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Abstract—This paper addresses the problem of detecting and
identifying transmission line outages in near real-time. To this
end, we utilize the statistical properties of electricity generation
and demand, and apply a quickest change detection algorithm
to measurements of voltage phase angles collected using phasor
measurement units (PMUs). We propose a procedure for opti-
mally selecting the buses for PMU placement with the goal of
minimizing the worst case line outage detection delay. In addition,
we propose a method to optimally partition the power system into
several areas such that the algorithm for line outage detection
can be applied in parallel to each area for faster detection. We
illustrate the proposed ideas via case studies involving the IEEE
30-bus test system.

I. INTRODUCTION

Timely detection of line outages in a power system is
crucial for maintaining operational reliability as it plays a
role in ensuring the correct operation of many decision-
making tools. In this regard, many of the current methods
for online power system monitoring rely on a system model
that is obtained offline, which can be inaccurate due to bad
historical or telemetry data. Such inaccuracies have been a
contributing factor in many recent blackouts. For example,
in the 2011 San Diego blackout, operators were unable to
determine overloaded lines because the network model was
not up to date [1]. This lack of situational awareness limited
the ability of the operators to identify and prevent the next
critical contingency, and led to a cascading failure. Similarly,
during the 2003 Northeast blackout, operators failed to initiate
the correct remedial schemes because they had an inaccurate
model of the power system and could not identify the loss
of key transmission elements [2]. These blackouts highlight
the importance of developing online measurement-based tech-
niques to detect and identify system topological changes that
arise from line outages.

Our work builds on the results reported in [3]–[5], where
the authors developed methods for line outage detection and
identification, based on the theory of quickest change detection
(QCD). In these methods, the incremental changes in real
power injections at load buses are modeled as independent
random variables. Then, the probability distribution of such
incremental changes is mapped to that of the incremental
changes in voltage phase angles via a linear transformation
obtained from the power flow equations. When a line outage
occurs, the probability distribution of the incremental changes
in the voltage phase angles changes abruptly. The objective

is to detect a change in this probability distribution after
the occurrence of a line outage as quickly as possible while
maintaining a desired false alarm rate.

In this paper, we consider the problem of identifying a
subset of buses for placing the PMUs to be utilized by the
QCD algorithms proposed in [3]–[5]. We propose an optimal
PMU placement strategy in the sense of minimizing the worst-
case line outage detection delay, for a fixed false alarm rate.
We formulate this as an integer programming problem and
present a greedy algorithm for solving it, and show that for
our test cases, optimally deploying PMUs at approximately
one third of the system buses is adequate for timely line
outage detection. Next, we achieve a faster detection time
by proposing a method to partition the power system into
smaller subsystems so that the proposed QCD-based detection
algorithms can be applied to all the areas concurrently. The
optimality criteria considered for the partitioning algorithm
include balancing the number of lines within each area,
minimizing the number of tie-lines between areas, and min-
imizing the worst-case detection delay. We then propose a
method based on the Kernighan-Lin algorithm [6] for solving
this partitioning problem. Lastly, we improve the algorithm
proposed in [3] by using the so-called governor power flow
model (see, e.g., [7]), which more realistically represents the
actual behavior of the power system.

Early approaches for topological change detection include
algorithms based on state estimation [8], [9], and rule-based
algorithms that mimic system operator decisions [10]. More
recent proposed methods exploit the fast sampling of voltage
magnitudes and phases provided by PMUs [11]–[13]. In terms
of the PMU placement problem, most of the research has been
focused on achieving network observability with minimum
number of PMUs; on the other hand, the objective of our
research is to find the optimal PMU placement for quickly de-
tecting network topological changes. Heuristic techniques for
determining optimal placement include simulated annealing,
nondominated sorting genetic algorithms, and particle swarm
methods [14]–[17].

The remainder of this paper is organized as follows. Sec-
tion II describes the model of the power system adopted in
this work, and introduces the statistics describing the voltage
phase angles. Section III outlines the proposed QCD-based line
outage identification algorithm. In Section IV, we present an
algorithm for optimal PMU placement and a system partition-



ing scheme so that the QCD-based algorithm can be applied
concurrently to each area of the partitioned system. Section V
illustrates the proposed ideas via numerical case studies on
the IEEE 30-bus test system. Finally, Section VI provides the
concluding remarks and directions for future work.

II. SYSTEM MODEL

We represent the power system network by a graph con-
sisting of N nodes and L edges, corresponding to buses and
transmission lines, respectively. The set of buses is denoted by
V = {1, . . . , N}, and the set of transmission lines is denoted
by E , where for m,n ∈ V , (m,n) ∈ E if there exists a
transmission line between buses m and n.

At time t, let Vi(t) and θi(t) respectively denote the voltage
magnitude and phase angle at bus i, and let Pi(t) and Qi(t)
respectively denote the net active and reactive power injections
at bus i. Then, the quasi-steady-state behavior of the system
can be described by the power flow equations, which for bus i
can be compactly written as:

Pi(t) = pi(θ1(t), . . . , θN (t), V1(t), . . . , VN (t)), (1)
Qi(t) = qi(θ1(t), . . . , θN (t), V1(t), . . . , VN (t)).

A. Pre-outage Incremental Power Flow Model

Let Pi[k] := Pi(k∆t) and Qi[k] := Qi(k∆t), ∆t > 0,
k = 0, 1, 2, . . . , denote the kth measurement sample of active
and reactive power injections into bus i. Similarly, let Vi[k]
and θi[k], k = 0, 1, 2, . . . , denote bus i’s kth voltage magnitude
and angle measurement sample. Furthermore, define variations
in voltage magnitudes and phase angles between consecutive
sampling times k∆t and (k + 1)∆t as ∆Vi[k] := Vi[k +
1] − Vi[k] and ∆θi[k] := θi[k + 1] − θi[k], respectively.
Similarly, variations in the active and reactive power injections
at bus i between two consecutive sampling times are defined
as ∆Pi[k] = Pi[k+1]−Pi[k] and ∆Qi[k] = Qi[k+1]−Qi[k].

We linearize (1) about (θi[k], Vi[k], Pi[k], Qi[k]), i =
1, . . . , N and use the DC power flow assumptions to decou-
ple the active and reactive power flow equations. Then, the
variations in the voltage phase angles can be mapped to the
variations in the active power injection as:

∆P [k] ≈ H0∆θ[k], (2)

where ∆P [k], ∆θ[k] ∈ R(N−1) and H0 ∈ R(N−1)×(N−1).
Note that the N − 1 dimension of the vectors is the result of
omitting the reference bus equation, which we designate to be
bus 1.

In an actual power system, random fluctuations in the load
drive the generator response. Therefore, in this paper, we use
the so-called governor power flow model (see, e.g., [7]) to
capture the system behavior, which is more realistic than the
conventional power flow model where the slack bus picks up
any changes in the load power demand. In the governor power
flow model, at time instant k, the relation between changes in
the load demand vector, ∆P d[k] ∈ RNd , and changes in the
power generation vector, ∆P g[k] ∈ RNg , is described by

∆P g[k] = B∆P d[k], (3)

where B is a matrix of participation factors and
Nd +Ng = N − 1. Let M0 := H−1

0 . We can then substitute
(3) into (2) to obtain a pre-outage relation between the
changes in the voltage angles to the active power demand at
the load buses as follows:

∆θ[k] ≈M0∆P [k]

=: [M1
0 M2

0 ]

[
∆P g[k]
∆P d[k]

]
= [M1

0 M2
0 ]

[
B∆P d[k]
∆P d[k]

]
= (M1

0B +M2
0 )∆P d[k]

= M̃0∆P d[k]. (4)

B. Post-outage Incremental Power Flow Model
Now suppose a persistent outage occurs for the line (m,n)

at time t = tf , where γ∆t ≤ tf < (γ + 1)∆t. In addition,
assume that the loss of line (m,n) does not cause islands
to form in the post-event system (i.e., the underlying graph
representing the internal power system remains connected).

In order to relate the post-outage ∆θ[k] to ∆P d[k] as in (4),
we first express the change in matrix H0 resulting from the
outage as the sum of the pre-change matrix and a perturbation
matrix, ∆H(m,n), i.e., H(m,n) = H0 +∆H(m,n). Then, letting
M(m,n) := H−1

(m,n) = [M1
(m,n) M2

(m,n)], and substituting
into (4) for M0 and simplifying, we obtain the post-outage
relation between the changes in the voltage angles to the active
power demand as:

∆θ[k] ≈ M̃(m,n)∆P
d[k], k ≥ γ, (5)

where M̃(m,n) = M1
(m,n)B +M2

(m,n).

C. Instantaneous Change During Outage
At the time of outage, t = tf , there is an instantaneous

change in the mean of the voltage phase angle measurements
that affects only one incremental sample, namely, ∆θ[γ] =
θ[γ + 1] − θ[γ]. The measurement θ[γ] is taken immediately
prior to the outage, whereas θ[γ+1] is the measurement taken
immediately after the outage. We model the effect of an outage
in line (m,n) via a power injection of P(m,n)[γ] at bus m and
−P(m,n)[γ] at bus n, where P(m,n)[γ] is the pre-outage line
flow across line (m,n). Following a similar approach as [3],
the relation between the incremental voltage phase angle at the
instant of outage, ∆θ[γ], and the variations in the real power
flow can be expressed as:

∆θ[γ] = M0∆P [γ]− P(m,n)[γ + 1]M0r(m,n), (6)

where r(m,n) ∈ RN−1 is a vector with the (m − 1)th entry
equal to 1, the (n − 1)th entry equal to −1, and all other
entries equal to 0. Furthermore, by using the governor power
flow model of (3) and substituting into (6), and simplifying,
we obtain:

∆θ[γ] = M̃0∆P d[γ]− P(m,n)[γ + 1]M0r(m,n). (7)



D. Measurement Model

We allow for the situation where the angles are measured
at only a subset of the load buses and denote this reduced
measurement set by θ̂[k]. Suppose that there are Nd load buses
and we select p ≤ Nd locations to deploy the PMUs. As a
result, there are

(
Nd

p

)
possible locations to place the PMUs.

Let

M̃ =

{
M̃0, if k ≤ γ,
M̃(m,n), if k > γ.

(8)

Then, the absence of a PMU at bus i corresponds to removing
the ith row of M̃ . Thus, let M̂ ∈ Rp×Nd be the matrix obtained
by removing N−p−1 rows from M̃ . Therefore, we can relate
M̂ to M̃ in (8) as follows:

M̂ = CM̃, (9)

where C ∈ Rp×(N−1) is a matrix of 1’s and 0’s that
appropriately selects the rows of M̃ based on buses with
PMUs. Accordingly, the increments in the phase angle can
be expressed as follows:

∆θ̂[k] = M̂∆P d[k]. (10)

The small variations in the active power injections at the
load buses, ∆P d[k], can be attributed to random fluctuations
in electricity consumption. In this regard, we assume that the
vectors, ∆P d[k], are independent and identically distributed
(i.i.d.) in time before, during, and after the outage. In addi-
tion, we assume that the entries of ∆P d[k] are independent
random variables with a joint Gaussian probability density
function (p.d.f.), i.e., ∆P d[k] ∼ N (0,Λ). Since the statistics
of ∆P d[k] in (10) are known, ∆P d[k] is the independent
variable and ∆θ̂[k] is the observation that depends on ∆P d[k].
Consequently, we have that:

∆θ̂[k] ∼


f0 := N (0, M̂0ΛM̂T

0 ), if k < γ,
fµ(m,n) := N (−P(m,n)[γ + 1]CM0r(m,n),

M̂0ΛM̂T
0 ), if k = γ,

fσ(m,n) := N (0, M̂(m,n)ΛM̂
T
(m,n)), if k > γ.

(11)

It is important to note that for N
(

0, M̂ΛM̂T
)

to have

a nondegenerate p.d.f., the covariance matrix, M̂ΛM̂T , must
be full rank. We enforce this by ensuring that the number of
PMUs allocated, p, is less than or equal to the number of load
buses, Nd.

III. QUICKEST LINE OUTAGE
DETECTION AND IDENTIFICATION

In the setting described in Section II, the goal is to detect
the change in the probability distribution of the sequence
{∆θ̂[k]}k≥1 (that results from the line outage) as quickly
as possible while maintaining a certain level of detection
accuracy (e.g., the false alarm rate). This problem is referred
to as quickest change detection (QCD). Next, we provide a
precise mathematical description of the QCD problem and an
algorithm that we will use to detect a line outage.

The entries of voltage phase angle measurements, ∆θ̂[k],
are i.i.d. in time before, during, and after the line outage. For
the base case where no line outage is present, we have that
∆θ̂[k] ∼ f0. At some random time, tf , an outage occurs on
line (m,n) and the p.d.f. of the sequence {∆θ̂[k]} changes
from f0 to fµ(m,n) and then to fσ(m,n). The objective is to
detect this transition in the p.d.f. of {∆θ̂[k]} as quickly as
possible, which is equivalent to optimizing the stopping time
τ on the sequence of observations. In the absence of a change,
the expectation of τ , E[τ ], should be maximized so as to avoid
false alarms. On the other hand, once a line outage occurs, we
desire E[τ ] to be as small as possible.

A. Generalized CuSum Algorithm for Line Outage Detection

Suppose that the p.d.f.’s f0, fµ(m,n), and fσ(m,n) are known.
From the sequence of phase angle measurements, define the
CuSum statistic corresponding to line (m,n) as:

W(m,n)[k + 1] = max

{
0, log

fµ(m,n)(∆θ̂[k + 1])

f0(∆θ̂[k + 1])
,

W(m,n)[k] + log
fσ(m,n)(∆θ̂[k + 1])

f0(∆θ̂[k + 1])

}
, (12)

where W(m,n)[0] = 0 for all (m,n) ∈ E . Denote τC to be the
time at which the Generalized CuSum algorithm declares the
occurrence of a line outage [5]; then,

τC = inf
(m,n)∈E

{
inf{k ≥ 1 : W(m,n)[k] > A(m,n)}

}
. (13)

where A(m,n) is a threshold selected for the corresponding
W(m,n)[k] statistic. In addition, this algorithm also identifies
the line that is outaged at τC to be

(m̂, n̂) = arg max
(m,n)∈E

W(m,n)[τC]. (14)

B. Intuition Behind the Operation of the CuSum Algorithm

The algorithm we presented in (12) for line outage detection
is based on the Kullback-Leibler (KL) divergence, which for
any two probability densities f and g, is defined as follows:

D(f ‖ g) :=

∫
f(x) log

f(x)

g(x)
dx ≥ 0, (15)

with equality if and only if f = g almost surely. In the context
of the line outage detection problem, for an outage of line
(m,n), the KL divergence is

D(f(m,n) ‖ f0) =

E

[
log

(
f(m,n)(∆θ̂[k])

f0(∆θ̂[k])

)∣∣∣∣∣ (m,n) outage

]
, (16)

which provides a bound on the delay for detecting an outage in
line (m,n); a larger KL divergence results in lower detection
delay and vice versa. Prior to any changes, the mean of the log



likelihood ratio is negative due to (15). Therefore, W(m,n)[k]
would remain close to or at 0 prior to a line outage. On
the other hand, after an outage occurs, the mean of the log
likelihood ratio is positive. As a result, W(m,n)[k] increases
unboundedly after the outage in line (m,n), and the CuSum
algorithm in (12) declares the occurrence of an outage in line
(m,n) the first time that W(m,n)[k] reaches A(m,n).

IV. OPTIMAL PMU PLACEMENT AND
SYSTEM PARTITIONING

In this section, we formulate the optimal PMU placement
strategy for the given power system network so that the worst
case detection delay is minimized. Additionally, we show that
the QCD-based algorithm can be applied to each area of a
partitioned power system concurrently for faster detection, and
provide several criteria to obtain such partitions.

A. PMU Placement

The KL divergence presented in (15) has a closed form
solution if the two distributions f and g are Gaussian. Since the
pre-outage distribution, f0 ∼ N (0, M̂0ΛM̂T

0 ), and the post-
outage distribution, f(m,n) ∼ N (0, M̂(m,n)ΛM̂

T
(m,n)), are both

Gaussian, we can express D(f(m,n) ‖ f0) as

1

2

[
Tr(Γ−1

0 Γ(m,n))− p+ log(det(Γ0Γ−1
(m,n)))

]
, (17)

where p ≤ Nd is the number of PMUs allocated for the
system, Γ0 = M̂0ΛM̂T

0 , and Γ(m,n) = M̂(m,n)ΛM̂
T
(m,n).

From (17), it is evident that the KL divergences depend
on p. In addition, for a fixed p, the locations of the PMUs also
affect the KL divergences. In order to minimize the worst case
detection delay for all line outages, the following optimization
can be solved for the optimal placement of the p PMUs:

max
C

min
Γ(m,n)

1

2

[
Tr(Γ−1

0 Γ(m,n))−p+log(det(Γ0Γ−1
(m,n)))

]
, (18)

where C is defined in (9). Since we would like to minimize
the detection delay for the worst possible line outage, the inner
minimization is performed over all possible line outages in the
system.

The integer programming problem in (18) is NP hard;
therefore, in order to speed up the combinatorial search,
we propose a greedy algorithm, the pseudocode of which
is provided in Algorithm 1; this algorithm provides a lower
bound to the globally optimal solution. The algorithm chooses
the locations of the PMUs sequentially. At each step, the
additional location of the PMU is selected such that the
location maximizes the current minimum KL divergence for all
possible line outages. The algorithm stops when the number of
PMUs selected reaches p. We show in the case studies that this
method is computationally tractable with good performance.
B. Power System Network Partitioning

For scalability, the graph describing the topology of a power
system could be partitioned into subgraphs and the QCD-based
algorithm described in Section III could be applied to each
partition concurrently. There are many ways we can partition

the overall system according to some optimality criteria; we
consider three possible criteria here:

C1. Equal number of edges within each partition (balanced
size for each partition).

C2. A partition such that the number of detectable single-line
outages for the overall system is maximized.

C3. Minimum KL divergence for all the partitions is maxi-
mized (to minimize detection delay).

1) Criterion C1: Suppose each processor executing the
line-outage detection algorithm could perform computations
on K streams of data in parallel and there are L total lines
in the overall system. Then the ideal number of partitions
for the system such that all processors are fully-utilized is⌈
L
K

⌉
. A graph partitioning algorithm that achieves this goal is

proposed in [18]. This algorithm is based on computing the
spectral factorization of the partition matrix. A software for
implementing this scheme is the METIS package [19]. This
software partitions a graph into k partitions based on two
possible objective functions, minimum edgecut or minimum
communication volume (based on weights assigned to border
vertices). Hence, one form of quasi-optimality for partitioning
is to balance the number of edges within each partition; once
the number of edges within each partition is specified, then
the problem becomes finding the set of partitions such that
the minimum KL divergence in each partition is maximized.

2) Criterion C2: If the removal of an edge in the partition
further divides the graph into subgraphs (this corresponds
to islanding in the power system partition), then such a
line outage is undetectable by the QCD method. Thus, a
good partitioning scheme maximizes the number of detectable
single-line outages for the overall system.

3) Criterion C3: The optimal partition should minimize
the false alarm and false isolation rates. The false isolation
rate decays exponentially with the threshold A(m,n) while
the average detection delay is inversely proportional to the
KL divergence [20]. The problem of finding the optimal

Algorithm 1: Greedy Algorithm for PMU placement
Data: N , p
C = 0, k = 0;
for k = 1 to p do

g = 0;
for n = 1 to N do

C(k, :) = eTn ;
KL = min

Γi

1
2

[
Tr(Γ−1

0 Γi)−p+log(det(Γ0Γ−1
i ))

]
;

if g < KL then
g = KL;
l = n;

end
end
C(k, :) = eTl ;

end
return C
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(a) Full measurement set.
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(b) Reduced measurement set.
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Fig. 1: 14-bus system: Sample paths of W(m,n)[k] for outage of (2, 5).
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(a) Full System: Buses 1-14.
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(b) Area 1: Buses 1-5, 7-8.
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(c) Area 2: Buses 6, 9-14.

Fig. 2: Minimum KL divergence of 14-bus system.

partitioning of the system would then be formulated as

max
all partitions

min
Γ(m,n)

1

2

[
Tr(Γ−1

0 Γ(m,n))− p

+ log(det(Γ0Γ−1
(m,n)))

]
. (19)

Constraints can be added to the optimization problem as
necessary. These constraints include the maximum number
of edges in each partition, the maximum number of vertices
in each partition, or the number of partitions for the overall
system.

V. CASE STUDIES

In this section, we illustrate the ideas proposed in this paper
on the IEEE 14-bus and the 30-bus test systems.

A. 14-bus System

An outage in line (2, 5) is simulated at k = 10. We apply
the Generalized CuSum algorithm in (12) by computing each
CuSum statistic W(m,n)[k] with a threshold of A = 100.
Figure 1 shows the typical progressions of W(m,n)[k] for an
outage in line (2, 5). Figure 1(a) assumes a full measurement
set of voltage phase angles, while Fig. 1(b) is simulated with a
reduced measurement set, where PMUs are deployed randomly
at only nine of the buses. In both cases, the line outage
is correctly identified when the W(2,5) statistic crosses the
threshold of A = 100 first. With a full measurement set, the
correct line outage is identified 65 samples after the outage
occurs while a much longer detection delay of 170 samples is
needed for the reduced measurement set.

Now suppose that we select nine buses via the procedure in
Algorithm 1. The typical progressions of W(m,n)[k] for this

case is shown in Fig. 1(c). By optimally placing the PMUs,
we have reduced the detection delay to 79 samples, which
is significantly better than randomly choosing the nine PMU
locations.

We then adopt Criterion C1 and use the METIS software
package to partition the network of the IEEE 14-bus system.
For a partition size of 2, this program separates the 14-bus
system into areas with approximately equal number of nodes
while minimizing the number of tie-lines between the two
areas. The result from the graph partitioning algorithm is as
follows. For Area 1, Buses 1, 2, 3, 4, 5, 7, 8; Area 2, Buses 6,
9, 10, 11, 12, 13, 14. Note that while such a partition choice is
favorable from the perspective of requiring the fewest number
of direct tie-line flow measurements for the tie lines, it does
not minimize the total number of unobservable line outages
for the overall system. This is evidenced by the fact that an
outage on lines (10, 11) or (13, 14) causes islands to form in
Area 2.

Next, we compute the minimum KL divergences for the
entire 14-bus system, Area 1, and Area 2 of the partitioned 14-
bus system to compare how they are affected by the number
of PMUs deployed. Figure 2 shows how the minimum KL
divergence increases as more PMUs are added, using both
an exhaustive search that is globally optimal and the greedy
Algorithm 1. The results for the entire 14-bus system is
shown in Fig. 2(a) while those for Area 1 and Area 2 of
the partitioned 14-bus system are shown in Fig. 2(b) and Fig.
2(c), respectively. From the plots, we conclude that the greedy
algorithm provides a lower bound to the exhaustive search
because the greedy algorithm is only traversing one of the
many branches of the branch and bound method. Although
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(a) Minimum KL divergence of Area 2.
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Fig. 3: 30-bus test system

not globally optimal, the greedy algorithm is attractive in the
sense that is it tractable for larger systems.

B. 30-bus System

For the IEEE 30-bus system, we partition the system into
two areas using the METIS software and compute the mini-
mum KL divergence in Area 2 (buses 10, 12−30) to see how
it is affected by the number of PMUs deployed throughout the
partition. We apply both the greedy algorithm (the pseudocode
of which is provided in Algorithm 1) and an exhaustive
search and show the results in Fig. 3(a). Using MATLAB
running on an Intel Core i7 Processor, the greedy algorithm
required less than 2 minutes to run, while 3 days were required
for the optimal PMU placement via exhaustive search. For
the exhaustive search method, the number of computations
required for each partition is

(
Ni

p

)
while the greedy algorithm

requires only Nip computations, where Ni is the number of
buses in partition i.

Next we simulate a line outage on line (15, 23) of Area 2,
which has a KL divergence of 14.3. The threshold is set at
A = 200 with the variance of active power injections assumed
to be 0.3 at all of the load buses. Typical progressions of
W(m,n)[k] are shown in Fig. 3(b). For this particular example,
W(15,23) crosses the threshold of A = 200 for the first time 23
samples after the outage occurs, resulting in a detection delay
of 0.76 seconds given a PMU sampling rate of 60 samples/s.

VI. CONCLUDING REMARKS

In this paper, we employed a QCD-based algorithm to detect
and identify line outages and proposed a method to optimally
deploy a fixed number of PMUs across the system buses to
minimize the worst case line outage detection delay, which is
formulated as an integer programming problem. For solving
this problem, we presented a greedy algorithm and showed
that it performs well compared to an exhaustive search for the
globally optimal solution. In addition, we developed strategies
to partition the power system into multiple areas so that the
proposed line outage detection could be applied concurrently
to each area for better performance.
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