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Abstract—The importance of caches for performance, and their
high silicon area cost, have motivated hardware solutions that
transparently compress the cached data to increase effective
capacity without sacrificing silicon area. To this end, prior
work has taken one of two approaches: either (a) deduplicating
identical cache blocks across the cache to take advantage of inter-

block redundancy or (b) compressing common patterns within
each cache block to take advantage of intra-block redundancy.

In this paper, we demonstrate that leveraging only one of
these redundancy types leads to a significant loss in compression
opportunities for several applications: some workloads exhibit
either inter-block or intra-block redundancy, while others exhibit
both. We propose 2DCC (Two Dimensional Cache Compression),
a simple technique that takes advantage of both types of redun-
dancy. Across the SPEC and Parsec benchmark suites, 2DCC
results in a 2.12× compression factor (geomean) compared to
1.44–1.49× for best prior techniques on an iso-silicon basis. For
the cache-sensitive subset of these benchmarks run in isolation,
2DCC also achieves a 11.7% speedup (geomean).

I. Introduction

Large caches are critical to the performance of many appli-

cations: today, top-tier server-class processors from leading

manufacturers advertise last-level cache (LLC) capacities in

the range of 32MB–64MB. However, caches of these sizes

incur significant costs in silicon area, leakage power, and

cache access latency. This has resulted in substantial research

interest in compressing cache contents to increase the effective

cache capacity without paying additional area and performance

costs [1–8]. In general, these proposals take advantage of either

of two different dimensions of redundancy in cached data:

1) Inter-block redundancy exists when multiple cache indices

store the same blocks of data. This can result from sym-

metry of some kind (e.g., fluid flow around a symmetric

object), when sizable parts of the working set have the

same value (e.g., the background of an image), etc.

2) Intra-block redundancy exists when a single cache block

contains compressible patterns within itself. For example,

integers are usually allocated at 32-bit or 64-bit sizes but

their values often fit in the least significant byte; similarly,

pointers used in a data structure may have been allocated

close by and so may have identical most significant bits.

Real workloads, however, exhibit a wide variety of redundancy

patterns. To demonstrate this, we estimated intra-block and

inter-block entropy in 100 last-level cache images from a range

of SPEC and PARSEC benchmarks (see section IV for details)

by using Huffman compression [9]. To estimate inter-block

entropy, we compressed the entire cache using 64-byte symbols
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Fig. 1. Space reduction in last-level cache images (100 per benchmark) using
entropy encoding (Huffman compression). The x-axis shows encoding within
each cache block (symbol size of 1 byte); the y-axis shows encoding across
cache blocks (symbol size 64 bytes). 0% indicates that no compression was
possible while 100% would indicate that the entire cache was completely
compressible. These results provide a motivation for 2D cache compression.

(i.e., one cache block); to estimate intra-block entropy, we

compressed each block independently using one-byte symbols.

Figure 1 shows how much space can be recovered for each

benchmark by taking advantage of inter-block entropy (y-

axis) and intra-block entropy (x-axis). Some benchmarks show

significant savings by using only one type of redundancy: for

example, lbm has many identical blocks which are generally

not amenable to intra-block compression, while the blocks

cached by canneal have intra-block value redundancy but most

cache blocks are different. Others, such as bwaves and roms,

contain a mixture of identical blocks and some compressible

blocks. (The outlier, GemsFDTD, has nearly all of its working

set filled with zeros and is therefore trivially compressible.)

This paper describes 2DCC, a practical cache compression

scheme that works in two dimensions: it allows working sets

that contain either type of redundancy to be compressed while

also enabling compressing working sets that contain both

types of redundancy. Because this requires decoupling cache

structures, replacement policies become a challenge. 2DCC

uses separate replacement policies for the tag array and the

data array, which optimizes for both reuse and space savings.

Taking advantage of both types of redundancy allows 2DCC

to outperform prior state-of-the-art solutions. When applied to

the LLC in a server-class CPU, 2DCC achieves 2.12× geomean

compression factor across cache sensitive subset of SPEC

CPU2017 [10], SPEC CPU2006 [11], and PARSEC [12] —

compared to 1.43×–1.49× with best prior methods given the

same silicon budget — resulting in a geomean 11.7% speedup.

II. The opportunity for 2D compression

As shown in Figure 1, redundancy in workloads varies widely.

Some benchmarks have only intra-block redundancy, some only



3FAC6C541BBFEA50 3FD5541D0AC64D01 0000000000000000 3F9C771DAF7DF3EE ... 3F9C778732B6F6FF    2x

3FAC71FEA63944A0 3FAC7525DB6AC0A6 3FAC6F986E5A686D 3FAC73DF6669D86B ... 3F9C75711BCC54A4    6x

3F9C6FB92A6D1C66 3F9C7237EE71A6B1 3F9C70B5B41B07CD 3F9C761D9639DAD4 ... 3FAC744503090CB4   4x

0000006E71656964 0000000000000000 0000000000000005 0000000000000005 ... 0000000000000001    1x

0000000000000041 0000000000000000 000000676C686C63 0000000000000005 ... 0000000000000031    1x

0000000000000005 0000000000000005 0000000000000031  00002AAAC1FBF3D0 ... 0000000000000000   1x

3BD21C680908CBF7  BF3500DC8C0FBDF9  BBB0BC2805442A35  BF3600F20DDE3A29 ... BF38012012014418     1x

3F4967FD8A8F8E3A  3F4967FD8AC0F946  3F4967FD8AF2024C  3F4967FD8B22A978 ... 3F4967FD8BE1759      4x

C0150D32E29C3759  C0150D32E29C3759 C0150D32E29C3764 C0150D32E29C375F ... C0150D32E29C3754   4x

(a) (b)
ro

m
s
_r

  
  
c
a
n
n
e
a
l 
  

  
 l
b
m

_r

L0

L1

L2

L0

L1

L2

L0

L1

L2

67%

61%

91%

Fig. 2. (a) Redundancy in LLC snapshots of three benchmarks: lbm_r shows
inter-block redundancy: the three cache lines shown appear twice, 6 times, and
4 times; canneal shows different blocks each of which has a compressible 0
prefix; in roms_r, blocks appear in multiple copies but words also have similar
prefixes. (b) Cache space saved using inter-block compression (y-axis) as well
intra-block compression (x-axis) for these LLC samples.

inter-block redundancy, and there are several workloads that

showcase both types of redundancy.

For example, Figure 2(a) shows cache block fragments of

last-level cache snapshots for three benchmarks, along with the

number of exact copies of each block found in the cache.

The top panel shows three blocks of the destination grid

written inside LBM_performStreamCollideTRT() in lbm_r. The

cache block is filled with 64-bit floats, which differ enough that

intra-block compression (e.g., B∆I [1]) is ineffective. Because

of fluid flow symmetry, there are multiple copies of many cache

blocks, all of which can potentially be deduplicated, allowing

the size of the cache snapshot to be reduced by 67%.

The middle panel shows three blocks addressed by

swap_locations() in canneal. In contrast to lbm_r, the working

set contains no duplicate blocks. However, there is substantial

intra-block redundancy: the data consists mainly of small 32-bit

integers (netlist elements and locations). This allows the cache

snapshot size to be reduced by 61%.

Finally, the third panel shows cache blocks from roms_r, an

ocean forecasting model. The locality of behaviour within an

surface patch, together with similarities across some patches,

creates both intra-block and inter-block redundancy: many

cache blocks in the working set are present in several copies,

and each contains 64-bit floats that are close to one another.

For these cache snapshots, taking advantage of both forms of

entropy can potentially save 91% of the cache space.

Figure 2(b) shows the potential cache silicon savings for

intra-block (x-axis) and inter-block (y-axis) entropy by using

an ideal compression method on the cache snapshots analyzed.

III. 2DCC architecture and operation

Briefly, when a 2DCC cache inserts a new block, it checks

whether an identical block is already present; if the block is

a duplicate, then a reference to the existing block is inserted

instead. If the block is unique, 2DCC attempts to compress it

and store it in a part of a line in the cache’s data array, with

the rest of the line usable by other compressed cache blocks.

This approach presents several challenges. Firstly, duplicate

cache blocks must be detected quickly. Secondly, allocating

and evicting blocks with different compression factors must

not cause fragmentation. Finally, the varying compressibility of

workloads means that the cache may be limited by either tag
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Fig. 3. (a) The three decoupled storage structures that comprise the 2DCC
cache: arrows show pointers logically linking the structures. (b) Entry contents.

storage or data storage, with each storage structure requiring a

separate and different replacement policy.

Storage structures. Unlike conventional caches, which store

one full (e.g., 64-byte) data block for every tag, compressed

caches can either store multiple blocks in the same space [1,

3, 4, 13] or store only one block for multiple tags [2]; 2DCC

similarly decouples the tag and data arrays. In contrast to prior

approaches, each tag may point to an 8-byte segment anywhere

in the data array rather than to only one index or a few possible

locations; this maximizes data array utilization. To avoid storing

duplicate blocks, multiple tags may point to the same segment.

To detect inter-block redundancy, 2DCC adds a third structure

— the hash array — which stores summaries of cached blocks

and allows the controller to quickly identify duplicate lines.

Figure 3 illustrates the structure of a 2DCC cache, and shows

how the three components are interconnected with pointers.

Data Array. Storage of variable-sized blocks is accomplished

by segmenting each set in the data array into eight-byte

segments (similar to prior work [1]): a single cache block may

occupy from one up to eight contiguous segments depending

on the compression factor.

Because the tag array is decoupled from the data array (unlike

in [1]) and the cache can store more tags than uncompressed

blocks, 2DCC may need to evict blocks when space in the

data array runs out even if some tags are still free. To identify

the tags that point to a given data segment, 2DCC uses a

per-segment back-pointer to one of the corresponding tags. To

support the data array replacement policy, each segment also

stores a count of tags pointed to it. A free-list bit vector is used

to allocate entries and manage free space in the data array.

Tag Array. As in a conventional set-associative tag array,

each entry contains the tag itself, tag replacement policy state,

and validity/coherence state. Each entry also specifies the

compression encoding. The tag entry also contains a “data

pointer” to identify the segment(s) storing the cached block.

Finally, multiple tags that point to the same data segment

form a doubly-linked list, used to remove all tags associated

with an evicted block, and to form a free-list of unused tags.

Hash Array. To detect identical cache blocks, 2DCC needs to

compare the contents of an incoming block with the contents of

blocks that are already cached. Naturally, scanning through the

entire cache is not an option. Instead, 2DCC detects candidates

for deduplication by storing hashes of block contents in a

separate small hash array. Because the common case is that
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Fig. 4. Example of 2DCC operation on lines from roms_r benchmark: (a) initial
state; (b) insertion of unique but compressible block; (c) insertion of a new
block whose data is identical to that of panel (b).

incoming lines are unique, the hash array essentially serves to

filter out most lines that cannot be deduplicated.

The hash array is a set-associative table. Each entry points to

the data array segment where the original block is stored. (This

is safe even if the original block is modified or evicted, as hash

collisions mean that hash matches must in any case be verified

against the full cache block.) Based on our experiments, storing

only 1024 hashes is the hash array is sufficient to capture nearly

all possible deduplication while reducing the hash collisions

to less than 1%.

In operation, each incoming block’s contents are hashed

using a 64-bit H3 hash [14]. If the hash is not found, insertion

proceeds normally. If the hash matches (i.e., a duplicate block

may already exist in the cache), the block it points to is fetched

from the data array and the actual data are compared; if the

data are identical, then the line is deduplicated, otherwise it is

inserted as a new block.

Cache operation example. We begin by tracing “the life of

a cache block” on a tiny version of 2DCC in Figure 4 with an

example from the roms_r ocean simulation workload, before

detailing the rules of operation. We begin with the state in

panel (a), with one uncompressible, unduplicated block in the

cache with tag t0 and data d0, such as block L0 in Figure 2(a).

In panel (b), a lower-level cache requests an address with

tag t1, which misses in the tag array ❶ and triggers a

backing memory request for its data d1. When d1 arrives,

it is compressed to d1-c, and, in parallel, hashed to search for

duplicates ❷. The hash is then looked up in the hash array to

determine whether the block can be deduplicated, but as it is

the first occurrence of this data, the lookup fails.

To insert the new block in the cache, the controller consults

the freelist to find that set 1 has a free block, and the compressed

d1-c is inserted there ❸. At the same time, t1 is inserted in

the tag array with its data pointer set to point at d1-c and vice

versa ❹, and the hash for d1 is inserted in the hash array ❺.

In panel (c), a lower-level cache requests an address with tag

t2, which also misses in the tag array ❻; this triggers another

memory request. Once data block d2 arrives, it is compressed

(to d2-c) and hashed as before ❼. This time, however, the
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hash hits in the hash array with the entry pointing to d1-c,

indicating that d2 is a possible duplicate of d1; to verify this,

d1-c is retrieved and compared against d2-c. An exact match is

determined, the deduplication count in d1-c is incremented ❽,

and t2 is inserted into the tag array pointing to d1-c ❾.

Cache operation details. 2DCC operation is largely similar

to that of a conventional cache, with some differences due

to tag/data array decoupling and the need to deduplicate and

compress stored data. We detail those differences below.

Reads, evictions, and insertions. The operation of these

accesses is illustrated in Figure 5. The critical-path portion of

read accesses — both hit ❶ and miss ❷ — corresponds to a

conventional cache.

The hash and the compressed line size are calculated off the

critical path ❸ ❹. If the hash exists in the hash array, the new

block is a deduplication candidate, and the existing block is

retrieved from the data array and compared against the newly

arrived data ❺ to determine if the block is a duplicate.

If the entry is to be deduplicated, an unused tag is obtained

either from the tag free list or by evicting an existing tag ❻. If

the entry cannot be deduplicated, a data entry is also allocated,

possibly following an eviction of some data segments and

their associated tags ❼. If the entry was not deduplicated,

its hash is also inserted into the hash array to enable future

deduplicaton ❽.

Writes. Writes reflect those in a conventional cache: with

inclusive write-back caches, which we use in this paper, write

requests always hit, and execute off the critical path.

Writes may also change the compressed size. In parallel to

the tag access, therefore, the hash of the contents is computed;

if this hits in the hash array, the relevant block is fetched and

compared to the newly written data. If the newly written block

can be deduplicated, the data pointer swings to the existing

copy and the redundant segments are freed.

If the written block cannot be deduplicated, it is first re-

compressed. If it fits in the same number of segments, the data

array entry is overwritten, possibly freeing some segments. If

the line is larger, victim segments are selected from the data

array before inserting the block as if it were a new insertion.

Intra-block compression/decompression. For compressing in-

dividual cache blocks, we use the B∆I compression method [1].

Briefly, B∆I calculates the mean of the words in the block to
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Fig. 6. Example of compressing a 64-byte cache block from roms_r (d1 from
Figure 4). The block consists of 64-bit floating-point numbers whose values
are close; they are compressed to a 64-bit base value followed by eight 32-bit
offsets, for a total compressed size of 36 bytes.

determine the number of bytes needed to express the distance

from this base value or from 0. If all distances can be expressed

in fewer bytes than the original value (e.g., 4 bytes), the

compressed block consists of the base value followed by a

sequence of distance offsets used to reconstruct the original

words in the cache block. Decompression consists of adding

the offsets to the base, and is completed in one cycle.

Figure 6 shows an example of this process. The block (d1

from Figure 4) consists of 64-bit floating-point numbers whose

values are close. The intra-block compression reduces the block

to 40 bytes (an 8-byte base value followed by eight 4-byte

offsets), and compacts it to take up 5 segments in the set.

Replacement Policies. As described in earlier, 2DCC has

three decoupled structures: a tag array, a data array, and a hash

array. Unlike in a conventional cache, the three arrays have

different goals and need different replacement policies.

Tag array. The goal of the tag array replacement policy (RP)

is to preferentially retain addresses likely to be accessed in the

future. The RP should therefore be the same as the equivalent

conventional cache RP. In this paper, we use the least-recently-

used victim selection with most-recently used insertion (LRU),

but other eviction policies may be more appropriate for large

caches and specific workloads [15, 16, etc.].

Data array. The data array, on the other hand, provides

storage space for the blocks identified as likely to be re-

referenced. The storage is many-to-one: when several cache

blocks contain the same data, one data array entry will be

shared among several tags. When evicting a data array entry,

all of the tag array entries that point to it must also be evicted.

This makes conventional cache victim policies, which do not

account for the cost of evicting multiple tags, unsuitable.

Observe that the policy does not need to consider which

blocks are likely to be re-referenced, as the tag array replace-

ment policy already ensures that only useful blocks are cached.

The goal of the data array, therefore, should be to enable the

tag array to store more blocks. Our policy has three stages:

1) If a set in the data array is free, insert the block there.

2) Otherwise, attempt to find space in a partly occupied

block: randomly select four sets, and, if one of them has

enough space, insert the new block there.

3) Finally, examine the four blocks from step 2, and select

the one that (a) has enough space, and (b) minimizes the

number of evicted tags from the tag array.

In effect, this process combines a random sampling process with

a selection policy that retains the most deduplicated entries.

Hash array. The main purpose here is to enable deduplication

of blocks stored in the data array. Thus, the hash array should

identify (a) currently cached blocks whose contents are likely to

reappear in other, soon-to-be-accessed blocks, and (b) incoming

blocks whose contents are likely to reappear later. We therefore

use the LRU policy applied to content hashes.

IV. Results

Methods. We extended ZSim [17] to implement 2DCC

and the state-of-the-art hardware compression techniques for

intra-block compression (B∆I [1]) and inter-block dedupli-

cation (Dedup [2]). We modeled detailed event timing and

interconnect congestion for both on- and off-critical-path events.

The simulated system is shown in Table I; compression was

applied to the L3 level only. We used CACTI 6.0 [18] to

estimate silicon area requirements, including all data structures

for each compression method. For all performance studies, we

normalized the three designs to the same silicon area.

We used an extensive set of integer and floating-point

applications from SPEC CPU2017 [10] and PARSEC [12],

as well as those applications from SPEC CPU2006 [11] that

are not in CPU2017. All were run with large input sizes (native

in Parsec and reference in SPEC). Simulations skipped the first

40 billion instructions, and then sampled the last 20% of each

1 billion instructions for a total of 40 billion instructions.

Sizing data structures. Sizing decoupled structures (tag,

data, and hash arrays) under a fixed silicon area budget is key

to our design. In 2DCC, we must make two sizing decisions:

(a) the ratio of tags to raw data blocks (which must exceed 1

to enable compression) and (b) the size of the hash array that

captures inter-block redundancy.

Tag array vs. data array. We observed that the compress-

ibility of cache blocks varies not only among applications, but

also among different phases within an application, from as

low as 1× in streamcluster to more than 10× in fotonik3d_r.

Similar to prior work [2], we allow the cache to store four

times more compressed lines than uncompressed lines.

Hash Table. For the hash array, the tradeoff is between, on

the one hand, reducing the silicon footprint to make more space

for tags and data entries and, on the other hand, making it

large enough to capture enough of the inter-block redundancy.

To examine the design space, we compared an oracle hash

table — which searches the entire cache for a match — against

hash array sizes from 64 to 16,384 entries. In our experiments,

99.2% of the locality was captured with 1,024 entries (64 sets

× 16 ways), with a collision rate of < 1%. We use this hash

size for the remainder of the experiments.

Silicon area allocation. We configured 2DCC as well as our

three baselines to match that of a conventional, uncompressed

cache with 1MB of data storage. For the compressed caches,

CPU i5-750-like: x86-64, 2.6GHz, 4-wide OoO, 80 entry ROB

L1I 32KB, 4-way, 3 Cycle access lat, 64B lines, LRU

L1D 32KB, 8-way, 4 Cycle access lat, 64B lines, LRU

L2 Private, 256KB, 8 way, 11 Cycles lat, 64B lines, LRU

L3 Shared 1 MB, 8-way, 39 Cycles lat, 64B lines, 8 banks

Memory DDR3-1066, 1GB

TABLE I
Configuration of the simulated system.
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the total space available in the data array is less that 1MB

because more of the available silicon budget must be dedicated

to tags; Table II shows space allocation details.

Metadata for each conventional cache tag entry consists of

valid/dirty/LRU bits. 2DCC adds 4 bits for the compression

type encoding, 32 bits for the previous and next tag pointers,

and 17 bits for the data pointer (11 bits to index the set and 6

bits to index the segment within that set). B∆I adds 10 bits over

the conventional cache for compression-type encoding and the

segment pointer. Finally, Dedup tag entries add 32 bits for tags

pointers and 14 bits for the data pointer. Data array overheads

in 2DCC are 16 bits per segment for the tag list pointer, while

Dedup has one 16-bit pointer for each cache block. 2DCC also

requires a hash array, with each entry consisting of 10 bits for

the hash tag and 17 bits for the data segment pointer; Dedup

has a similar table but uses only 14 bits for the data pointer.

Effectiveness of 2D compression. Figure 7 shows the

inter-block compression factor for each possible intra-block

compression factor averaged over all benchmarks; the bubble

size shows how much cache area was saved due to a specific

combination. The largest savings — 16.9% of cache — come

from blocks that cannot be compressed by themselves, but

can be deduplicated, on average, 1.4× (bubble A). The next

12.1% is saved by blocks that cannot be deduplicated, but

are amenable to intra-block compression with a compression

factor of 1.6× on average (B). Significant additional savings

(14.3% cache space total) come from blocks that are both

compressible within each block but also identical to other

blocks (C, D, E). Finally, 9.5% cache space is saved by using

a special representation for zero-only blocks.

This validates the 2DCC intuition: both choosing the

Baseline B∆I [1] Dedup [2] 2DCC

T
a
g

#Entries 16384 49152 40960 36864
Entry Size 39b 49b 85b 93b
Total Size 78KB 294KB 425KB 414KB

D
a
ta

#Entries 16384 12288 10240 9216
Entry Size 512b 512+0b 512+16b 512+104b
Freelist 1152b
Total Size 1024KB 768KB 660KB 694KB

H
a
sh

# Entries - - 1024 1024
Entry Size - - 3B 3.375B
Total Size - - 3KB 3.375KB

Total Size 1.08MB 1.05MB 1.07MB 1.08MB

TABLE II
Storage allocation. All compressed caches are sized to fit in the same

silicon size of a 1MB conventional cache with 48-bit address space.

Cache Size(MB) Dynamic read energy Leakage power

Conv. 1 0.35 nJ 677.66 mW

B∆I 1 0.37 nJ 679.21 mW
Dedup 1 0.39 nJ 699.70 mW
2DCC 1 0.39 nJ 695.16 mW

TABLE III
Dynamic energy and leakage power of compressed caches and

conventional of 1MB (silicon area of 2.52mm
2) in 32nm technology.

appropriate compression for each block (A, B) and using both

compression methods in the same block (C, D, E) are important.

Cache footprint. Figure 8(a) shows the cache space needed

by different workloads using 2DCC compared to state-of-the-

art methods for intra- (B∆I [1]) and inter-block compression

(Dedup [2]), normalized to a conventional cache. We report

averages over the entire program runtime from an execution-

driven simulation (see Section IV). All caches take the same

silicon area as a 1MB conventional cache (see Table II).

On average, 2DCC is able to reduce the cache footprint

to 47.2% of the original footprint (i.e., 2.1× compression), a

substantial improvement over B∆I (67.1%) and Dedup (69.2%).

Performance. We divided the benchmarks into cache sensi-

tive (S) and cache insensitive (NS): we consider a benchmark

to be cache insensitive if there is < 3% change in MPKI when

the conventional LLC size is doubled (this typically means that

their workloads mostly fit in the L2 or even L1D cache).

Figure 8(b) shows that 2DCC reduces cache misses per 1,000

instructions (MPKI) by 1.6× compared to 1.3× for B∆I and

1.2× for Dedup on average for the cache sensitive benchmarks.

At the same time, the MPKI impact of cache compression on

the cache-insensitive benchmarks is negligible (1.6%)

Figure 8(c) shows that the lower MPKI allows 2DCC to

improve performance (IPC) by 11.7% for the cache-sensitive

benchmarks, vs. 7.3% for B∆I and 5.2% for Dedup. Cache-

insensitive benchmarks can suffer a slight performance degrada-

tion (avg. 2.6%): for example, bwaves is highly compressible but

cache-insensitive, so the compression/decompression latencies

are not offset by more frequent cache hits.

We also investigated whether evictions of multiple tags are

a significant problem, by measuring the ratio of evicted tags to

cache accesses. Because of its better compression, 2DCC has

the lowest eviction rate of 0.032 evictions per access, compared

to 0.049, 0.042, and 0.041 for the conventional cache, B∆I,

and Dedup, respectively. This means that multi-tag evictions

are very rare, and do not have any performance impact.

Energy impact. We used CACTI [18] to measure the latency,

read energy, and leakage power of 2DCC and the three baselines

(see Table III); results show that 2DCC uses 11% more energy

for each read, and has a 2.5% leakage power overhead.

V. Related Work

Inter-block deduplication: Data deduplication techniques

work well when many cache blocks are either entirely zero [1, 3]

or copies of other blocks that concurrently reside in the

cache [2, 19]. 2DCC leverages many of the same insights

to take advantage of inter-block redundancy, but also takes

advantage of intra-block redundancy, which implies substantial

differences in the overall structure and operation.
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Fig. 8. Cache occupancy, cache miss rates, and performance improvements of 2DCC compared to iso-silicon B∆I (intra-block) and Dedup (inter-block) caches,
normalized to an iso-silicon conventional (uncompressed) cache.

Intra-block compression: Data values in a block can also

be compressed due to low dynamic range [1, 3]. Prior work

categorized these into (a) repeated values, (b) a set of values

(especially zeros) repeated in a data block, and (c) near values,

which have the same upper bits and different lower bits.

B∆I [1] uses one word-granularity “base” value for each

compressed cache block, and replaces the other words in the

block with their distances from the base value. 2DCC borrows

the B∆I compression method to compress each block; however,

because 2DCC also deduplicates identical blocks, the overall

cache organization, operation, and replacement policy differ.

In general, intra-block methods are useful in compressing

one block (or superblock of several lines, akin to prefetching),

but none consider redundancy among different non-contiguous

blocks at far-away addresses. 2DCC, in contrast, can store only

one copy of duplicate lines, and offers better compression.
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