Deep Learning for Automatic Localization, Identification, and Segmentation of Vertebral Bodies in Volumetric MR Images

<u>Amin Suzani</u>, A. Rasoulian, A. Seitel, S. Fels, R. N. Rohling P. Abolmaesumi

Robotics and Controls Laboratory, University of British Columbia, Vancouver, Canada

- Localization and identification of vertebrae.
 - Core requirement for computer-aided systems for spine.
- Segmentation of vertebral structures enables quantitative analysis of spine pathologies.
 - deformations caused by different pathologies

- Repetitive nature of vertebral column.
- Variation in terms of field of view.
- Poor contrast of bone structures in MR images.
- Variation in surrounding soft tissue contrast in MR images.
- Magnetic field inhomogeneity in MR images.
- Large inter-slice gap (around 4 mm) in typical clinical MR images compared to CT.

CT

Related Work in Localization

- Mostly make assumptions about which vertebrae are visible in the scan.
 - [Ma'13], [Oktay'13], [Neubert'12], [Stern'11], [Naegel'07], [Schmidt'07].
- General methods are mostly developed for CT.
 - [Glocker'13], [Rasoulian'13], [Glocker'12], [Klinder'09].
- Mostly are not integrated with segmentation.
 - [Glocker'13], [Glocker'12].

Related Work in Segmentation

- Mostly require user interaction.
 - [Suzani'14], [Rasoulian'13], [Hoad'02].
- Most approaches are in 2D
 - [Egger'12], [Carballido-Gamio'04], [Shi'07], [Huang'09].
- 3D Methods are mostly evaluated on MR images with interslice gap of 1.2 mm or less.
 - [Kadoury'13], [Neubert'12], [Stern'11].
 - Each vertebra is mostly segmented independently.
 - [Neubert'12], [Stern'11], [Hoad'02].

- We propose an automatic method for simultaneous localization and identification of vertebrae.
- The predictions are used for automating a registration-based segmentation technique.
- No assumptions are made about the visibility of specific vertebrae.
- Multiple vertebrae are registered simultaneously.

Method

Automatic Localization	Edge Detection	Model Registration

Electrical and Computer Engineering e

6

Features

- 500 features are extracted for each voxel.
- Each feature: difference between the mean intensity over two cuboids displaced with respect to the reference voxel position.
- Feature dimensions and displacement are chosen randomly.

Intensity-based features

a place of mind

Problem Parameterization

- Vertebrae anatomy localization is parameterized as a multivariate regression problem.
- Each voxel votes for its relative distance to the centroid of each vertebral body.

Deep Neural Network

 Neural network is trained using stochastic gradient descent and layerwise pre-training.

Centroid Estimation

 Kernel Density Estimation is used for aggregating the votes of all voxels.

Centroid estimation

a place of mind

Refinement

 Predicted points are refined by local Otsu thresholding. The points are replaced with the center of the closest large component.

Refinement step

Region of Interest

 Pre-processing steps and edge detection is only applied on boxes centered to the predicted points.

Predicted points and boxes

Pre-processing for Segmentation

Intensity correction

Original image

Intensity-corrected image

14/24

Pre-processing for Segmentation

Anisotropic diffusion

Intensity-corrected image

After anisotropic diffusion

Canny Edge Detection

Extract edges in the area of the predicted vertebrae.

Extracted edges using Canny edge detection on three slices of the same volume

Registration

- Multi-vertebrae anatomical model is initialized by the predicted points from localization step.
- The model is registered to the edge map using an iterative expectation maximization method.
- Only vertebral body part of the model is used for registration.
- Correlation between shapes and poses of different vertebrae are taken into account.

Registered model

Model Pose Variations

First Mode

Second Mode

Fourth Mode

Third Mode

N=32

Registration

Registration on mid-sagittal slice

a place of mind

19/24

- Evaluated on nine multi-slice MR images of lumbar spine.
- Inter-slice gaps in range of [3.3 mm 4.4 mm].
- Computation time: less than 3 minutes in total (on a 2.5 GHz Intel core i5 machine).

	Mean Error	Std	Identification
Deep learning localization	11.9 mm	6.3 mm	91 %
After refinement	3.0 mm	2.4 mm	100 %

• Segmentation: 3D mean surface error \cong 2.7 \pm 0.9 mm.

Localization Results

Examples of localization and identification results.

Segmentation Results

Examples of segmentation result.

Our segmentation Manual segmentation

Conclusion

- A method is proposed for Automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images.
- Future work includes
 - Better evaluation on a large dataset of pathological cases.
 - Evaluation on other modalities like CT and Ultrasound.
 - Segmentation or sub-anatomical labeling of whole vertebrae.

Acknowledgement

a place of mind

24/24

Thank you ...

