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ABSTRACT

Segmentation of vertebral structures in magnetic resonance (MR) images is challenging because of poor con-
trast between bone surfaces and surrounding soft tissue. This paper describes a semi-automatic method for
segmenting vertebral bodies in multi-slice MR images. In order to achieve a fast and reliable segmentation, the
method takes advantage of the correlation between shape and pose of different vertebrae in the same patient by
using a statistical multi-vertebrae anatomical shape+pose model. Given a set of MR images of the spine, we
initially reduce the intensity inhomogeneity in the images by using an intensity-correction algorithm. Then a 3D
anisotropic diffusion filter smooths the images. Afterwards, we extract edges from a relatively small region of the
pre-processed image with a simple user interaction. Subsequently, an iterative Expectation Maximization tech-
nique is used to register the statistical multi-vertebrae anatomical model to the extracted edge points in order to
achieve a fast and reliable segmentation for lumbar vertebral bodies. We evaluate our method in terms of speed
and accuracy by applying it to volumetric MR images of the spine acquired from nine patients. Quantitative
and visual results demonstrate that the method is promising for segmentation of vertebral bodies in volumetric
MR images.
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1. INTRODUCTION

Segmentation of vertebral structures in volumetric medical images of the spine is an essential step in the design
of computer aided diagnosis systems for measuring the deformations caused by different spinal pathologies such
as osteoporosis, spinal stenosis, spondylolisthesis and scoliosis. When making decisions for diagnosis and therapy
of these pathologies, physicians often use magnetic resonance (MR) images for the assessment of soft spinal
structures such as inter-vertebral discs and nerve roots. However, the established methods for segmentation
of vertebral structures have been mainly developed for computed tomography (CT). CT, on the other hand,
requires radiation exposure and does not depict soft tissue as well as MR images. The availability of a fast and
reliable spine segmentation of MR images may eliminate the need for CT and benefit patient care.

Segmentation of vertebral structures in MR images is challenging, mainly due to poor contrast between bone
surfaces and surrounding soft tissue. Another challenge is relatively large inter-slice gap (more than 3 mm) in
typical clinical MR images compared to CT. In addition, spatial variations in surrounding soft tissue contrast
and magnetic field inhomogeneities increase the complexity of the segmentation task in MR images.

For spine segmentation in MR images, several methods have been proposed in the literature. Most of them are
2D approaches that are applied on manually identified cross-sections which contain the target vertebrae1–4. Peng
et al.5 search for the best slice automatically and then perform a 2D segmentation approach. A smaller number
of methods have been proposed for MR segmentation of vertebral structures in 3D. The method from Hoad et al.6

has a labour-intensive initialization step and also a post-processing step for correcting the segmentation. Štern
et al.7,8 perform the segmentation by optimizing the parameters of a geometrical model of vertebral bodies.
The method from Neubert et al.9 uses statistical shape models and registration of grey level intensity profiles



for vertebral body segmentation. Methods from Hoad et al. and Štern et al. have long execution times (at least
more than five minutes for high-resolution volumetric images). All three above-stated 3D approaches segment
each vertebra independently. Consequently, the correlation between shapes of different vertebrae in a patient is
disregarded. In addition, all above-mentioned methods for 3D segmentation are evaluated on volumetric images
with an inter-slice gap of at most 1.2 mm which is not commonly used in clinical practice. Recently, a method
was proposed by Kadoury et al.10 for spine segmentation using Manifold embeddings. Multiple vertebrae are
treated as a whole shape in this work. However, it is still evaluated on MR images with less than 1.2 mm slice
thickness, and no computation time was reported.

In our previous work, we have successfully segmented lumbar vertebrae in volumetric CT scans using a
statistical multi-vertebrae anatomical shape+pose model11,12. In this work, we aim to find simple and fast pre-
processing steps to overcome the MR segmentation challenges explained above, and consequently obtain edge
points of vertebral bodies from widely spaced slices of routine volumetric MR images. Thereafter, we register
our multi-vertebrae anatomical model to the extracted edge points with the goal of achieving a fast and reliable
segmentation of lumbar vertebral bodies in MR images.

2. MATERIALS

The performance of the proposed method was evaluated on T1-weighted MR images of nine patients (via
SpineWeb13). The in-plane resolution is 0.5 × 0.5 mm2 with a slice spacing between 3.3 to 4.4 mm. Each
series of images consists of slices with 512×512 pixels. The number of slices from each patient ranges from 12 to
18. The multi-vertebrae anatomical model was constructed from manually segmented volumetric CT scans of an
independent group of 32 subjects11,12. Ground truth segmentations were obtained manually using ITK-SNAP14.

3. METHODS

3.1 Intensity Correction

The presence of intensity inhomogeneity in spinal MR images can adversely influence the ability to extract
edges. Hence, we first apply an intensity correction algorithm on MR images to reduce this inhomogeneity. The
bias field correction function provided in Statistical Parametric Mapping software package (SPM12b, Wellcome
Department of Cognitive Neurology, London, UK) is used for this purpose. Figures 1(a) and 1(b), respectively,
show the mid-sagittal slice of a sample MR image before and after intensity correction.

3.2 Anisotropic diffusion

We then apply a conventional 3D anisotropic diffusion15 filter to the intensity-corrected image. Anisotropic
diffusion is an image smoothing algorithm that attempts to preserve edges. Figures 1(b) and 1(c), respectively,
show the image before and after this step. The function below (proposed by Perona and Malik15) is used for the
diffusion coefficient in order to privilege high-contrast edges over low-contrast ones.

c(x, y, z, t) = e−(||∇I||/κ)
2

, (1)

∇I denotes the image gradient, and the conductance parameter, κ, controls the sensitivity to edges. Weak edges
can block the conductance when κ is too low, and strong edges may not be preserved when κ is too high. In
all experiments κ and the integration constant, ∆t, were set to 50 and 1/7, respectively. The algorithm was run
with 20 iterations for each volumetric image.

3.3 Canny edge detection

At this step, the intensity-corrected mid-sagittal slice of the image is shown to the user. The user clicks on each
of the lumbar vertebrae (L1 to L5) in the image (five points in total). For some irregular image acquisitions
where those vertebrae are not visible in the mid-sagittal slice, the user could select a slice manually to be able to
click on the vertebrae. However, we do not observe any sensitivity to the slice selection. Only the clicked points
are used for the rest of the procedure. After user interaction, the Canny edge detection algorithm is applied to
find the edge map of vertebral bodies in potential regions of the volumetric image. These regions are five cubic



bounding boxes centered at the clicked points. The scales of the cubes are obtained from the average distance
of consecutive user clicks. The sensitivity threshold of the Canny edge detector is obtained automatically based
on the maximum value of the gradient magnitude of the region. Figure 2 shows the result of edge detection in
mid-sagittal slice of three different volumetric MR images. The statistical model is registered to the edge map
obtained from this step.

3.4 Segmentation Using the Multi-vertebrae Model

Variations of shapes and poses of lumbar vertebrae were independently extracted from previously acquired
32 manually-segmented volumetric CT images11. This analysis was performed on all five lumbar vertebrae
combined, taking into account the correlation between shapes of different vertebrae. The extracted variations
are then represented in a statistical model. An iterative Expectation Maximization (EM) registration technique
presented by Rasoulian et al.11 is used for aligning the model to the edge points extracted from MR images in
the previous step.

4. RESULTS AND DISCUSSION

Our segmentation results are quantitatively evaluated by using the manual segmentation as the ground truth.
The mean error and Hausdorff distance are reported for each vertebra in a volumetric image (Table 1). For each
point of the 3D surface mesh of manual segmentation we find its distance to the closest point in the registered
model. The average of these distances is considered as the mean error and the maximum of them is considered
as the Hausdorff distance. In order to make our results comparable with other approaches that only focus on 2D
segmentation1–4, we also report the segmentation errors for the 2D mid-sagittal slice of each image in Table 2.
Some examples of our segmentation results are shown in Figure 3. Although the slice spacing in our MR images
is relatively high (between 3.3 and 4.4 mm), the quantitative results show that our method can segment the
lumbar vertebral bodies in MR images with a mean error of ∼3 mm. The overall segmentation for each image
takes less than 2 minutes using our implementation in MATLAB (The MathWorks, Inc., Natick, MA) on a 2.5
GHz Intel core i5 machine.

Table 1. Mean error and maximum distance (Hausdorff) of 3D segmentation in each multi-slice image are reported (in
mm) for each vertebral body.

Subject
L1 L2 L3 L4 L5 All lumbar vertebrae

Mean Max Mean Max Mean Max Mean Max Mean Max Mean ± std Max
1 2.6 6.5 2.2 6.7 2.1 5.9 2.2 7.7 2.6 8.3 2.3 ± 0.2 8.3
2 2.9 9.8 2.8 8.1 2.4 7.3 3.1 11.3 2.9 9.1 2.8 ± 0.3 11.3
3 2.8 7.1 2.1 5.7 2.0 6.5 2.8 6.0 3.0 8.5 2.5 ± 0.4 8.5
4 2.7 7.5 3.7 9.6 3.8 9.6 4.0 10.3 3.7 12.4 3.6 ± 0.5 12.4
5 2.6 7.4 2.4 8.5 2.5 8.8 2.6 9.3 3.3 11.1 2.7 ± 0.4 11.1
6 1.9 6.4 2.3 7.0 2.9 10.2 3.2 12.3 3.0 12.1 2.7 ± 0.5 12.3
7 3.6 11.6 4.1 12.0 3.7 11.1 4.4 11.4 5.1 13.2 4.2 ± 0.6 13.2
8 2.5 6.7 3.3 11.7 5.9 16.3 4.0 12.8 2.6 7.2 3.7 ± 1.4 16.3
9 2.0 6.3 2.3 6.6 3.0 9.5 3.3 11.7 2.7 8.9 2.7 ± 0.5 11.7

Average 2.6 7.7 2.8 8.4 3.1 9.4 3.3 10.3 3.2 10.1 3.0 ± 0.8 11.7

5. CONCLUSION

A semi-automatic segmentation algorithm based on registering a statistical model is applied on nine 3D MR
images of spine. Adding simple MR pre-processing steps allows the multi-vertebrae shape+pose model developed
previously for CT scans to work on volumetric MR images. The statistical model can accommodate large inter-
slice gaps. In addition, it is fast because it exploits the fact that neighbouring vertebrae have similar shapes and
poses. The segmentation error will determine the range of clinical applications of this method, but will include
display protocols in radiology workstations, automatic curved reformatting and 3D spinal visualization.



Figure 1. (a) Mid-sagittal slice of original image, (b) after intensity-correction, (c) after intensity correction and anisotropic
diffusion.

Figure 2. Edge extraction results in mid-sagittal slice of three different volumes.



Figure 3. Examples of segmentation results in three different subjects. White contours show our segmentation results,
while manual segmentation is shown with red contours.

Table 2. Mean error and maximum distance (Hausdorff) of 2D segmentation in the mid-sagittal slice of each image are
reported (in mm) for each vertebral body.

Subject
L1 L2 L3 L4 L5 All lumbar vertebrae

Mean Max Mean Max Mean Max Mean Max Mean Max Mean ± std Max
1 1.6 3.7 1.6 4.2 1.4 2.9 1.6 2.8 1.3 2.5 1.5 ± 0.1 4.2
2 1.6 3.6 2.1 4.3 1.7 3.5 2.3 4.2 2.0 4.1 2.0 ± 0.3 4.3
3 1.4 2.5 1.4 2.4 1.6 2.6 2.1 4.4 3.0 5.8 1.9 ± 0.7 5.8
4 1.7 4.4 1.8 4.3 1.7 4.6 2.1 4.8 2.3 5.3 1.9 ± 0.3 5.3
5 2.2 5.4 2.4 5.3 2.3 7.2 2.7 9.5 2.8 7.1 2.5 ± 0.3 9.5
6 1.6 4.0 1.5 2.6 1.5 3.6 1.8 5.0 1.7 3.6 1.6 ± 0.1 5.0
7 2.1 4.1 1.7 4.6 1.6 3.6 1.9 4.7 2.5 7.1 2.0 ± 0.3 7.1
8 1.9 4.9 2.3 5.7 1.9 5.2 2.8 7.4 2.2 5.1 2.2 ± 0.4 7.4
9 1.9 4.5 1.5 2.7 1.5 3.1 2.5 5.5 1.5 2.7 1.8 ± 0.4 5.5

Average 1.8 4.1 1.8 4.0 1.7 4.0 2.2 5.4 2.2 4.8 1.9 ± 0.4 6.0

Future work will concentrate on using the registered model for segmentation of whole vertebrae, and also
make the process fully automatic. The evaluation will be improved by using segmented CT scans of same patients
as the ground truth for MR segmentation since the manual segmentation of MR images is a subjective task.

6. ACKNOWLEDGEMENT

This work is funded in part by the Natural Sciences and Engineering Research Council of Canada (NSERC),
and the Canadian Institutes of Health Research (CIHR). The MR data is generously provided by Dr. Shuo Li,
GE Health Research, Ontario, Canada.



REFERENCES

[1] Egger, J., Kapur, T., Dukatz, T., Kolodziej, M., Zukić, D., Freisleben, B., and Nimsky, C., “Square-cut: a
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