Semi-automatic Segmentation of Vertebral Bodies in Volumetric MR Images Using a Statistical Shape+Pose Model

A. Suzani, A. Rasoulian S. Fels, R. N. Rohling P. Abolmaesumi

Robotics and Control Laboratory, University of British Columbia, Vancouver, Canada

- Segmentation of vertebral structures enables quantitative analysis of spine pathologies.
 - deformations caused by different pathologies
 - slipped vertebra, herniate disk, disk/vertebra degeneration
- Also has applications in image-guided interventions.

Challenges of MR Segmentation

- Poor contrast of bone structures.
- Variation in surrounding soft tissue contrast.
- Magnetic field inhomogeneity.
- Large inter-slice gap (around 4 mm) in typical clinical MR images compared to CT.

CT

MR

Related Work

- Most approaches are in 2D
 - Egger'12], [Carballido-Gamio'04], [Shi'07], [Huang'09].
- 3D Methods are mostly evaluated on MR images with inter-slice gap of 1.2 mm or less.
 - [Kadoury'13], [Stern'11], [Neubert'12].
- Each vertebra is mostly segmented independently.
 - [Hoad'02], [Stern'11], [Neubert'12].

- We propose a method for simultaneous segmentation of multiple vertebrae.
- Registration-based segmentation technique.
- Alignment of a statistical multi-vertebrae model to MR images.

Statistical Shape Models

Rasoulian *et al.*, Group-wise registration of point sets for statistical shape models, TMI, 2012 Cootes *et al.*, Active shape models-their training and application. Computer Vision and Image Understanding, 1995.

> Electrical and Computer Engineering

Multi-object models?

- Traditional approach is not working
 - Shape and pose are not correlated
 - Shape and pose do not belong to the same space

Lu *et al.*, Statistical multi-object shape models, International Journal of Computer Vision, 2007. <u>Bossa and Olmos, Multi-object Statistical Pose+Shape Models,</u> <u>ISBI, 2007.</u> Duta and Sonka, Segmentation and interpretation of MR brain images. an improved active shape model, TMI, 1998.

Training set

Shape statistics

8

Shape variations

First Mode

Third Mode

Electrical and Computer Engineering

Second Mode

Fourth Mode

Pose variations

 Pose are represented by similarity (rigid+scale) transformations

Electrical and Computer Engineering

Principal Geodesic Analysis (PGA)

Similarity transformations form a <u>Lie group</u>

Pennec, Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. Journal of Mathematical Imaging and Vision, 2006.

Fletcher *et al.*, Statistics of shape via principal geodesic analysis on lie groups. CVPR, 2003.

Electrical an Computer Engineering

Pose variations

First Mode

Second Mode

Third Mode

Electrical and Computer Engineering

Transformation of the model

 Transform the model by assigning weights to shape and pose modes of variations and a rigid transformation:

$$s = \Phi(w_s, w_p, T)$$

- W_s :weights for the shape variations
- W_p :weights for the pose variations
- T' :rigid transformation

Electrical a Computer Engineerin

Statistical Shape+Pose Model

- Takes advantage of the correlation between shape and pose of different vertebrae in the same patient.
- Previously used for vertebra segmentation in CT¹.
- We aim to find simple and fast pre-processing steps to adapt it to MR segmentation.

¹ Rasoulian *et al.,* TMI, 2013

Pre-processing

Intensity correction

Original image

Intensity-corrected image

User Interaction

- Mid-sagittal slice of intensitycorrected image is shown to the user.
- User clicks on each vertebra to start the segmentation process.
- Anisotropic diffusion and Canny edge detection is only applied on boxes centered to the clicked points.

Clicked points and boxes

Pre-processing

Anisotropic diffusion

Intensity-corrected image

After anisotropic diffusion

Electrical and Computer Engineering

Canny Edge Detection

Extract edges in the boxes around points clicked by user.

Extracted edges using Canny edge detection on three slices of the same volume

Registration

- Register the multi-vertebrae anatomical model to the edge map using an iterative Expectation Maximization (EM) method.
- Only vertebral body part of the model is used for registration.

Registered model

Electrical and Computer Engineering

Registration

Registration on mid-sagittal slice

Registration

Registration on mid-sagittal slice

Segmentation Results

- Evaluated on nine multi-slice MR images.
- Inter-slice gaps in range of [3.3 mm 4.4 mm].
- Manual segmentation is used as ground truth.
- Computation time: less than 2 minutes on a 2.5 GHz Intel core i5 machine.
- 3D mean surface error \approx 3 \pm 0.8 mm.
- 2D mean error in mid-sagittal slices \approx 1.9 \pm 0.4 mm.

Segmentation Results

Examples of segmentation results in five different volumes

Conclusions

- A method for semi-automatic simultaneous segmentation of vertebral bodies in volumetric MR images is proposed.
- Future work includes
 - Segmentation of whole vertebrae.

Next Step

 Automatic localization of vertebrae instead of user interaction.

Automatically localized vertebrae

Electrical and Computer Engineering

Acknowledgement

Thank you ...

Electrical and Computer Engineering

