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Abstract—This paper proposes a method to compute linear
sensitivity distribution factors (DFs) in near real-time without
relying on a power flow model of the system. Instead, the
proposed method relies on the solution of an underdetermined
system of linear equations that arise from high-frequency syn-
chronized measurements obtained from phasor measurement
units. In particular, we exploit a sparse representation (i.e., one
in which many elements are zero) of the desired DFs obtained
via a linear transformation, and cast the estimation problem as
an lo-norm minimization. As we illustrate through examples, the
proposed approach is able to provide accurate DF estimates with
fewer sets of synchronized measurements than earlier approaches
that rely on the solution of an overdetermined system of equations
via the least-squares errors method.

I. INTRODUCTION

Power system operational reliability is monitored and main-
tained via online static and dynamic security assessment tools,
which generally rely on a model of the system obtained offline
[1]. In particular, static security assessment involves real-
time N-1 contingency analysis, in which operators determine
whether or not the system will meet operational reliability
requirements in case of outage in any one particular asset (e.g.,
a generator or transmission line) and, in turn, whether or not
corrective actions are required to ensure operation in a secure
state [2]. With an up-to-date model of the system, operators
can perform these analyses by repeatedly solving the nonlinear
power flow equations. However, for a large power system with
many contingencies to consider, this process could take pro-
hibitively long periods of time. One way to gain computational
speed in contingency analysis is to use an estimate of the
current operating point together with linear distribution factors
(DFs), such as injection shift factors (ISFs) and line outage
distribution factors (LODFs), obtained from an approximate
power flow model of the system (see, e.g., [3]). Recently, the
use of LODFs under multiple-line outages has been studied
to evaluate operational security during cascading outages [4],
[5]. Existing approaches to computing DFs typically rely on
the so-called DC approximations [6]; however, this method of
computing DFs lacks the flexibility of adapting to changes in
network topology or generation and load variations, which can
all affect the actual linear sensitivities significantly, and in turn
the results of the analyses that use them.

Conventional model-based online analysis tools are not
ideal since the results depend on an accurate model with

up-to-date network topology, which may not be available
due to erroneous telemetry from remotely monitored circuit
breakers. For example, in the 2011 San Diego blackout,
operators could not detect that certain lines were overloaded
or close to being overloaded because the system model was
not up-to-date [1]. Furthermore, the results from such model-
based studies may not be applicable if the actual system
evolution does not match any predicted operating points due to
unforeseen circumstances such as outages in external areas or
unpredictable levels of renewable generation. Thus, traditional
model-based techniques may no longer satisfy the needs of
monitoring and protection tasks; therefore it is important to
develop measurement-based power system monitoring tools
that are adaptive to changes in operating point and topology. In
this regard, phasor measurement units (PMUs) are an enabling
technology for the development of such measurement-based
monitoring tools. In this context, recent work has been done
in the area of detecting line outages using PMU measurements
[71-[9]; however, such proposed approaches still largely rely
on a model of the system and largely utilize the so-called DC
approximation.

In [10], we proposed a method to estimate ISFs in near real-
time without relying on a power flow model of the system. The
core idea behind this method is to find the solution of a system
of linear equations formulated using real power bus injection
and line flow data obtained from PMU measurements. In [10],
we assumed an overdetermined system, with more equations
than unknown ISFs, and obtained the solution via linear least-
squares errors (LSE) estimation. While the method is shown
to be adaptable to system topology changes, the LSE problem
formulation necessitates at least as many sets of synchronized
measurements as unknown ISFs. For a large power system,
such a requirement may not satisfy the requirements of, e.g.,
online contingency analysis tools, since power systems are
constantly undergoing changes and operators often need to
quickly determine whether or not the current system operation
is secure. This paper extends the work in [10] by proposing
a method to recover the ISF solution using fewer sets of
measurements than unknown ISFs. To this end, we transform
the ISFs into a sparse vector representation (i.e., one in
which many elements are zero), solve for the sparse vector
via optimization, and finally compute the original ISFs by
applying the inverse transformation.



1I. ISF COMPUTATION APPROACH

Distribution factors are linearized sensitivities used in con-
tingency analysis and remedial action schemes [3]. A key
distribution factor is the injection shift factor (ISF), which
quantifies the redistribution of power through each transmis-
sion line in a power system following a change in generation
or load on a particular bus in the system. In essence, the
ISF captures the sensitivity of the flow through a line with
respect to changes in generation or load. In this section, we
first describe the approach to ISF estimation that we proposed
in [10], highlighting its main drawback, followed by the
alternative we are proposing in the current work.

A. ISF Estimation via Least-Squares Errors Estimation

The ISF of line Ly (assume positive real power flow from
bus k to [) with respect to bus i, denoted by \I/}'c_l, is a linear
approximation of the sensitivity of the active power flow in
line L., with respect to the active power injection at node
4, with the slack bus defined and all other quantities constant.
Let P;(t) and P;(t+ At), respectively, denote the active power
injection at bus ¢ at times ¢ and ¢ + At, At > 0 and small.
Define AP;(t) = P;(t + At) — P;(t) and denote the change
in active power flow in line Ly resulting from AP;(t) by
AP} ,(t). Then, based on the definition of ISF, it follows that

i 0P AP
MU ap T OAP(L)

)

In order to obtain W%, we need AP},(t), which is not
readily available from PMU measurements. We assume that
the net variation in active power through line Lj.;, denoted by
APy.(t), however, is available from PMU measurements. We
express this net variation as the sum of active power variations
in line Lj; due to active power injection variations at each
bus :

APu(t) = APL() + -+ APL(). @)

Equivalently, by substituting (1) into (2), we can rewrite (2)
as
AP (t) = AP ()0}, + -+ + AP, ()Y},

where \Il};_l ~ AAljéi‘ljl, i = 1,...,n. Suppose m -+
1 sets of synchronized measurements are available. Let
AP[j] = P((j + DAt) — P(jAt) and APe[j] =
Pk_l((j + 1)At) — Pk_l(jAt), j = 1,...,m; and de-
fine APk_l = [AP}C,[[I], ceey APk,l[j], . ,APk,l[m]]T,
AP, = [APl[l], ceey AP; [_]], ceey APZ[m]]T Let Uy, =
(U}, ..., 0, ..., 07T then, it follows that

APy = (AP AP; AP, Uy ()

For ease of notation, let AP represent the m X n matrix
[APy,...,AP,;, ..., AP,]; then, the system in (3) can be
compactly written as

AP = APYy. 4)

As we proposed in [10], if m > n, then (4) is an
overdetermined system, and we can solve for Uy ; via LSE
as follows:

Uy = (APTAP) 'APTAP,. (5)

However, for a large system with many buses, it may not
be prudent to require such a large number of datasets before
an estimate can be computed. Further, the adaptability of the
measurement-based approach would be improved if fewer sets
of data are required. Thus, in this paper, we focus on the
problem of solving for ¥ in (4) when m < n, i.e., obtaining
a solution when (4) is an underdetermined system of equations.

B. ISF Estimation Algorithm

This work is inspired by the field of compressive sensing
(see, e.g., [11]) and its applications to image processing, where
a typical problem is to compress a large image (i.e., to reduce
irrelevant or redundant image data in order to store or transmit
the image efficiently), and subsequently reconstruct the image
from its compressed representation. [Recently, compressive
sensing (CS) ideas have been applied to the identification of
multiple line outages in power systems [8].] CS theory asserts
that, by exploiting their sparsity, certain classes of signals can
be recovered from fewer samples or measurements than those
needed in traditional methods such as LSE (see, e.g., [12],
[13]). Specifically, the problem of recovering a sparse signal
can be cast as an optimization problem where the objective is
to minimize the lop-norm' of the signal to be recovered.

In our setting, the signal of interest, the ISF vector Uy, is
not necessarily sparse; therefore, we search for an appropriate
linear coordinate transformation M that results in a sparse
Ck-1, such that Uy, = Mcy;. Assuming that such a sparse
representation exists and since cg.; is sparse, it is intuitive to
recover ¢y from knowledge of APy ; by solving

min||cx-|]o,
(©)
subject to APy = APMcyy,

where ||ck-1||o denotes the number of nonzero elements in cj.;.

The problem in (6) is NP-hard due to the unavoidable
combinatorial search [11]. There are numerous classes of
computational techniques for solving sparse approximation
problems. One such technique involves the relaxation of the
lo-norm minimization to an l;-norm minimization [14]. The
main idea behind CS is to exploit the equivalence of the [-
minimization with the /;-norm minimization, which is convex,
when the dimension of ¢ ; is large [15]. Replacing the [y-norm
with the /;-norm in (6), we get

min||cg|[1,
Chel

@)
subject to APy = APMcyy.

Many CS results revolve around conditions under which (6)
and (7) are equivalent.

For a vector with finite support, the lp-norm is defined as the number of
its entries that are nonzero (see, e.g., [11]).
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(b) Sparse signal after difference transformation.

Fig. 1: IEEE 14-bus system: ISFs of line Ly 3 with respect to each node pre-and post-transformation.

As mentioned earlier, the signal of interest in our setting is
the vector of ISFs, ¥y ;, which may not be inherently sparse.
In fact, it is hardly a “natural” signal, in the sense that the
elements are ordered based on arbitrary indices defined by
either the network diagram used in simulations or by the
identification tags of PMUs in the field. Thus, in order to
“sparsify” Uy ;, we first rearrange the elements of Wy in order
of decreasing magnitude, and then we apply the difference
transformation (to be defined below) to the sorted signal. This
leads to a sparse representation of the ISFs, which in turn casts
the ISF estimation problem into a sparse vector estimation
problem.

1) Sparsifying the ISF Vector: We assume that, prior to
online estimation, W ; was computed either by model-based
studies or by linear least-squares estimation as in [10]. We next
sort and rearrange the elements in Wy in order of decreasing
magnitude, and denote this rearranged vector as Uy g, i.e.,

_ 1 9 T
\Ijk-l.s - [\I/k-LS"'"Wk—l,S"" ]

n
s T k-l,sl

such that |\II}HS| > |\I/{Cls| for all ¢ < j. The sorted signal,
Wi.1,s, is assumed to be a relatively smooth signal with only
a few sharp edges, so the difference between consecutive
elements is likely small; this is the premise upon which
we build a sparse representation of Wy ;, and subsequently
estimate Uy ;.

While ¥y ; s may be characterized by smooth segments sep-
arated by sporadic jumps after reordering of the nodes based
on maghnitude, it still retains the same level of sparsity as Uy ;.
However, it may be possible to find a linear transformation
that results in a sparse representation of W;_; .; next we define
one such transformation. This transformation is defined via the

difference between consecutive elements of Wy ,:
i i i+l no_ qn
ot = Yias = VYile ot = Vi (8)

In matrix form, the difference transformation, defined in (8),
can be written as

—1
Cht =M™ Vs,

where

M-t=|: = T Dl )
0 O 0 1 -1 0
0 O 0 0 1 -1
0 O 0 0 O 1

If this difference transformation, indeed, results in cg.; being
sparse, we can then exploit the equivalence of /;-norm and /-
norm minimizations to compute the estimate ¢.; and then ap-
ply the inverse difference transformation to obtain the estimate
\i/k_l. Next, we illustrate the effectiveness of the difference
transformation in (9) for sparsifying an ISF vector.

Example 1 (IEEE 14-Bus System): Consider the IEEE 14-
bus system [16]. We compute the model-based linear sensitiv-
ity ISF vector of line Lo, Uy 3, using the partial derivative
definition in (1). These are the benchmark values to which we
compare any estimation results in the remainder of the paper.
In Fig. 1a, we plot these model-based ISFs after sorting by
the magnitude of each element. While the rearranged signal
is fairly smooth except at buses 1, 12, and possibly 13, this
vector only has one zero element (at bus 14). In order to obtain
a sparse representation, we apply the difference transformation
to the signal shown in Fig. la and obtain the signal depicted
in Fig. 1b, which contains many zero or near-zero elements
with the same sharp edges as in Fig. la. |

2) Minimizing the li-Norm: Through sorting and trans-
forming the original ISF vector ¥y ,;, we assume the post-
transformation signal ¢y ; to be sparse (this was illustrated in
Example 1). Since the elements of Uy ; has been sorted by
magnitude, we also rearrange the columns of AP accordingly
and denote this reordered matrix as AP,. We now solve
for an estimate for cy; as argmin ||ck|lo, which can be
relaxed to the convex program in (7). Let A Py;[j] and AP;[j]
denote the j™ element of AP, and the ;™ row of AP,
respectively. We then relax the equality constraint in (7) to
element-wise inequality constraints and obtain the following



TABLE I: Comparison of ¢s.3 obtained in Example 2.

i Chg €5 5 (via l1-minimization) é5.4 (via LSE)
m = 10 m =13 m =14 m = 20
1 -0.4082 -0.4172 -0.4105 -0.4124 -0.4080
2 -0.0074 0 -0.0050 -0.0020 -0.0069
3 0 0 0 -0.0025 0.0001
4 -0.0039 -0.0055 -0.0038 -0.0009 -0.0041
5 -0.0030 -0.0044 -0.0033 -0.0070 -0.0013
6 -0.0004 0 0 0.0002 -0.0011
7 -0.0087 0 -0.0074 0.0002 -0.0118
8 -0.0039 -0.0093 -0.0062 -0.0104 -0.0021
9 -0.0021 0 -0.0005 -0.0018 -0.0011
10 -0.0041 -0.0016 -0.0030 -0.0022 -0.0050
11 -0.0189 -0.0171 -0.0182 -0.0169 -0.0189
12 -0.1394 -0.1415 -0.1400 -0.1417 -0.1393
13 0.0279 0.0242 0.0265 0.0273 0.0279
14 0 -0.0017 -0.0005 -0.0017 0.0003
Mezs — casllz | 0.0167 0.0050 0.0147 0.0043

l1-norm minimization problem:

(10)

arg min||cg-r|]1,
Ck-l
subject to |APy[j] — APs[j]M ek <€, j=1,...,m,

where € > 0 and small. Next, we illustrate the ideas above via
an example.

Example 2 (IEEE 14-Bus System): Here, we consider the
same system as in Example 1. In order to simulate PMU
measurements of slight fluctuations in active power injection
at each bus, we create power injection times-series data. The
injection at bus ¢, denoted by P, is

Pilj] = PP[j] + o1 P [jlv1 + o2, (11)

where P?[j] is the nominal power injection at bus i at instant 7,
and v; and vy are pseudorandom values drawn from standard
normal distributions with O-mean and standard deviations
o1 = 0.1 and oo = 0.1, respectively. The first component
of variation, o1 P?[j]v1, represents the inherent fluctuations
in generation and load, while the second component, oava,
represents random measurement noise. For each set of bus
injection data, we compute the power flow, with the slack bus
absorbing all power imbalances, and the active power flow
through each line for that particular time.

With the dataset generated from the procedure above, we
apply (10) to compute estimates of cs.3, denoted as ¢a.3, for
several values of m < n. These are shown in columns 3
and 4 of Table I for m = 10, 13, respectively. The model-
based benchmark transformed ISFs, co_3, are listed in column
2 (and also plotted in Fig. 1b). Finally, we sparsify the LSE-
based ISF vector estimate that results from (5) by using 14
and 20 sets of measurements; and we list the elements of
the transformed signals in columns 5 and 6 in Table I, for
m = 14, 20, respectively. By inspecting this table, we conclude
that the LSE-based approach with m = 14 is less accurate than
the [;-norm minimization with m = 10 and m = 13, which is
verified by comparing the /2-norm of the error in each estimate
as compared to the benchmark model-based cs_3, as shown in
the last row. However, we note that the LSE solution with
m = 20 is more accurate than the /;-norm minimization ones,
and therefore there is some tradeoff between the accuracy level
obtained and the number of measurements required. |

TABLE II: Comparison of ‘1/2-3,3 obtained in Example 3.

i Ty, @Y 4, (via Iy -minimization) @, , (via LSE)
m = 10 m =13 m = 14 m = 20
1 05719 0.5740 0.5720 05720 05713
2 -0.1637 -0.1569 -0.1614 -0.1596  -0.1633
3 -0.1563 -0.1569 -0.1564 01575 -0.1564
4 0.1563 -0.1569 -0.1564 <0.1550  -0.1565
5 0.1524 -0.1514 -0.1527 01541 -0.1524
6 -0.1494 -0.1469 -0.1493 01471 -0.1511
7 0.1491 -0.1469 -0.1493 01473 -0.1500
8 -0.1404 -0.1469 -0.1419 01475 -0.1381
9 0.1366 -0.1376 -0.1358 01371 -0.1360
10 0.1345 -0.1376 -0.1353 201353 -0.1350
1 0.0189 -0.1361 -0.1322 01331 -0.1300
12 0.1115 -0.1190 -0.1140 01162 -0.1111
13 0.0279 0.0225 0.0260 0.0255 0.0282
14 0 -0.0017 -0.0005 0.0017  0.0003
[Wos3,s — Yoz sll2 | 00154 0.0048 0.0110 0.0032

3) Reconstructing the ISF Estimate: Let \ilk:—l,s denote the
estimate for Wj,; ;. Once the estimate ¢;; is obtained, we
apply the inverse difference transformation to obtain U k-l,s aS
follows:

Uprs = Mégy, (12)
where _ _
1 1 1 1 1
0 1 1 1 1

00 0 1 1 1
0 0o 0 1 1
00 0 0 0 1

Example 3 (IEEE 14-Bus System): Continuing with Exam-
ple 2, we apply the inverse difference transformation M to
each ¢o.3 to obtain \112_3 for m = 10, 13; the results are shown
in columns 3 and 4 in Table II, respectively. The model-
based benchmark ISFs, W, i = 1,... 14, are listed in
column 2 (and also plotted in Fig. la). Further, in columns
5 and 6, we show the ISF vectors resulting from the LSE
solution in (5). Again, the normed error shown the bottom row
of Table II indicates that the [;-norm minimization achieves
higher accuracy with m = 10, 13 than the LSE solution with
m = 14, but not with m = 20. Optionally, we may also
rearrange \flk,hs back into the original index order, denoted as
\i/k_l, which is an estimate for Wy;. |

o

III. CASE STUDY

In this section, we further illustrate the concepts presented
in Section II using the NPCC 48-machine system, which
contains 140 buses [17]. For this case study, we focus on
the ISFs of line L5351 with respect to each bus, and denote
the corresponding ISF vector by Us35;. We compute its
benchmark value using the definition of the ISF in (1), which
we plot in Fig. 2a. This original vector, ordered by the
somewhat arbitrary network diagram designation, is neither
sparse nor particularly smooth. Next, we reorder the elements
of Ws3.51 by the magnitude of its entries to get 5351,
which contains large smooth segments with a few sharp edges.
We then apply the difference transformation described in Sec-
tion II-B1 to ¥53.51,s and obtain cs53.51, as shown in Fig. 2b.
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Fig. 2: NPCC 48-machine system: ISFs of line L5357 with respect to each node pre-and post-transformation.

TABLE III: Comparison of errors in Ursry ([|\1153_51 —
Uss.51]|2) for NPCC system.

[1-minimization LSE
m = 59 m =179 m = 99 m = 119 m = 139 m = 140
0.0790 0.0289 0.0186 0.0045 0.0026 | 0.0310

By visual inspection, we note that cs3.5; is, indeed, a sparse
vector and we may take advantage of /;-norm minimization
to obtain an estimate for the ISFs with m < n sets of
measurements. We apply the optimization approach in (10)
with m = 59,79,99, 119,139 to obtain ¢s3.51 in each case.
We then transform the sparse signal back into estimates for
the ISF vector, \1153_51, and compute the normed error of each
estimate away from the benchmark model-based ISF vector
(see Table III). Furthermore, we compute the error for the
ISF vector obtained from LSE with m = 140. It is evident,
by inspecting Table III, that the /;-norm minimization with as
few as 79 measurements (nearly half that of the LSE approach)
produces an estimate for the ISF vector that is more accurate
than the LSE approach with 140 measurements.

IV. CONCLUDING REMARKS

In this paper, we presented a method to estimate a vector of
ISFs by exploiting a sparse representation of it, and solving for
the sparse vector via [p-norm minimization. An advantage of
the method is that it does not rely on a power flow model of the
system, bus instead only uses PMU measurements collected in
real-time. Apart from eliminating the power flow model, we
show that the proposed measurement-based approach provides
accurate estimates of the ISFs using fewer measurements than
those obtained using LSE.

Beyond the /;-norm convexification approach, further work
includes investigation of the advantage of using greedy al-
gorithms, to improve the computation time involved in the
optimization. Another avenue for future work would be to
devise algorithms that estimate the DFs accurately in the
presence of corrupted measurements.
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