively denote charging and

discharging power for the i-th EV battery in time period t, and
denote its state of energy (SoE) in time period t by eti. Further
employ binary variables λt

c,i and λt
d,i to indicate whether the i-

th EV is charging or discharging in time period t. Each battery
i begins with initial SoE e0i and ends with full energy at the
end of the scheduling horizon with t = T . Furthermore, EV
batteries are scheduled to charge and discharge to collectively
follow an aggregate power signal pt

ref prescribed by the DSO.
Then, the conventional BDO model for an EV aggregator is
formulated as follows:

min F =

NT∑
t=1

∥∥∥∥∥
NE∑
i=1

(P t
c,i + P t

d,i)− pt
ref

∥∥∥∥∥
2

2

, (1a)

s.t. et+1
i =et

i + ηc,iP
t
c,i∆T +

1

ηd,i
P t

d,i∆T , (1b)

et
i=E, if t = T, (1c)

0 ⩽ P t
c,i ⩽ λt

c,iP , − λt
d,iP ⩽ P t

d,i ⩽ 0, E ⩽ et
i ⩽ E, (1d)

λt
c,i + λt

d,i ⩽ 1, λt
c,i,λ

t
d,i ∈ Z, ∀t ∈ T , ∀i ∈ E , (1e)

where E and T are sets of EVs and time periods with
cardinality NE and NT , respectively, ∆T is the duration of
each time period, e.g., ∆T = 1 for one-hour period, P denotes
the charging/discharging capacity, E is the energy capacity, E
is the minimum energy reserve, and ηc,i and ηd,i are charging
and discharging efficiency coefficients, respectively [2].

B. Disjunctive Cuts for Single EV Battery Operation

The many binary variables λt
c,i and λt

d,i, i ∈ E , in the BDO
problem pose significant challenges for fast solution conver-
gence. In order to enhance computational performance, we
introduce tightened constraints for each EV i ∈ E by noticing
that the pair of indicator variables λt

c,i and λt
d,i is disjunctive,
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Fig. 1. (a) EV aggregator architecture; (b) disjunctive closure of Ωop.

and they can be used to represent the charging, discharging,
and idle statuses, i.e., (λt

c,i,λ
t
d,i) = (1, 0) represents charging

mode; (λt
c,i,λ

t
d,i) = (0, 1) refers to discharging mode; and

we use P t
c,i = P t

d,i = 0 instead of (λt
c,λ

t
d) = (0, 0) to

indicate an idle state because an idle state can also exist with
(λt

c,λ
t
d) = (1, 0) or (0, 1).

Given the disjunctive nature of battery operation, we define
the disjunctive convex set Ωop,i for charging/discharging status
of i-th EV battery. It includes Ωc,i and Ωd,i as the disjunctive
convex sets for operational constraints (1b)–(1d) combined
with λt

c,i = 1, λt
d,i = 0 and λt

c,i = 0, λt
d,i = 1. This

disjunctive convex set is clearly coupled across time periods
in the set T , and we have

Ωop,i= Conv(Ωc,i ∪Ωd,i), ∀i ∈ E , (2a)

Ωc,i={xt
i ∈ R|(1b)−(1d), 0 ⩽ P t

c,i ⩽ P ,P t
d,i=0, ∀t ∈ T }, (2b)

Ωd,i={xt
i ∈ R|(1b)−(1d),−P ⩽ P t

d,i ⩽ 0,P t
c,i=0, ∀t ∈ T }.

(2c)

Depicted in Fig. 1(b) is the geometric closure of Ωop,i with
continuous variation of λt

c,i, λ
t
d,i ∈ [0, 1] in the (et, et+1,λt)-

space, where λt refers to both λt
c,i in the upward axis and

λt
d,i in the downward axis, and the green and blue regions

respectively represent discharging and charging feasibility
spaces. The geometric closures of Ωc,i and Ωd,i are disjunctive
polyhedral sets with vertices V1−V5 and V4−V8 in blue and
green convex hulls, respectively. Note that the former vertical
coordinate axis is upward with λt

c,i decreasing from λt
i = 1

to λt
c,i = 0, while the latter vertical axis is downward with

λt
d,i decreasing from λt

i = 1 to λt
d,i = 0. For λt

c,i = 0 and
λt
d,i = 0, V1 = (eti, e

t
i) and V8 = (eti, e

t
i). On the (et, et+1)-

plane with λt = 1 (i.e., either λt
c,i = 1 or λt

d,i = 1), the
feasibility space is a hexagon with V2 = (E − ηc,iP ,E),
V3 = (e0, e0 + ηc,iP ), V4 = (e0, e0), V5 = (E,E),
V6 = (E,E − 1

ηd,i
P ) and V7 = (e0 − 1

ηd,i
P , e0). From

the operational perspective, this hexagon represents the max-
imum charging/discharging between adjacent time periods.
Compared with feasible set with vertices V1−V7 constructed
in [2], the disjunction described above clearly confines Ωop,i
in a smaller feasibility space, i.e., in either blue or green
polyhedron. Mathematically, the set of disjunctive cuts in Fig.
1(b) for ∀i ∈ E and ∀t ∈ T are expressed as follows:

et+1
i ⩾ max{e0,i−

1

ηd,i
P (t− 1 + λt

d,i)∆T , E}, (3a)

et+1
i ⩽ min{e0,i+ηc,iP (t− 1 + λt

c,i)∆T , E}, (3b)
1

ηd,i
P t

d,i∆T ⩽ et+1
i −et

i ⩽ ηc,iP
t
c,i∆T , ∀i ∈ E , (3c)

where (3c) guarantees the idle status for each EV battery, i.e.,
et+1
i = eti if P t

c,i =P t
d,i = 0.

Based on these tailored disjunctive cuts, we summarize the
feasibility space for the i-th EV battery as Xi := {xt

i|(1b)−
(1e), (3a)−(3c)}, where xt

i := [eti,P
t
c,i,P

t
d,i,λ

t
c,i,λ

t
d,i]

T , i ∈ E
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and t ∈ T . This feasibility space Xi provides more tightened
bounds than those in (1a)–(1e) alone.

III. PROPOSED SOLUTION APPROACH

In this section, we formulate the proposed DMILS approach
and introduce a warm-start strategy that contributes to fast
convergence of the proposed DMILS approach.

A. DMILS Approach
In the conventional BDO problem in (1a)–(1e) with NE

EV batteries, decision variables related to different EVs are
coupled only in the objective function (1a), whilst operational
constraints (1b)–(1e) are separable for different EV batteries.
To reduce notational burden, let cTxt

i = P t
c,i+P t

d,i, where c
refers to a constant vector and xt

i is previously defined as the
vector of decision variables for the i-th EV battery at time t.
We incorporate pt

sig,i as the i-th EV’s reference power signal
at time t, where i ∈ E . Aiming at tracking the prescribed
aggregate power signal at time t, we propose the following
BDO model:

min F =

NT∑
t=1

∥∥∥∥∥
NE∑
i=1

(cTxt
i − pt

sig,i)

∥∥∥∥∥
2

2

, (4a)

s.t.

NE∑
i=1

pt
sig,i = pt

ref , ∀t ∈ T , and (1b)−(1e),(3a)−(3c). (4b)

The triangle inequality implies that the objective function (4a)
satisfies ∥∥∥∥∥

NE∑
i=1

(cTxt
i − pt

sig,i)

∥∥∥∥∥
2

2

⩽
NE∑
i=1

∥∥∥cTxt
i − pt

sig,i

∥∥∥2

2
. (5)

Thus, the right-hand side of (5) serves as an upper bound of
(4a), and the minimization of the upper bound can be used
to minimize (4a), which yields the following reformulation of
the BDO model in (4a)–(4b):

min G =

NE∑
i=1

f t
i (x

t
i), s.t. (4b), (6)

where f t
i (x

t
i)= ||cTxt

i −pt
sig,i||22.

In (6), the objective function can be decomposed into
terms pertinent to each EV. Moreover, (1b)–(1e) and (3a)–(3c)
are constraints for each EV, so the only coupling constraint

in (6) is the equality constraint
NE∑
i=1

pt
sig,i = pt

ref . We can

thus decompose the BDO problem in (6) via ADMM into
individual EV sub-problems. To this end, let µt ∈ RNT

denote the vector of Lagrange multipliers corresponding to
the coupling constraint. By keeping the remaining constraints
(1b)–(1e) implicit, the augmented Lagrangian function L is
expressed as

L(µ,pt
sig,x

t)=

NE∑
i=1

f t
i (x

t
i)+(µt)T (

NE∑
i=1

pt
sig,i − pt

ref )

+ ρ/2||
NE∑
i=1

pt,k
sig,i−p

t
ref ||22,

(7)

where ρ is a penalty factor.
According to ADMM-based decomposition theory [12],

the augmented Lagrangian function in (7) can be further

divided into NE sub-problems if Lagrange multiplier vector
µt is fixed. Each sub-problem represents the single battery
dispatch of a particular EV, and the NE sub-problems can
be coordinated by updating the Lagrange multiplier vector
µt in the master problem. The i-th sub-problem calculates
optimal charging/discharging profile for the i-th EV with
(xt,k+1

i ,pt,k+1
sig,i ) at the k-th iteration, yielding

sub-problem:

(xt,k+1
i ,pt,k+1

sig,i )=argmin
xt
i,p

t
sig,i

f t
i (x

t
i)+(µt,k)T (

NE∑
j=1,j ̸=i

pt,k
sig,j+pt

sig,i−pt
ref )

+ ρ/2||
NE∑

j=1,j ̸=i

pt,k
sig,j+pt

sig,i−pt
ref ||22,

s.t. (1b)−(1e), (3a)−(3c),
(8)

where µt,k and pt,k
sig,j are solved from the master-problem and

other sub-problems at the k-th iteration, respectively. Once
all sub-problems are solved in parallel at the k-th iteration,
the aggregator conducts bidirectional communication among
all EVs by updating µt,k+1 in the master problem at k+1-th
iteration.

master-problem:

µt,k+1=µt,k+ρ(

NE∑
i=1

pt,k+1
sig,i −pt

ref ), ∀t ∈ T . (9)

The sub-problems, each with fewer decision variables, can
be solved in parallel at the same time, and the master-problem
is very simple in updating the Lagrange multipliers via (9). The
iterative process terminates when the total least-square errors
satisfy the following stopping criteria:

||F k+1−F k||2⩽ϵ1, ||µt,k+1−µt,k||2⩽ϵ2, ∀t ∈ T , (10)

where F k =
NT∑
t=1

||
NE∑
i=1

(cTxt,k
i −pt,k

sig,i)||22, and ϵ1 and ϵ2 are

predetermined thresholds.

B. Warm-Start Strategy

Seeking pt∗
sig,i is crucial for reaching global optimality in the

DMILS approach, and in turn suitable initial pt,0
sig,i is essential

for fast convergence of the proposed iterative approach. Thus,
we utilize a warm-start strategy for the proposed DMILS
approach by solving the integer-relaxed BDO model for the
initial guess pt,0

sig before iterations begin. Recall that the
integer-relaxed BDO model imposes the continuous relaxation
of binary variables λt

c,i and λt
d,i, yielding

integer-relaxed BDO model:
min (4a), (11a)

s.t. (1b)−(1d), (3a)−(3c), (11b)

λt
c,i + λt

d,i = 1,λt
c,i,λ

t
d,i ∈ [0, 1], ∀t ∈ T , ∀i ∈ E . (11c)

The optimal solution xt† obtained from this integer-relaxed
BDO model achieves the minimum objective value F † with
F † ⩽ G∗, where G∗ is minimum objective function value
solved from the proposed BDO model in (6) corresponding
to optimal solution xt∗. Then, xt† may be equal to xt∗, or
another optimal solution of (6), or even infeasible for (6) with
the same objective function value. For instance, suppose that
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Algorithm 1 DMILS

1: Initialization with input e0, ηc, ηd, E, E and P over NE units
of EV batteries and input parameters µt,0, ρ, ϵ1 and ϵ2;

2: Obtain warm-start point pt,0
sig by solving (11a)–(11c);

3: while k ⩽ kmax do
4: Each sub-problem distributively updates (xt,k+1

i ,pt,k+1
sig,i ) ←

(xt,k
i ,pt,k

sig,i) by solving (8) ;
5: Each sub-problem distributively sends pt,k+1

sig,i to the master-
problem;

6: Master-problem updates µt,k+1 ← µt,k by (9) and returns
µt,k+1 to all sub-problems;

7: if stopping condition (10) is satisfied then
8: return optimal solution xt∗

i for all EV batteries;
9: else

10: k ← k + 1;
11: end if
12: end while

two batteries A and B, both with the same initial energy
e0,A =e0,B , are scheduled over two time periods (NT = 2),
and ptref = e∗ at time t = 1. An optimal solution at
time t = 1 is (λt∗

c,A,λ
t∗
d,A) = (1, 0), (λt∗

c,B ,λ
t∗
d,B) = (0, 0)

and (P t∗
c,A,P

t∗
d,A) = (e∗, 0), (P t∗

c,B ,P
t∗
d,B) = (0, 0) with the

minimum objective function value G∗. However, the optimal
solution of the integer-relaxed BDO model xt†, may have
three outcomes: (i) xt† is exactly equal to the optimizer
yielded by solving (6), (ii) xt† is infeasible for (6) with
P t†

c,A,P
t†
d,A,P

t†
c,B and P t†

d,B in xt† simultaneously charging
and discharging, (iii) xt† is another optimal solution of (6)
with, e.g., (λt†

c,A,λ
t†
d,A) = (0, 0), (λt†

c,B ,λ
t†
d,B) = (1, 0) and

(P t†
c,A,P

t†
d,A) = (0, 0), (P t†

c,B ,P
t†
d,B) = (e†, 0) at time t = 1,

and all three achieve the objective function value F †=G∗.
This toy example illustrates two conclusions. First, the BDO

model (6) may have multiple optimal solutions yielding the
same objective function value G∗. As the MIQP-based BDO
model (4a)–(4b) differs from the upper-boundary BDO model
(6) only in the objective function, the MIQP-based BDO model
also may have multiple optimal solutions. Second, the integer-
relaxed BDO model (11a)–(11c) can provide the optimal point
pt,†
sig,i that can be used to initialize pt,0

sig,i. A near-optimal
initial point pt,0

sig,i enables the proposed DMILS approach to
converge quickly. Moreover, having the warm start leads to
fewer switches between charging and discharging actions. This
is because {pt,0

sig,i} ⩾ 0 enables all EVs to run in charging
mode as long as pt

ref ⩾ 0, whilst {pt,0
sig,i} ⩽ 0 leads to all

EVs being in discharging mode if pt
ref ⩽ 0. This means that

pt,0
sig,i enables all EVs to charge/discharge at the same time,

thus in fewer switching actions. With this warm-start strategy,
we summarize steps in the proposed iterative approach in
Algorithm 1 with the maximum iteration number kmax.

IV. CASE STUDIES

We randomly select initial SoEs of EV batteries for an EV
aggregator under different given reference power signal vectors
over a 24-hour scheduling horizon. Parameters of each EV
battery i ∈ E are ηc,i = 0.9, ηd,i = 0.95, E = 0.2, E = 1.0,
P = 0.2 p.u., ρ = 10, and ϵ1 and ϵ2 are set as 0.01.
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Fig. 2. Computational performance w.r.t. numbers of EV batteries: (a) CPU
time; (b) number of charge-discharge switches.
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Fig. 3. Optimal charge-discharge power solution: (a)M2; (b)M4.

A. Comparing with Centralized Methods

We compare the proposed DMILS approach (M4) to three
centralized solution methods, the LP-based approach in [2]
(M1), the MIQP-based BDO model solved using commercial
solver MOSEK (M2), and the MIQP-based BDO model with
disjunctive cuts solved using MOSEK (M3). Fig. 2(a) reports
the computation time with respect to the numbers of EV
batteries, and Fig. 2(b) plots the total number of charge-
discharge switches during 24 hours for M2 and M4.

The optimal solutions of M1–M3 are achieved with the
objective function value F ∗ = 0.042 and M4 is very close
with minimum objective function value F ∗ = 0.043. As
shown in Fig. 2(a), M1 incurs the least computational time
because M1 is free of binary variables, but it can result
in infeasible solutions featuring simultaneous charging and
discharging. Otherwise, M4 is superior to both M2 and M3

with respect to computational time. In fact, for the case with
NE = 500 EVs (the rightmost data points in Fig. 2(a)), M4

converges to the optimal solution in 14.00% and 18.67% of
the time taken by M2 and M3, respectively. Moreover, as
shown in Fig. 2(b), M4 results in fewer charging/discharging
switches than M2. For M4, the fewer charging/discharging
switches is a side benefit of the proposed warm-start strategy.
To further demonstrate the numbers of charging/discharging
switches in M2 and M4, Figs. 3(a) and 3(b) present the
specific optimal charge-discharge power solutions for the case
with NE = 10 EVs. In Fig. 3(a), M2 incurs many charging
and discharging actions over 24 hours, while M4 imposes few
charging and discharging actions, as shown in Fig. 3(b). This
is highly beneficial as charging/discharging switches degrade
the remaining useful life of EV batteries [13].

B. Comparing with Decentralized Algorithms

We implement the decentralized whale optimization al-
gorithm (M5) [8] and water-filling based algorithm (M6)
[10] for comparison with the proposed method (M4). Other
parameters can be found in [8] and [9]. We assume the
scheduling horizon is defined from 08:00a.m. to 07:00a.m.
on th next day for the case with NE = 10 EVs, and thus
the discharging and charging periods in M6 are 08:00–17:00
and 18:00–07:00 on the next day, respectively. Fig. 4(a) plots
the minimum objective function values in every time period
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for M4 and M5, indicating that M4 achieves lower values
than M5, which suffers from improper hyperparameter tuning.
Fig. 4(b) compares the SoE of the first EV battery over 24
hours resulting from M4 and M6. The relaxation of the SoE
equality in M6 results in et ̸=1 in the last time period.

C. Comparing with Random-Start Initialization

In Fig. 5(a), we plot the minimum objective function value
F ∗ obtained from the benchmark M2 and compare it to G∗

obtained from the proposed M4 for different numbers of EVs.
We observe that, indeed, G∗ ≈ F ∗ in all cases. Furthermore,
in Fig. 5(b), for the case with NE = 10 EVs, we show
the convergence of the objective function G∗ values resulting
from M4 (under warm-start strategy) in blue-colored right y-
axis and from the same but with a random-start initialization
in grey-colored left y-axis. The warm-start strategy results
in much faster convergence in 7 iterations to the optimal
objective function value G∗ = 0.4746. Since we know that
F † ⩽ F ∗ ⩽ G∗, the objective function value G begins at
F † and increases to G∗ over iterations. By comparison, the
random-start counterpart results in the objective function value
decreasing from 1.6213 to 0.9268, much larger and with many
more iterations.

D. Comparing with Integer-Relaxed BDO Model

We demonstrate that the proposed DMILS approach (M4)
can indeed converge to an optimal solution from the warm-
start initialization point solved from the integer-relaxed BDO
model. Fig. 6(a) plots the optimal charge and discharge power
solutions from M4 in blue color and from the integer-relaxed
BDO model in grey color for each EV for the case with
NE = 10 EVs. Fig. 6(b) displays their corresponding dif-
ferences in pt,0

sig,1 and pt∗
sig,1 for the first EV. As demonstrated

by the black and blue traces in Fig. 6(a), M4 corrects the
simultaneous charging and discharging power solution that
occurs in the last time period from the solution of the integer-
relaxed BDO model. Correspondingly, Fig. 6(b) presents the
power reference signals for one EV battery resulting from the
solutions of the proposed M4 (blue trace) with warm-start
initialization point solved from the integer-relaxed BDO model
(black trace).
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Fig. 6. Comparison between DMILS and Integer-relaxed BDO model: (a)
optimal charge-discharge solutions; (b) optimal pt∗

sig,i and pt,0
sig,i.

V. CONCLUDING REMARKS

In this paper, we proposed a DMILS approach combining
disjunctive cuts to solve large-scale BDO problems for EV
aggregators with lower computational time, optimal charge-
discharge solutions with fewer switches, and minor commu-
nication overhead. Moreover, the proposed DMILS approach
serves to correct the potentially infeasible solution from the
integer-relaxed BDO model in only several iterations. Case
studies show that the proposed DMILS approach converges
to the optimal solution in 14.00% of the time taken by the
benchmark centralized counterpart for the case of N = 500
EVs; and it achieves the optimal charge-discharge solutions
with fewer charge-discharge switches than those resulting from
existing methods.
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