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Abstract—The rapid growth in renewable energy resources renewable generation uncertainty does not have a significan
such as wind and solar generation introduces significant ures- impact on system static performance.
tainties on the generation side of power systems. We propose Load flow analysis is the fundamental tool used by power

method to assess whether static state variables, i.e., buslhage . to det . hot of th tat f
magnitudes and angles, remain within acceptable ranges wiei ESNYINEErS 10 delermine a snapshot or the state of a power

the system is subject to uncontrolled disturbances causedyb System. In a real system, line parameters are subject to
the uncertainty in local installations of renewable resouces. modeling inaccuracies and loads contain uncertaintiesdar

The method uses ellipsoidal-shaped sets to bound uncert&n to handle these uncertainties, methods such as probabilist
in power injections and the linearized power flow equations ® |54 flow (PLF) [1], [2] were developed. In PLF, uncertaistie
compute approximate bounds on system static states. Numesd! . . .
results for benchmark 4-bus and 34-bus systems are presernte in load and generation are modeled.as random vqr!ab!gs and
the output of the power flow computation are probabilityritist
butions. A different approach using fuzzy sets to charazter
uncertainties in the nodal injections was proposed in [3] an
The push toward environmentally responsible energy usagsplied to wind generation in [4]. Interval methods [5] pickes
requires increased penetration of renewable resourcds®f estrict bounds on the solutions of the power flow problem given
tricity, such as wind and solar generation, into the exgstirthe input uncertainties lie within a fixed interval. This imed
grid. Since these resources are highly intermittent, bgja has several disadvantages in that the output solutionviter
and difficult to forecast accurately, they present notalsle umay be excessively conservative, containing non-solation
certainties to the operation of today’s power systems. Thigldition to solutions points. Such a shortcoming is a direct
paper focuses on a particular aspect of the impact of rerlewalesult of bounding the solution interval with a convex hull
resource penetration on power system static performarate aifi the solution points. Ellipsoidal methods applied to ratyv
proposes an analytically tractable method, which assespesameter and measurement uncertainties were explorétl in [
whether static state variables, i.e., bus voltage magestasd This paper extends the work of [6] to incorporate unceriasnt
angles, remain within acceptable ranges while the systemois the generation side from renewable resources and uses mul
subject to uncontrolled disturbances caused by the uniesrtatiple bounding ellipsoids to approximate the exact bougdin
in local installations of renewable resources. set, yielding more accurate bounds than those in [6].
Statistical and worst-case analyses are complementangint The paper is organized as follows. In Section II, the power
assessment of risk involved with power systems operatites. flow formulation and the corresponding linearization are de
study the worst-case approach, as this provides a guarahtescribed. This is followed by the development of the unknown-
system security. Uncertain renewable generation is mddelsut-bounded power injection uncertainty model in Sectibn |
as an unknown quantity constrained between minimum aid Section IV, the proposed methodology is used on several
maximum bounds. We assume the uncertainty introduced bynchmark systems, including3d-bus distribution test case.
renewable resource penetration is sufficiently small téifjus Finally, concluding remarks are made in Section V.
the use of a small-signal approximation around a nominal
operating point determined by the forecasted renewablepow
injection. In our methodology, the uncertainty in genemati In this section, we derive a linearized static model of the
can be viewed as forecast error, which provides bounds power system from the nonlinear power flow equations. This
the variation of the renewable-based generation in thesyst linearized model is later used in the case studies.
These bounds, in conjunction with the linearized model, are _
used to approximate the set that contains all possiblecstdli Power Flow Formulation
variable realizations arising from all possible power atijens. The power flow problem is the computation of voltage
If this set is contained within the region of static statecgpamagnitude and phase angle at each bus in a power system
defined by system operational requirements, such as minimunder balanced three-phase steady-state conditions ¢r]. F
and maximum bus voltage values, then we conclude that tvery busi = 1,...,n in the network, letV; denote the

I. INTRODUCTION

Il. POWERSYSTEM MODEL



voltage magnitudg); the voltage angleP; the net real power resulting = is denoted byR. Accordingly, we rewrite the
injection, andQ); the net reactive power injection. Then, system description in (6) as

w:f(a:,u)—i—ul,

Pi=V; Y Vi [Gixcos(0; — Ok) + Birsin(0; — 0x)], (1) weW, zeR. (7)
=1 C. Linearized Model
Qi =V Z Vi [Gir sin(0; — 0),) — By, cos(0; — 01)], (2) Suppose the system described by (6) is solved with nominal
k=1 uncertain inputy = w°. Let 2° represent the nominal solution
where G;;, and B;;;, are the real and imaginary parts of the® the power flow problem with inputéu, u;, ). In other

(i,k) entry in the network admittance matrix, respectivel;)’.v ords,

Each load bug has two unknownsy; andg;, related to both
P; and Q; equations. Each PV bushas one unknowr¥);, etz = 2°+ Az, w = w®+ Aw. If the variations inw around
corresponding to thé; relation only. Letmn be the number of 1,0 are sufficiently small, then

load buses in the network, then there are m — 1 PV buses.
Therefore, in the power flow problem, there aret m — 1 Aw =~ {a_f}
equations corresponding to the same number of unknowns. Oz (20, w0)

To consider uncertainty in power injections arising ffoMyhere 9 f/9z is the Jacobian of the power flow equations.
renewable resources only, we make the proper distinction#e inverse of this Jacobian matrix evaluated at solutidis
the net real and reactive power for each load bus in (1)-(2) gSaranteed to exist if the power flow converges to that smiuti

P =P, - P, 3) Thus, near the nominal solutior?,
Qi = Qg — Qu; 4 Az =~ HAw, 9)

where P,, andQ,, are the real and reactive power injectionghere

w® = f(2°,u) + .

Az, (8)

at busi respectively,P,, and Q;, are the real and reactive I — of R
power demanded at bus 0| (40 09
B. Model Description I11. UNCERTAINTY ANALYSIS
The solution to the power flow equations in (1)-(2) can be In this section, we quantify the uncertainty in the complex
rewritten as bus voltages of a distribution system subject to uncertain
v = f(z,u) (5) power injections arising from renewable resource perietrat

In a distribution system, the feeder root is connected to the
where f : R*tm=1L x Rrmm—1 y Rrtm—1l o ¢ Rrtm—1  transmission system at bus which is assumed to be an
represents unknown quantities to be solved for and include§nite bus with a constant voltage. All other buses on the
V; and6; for load buses and; for PV busesu € R*»—™+1 distribution feeder are load buses. In our studies, snaalles
represents the known bus voltages in PV budgsand §; renewable resources, modeled as negative loads, ardedstal
for the swing bus, anad € R"*™~1 represents the uncertainthroughout the distribution system.
inputs and includes’; for PV buses and®, and @; for PQ
buses.

Accounting for the distinction between power generation If the variations inw aroundw” are sufficiently small, we

and consumption at each bus as in (3)-(4), (5) can be reewrit€an approximatek by a set, denoted bAR, that contains
as all possibleAz in (9). The variations iM\w are bounded by

w— 1w = f(zu) 6) AW, wheré W =w°®AW. Even though the shape afly
Y is arbitrary, it can always be enclosed by an ellipsaif:
wherew € R"*™~1 represents the vector of real and reactive ro 1
S C = : <
power injections and,; € R**™~! represents the vector of Aw € AW C AQ = {Aw: Aw' U™ Aw <1},
real and reactive power demand in the system. We assumewtere U is a positive definite matrix. In this cas&yR, is
uncertainty in system load is negligible compared to that @pper bounded bAX = {Az : Az’'T~'Az < 1}, whereT,
renewable generation, since accurate load forecasts aa#lyus also a positive definite matrix, is obtained by solving
available. ,
In this work, we model the uncertainty i@ as unknown- I'=HVH,
but-bounded and assume that—power injection from dis- a5 shown in [8]. MoreoverA X’ is the exact set that contains
tributed generation—is restricted to some margin around g possibleAz if the input set is, indeedAQ.
operating point®. Then,w is bounded to some s&v around
w. Corresponding tdV, the set that contains all the possible 1@ denotes the vector sum of the vectof and the set\ .
p g p

A. Unknown-but-Bounded Framework



TABLE I: Two-bus system nominal power flow solution.
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PES Distribution System Analysis Subcommittee, which are
\ ; modified to include power injection at certain buses. In ¢hes

systems, the power baseli80 kVA and voltage base i4.16
kV.
Fig. 1: Approximation of the input space as intersection of Example 1 (Two-bus modelJhis simple example is illus-
ellipsoids. trated in Fig. 2, where? = 0.01 p.u. andX = 0.02 p.u.. We

assume there is a wind turbine or an aggregate of several wind
turbines installed at bu8, which is forecasted to inject.45
The setAW is usually a symmetrical polytope, i.e., eactp.u. real power. In addition, there is uncertainty in the pow
entry in w is assumed to lie within some interval. In thignjected at bu®, P,,, and the power demanded at i&sP,, .
paper, each entry i represents the power injected at a bushe admittance matrix for this network is
originating from renewable resources, such as a residentia — 20 — j40 —20 + ;40
solar panel installation. A symmetrical polytope can alsvbg Y= —20 + 540 20 — j40 |’
approximated to a high degree of precision by the intersecti .
of a family of ellipsoids, each of which is tight to the polp® and the power flow equations are
in a specific direction, as shown in Fig. 1. When several p, = V,V; [~20 cos(6; — 01) + 40sin(fy — 61)] + 20V,
ellipsoids are used to bound the disturbance/sgy, the set _ . . 2
AX can be computed for each of the ellipsoids boundindy, Q2 = VeVi [~20sin(6z — 01) — 40 cos(f = 61)] + 40V,
and then the intersection of the resulting bounding sets (fohere P, = P,, — P, and Q2 = Q 4, — Q1,. The nominal
each bounding ellipsoid) yields a high-fidelity approximat solution is shown in Table |, where all numerical values are

of the exact se\R. In this case AW C (), AQ;, where per unit unless otherwise indicated. The linearized system
Aw € AQ; = {Aw : Aw' U Aw < 1}, AP, |52 & AB,
: , AQ,,| |22 992 AV
each of which boundaW. The resulting set that boundsx - 00 V2 | (vp,09)

for each ellipsoidA(;, denoted byAX;, is solved as

where
- s AZ'T! P,
AXi = {Az: A2l Aw < 1) % = 20V4Vasin(fz — 1) +40V1Va cos(f2 — 61),
Thus,Az € AR C ), AX;. ap
2 . . . .
B. Performance Requirements Vo Vil=20cos(0 = 01) + 40sin(6 — 61)] + 40V2,

Static performance requirements on distribution systems% = —20V1 V3 cos(Bs — 01) + 40V; Va sin(6s — 6;)
generally consist of constraints in the form of intervalgas 002 ’
on bus voltages. For example, bus voltage magnitudes aré@2 _ v
generally required to be betwe8rd5 p.u. andl.05 p.u. These vy !

requirements constrain the excursion of the state veetorThys, evaluating the Jacobian about nominal power flow
aroundz, to some region of the state spa¢edefined by golution, we obtain

the symmetric polytope APgs 36.925  18.5614] [Af,
O ={z:|m(r—mz) <1 Vi=1,2,...,p} AQgo —18.7125 37.6467| [AVL |’

The computation of the set that contains all possible  Suppose wind turbines are installed at busat a rated
given uncertainty in power injections, allows us to deteveni capacity of0.45 p.u. and they are forecasted to produce
whether the system violates performance requirements that

impose maximum deviations of system variables. In fact, ‘

verifying that the system meets performance requirememts f R iX Poz + 5 Q0

any w € W is equivalent to checking thakR C &.

[—20sin(fy — 61) — 40 cos(f2 — 61)] + 80V5.

IV. CASE STUDIES V146,

In this section, we illustrate the concepts developed in =
this paper by presenting the results of several benchmark . _
systems. The benchmark systems are taken from the IEEE Fig. 2: Two-bus example.

Plz + lez



©) Py, +7Qqy Pys + Qg5 Pou + 5 Qu, A. 4-bus System

| |<J |<J |<J This test feeder system is shown in Fig. 3. Here, bus 1 is

I the slack bus with voltag€.995/0° and is connected to a
Q v ® Ij ® H @ H substation. The operating point as dictated by the power flow
L= " B tiQn Puti@n PutiQu solution is shown in Table Il. We assume distributed renésvab

resources installed at bus2s3, and4 are forecasted to inject
Fig. 3: Modified 4-bus feeder system with renewable powe 4, 0.3, and 0.5 p.u. r_e‘?" power, at their respective buses,
injection. he renewable power injections are assumed to vary between
+20% of the forecast values. None of the renewable resources
provide any reactive power, and there is no uncertainty-asso
ciated with reactive power injections.

The procedure described in Section Il is used on4tmis
system, and the variations ify andV; are presented in Fig. 4.
We tightly bound the input disturbance space as the intersec

0.12 0 tion of three ellipsoids centered around the operatingtpasn
U = [ 0 0} . in Table 1I: AQ; and AQs, which tightly boundAW in two

orthogonal directions, and 23, which is a minimum volume

In this case AW = A(, since there is only uncertainty in€llipsoid that circumscribef)V. In Fig. 4(a), the ellipsoids
one dimension. Le\z = [Af,, AV3], thenAR = Ax = depicted in dashed lines are generated from gef5 and

p.u. real power with a forecast error @f0.1 p.u. and no
reactive power. LetAw = [AP,,,AQ,]’, then the input
disturbance is bounded b%Q = {Aw : Aw' U~ 1Aw < 1},
where

{Az: Az'T-'Az < 1}, where AQ,, and the ellipsoid with the solid trace is generated from
AQ3. The exact sef\R is bounded by the intersection of the

r— 0.00222  0.00152 ellipsoids in Fig. 4(a), a magnified view of which is shown
0.00152 0.00112| " in Fig. 4(b). For comparison, we also obtain solutions of the

i ) i nonlinear power flow relations by sampling the power injacti
We project the sefAR onto thel;-axis to obtain worst-case

Ak X . “9°% space, which are depicted as points in Fig. 4(b). We see that
deviations of the variable a$0.0011 p.u. about its nominal

; > the intersection of the resultant ellipsoidal sets obthifiem
operating valué.9543 p.u. Therefore, we conclude that withy,e jinearized power flow equations are, indeed, an accurate

0.3+ 9-1 p-u. re_newable power injection at bia_sits_ VOI_tage bound to the nonlinear solutions f&120% uncertainty. In fact,
magnitude lies in the rang®.9532,0.9554], which is within we find that the linearized set approximation is valid for up

voltage constraints. to +£50% input uncertainty.

TABLE II: Four-bus system nominal power flow solution B 34-pus System

w0 | Po Qy, Py, Qs Py, Q. The one-line diagram and complete description of this tadia
0.4 0 0.3 0 0.5 0 . . .
= 5 = 5 — 5 feeder system can be found in [9]. We assume that distributed
1 L 1 l [3 l .
‘ ul ‘ 0.8 ‘ 0.25 ‘ 0.3 ‘ 0.1 ‘ 0.9 ‘ 0.5 ‘ renewable resources are installed at bukeg, 10, 15, 18,
. ‘ vy ‘ Iy A ‘ 03 VY ‘ 09 23, 27, 29, 30, and 34, and their power outputs vary between
0.987 | —0.1247 | 0.972 | —0.273" | 0.965 | —0.302 +50% of the forecasted values. Our methodology is applied
to this test system and select results are shown in Fig. 5.
0.9
0.97 =
0.9 0.97
=l —
£09 g 097
=~ 2 0.9
0.9
0.968---" "
0 \ \ \ \ ‘ o ‘ —Exact solution
0%82 0984 0986 0988 099  0.092 0.985 0.986 0,987 0.988 0.989
> [p-u] Va2 [p.u.

(a) Ellipsoidal bounds of the linearized-bus test system, where the (b) Nonlinear power flow solutions using input bounds in cangon with
set containing all possible voltage magnitude values isiobtl as the bounding set obtained for the linearizéebus test system.
intersection.

Fig. 4: Bounds on voltage magnitudes at bugesmnd 3 for the 4-bus test system.
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0.98 '
o Linear approx. 1 § g i
; ; . L° Exact solution S ; ; = Exact solution
1.0487 1.0488 1.0489 1.049 1.0491 1.0492 1.049 1.0492 1.0494 1.0496 1.0498 1.05
Va [pou] Vs o)

(a) Comparison between the bounding ellipsoid, exact isoisitof the (b) Comparison between the bounding ellipsoid and the es@lations of
linearized power flow relations, and the exact solutionshef monlinear the nonlinear power flow. Each renewable resource provides.u. real
power flow. Each renewable resource proviesp.u. real power injection power injection at their respective buses.

at their respective buses.

Fig. 5: Ellipsoidal bound of the linearize84-bus test system for voltage magnitudes at busemd 34, with renewable
resources installed d0 buses and power injection uncertainty-650% of the forecast.

For simplicity, we assume all distributed resources amosely to those obtained from repeatedly solving the meaii
forecasted to output the same amount of real power. We boyraver flow for different power injections. Our method is
the power injection space with a minimum volume ellipsoidomputationally attractive since linear approximatioreswsed
that circumscribe€\AW. Fig. 5(a) depicts results for the casend only several ellipsoids are required to establish anrate
in which each resource is forecasted to outfpdtp.u., while approximation to the actual bounding set. In contrast, at&lon
Fig. 5(b) shows results fof.0 p.u. injection. We sample the Carlo type of simulation requires sampling the input uncer-
power injection and obtain the corresponding exact salstiotainty set many times in addition to calculating the nordine
to the linearized power flow as well as those to the origingbwer flow for each sample point. Another advantage of our
nonlinear power flow relations, depicted as squares antksjrc method is its versatility: it can be used for uncertainty éalr
respectively, in Fig. 5(a). As expected, the resultingpstlidal and reactive power supply and demand alike.
bounding set contains all the linearized power flow solugion Further work includes an analysis of the limits of the small-
with the extrema coinciding with the edge of the ellipsoidsignal approximation to the power flow relations. Another
The linearization is fairly accurate in this system; onlyeonaspect to be investigated is the scalability of the proposed
nonlinear solution corresponding to the lower extreme fpoimethod; the results from thé-bus and34-bus test systems
of the input sample space is not contained in the linearizade encouraging in this regard.
solution set.
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We approximate the input uncertainty as the intersection
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deviations of the system static variables. As shown in tee te
cases, the bounding set obtained with our method matches
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