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Abstract—This paper formulates a dynamics-aware linearized
optimal power flow (OPF) problem that co-optimizes operation
cost and frequency regulation of islanded microgrids in re-
sponse to load disturbances. The proposed dynamics-aware model
penalizes frequency deviations in the objective function, thus
tracking the system frequency to synchronous value in steady
state by suitably updating generator reference set-points. The
use of linearized power flow constraints promotes computational
practicality while maintaining sufficient modelling fidelity. We
demonstrate the benefits of the proposed model via numerical
case studies involving an 18-Bus AC shipboard test system
serving as a practical instance of an islanded microgrid.

Index Terms—Frequency dynamics, frequency regulation, is-
landed microgrids, linearized model, optimal power flow

I. INTRODUCTION

Equipped with local generation as well as autonomous con-
trol capability, a microgrid can operate in both grid-connected
and islanded modes. This unique property renders microgrids
indispensable actuators in the modern electric power systems,
key components for improving energy efficiency and power
reliability, and enablers of integrating aspirational shares of
renewable generation [1]. The undeniable benefits on offer
have spurred efforts by system operators and policy makers
to facilitate microgrid integration in power systems [2], and
the associated cumulative revenue is anticipated to reach
above $164.8 billion by 2024 [3]. Moreover, microgrids in
the islanded mode are representative of hybrid-electric ship-
board power systems, and marine transportation is absolutely
essential in the global economy as more than 90% of trade
goods are carried by sea [4]. There are, however, significant
technical challenges to operating microgrids in a reliable and
economical fashion. Notably, the smaller size of microgrids
as compared to the bulk power system suggests more con-
servative operation and control strategies, especially in the
islanded mode when microgrids are left with reduced inertia
and become more susceptible to larger frequency excursions
due to load fluctuations [5]. However, conservative strategies
are typically at odds with operating the system in the most
cost effective manner.

While there have been many proposed designs of micro-
grid control systems over the past decades, the hierarchical
architecture remains the dominating strategy [6]. This ar-
chitecture embeds three control layers—primary, secondary,

and tertiary—that trigger sequentially across different time-
scales [7]. Primary control refers to local voltage and fre-
quency control of generation sources that takes effect within
seconds after a disturbance like a load change. In case of sus-
tained generation-load imbalance, primary frequency control
results in steady-state frequency deviations that are, in turn,
regulated by secondary control through automatic generation
control (AGC). The AGC updates generator references every
few seconds based on the measured frequency deviation and
the optimal set-points furnished by tertiary control. In the
tertiary control layer, the optimal generator set-points are de-
termined by solving an economic dispatch (ED) that minimizes
the microgrid operation cost given the look-ahead predicted
system load. The AGC adjusts the generator reference power
inputs in real time based on small-signal sensitivity analysis
around the optimal ED set-points, which indeed perform well
for small load variations [8]. However, for more aggressive
load changes, the underlying small-signal assumptions may
no longer hold, and the AGC action may lead to economically
inefficient operation. Thus, given that the net-load (load minus
non-dispatchable generation) of low-inertia islanded micro-
grids hosting high shares of renewable resources undergoes
larger and more frequent variations, embedding ED in lower
control layers holds latent potential for cost reductions.

Co-optimization of energy dispatch and frequency regula-
tion has recently been studied from several perspectives [9]–
[15]. For example, [9] shows that the AGC function combined
with system dynamics is indeed the equilibrium point of a
suitably designed optimization problem, inspiring a reverse-
engineering approach that breaks the control hierarchy and
incorporates ED into secondary control. In contrast, the focus
of [10] is to preserve the multi-time-scale control architecture
by formulating a two-stage stochastic optimization problem
temporally decomposed over secondary and tertiary control
layers. Real-time dynamic pricing is utilized in [11], [12]
to envision an iterative market for real-time energy dis-
patch, which results in an efficient market equilibrium with
zero steady-state frequency deviation. In [13], the security-
constrained ED is enhanced with the AGC model in an effort
to co-optimize three distinct services: energy, spinning reserve,
and regulation capacity. A dynamics-aware continuous-time
ED problem is formulated in [14] along with a computationally
efficient function space-based solution method, and it improves
economic efficiency and system frequency by providing con-
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tinuously differentiable optimal dispatch inputs for the AGC.
The papers cited above either completely neglect network
constraints [14] or use overly simplified network models,
such as the DC power flow [10], [13] or a similar model
except without the unity voltage assumption [9], [12]. No-
tably, [9]–[14] all disregard network losses. While the lossless
assumption may be applicable for high-voltage transmission
systems, it is unrealistic for typical microgrids operating at
lower voltages. To overcome this limitation, [15] adopts a more
elaborate network model derived from linearizing the power
flow equations around a known operating point.

In this paper, we formulate a comprehensive dynamics-
aware optimal power flow (OPF) problem for microgrid oper-
ation in the islanded mode. Salient features of the formulated
problem include: (i) generator dynamics as constraints, (ii) two
distinct time steps to concurrently model slower generator set-
point decisions and faster system dynamics, and (iii) penaliza-
tion of frequency excursions (from synchronous value) in the
objective function to mimic AGC functionality. To capture net-
work constraints, we leverage a linearized power flow model
that accommodates non-unity voltage magnitudes, accounts
for reactive-power flows and injections, and incorporates line
losses as lumped loads distributed between line sending and
receiving ends. Unlike [15], the linearization in our formula-
tion does not require a known operating point. The linearized
power flow constraints promote computational efficiency in
the solution algorithm. The resulting linear programming (LP)
problem can be solved using well established algorithms
that are readily available in standard optimization toolboxes.
Given the above, compared to prior work in this domain,
our proposed problem formulation strikes a tactful balance
between modelling fidelity and computational practicality.

II. PRELIMINARIES

The proposed dynamics-aware formulation incorporates
synchronous generator dynamics in an OPF problem. In this
section, we present models for linearized AC power flow
constraints and synchronous generator dynamics.

A. Linearized AC Power Flow Model

Consider a microgrid modelled as a directed graph (N , E),
where N = {1, . . . , N} and E = {(i, j), i, j ∈ N , j ≡ j(i)}
respectively represent the sets of nodes and lines. For node i ∈
N , denote its voltage magnitude and phase angle by Vi and θi,
respectively. We model the line (i, j) ∈ E using the lumped-
parameter Π-model with series admittance yij = yji = gij +
jbij and shunt admittance ysh

ij = ysh
ji = jbshij . Let G denote the

set of online generators. Generator g ∈ G delivers active power
P e
g and reactive power Qe

g . Taken together, generators supply
non-frequency-sensitive active- and reactive-power loads in the
microgrid P d

i and Qd
i , i ∈ N . Finally denote the set of online

generators connected to node i by Gi.
1) Line Power Flows: The nonlinear equations describing

the active- and reactive-power flows in line (i, j) ∈ E are
respectively given by

Pij = V 2
i gij − ViVj (gij cos θij + bij sin θij) , (1)

Qij = −V 2
i (bij + bshij ) + ViVj (bij cos θij − gij sin θij) , (2)

where θij := θi − θj . Assume that θij � 1, so that sin θij ≈
θij and cos θij ≈ 1 in (1) and (2). Also we substitute Vi =
1 + ∆Vi, i ∈ N , into (1)–(2) to approximate line active- and
reactive-power flows as follows:

Pij = (∆Vi −∆Vj) gij − bijθij , (3)

Qij = −(1 + 2∆Vi)b
sh
ij − (∆Vi −∆Vj) bij − gijθij , (4)

where we have neglected the quadratic terms [16]. In general,
variables in (3)–(4) may be subject to the following box
constraints:

P ij ≤ Pij ≤ P ij , (i, j) ∈ E , (5)

Q
ij
≤ Qij ≤ Qij , (i, j) ∈ E , (6)

∆V i ≤ ∆Vi ≤ ∆V i, i ∈ N , (7)

capturing, respectively, limits in line active-power flows, line
reactive-power flows, and nodal voltage magnitudes.

2) Line Losses: Consistent with the power flow model
in [16], to model losses in line (i, j) ∈ E , we apply the second-
order Taylor series expansion of cos θij ≈ 1−θ2

ij/2 and further
neglect all higher-order terms in the expression for line losses.
Then the active-power losses in line (i, j) can be approximated
by the following quadratic function:

P loss
ij = gijθ

2
ij , (i, j) ∈ E , (8)

which we aim to linearize. Given that the quadratic loss
function in (8) is convex in θij , and the minimization of
loss aligns with that of operation cost, an approach analogous
to prevailing cost function linearization (see, e.g., [17]) may
be applied, except with an extra set of auxiliary variables
to capture the absolute value of θij . To this end, let us
define positive-valued auxiliary variables θ+

ij and θ−ij so that
θij = θ+

ij − θ
−
ij . Also define a linearization domain such that

its minimum and maximum bounds are marked by 0 to θij
(where θij is a sufficiently large value that does not restrict
the space of feasible solutions) and divide the interval 0 to θij
into S linearization segments S = {1, . . . , S}. Each segment
s ∈ S is delimited by its boundary values θ̂ij,s−1 and θ̂ij,s
such that [0, θij ] =

⋃
s∈S [θ̂ij,s−1, θ̂ij,s], where θ̂ij,0 = 0

and θ̂ij,S = θij . Further define the positive-valued auxiliary
variable ϑij,s, s ∈ S , so that 0 ≤ ϑij,s ≤ θ̂ij,s − θ̂ij,s−1.
Let αij,s represent the slope of linearized loss function in
segment s ∈ S, which can be expressed as

αij,s =
gij θ̂

2
ij,s − gij θ̂2

ij,s−1

θ̂ij,s − θ̂ij,s−1

= gij(θ̂ij,s + θ̂ij,s−1). (9)

Then the loss function in (8) can be linearized as follows:

P loss
ij =

∑
s∈S

αij,sϑij,s, (i, j) ∈ E , (10)

θij = θ+
ij − θ

−
ij , θ

+
ij , θ

−
ij ≥ 0, (i, j) ∈ E , (11)∑

s∈S
ϑij,s = θ+

ij + θ−ij , (i, j) ∈ E , (12)

0 ≤ ϑij,s ≤ θ̂ij,s − θ̂ij,s−1, s ∈ S, (i, j) ∈ E . (13)
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3) Nodal Power Balance Equations: The nodal active- and
reactive-power balance equations are formulated as

Pi = −P d
i +

∑
g∈Gi

P e
g =

∑
(i,j)∈E

(
Pij +

P loss
ij

2

)
, i ∈ N ,

(14)

Qi = −Qd
i +

∑
g∈Gi

Qe
g =

∑
(i,j)∈E

Qij , i ∈ N , (15)

where Pi and Qi respectively denote the net active- and
reactive-power injections at node i, and losses in line (i, j)
are represented by lumped loads distributed between the line
sending and receiving ends.

B. Synchronous Generator Model

Using the classical machine model that comprises a constant
voltage Eg = 1+∆Eg with rotor electrical angular position δg
behind reactance jXg , the active and reactive electrical power
output of generator g ∈ G are calculated as

P e
g =

Eg(δg − θi)
Xg

, Qe
g =

∆Eg −∆Vi
Xg

, g ∈ Gi, (16)

and they are limited through the following box constraints:

P e
g ≤ P e

g ≤ P
e

g, Qe

g
≤ Qe

g ≤ Q
e

g, g ∈ Gi. (17)

Let ωg and Pm
g respectively denote the electrical angular

frequency and turbine mechanical power for generator g ∈ G.
Assuming that each generator initially operates at the syn-
chronous steady state with ωg(0) = ωs = 2π60 [rad/sec],
we define ∆ωg := ωg − ωs. We model the dynamics of
generator g ∈ G as follows:

δ̇g = ∆ωg, g ∈ G, (18)
Mg∆ω̇g = Pm

g −Dg∆ωg − P e
g , g ∈ G, (19)

τgṖ
m
g = P r

g − Pm
g −R−1

g ∆ωg, g ∈ G, (20)

where Mg and Dg denote, respectively, its inertia and damping
constants, and τg , P r

g , and Rg denote its governor time
constant, reference power input, and droop constant, respec-
tively [18]. The generator model in (18)–(20) does not include
dynamics for automatic voltage regulators or power-system
stabilizers. Given the time scales of interest, however, we find
that the model in (18)–(20) is sufficiently accurate to capture
generator frequency dynamics. It is worth noting that dynamics
of other components (like loads) can be easily incorporated at
the expense of greater notational and computational burden.

III. PROBLEM FORMULATION

Consider a scheduling horizon from time t0 to t0 + T .
We introduce two optimization time steps. The time step
representing the faster system dynamics is denoted by ∆tD =
T
ND , which is small enough to capture the dynamics of
generators and line power flows (e.g., 0.05 [sec]). With ∆tD,
the scheduling horizon subdivides into ND intervals with
the boundary points contained in the set T D

t0 = {t0, t0 +
∆tD, . . . , t0 + T − ∆tD}. Next, decisions on generator set-
points are made over longer time intervals ∆tS = T

NS

(e.g., 2.5 [sec]), and the scheduling horizon subdivides into
NS intervals with the boundary points contained in the set
T S
t0 = {t0, t0 + ∆tS , . . . , t0 + T −∆tS}. In this section, we

formulate the proposed dynamics-aware OPF problem and turn
it into an LP problem to promote computational practicality.

A. Dynamics-aware OPF Problem with Linear Constraints
The dynamics-aware OPF problem minimizes the operation

cost of generators over the scheduling horizon and penalizes
deviations of generator angular frequency in the objective
function. Define the positive-valued auxiliary variables ∆ω+

g,t

and ∆ω−g,t respectively representing upward and downward
deviations of the generator g electrical angular frequency from
the synchronous value. We formulate the following dynamics-
aware OPF problem:

min
∑
t∈T D

t0

∑
g∈G

(
Cg(Pm

g,t) +
κ

|G|
(∆ω+

g,t + ∆ω−g,t)
)

∆tD (21a)

s.t.
δg,t+∆tD − δg,t

∆tD
= ∆ωg,t, t ∈ T D

t0 , (21b)

Mg ·
∆ωg,t+∆tD −∆ωg,t

∆tD
= Pm

g,t −∆ωg,tDg − P e
g,t,

g ∈ G, t ∈ T D
t0 , (21c)

τg ·
Pm
g,t+∆tD − P

m
g,t

∆tD
= P r

g,t′ − Pm
g,t −R−1

g ∆ωg,t

g ∈ G, t ∈ T D
t0 , t

′ ∈ T S
t0 , (21d)

∆ωg,t = ∆ω+
g,t −∆ω−g,t, ∆ω+

g,t,∆ω
−
g,t ≥ 0,

g ∈ G, t ∈ T D
t0 , (21e)

δ1,t0 = 0, (21f)
constraints (3)–(7), (10)–(17), (21g)

where Cg(Pm
g,t) represents the convex cost function of genera-

tor g ∈ G and κ ≥ 0 is a uniform penalty factor for frequency
deviations. Also, constraints in (21b)–(21d) are discrete-time
dynamic equations derived from (18)–(20), and the constraint
in (21f) sets the system reference angle. Furthermore, decision
variables in the operational constraints (3)–(15), and (16)–(17)
(all collected in (21g)) are augmented with subscript t, and the
constraints are imposed for all time intervals t ∈ T D

t0 .

B. Cost Function Linearization
The operation cost function Cg(Pm

g,t), g ∈ G, is typically
a nonlinear convex function of its argument. In order to
convert the dynamics-aware OPF problem in (21) into an
LP problem, Cg(Pm

g,t) is linearized as follows. Dividing the
interval [Pm

g , P
m

g ] into H linearization segments indexed in
the set H = {1, . . . ,H}, each segment h ∈ H is de-
limited by its boundary values P̂m

g,h−1 and P̂m
g,h, such that

[Pm
g , P

m

g ] =
⋃

h∈H[P̂m
g,h−1, P̂

m
g,h], with end points Pm

g,0 = Pm
g

and Pm
g,H = P

m

g . We associate the positive-valued auxiliary
variable pm

g,t,h to the linearization segment h ∈ H and
calculate the cost function slope over the linearization segment
as βg,h =

Cg(P̂m
g,h)−Cg(P̂m

g,h−1)

P̂m
g,h−P̂

m
g,h−1

. The cost function is then

linearizd as follows:

Ĉg(Pm
g,t) =

∑
h∈H

βg,hp
m
g,t,h, g ∈ G, t ∈ T D

t0 , (22)
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Fig. 1. One-line diagram for an 18-Bus shipboard test system [19].

TABLE I
DYNAMIC MODEL DATA OF GENERATORS/GOVERNORS

Generator g Mg [sec] Dg τg [sec] 1
Rg

1 3.64 20 0.150 102.46
2 6.4 20 0.100 54
3 3.01 20 0.083 25
4 3.64 20 0.150 102.46

Pm
g,t = Pm

g +
∑
h∈H

pm
g,t,h, g ∈ G, t ∈ T D

t0 , (23)

0 ≤ pm
g,t,h ≤ P̂m

g,h − P̂m
g,h−1, h ∈ H, g ∈ G, t ∈ T D

t0 . (24)

IV. CASE STUDIES

As a practical instance of islanded microgrids, we consider
an 18-Bus AC shipboard test system, the one-line diagram
for which is depicted in Fig. 1. Parameter values for lines,
loads, and generator limits can be found in [19], and those
for the generator dynamic model and quadratic cost function
coefficients are reported in Tables I and II, respectively. Note
that since we assume all four generators are online, the
constant-term coefficient cg does not affect the OPF solution.
Thus, for simplicity, we set cg = 0, for all g ∈ G. The dynamic
model time step is fixed as ∆tD = 0.05 [sec] and the generator
set-point decisions are made every ∆tS = 2.5 [sec].

A. Benchmark Comparison Scenarios

We refer to the proposed dynamics-aware OPF problem
in (21) modified with the linearized generator cost function
described in (22)–(24) as “Case 0”. We implement Case 0
in GAMS and use the CPLEX solver [20] to obtain the
optimal generator set-points. We then apply the set-points
as generator references in a dynamic simulation performed
in PSAT [21], from which we obtain the associated time-
domain trajectories of each generator’s angular frequency and
mechanical power. We compare these trajectories to the ones
resulting by modulating optimal generator set-points from the
solution of a standard dynamics-oblivious OPF problem for:
• Case 1: Generators are equipped with primary gover-

nor control, and system frequency is regulated with an
industry-standard AGC (see, e.g., [8] for model details);

• Case 2: Generators are equipped with primary governor
control, but there is no secondary frequency control.

For Cases 1 and 2, the mechanical power and angular fre-
quency of generators are obtained from dynamic simulations
of the 18-Bus test system in PSAT.

TABLE II
GENERATOR QUADRATIC COST FUNCTION COEFFICIENTS

Generator g ag [$/(MWh)2] bg [$/MWh] cg [$]

1 2.200 30 0
2 0.850 20 0
3 1.225 10 0
4 1.725 13 0
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0 2.5 5 7.5
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0 2.5 5 7.5
375

376

377
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(c)

Fig. 2. Generator electrical angular frequency trajectories for
(a) Case 0, (b) Case 1, (c) Case 2.

B. Load-change Disturbance

Let us consider a scheduling horizon of length T = 7.5 [sec]
starting at time t0 = 0 [sec]. At time t = 2.5 [sec] all the active-
power loads in the system experience a 40% increase.

1) System Operation Cost & Generator Frequency: Given
the quadratic cost function with coefficients reported in Ta-
ble II and generator mechanical power trajectories, the op-
eration costs for Cases 0, 1, and 2 are $1.334, $1.435,
and $1.249, respectively. Among the three cases considered,
Case 2 bears the least operation cost as the AGC is not present
to regulate frequency to synchronous value. Hence, as shown
in Fig. 2c, we observe steady-state frequency deviations for
all generators in Case 2. On the other hand, Case 1 embeds a
standard AGC system, which maintains generator frequency
to be the synchronous value at steady state, as shown in
Fig. 2b. However, Case 1 incurs the highest operation cost
of all three cases. This is because the standard AGC adjusts
generator references via an ad-hoc approach contingent on
small-signal assumptions, which may be invalidated by the
large load disturbance considered in our simulations. Finally,
Case 0 recovers generator frequency trajectories back to the
synchronous value at steady state with 7.04% savings in
operation cost as compared to Case 1. Furthermore, a visual
inspection of Figs. 2a–2b reveals that, in Case 0, the generator
frequency trajectories settle back to steady state faster and
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Fig. 3. Mechanical power and reference set-points in Case 0 for
(a) generator 1, (b) generator 2, (c) generator 3, and (d) generator 4.

with less initial frequency nadir, indicating better dynamic
performance overall.

2) Mechanical Power & Set-points: Here, we offer further
details for the results in Case 0. In Fig. 3, we plot trajectories
of the optimal generator set-points and the generator mechani-
cal power obtained from the dynamics-aware OPF problem as
the dashed-black and the solid-black traces, respectively. In-
deed, we find that the slower decisions on generator set-points
are made for each longer time interval of ∆tS = 2.5 [sec],
while generator dynamics are captured at the faster time-scale
corresponding to the shorter time interval of ∆tD = 0.05 [sec].
In the same figure, we also overlay the actual trajectories of
generator mechanical power obtained from a PSAT simulation
using the optimal set-points (i.e., the dashed traces) as the
generator references. We observe that the trajectories from the
dynamics-aware OPF match closely to the PSAT simulation in
steady state, providing validation for the proposed formulation.
During the transient period prior to reaching steady state, the
two sets of mechanical power trajectories follow similar trends.
Mild differences are likely due to the simplified reduced-
order generator dynamical models and linearized power flow
constraints adopted to reduce computational burden of the
dynamics-aware OPF problem.

V. CONCLUDING REMARKS

In this paper we formulated a linear dynamics-aware OPF
problem for islanded microgrid operation aimed at bridg-
ing the gap amongst hierarchical control layers through co-

optimization of energy dispatch and frequency regulation.
The proposed multi-time-scale model embeds discrete-time
generator dynamics and a linearized power flow model as con-
straints. The numerical results demonstrate the effectiveness
of the proposed model in reducing the microgrid operation
cost during the transient period after a load disturbance and
improving system frequency response. Future work includes
consideration for energy storage and load forecast uncertainty.
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