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ABSTRACT

This paper proposes an automatic method for vertebra localization, labeling, and segmentation in multi-slice
Magnetic Resonance (MR) images. Prior work in this area on MR images mostly requires user interaction while
our method is fully automatic. Cubic intensity-based features are extracted from image voxels. A deep learning
approach is used for simultaneous localization and identification of vertebrae. The localized points are refined by
local thresholding in the region of the detected vertebral column. Thereafter, a statistical multi-vertebrae model
is initialized on the localized vertebrae. An iterative Expectation Maximization technique is used to register the
vertebral body of the model to the image edges and obtain a segmentation of the lumbar vertebral bodies. The
method is evaluated by applying to nine volumetric MR images of the spine. The results demonstrate 100%
vertebra identification and a mean surface error of below 2.8 mm for 3D segmentation. Computation time is less
than three minutes per high-resolution volumetric image.

Keywords: Vertebra localization, vertebra identification, spine segmentation, deep learning, statistical model
registration.

1. INTRODUCTION

Localization and labeling of vertebrae is a crucial step in diagnosis and therapy of spinal diseases such as slipped
vertebra, disk/vertebra degeneration, and spinal stenosis. Vertebra segmentation is also a pre-processing step in
diagnosis of spine pathologies like scoliosis and osteoporosis. Hence, building a computer-based system for spine
diagnosis and therapy requires automatic localization, labeling and segmentation of vertebral structures.

Lower back pain, one of the most common types of pain, is usually caused by problems in the lumbar region
of the spine. Lumbar vertebrae are mostly viewed by X-rays, Magnetic Resonance (MR) imaging, or Computed
Tomography (CT). Among these, MR imaging shows the soft tissue better and also does not expose the patient
to ionizing radiations. This has led to increased interest in MR technologies for imaging the spine in recent years.
Automatic labeling and segmentation of vertebral bodies in MR images is challenging because of: 1) variation
among images in terms of field-of-view, 2) repetitive nature of vertebral column, 3) lower contrast between bony
structures and soft tissue compared to CT, 4) larger inter-slice gap in clinical MR images compared to CT, and
5) presence of field inhomogeneities in MR images.

Several researchers have investigated the localization and labeling problem in CT1–7 and MR8–11 images. Most
methods make assumption about which vertebrae are visible in the scan. Alomari et al.11 assumed approximate
alignment between scans. Klinder et al.5, Glocker et al.3,4, and Rasoulian et al.12 claimed handling general
scans. However, all of these studies are done on CT scans and not MR images. In addition, Glocker et al. only
provide labeling and do not provide segmentation. Klinder et. al. and Rasoulian et al. provide segmenation,
but their algorithms have high computation time for arbitrary-field-of-view scans.

In our previous work13, we proposed a semi-automatic segmentation approach for MR images based on a
multi-vertebrae statistical shape+pose model. It required one user click for each vertebra to be segmented.
In this work, we propose a method based on deep learning for simultaneous localization and identification of
vertebral bodies in MR images. Then, we initialize our previous segmentation method with the localized points
in order to obtain a fully-automatic segmentation.



2. MATERIALS

The proposed method was evaluated on nine T1-weighted multi-slice MR images. All images contain lumbar
region, but the extent of visibility of thoracic and sacrum regions varies. Slice thickness ranges between 3.3 to
4.4 mm among images. The size of all slices are 512 ⇥ 512 pixels with pixel spacing of 0.5 mm. The number
of slices in each volumetric image varies from 12 to 18. The statistical model (used for segmentation) was
constructed from manually segmented multi-slice CT scans of 32 patients14. Segmentation ground truth meshes
were prepared manually using ITK-SNAP15. The center of gravity of each manually segmented vertebral body
is used as a localization landmark.

3. METHODS

3.1 Automatic Localization and Identification

3.1.1 Pre-processing: Bias Field Correction

The presence of intensity inhomogeneities in MR images can adversely influence the quality of intensity-based
feature extraction. Hence, we first apply a bias field correction algorithm on MR images to reduce this inhomo-
geneity. Statistical Parametric Mapping package is used for bias field correction (SPM12b, Wellcome Department
of Cognitive Neurology, London, UK).

3.1.2 Localization and Identification by Deep Learning

The localization task is parametrized as a multi-variate regression problem. Each voxel of the image is described
by hundreds of intensity-based features. Each feature is the di↵erence between the mean intensity over two
cuboids displaced with respect to the reference voxel position. Dimensions and displacement of each feature are
generated randomly. These features are fast to compute using the integral image approach proposed by Viola
and Jones16. The targets of the multi-variate regression are the relative distances between the reference voxel
and the centers of lumbar vertebral bodies (Parametrization of image localization task as a regression problem,
and also randomly generated cubic features are explained in more detail by Criminisi et al.17). A feed-forward
neural network with three hidden layers is trained for solving the multi-variate regression problem. Stochastic
gradient descent along with layerwise pre-training is used for optimization. On a test image, we first extract
features from all voxels, then we use the neural network to predict the relative distances of the labels with respect
to each voxel. Each relative distance is converted to the absolute position of the label and is considered as the
vote of that specific voxel for the position of a specific vertebral body. The votes of all pixels are aggregated
using a di↵usion-based kernel density estimation18 to obtain a robust prediction of the center of each lumbar
vertebral body. No assumptions are made about the presence of the target vertebrae in the volumetric image.
The voxels may vote outside of the scope of the image if the target vertebrae are not visible.

3.1.3 Refinement by Local Thresholding

In most of the cases, the predicted points from the deep learning approach are located inside of the target
vertebral bodies, but not exactly centered. We attempt a simple approach to bring the predicted points to the
center of vertebral bodies in order to improve the localization and also the initialization of our statistical model.
By Otsu thresholding19 in the region of the predicted points, we find the large components that may be vertebral
bodies. If a large component is found close to the prediction, we refine the prediction by replacing it with the
center of that component. Figure 1 illustrates an example of the refinement step.

3.2 Segmentation

3.2.1 Pre-processing: Anisotropic Di↵usion

A three-dimensional anisotropic di↵usion20 filter is applied to the bias-field corrected image for image smoothing
while preserving edges. This pre-processing step highly improves the quality of edge detection. For speed
optimization, we only apply the filter to the region of spinal column detected by previous steps.



Figure 1: Refining localization points by replacing them with the center of the closest large component, ob-
tained from local thresholding. Left: Localized points before refinement. Middle: Refinement using components
obtained from local thresholding. Right: Localized points after refinement.

3.2.2 Statistical Model Registration

We use Canny edge detection algorithm21 to obtain the edges in the detected spinal column region. The maximum
value of the gradient magnitude of the region is used to automatically obtain the sensitivity threshold of the edge
detector algorithm. Then, we use an iterative Expectation Maximization registration method (introduced by
Rasoulian et al.14) to register a statistical model of vertebral bodies to Canny edges in order to obtain a robust
segmentation. The statistical multi-vertebrae model integrates variations of shapes and poses of lumbar vertebrae
that are separately extracted from 32 manually-segmented 3D CT scans14. The multi-vertebrae registration of
the model allows us to avoid mis-segmentation in the area between vertebrae by simultaneous registration of all
visible vertebral bodies and taking into account the correlation between shapes and poses of di↵erent vertebrae.

4. RESULTS AND DISCUSSION

Localization and identification results on nine subjects are reported in Table 1. The centroids of five lumbar
vertebral bodies (L1 to L5) are predicted using leave-one-out cross validation. The distance to the ground truth
landmarks are computed. The average and standard deviation of these distances as well as identification rate are
reported. We consider a vertebral body to be correctly identified when its distance to the ground truth landmark
is less than 2 mm and the closest landmark is the correct one. The same evaluation criteria is used by Glocker
et al.3 for identifying vertebrae in CT images. Our results show 100% correct identification after the refinement
step for 45 lumbar vertebral bodies.

Three-dimensional segmentation results are shown in Table 2. The closest distance to the registered model is
found for each point in the manual segmentation. The average and maximum of these distances are reported as
mean error and Hausdor↵ distance respectively. These results demonstrate that we can automatically segment the
lumbar vertebral bodies in volumetric MR images with a mean error of below 2.8 mm which shows improvement
over our previous semi-automatic method13. Some examples of our identification and segmentation results are
shown in Figures 2 and 3.

The localization and identification step (including refinement) takes less than 20 seconds on a desktop com-
puter. The whole process takes less than 3 minutes using a MATLAB (The MathWorks, Inc., Natick, MA)
implementation for the segmentation part. Training a deep neural network takes about one day which can be
adjustable by downsampling the training data. Deep learning part is implemented in Python using Theano-nets
package (Leif Johnson, Austin, TX) built on top of the Theano library22.



Figure 2: Localization and labeling results on mid-sagittal slice of bias-field corrected images.

Table 1: Localization and identification results for lumbar vertebral bodies in nine volumetric MR images.
Mean error Standard deviation Identification

Deep Learning Localization 11.9 mm 6.3 mm 91%
After Refinement 3.0 mm 2.4 mm 100%

5. CONCLUSION AND FUTURE WORK

A fully-automatic approach based on deep learning and statistical models is proposed for localization, labeling
and segmentation of vertebral bodies in multi-slice MR images. Although the experiments are performed only
on the lumbar region, no assumptions are made about presence of specific vertebrae in the method. The multi-
vertebrae model can handle large inter-slice gap in clinical MR images with low computation cost. Results
demonstrate that our method can automatically localize, label, and segment the vertebral bodies in MR images
with su�cient accuracy and speed for a wide range of clinical applications.

Future work will include an extensive evaluation of the method by using a more challenging dataset where
di↵erent sections of the spine are visible in di↵erent images. The identification step also has the potential to
work in real-time with a faster implementation of the feature extraction step.



Figure 3: Examples of segmentation result in mid-sagittal slice of five di↵erent patients. Our segmentation
results are shown with white contours, while red contours show the manual segmentation.

Table 2: Mean error and maximum distance (Hausdor↵) of segmentation error (in mm) for each vertebral body.

Subject
L1 L2 L3 L4 L5 All lumbar vertebrae

Mean Max Mean Max Mean Max Mean Max Mean Max Mean ± std Max
1 2.0 6.1 1.7 5.2 2.8 9.5 4.4 15.7 4.2 16.4 3.0 ± 1.2 16.4
2 2.2 6.5 2.2 8.0 2.0 7.3 1.8 9.6 3.4 16.6 2.3 ± 0.6 16.6
3 3.7 8.6 3.4 8.7 3.6 9.6 4.0 13.6 5.8 19.9 4.1 ± 1.0 19.9
4 2.6 8.1 1.9 7.1 2.6 10.5 1.6 8.3 2.0 9.1 2.1 ± 0.4 10.5
5 2.2 8.0 1.6 5.5 1.6 6.4 2.2 11.0 4.6 17.7 2.5 ± 1.2 17.7
6 2.7 10.3 2.6 9.7 2.8 9.3 2.5 10.4 4.0 16.1 2.9 ± 0.6 16.1
7 1.8 5.5 1.7 5.6 2.2 7.9 2.7 11.9 3.5 15.2 2.3 ± 0.7 15.2
8 3.2 8.4 3.3 9.5 3.2 10.4 3.6 12.7 2.6 11.0 3.2 ± 0.4 12.7
9 2.3 7.3 1.7 6.5 2.0 8.0 1.9 8.8 3.1 12.4 2.2 ± 0.5 12.4

Average 2.5 7.7 2.2 7.3 2.5 8.8 2.7 11.3 3.7 14.9 2.7 ± 0.9 19.9
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