
A Yoke of Oxen and a Thousand Chickens for Heavy 
Lifting Graph Processing 

Abdullah Gharaibeh, Lauro Beltrão Costa, Elizeu Santos-Neto, Matei Ripeanu 
Department of Electrical and Computer Engineering, The University of British Columbia 

{abdullah, lauroc, elizeus, matei}@ece.ubc.ca 

  

ABSTRACT 

Large, real-world graphs are famously difficult to process 
efficiently.  Not only they have a large memory footprint but most 
graph processing algorithms entail memory access patterns with 
poor locality, data-dependent parallelism, and a low compute-to- 
memory access ratio. Additionally, most real-world graphs have a 
low diameter and a highly heterogeneous node degree 
distribution. Partitioning these graphs and simultaneously achieve 
access locality and load-balancing is difficult if not impossible. 

This paper demonstrates the feasibility of graph processing on 
heterogeneous (i.e., including both CPUs and GPUs) platforms as 
a cost-effective approach towards addressing the graph processing 
challenges above. To this end, this work (i) presents and evaluates 
a performance model that estimates the achievable performance 
on heterogeneous platforms; (ii) introduces TOTEM – a processing 
engine based on the Bulk Synchronous Parallel (BSP) model that 
offers a convenient environment to simplify the implementation of 
graph algorithms on heterogeneous platforms; and, (iii) 
demonstrates TOTEM’S efficiency by implementing and evaluating 
two graph algorithms (PageRank and breadth-first search). TOTEM 
achieves speedups close to the model’s prediction, and applies a 
number of optimizations that enable linear speedups with respect 
to the share of the graph offloaded for processing to accelerators.  

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming – 

Parallel Programming; D.3.4 [Programming Languages]: 

Processors – Run-time Environments; D.4.8 [Operating 

Systems]: Performance – Measurements, Modeling and 

Prediction; G.2.2 [Discrete Mathematics]: Graph Theory – 
Graph Algorithms. 

General Terms 

Algorithms, Performance, Design, Experimentation. 

Keywords 

Heterogeneous Systems, GPU, Graph Algorithms, Breadth-first 
Search, PageRank, TOTEM. 

1. INTRODUCTION 
Graphs are the core data structure for problems that span a wide 
set of domains, from mining social networks, to genomics, to 

business and information analytics. In these domains, key to our 
ability to transform raw data into insights and actionable 
knowledge is the ability to process large graphs efficiently and at 
a reasonable cost. Imagine, for example, an advertising system for 
an online social network with hundreds of millions of users.  

Many challenges make processing large graphs difficult. First, 
these workloads imply a large memory footprint (a “Mini” graph 
based on the Graph500 benchmark taxonomy [19] requires 
137GB of memory). Second, most graph algorithms lead to a 
memory access pattern that has poor locality, data-dependent 
parallelism and a low compute–to-memory access ratio. Finally, 
most real-world graphs have a low-diameter and a highly 
heterogeneous node degree distribution (i.e., they are ‘power-
law’) [2] thus partitioning them for access locality and load-
balancing is difficult: processing graphs with low-diameter 
typically leads to a variable amount of parallelism available across 
execution rounds; while node degree heterogeneity causes 
imbalanced work across vertices. 

Single-node1 graph processing has a long history [1,12,14,17].  
Yet, graph processing on single nodes is fundamentally limited 
not only by a node’s memory size but also, and more importantly 
from a performance perspective, by memory access latency. 
Efficient single-node graph processing is, at the same time, a 
prerequisite to any efficient solution to process larger graphs on 
shared-nothing architectures (e.g., clusters).  

This paper investigates the feasibility and the comparative 

advantages of supporting graph processing on heterogeneous, 

GPU-accelerated nodes. Moreover, in the spirit of building 

abstractions to hide complexity, it presents a generic graph-

processing engine that leverages such platforms. 

Two reasons make us believe that commodity heterogeneous 
nodes (e.g., GPU accelerated nodes) are an attractive building 
block to assemble a platform for high-performance, low-cost 
graph processing. First, GPUs bring massive hardware-supported 
multithreading able to hide memory access latency – a major 
performance bottleneck for this class of problems. Second, 
heterogeneous architectures that host processing units optimized 
for both fast sequential processing as well as for bulk processing 
match well the heterogeneous structure of graph workloads that 
need to be processed in practice. We expand on the opportunities 
and the challenges of using heterogeneous architectures in 
Section 2.  

The following high-level questions guide our investigation: 

                                                                 

1 We use node to refer to computing elements, and vertex to refer 
to the graph element. 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA. 
Copyright 2012 ACM  978-1-4503-1182-3/12/09...$15.00. 



Q1. What are the general challenges to support graph processing 

on a single-node GPU-accelerated system? In particular, is it 

feasible to efficiently use both the traditional CPU cores and 

GPU(s) for graph processing?  

Q2. Assuming that a low-level engine can efficiently process large 

graphs on GPU-accelerated nodes, what could an abstraction 

that aims to simplify the task of implementing graph 

algorithms look like?  

While we make preliminary progress on these relatively generic 
issues, this paper makes the following concrete contributions: 

� We present a performance model that captures the key 
characteristics of a GPU-accelerated platform and the graph 
processing workload (Section 3). Given the characteristics of 
today’s platforms (e.g., processing rates, memory space, and 
communication cost) the model demonstrates that it is 

beneficial to offload part of the graph workload to a GPU. 
Moreover, as we demonstrate, the model can serve as a tool to 
guide optimization efforts, system configuration, and 
provisioning. 

� We present TOTEM, an open-source generic graph processing 
engine for GPU-accelerated platforms (Section 4)2. Our 
proposed design efficiently uses all CPU and GPU cores on a 
given node. Guided by the performance model, TOTEM applies 
a number of algorithm-agnostic optimizations that lead to 
performance improvements. One key optimization we 
introduce is reducing communication overhead by over an 
order of magnitude by aggregating messages at the source 
processor.  

� We evaluate (Section 5) two key graph processing algorithms 
that are building blocks for a number of relevant applications: 
PageRank and breadth-first search (BFS). These two 
algorithms stand at the two extremes of a key performance 
factor for graph algorithms: the computation-to-
communication ratio. We demonstrate linear speedups for both 
algorithms with respect to the proportion of the graph that is 
offloaded to a GPU.  

The importance of this work comes from all these three 
contributions. Firstly, the performance model not only encourages 
the design of GPU-offloading techniques, but can guide hardware 
purchase and software design decisions for various classes of 
graph-related problems. Secondly, this work is the first to 
demonstrate the feasibility of using, in parallel, all CPU and GPU 
processors of a heterogeneous platform for a key class of irregular 
problems: graph processing. Finally, the processing engine we 
provide, TOTEM, offers an efficient and easy to use environment to 
develop graph applications that can benefit from acceleration.  

Overall, our work is a basic building block towards an 
environment dedicated to processing graphs on large-scale 
machines (i.e., GPU-accelerated clusters, similar to the recent top 
entries in the Top500 supercomputer list). To this end, scaling out 
to multi-node systems is one of the main directions of future work 
(we elaborate on this in Section 6). 

                                                                 

2 The code can be found at: http://netsyslab.ece.ubc.ca 

2. GRAPH PROCESSING ON HETEROGENEOUS 

ARCHITECTURES: OPPORTUNITY AND CHALLENGES   
Large-scale graph processing faces two main difficulties. First, 
large memory footprint: efficient graph processing requires the 
whole graph to be present in memory, where for practical 
applications, graphs occupy from few gigabytes to terabytes of 
space. Second, high memory access latency combined with a low 

computation to memory access ratio: the major overhead of 
processing a graph is fetching the state of the vertices (e.g., a 
vertex iterates over its neighbors’ state); because of poor locality 
and the scale of the workload, caches and prefetching are of little 
value, and most accesses are served by main memory. 

The opportunity: GPU-acceleration has the potential to bring, at a 
low cost, the key advantage of massive, hardware-supported 
multithreading. In fact, a commodity GPU has much higher 
memory bandwidth and supports orders of magnitude more 
hardware threads and in-flight memory requests compared to 
traditional CPU processors. Additionally, properly mapping the 
graph-layout and the algorithmic tasks between the CPU(s) and 
the GPU(s) holds the promise to exercise each of these computing 
units where they perform best: CPUs for fast sequential 
processing (e.g., for the few high degree nodes of a power-law 
graph) and GPUs for the bulk parallel processing (e.g., for the 
many low-degree nodes). 

Indeed, past work [5,8,10,12,16] demonstrates that GPU 
offloading offers tangible benefits compared to traditional 
multiprocessors for graph processing. However, previous work 

assumes the entire graph fits in the GPU memory. This is a major 
limitation as GPUs support up to one order of magnitude less 
memory space than the host (a trend that has been observed in the 
past ten years, and announcements of future GPU models indicate 
that this trend will continue at least in the medium term).  

Hong et al. [8] work is, perhaps, the closest to this work in the 
spirit of enabling an application to harness the opportunities 
offered by a heterogeneous architecture, yet Hong et al. still 
assume that the GPU memory can hold the entire graph. In 
particular, they present a BFS implementation on a GPU-
accelerated platform. They divide the processing into a first phase 
done on the CPU (as, at the beginning, only limited parallelism is 
available), and a second phase that starts once enough parallelism 
is exposed, at which point the whole graph is transferred to the 
GPU to accelerate processing.  

The challenges: This work investigates the feasibility of 

accelerating graph processing while partitioning the graph 

between the processing elements. Moreover, in the spirit of 
building abstractions to hide complexity, it presents a graph-
processing engine that leverages such platforms. To this end, we 
need to address a number of major challenges that we discuss in 
turn below: 

First, the large amount of data to be processed, and the need to 
communicate between processors put pressure on two scarce 
resources: the GPUs’ on-board memory and the host to GPU 
transfer bandwidth. Intelligent data placement solutions are 
needed to reduce memory pressure and limit generated transfer 
traffic. The ability to overlap communication with computation 
and to directly communicate between GPUs attached to the same 
host offer good prospects to mitigate some of these obstacles. 

Second, to achieve good performance on GPUs, the application 
should match the SIMD computing model. As graph problems 



exhibit data-dependent parallelism, traditional implementations of 
graph algorithms lead to low memory access locality. 
Nevertheless, GPUs are able to hide memory access latency via 
massive hardware multithreading that, with careful design of the 
graph data structure, can reduce the impact of these factors.  

Finally, mapping high-level abstractions (e.g., vertex-centric 
processing) and APIs to facilitate application development to the 
low level engine while limiting the efficiency loss, is an additional 
challenge. 

Our methodology: To address these challenges, our methodology 
consists of the following interrelated steps:  

� Performance modeling. We focus on assessing the feasibility 
of accelerating graph processing through partitioning and 
offloading a partition to the GPU. We take into account a 
number of key aspects such as the parallel processing model, 
the characteristics of the processing elements and the 
interconnect. It is worth noting that the model is agnostic to 
the precise graph algorithm and the model can be used to 
answer more complex resource provisioning and configuration 
questions.  

� Engine design and prototyping. Informed by the performance 
model and the type of algorithms we aim to support, we design 
and prototype the building blocks of the graph processing 
engine (TOTEM). This includes defining the engine’s 
programming model and interface. 

� Algorithm prototyping. We prototype two graph algorithms on 
top of the engine. We evaluate the performance of the system 
to demonstrate the feasibility of graph partitioning and 
offloading to GPUs and validate and refine the performance 
model.  

3. PERFORMANCE MODEL 
The model aims to answer the following question: Is it beneficial 

to partition and process the graph on both the host and the 

accelerator (when compared to processing only on the host)? 

In particular, we consider a heterogeneous node that consists of 
two processing elements P = {pcpu, pacc}, the CPU and an 
accelerator (e.g., a GPU) (Figure 1). The model can be easily 
generalized to a mix of multiple CPUs and accelerators. However, 
for the sake of simplicity, we use the setup with only two 
processing units for the rest of this section. 

The model makes the following assumptions: 

(i) Each processing element has its own local memory. The 
processing elements are connected by a bidirectional 
interconnect with communication rate c measured in edges 
per second (E/s) -- this is a reasonable unit as the time 

complexity of a large number of graph algorithms depends 
on the number of edges in the graph. However, the same 
model can be recast in terms of vertex-centric algorithms by 
normalizing by the number of vertices instead of edges. 

(ii) The processing model is bulk synchronous parallel (BSP). 
Processing proceeds in rounds of concurrent computation 
and communication at the processing elements. Note that the 
performance model is agnostic to the architecture of each 
processing element. 

(iii) pcpu has enough memory to load and process the complete 
graph. The question is whether it is useful to partition the 
graph and process part of it on pacc.  pacc has limited memory 
compared to pcpu, and can not load and process the complete 
graph at once. 

(iv) pacc has higher graph processing rate than pcpu. This is based 
on published results [8,12], which we validated 
independently. 

(v) In addition to participating in graph processing, pcpu 

schedules the workload (e.g., partitions the graph) and 
gathers the results. The model assumes these overheads are 
negligible compared to the algorithm processing time.  

Let G = (V, E) be a directed graph, where V is the set of vertices 
and E is the set of directed edges. |V| and |E| represent the number 
of vertices and edges, respectively.  

The time it takes to process a partition of G, Gp = (Vp, Ep) ⊆  G on 

a processing element p, is given by:  

 

p

p

b

p

p
r

E

c

E
Gt +=)(  (1) 

where rp is the processing rate of processor p (in E/s), and  

p

b

p EE ⊆ represents the subset of boundary edges – edges where 

either the source or the destination vertex is not located in p’s 
local memory. 

Equation 1 estimates the time required to process a partition as a 
combination of the time it takes to communicate possible updates 
through boundary edges (communication phase) plus the time it 
takes to process the edges in that given partition on processor p 
(computation phase). Intuitively, the higher the processing rate of 
a processing element, the lower is the processing time. Similarly, 
the less communication a processing element needs to access the 
edges in its partition, the lower is the processing time. 

Now, we build on Equation 1 and define the makespan3 of a graph 
workload G on a given platform P as follows: 

 { })(max)( p
Pp

P GtGm
∈

=  (2) 

The intuition behind Equation 2 is that the performance of a 
parallel system is limited by its slowest component. Since, as 
discussed before, we assume that (i) the host processes its 
partition slower than the accelerator (i.e., rcpu < racc) and that (ii) 
the host has more memory and is assigned a larger partition, the 

                                                                 

3 Makespan: the completion time of the last workload partition 
[13]. 

 
Figure 1: Graph partitioning on a heterogeneous node: An 

illustration of the model’s parameters and their values for 

today’s commodity components.  



time spent on processing the CPU partition is always higher than 
that of the GPU partition (i.e., t(Gcpu) > t(Ggpu)). Hence, the 
speedup of processing a graph on a heterogeneous platform 
(compared to processing it on the host only) can be calculated by 
Equation 3, as follows: 

 

( )
( )

( )
( )

( )

cpucpu

b

cpu

cpu

cpucpu

cpu

P

cpu

P

rEcE

rE

Gm

Gm

Gm

Gm
Gs

+
=

===
}{

}{}{

  (3) 

To understand the gains resulted from moving a portion of the 
graph to the accelerator, we rewrite Equation 3 by introducing two 
parameters that characterize the ‘quality’ of the graph partition. 
Let α be the share of edges (out of the total number of graph edges 
|E|) assigned to the host, similarly let β be the percentage of 
boundary edges (i.e., the edges that cross the partition). 
Introducing these parameters, we have: 

 

( )

α
β

αβαβ

+
⋅

=

+
=

+
=

c

r

cr

c

rEcE

rE
Gs

cpu

cpucpu

cpu

P

1

 (4) 

As expected, Equation 4 predicts that a high communication rate, 
c, improves the speedup. In fact, if c is set to infinity, the speedup 
can be approximated as 1/α. This is intuitive, as in this case the 
communication overhead becomes negligible compared to the 
time spent on processing the CPU’s share of edges, α. 

Figure 1 presents an illustration of the model and reasonable 
values for models’ parameters for today’s commodity 
heterogeneous platforms. We discuss them in turn next: 

Communication rate (c) is directly proportional to the bus 
bandwidth and inversely proportional to the amount of data 
transferred per edge. The GPU is typically connected to the host 
via a PCI-E bus. The commonly used PCI Express 2.0 has a 
measured transfer bandwidth of 4GB/sec. If we assume the data 
transferred for each graph edge is a 4-byte value, the transfer rate 
c becomes 1 Billion E/s – or BE/s.  

CPU’s processing rate (rcpu) depends on the CPU’s 
characteristics, the graph algorithm, and the graph topology. We 
discuss possible values below in Table 1. 

Percentage of boundary edges (β) depends on the graph 
partitioning between the processing elements. In the worst case all 
edges cross the partition. 

The share of the graph that stays on the CPU (α) is configurable, 
but is constrained by the memory space available on the 
processing elements (for example, larger memory on the GPU 
allows for offloading a larger partition, hence smaller α). 

We now explore the effect of changing the CPU processing rate or 
the percentage of boundary edges on the predicted speedup. 
Figure 2 shows the speedup predicted by the model (Equation 4) 
for different values of α, while varying the CPU processing rate 
(left plot) and the percentage of boundary edges (right plot).  

Note that we keep at least half of the graph on the CPU (i.e., 
α>50%) as a conservative measure to ensure that the assumption 

t(Gcpu) > t(Ggpu) (which allows us to transform from Equation 2 to 
Equation 3) always holds. Note that this constraints the speedup 
to 2x or lower.  

Figure 2 shows that as rcpu (left plot) or β (right plot) increase, the 
speedup decreases. For CPU processing rate above 1 BE/s or a 
graph partition that leads to larger or equal to 60% of boundary 
edges, the speedup decreases (with slowdown in some cases). This 
is because the communication overhead becomes significant. 
Figure 2 (right) also presents a hypothetical worst case where all 
of the edges are boundary edges (e.g., a bipartite graph where the 
partition cuts each edge). Even in this case, and due to the high 
communication rate c, the slowdown is not that significant, in 
fact, for α = 50%, no slowdown is predicted. 

Figure 3 evaluates the effect of the amount of transferred data per 
edge on the predicted speedup. The speedup significantly drops as 
we double the amount of transferred data. However, having a low 
percentage of boundary edges, β, helps addressing this problem. 
Section 4.2 presents optimizations that aim to lower β (for 
practical cases we obtain an effective β as low as 3%). 

To put in perspective the gains predicted by the model, and make 
sure we use values anchored in reality,  we look at the estimated 
CPU processing rates based on the performance of the BFS 
algorithm benchmarks. Table 1 shows the best published parallel 
BFS performance results on a single CPU-only node for a power-
law graph with 1Billion edges. BFS is a simple graph traversal 
algorithm with minimal per vertex processing. The processing rate 
for other more compute 
intensive algorithms, like 
Single Source Shortest 
Path (SSSP) and 
PageRank, is expected to 
be lower. 

Nonetheless, as shown in 
the last column, offloading 
only 30% of the graph to a 
GPU offers tangible 
speedups (up to 1.39x).  

More importantly, Table 1 
allows us to get a sense of 
whether adding a GPU to 
the system brings higher 
benefits compared to 
adding extra CPU sockets. 

 

Figure 3: Predicted speedup while 

varying the transferred data per 

edge (α is set to 50% and the 

transferred bandwidth to 4GB/sec 

(PCI-E bandwidth)). 

 
Figure 2: Predicted speedup (values below one indicate 

slowdown). Left: while varying the CPU’s processing rate (β is 

set to 20%). Right: while varying the percentage of boundary 

edges (rcpu is set to 0.5 BE/s). For both plots, the 

communication rate is 1 BE/s. 



It is clear that the predicted speedup that results from adding a 
GPU to the dual-socket platform (i.e., 903 ME/s) leads to a 
performance that is comparable to the four-socket platform (i.e., 
1050 ME/s), but at a lower price and energy point. 

Considering the region of the plots where the parameters are set to 

values that represent realistic scenarios (650 ME/s ≤ rcpu ≤ 1050 
ME/s) we observe in Figure 2 that the model predicts speedups 
above one. Hence, we conclude that it can be beneficial to have 

an engine to partition and process the graph on both the host and 

the accelerator.  

The model proposed here enables estimating the performance 
gained by replacing certain processing elements by accelerators 
(and vice-versa). As we have shown, there are practical scenarios 
where it is beneficial to add accelerators to graph processing 
platforms. The next challenge is to provide a framework that 
allows application programmers to write graph algorithms that 
make the most out of such heterogeneous platforms. We describe 
TOTEM, our proposal to address such challenge, in the next 
section.  

4. TOTEM 
To enable application programmers to leverage heterogeneous 
architectures, we design TOTEM – a graph processing engine for 
heterogeneous and multi-GPU single-node systems. This section 
presents TOTEM’s programming model (Section 4.1) and 
implementation (Section 4.2). 

4.1 Programming Model 
TOTEM adopts a Bulk Synchronous Parallel (BSP) [15] parallel 
computation model and divides processing into rounds 
(supersteps in BSP terminology). Each superstep consists of three 
phases executed in order: computation, communication and 
synchronization. In the computation phase, each processor (in our 
case the CPU and the GPU(s)) executes asynchronously 
computations based on values stored in their local memories. In 
the communication phase, the processors exchange messages that 
are necessary to update their statuses before the next computation 
phase starts. The synchronization phase guarantees the delivery of 
the messages. Specifically, a message sent at superstep i is 
guaranteed to be available in the local memory of the destination 
processor only at superstep i+1.  

Adopting the BSP model allows to circumvent the fact that the 
GPUs are connected via the high-latency PCI-Express bus. In 
particular, batch communication matches well BSP, and this 
enables TOTEM to hide (some of) the bus latency.  

Computation phase. TOTEM initially partitions the graph and 
assigns each partition to a processing unit. In each compute phase 
of a superstep, the processing units work in parallel, each 
executing the user-specified kernel on the set of vertices that 
belong to its assigned partition.  

Communication phase. TOTEM enables the partitions to 
communicate via boundary edges. The engine stores messages 
sent to remote vertices in local buffers that are transferred in the 
communication phase to the corresponding remote partitions. As 
the performance model shows, reducing communication overhead 
is paramount to improve performance. The engine achieves such 
reduction by aggregating at the source processor messages 
targeted to the same remote destination vertex. The aggregation is 
performed based on a user-provided function. Note that the 
synchronization phase is performed implicitly as part of the 
communication phase. 

Termination. The engine terminates execution when all partitions 
vote to finish in the same superstep. At this point the engine 
invokes a user-specified function to collect and merge the results 
from all partitions.  

4.2 Implementation 
TOTEM is open-source, and is implemented in C and CUDA. A 
client configures TOTEM to execute a graph algorithm by 
implementing a number of callback functions executed at different 
points in the BSP execution model.  

Figure 4 shows a simplified configuration of TOTEM. The engine 
creates one partition for the host and a partition for each GPU. 
The init_func allows the client to allocate algorithm-specific 

state (such as the cost array in BFS or the rank array in 
PageRank), the kernel_func callback performs the core 

computation of the algorithm, the msg_reduce_func callback 

defines how a message received from a boundary edge updates a 
vertex’s state (e.g., update the vertex’s state with the sum of the 
two in the case of PageRank, or the minimum in SSSP). Finally, 
the finalize_func callback enables the client to release 

state allocated at initialization. TOTEM accepts other configuration 
parameters, most notably is the graph partitioning algorithm the 
engine should use.  

All callbacks are invoked per partition. If the partition is GPU 
resident, the engine ensures that the execution context is correctly 
set such that CUDA calls invoked from the callback are executed 
on the corresponding GPU. 

 
Figure 4: A simplified TOTEM configuration and how the 

callbacks map to the BSP execution model. 

Table 1: Best published parallel BFS performance results (in 

ME/s) on a CPU-only node for an RMAT graph with |V| = 

32M and |E|=1B. The last column shows the performance and 

speedup predicted by the model if 30% of the workload is 

offloaded to a GPU (i.e., α = 70%). β is set to 3% (discussed in 

Section 4.2). 

Ref. Platform 
Hardware 

Threads 

rcpu  

(ME/s) 

Predicted rate  

with GPU 

(Speedup)  

dual- Intel 
X5570 

16    650 903 (1.39x) 
[1,8] 

four- Intel 
X7500 

32 1,050 1,435 (1.37x) 

 



A number of important aspects related to TOTEM’s design and 
implementation are worth discussing; however, space constraints 
allow us to only discuss two topics: the data structures used and 
the communication via boundary edges. 

Graph representation. Graph partitions are represented as 

Compressed Sparse Rows (CSR) in memory [3], a space efficient 
graph representation that uses O(|V| + |E|) space. Figure 5 shows 

an example of two-way partitioning setup. The arrays V and E 
represent the CSR data structure. In each partition, the vertex ids 
span a linear space from zero to |Vp|-1. A vertex id together with a 
partition id represents a global id of a vertex. A vertex accesses its 

edges by using its id as an index in V to fetch the start index of its 

neighbors in E.  

The array E stores the destination vertex of an edge, which 
includes the partition id (shown in the figure as subscripts) 
encoded in the high-order bits. In the case of boundary edges, the 

value stored in E is not the remote neighbor’s id, rather it is an 
index to its entry in the outbox buffer (discussed later). To 
simplify state management, a vertex in a directed graph has access 
only to its outgoing edges, which is sufficient for most graph 
algorithms. Note that undirected edges can be represented in this 
graph data structure using two directed edges, one in each 
direction. 

The array S represents the algorithm-specific local state of each 
vertex, it is of length |Vp|, and is indexed using vertex ids. Note 
that a similar array of length |Ep| can be created if the state is 
required to be per edge rather than per vertex. 

The processing of a vertex typically consists of iterating over its 

neighbors. A neighbor id is fetched from E, and is used to access 

S for local neighbors, or the outbox buffer for the remote ones. 

Typically, accessing the state of a neighbor (either in S or in the 
outbox buffer) is done via atomic operations as multiple vertices 
may simultaneously try to update the state of a common neighbor.  

To improve pre-fetching, the set of neighbors of each vertex in E 
are sorted and are placed such that the local edges are processed 

first (entails accessing S), and then the boundary edges (entails 
accessing the outbox buffers). 

Communication via boundary edges. A challenge for a graph 
processing engine for heterogeneous and multi-GPU setups is 
how to keep the cost of communication low. TOTEM addresses this 
problem by using local buffers and aggregation functions. As 
mentioned in section 4.1, messages sent via boundary edges in the 
computation phase of a superstep are temporarily stored and, if 

possible, aggregated in local buffers that are transferred in the 
communication phase.  

TOTEM maintains two sets of buffers for each processing element 
(Figure 5). The outbox buffers have an entry for each remote 
neighbor, while the inbox buffers have an entry for each local 
vertex that is remote to another partition. An in/outbox buffer is 
composed of two arrays: one maintains the remote vertex id and 
the other stores the messages.  

The outbox buffer in a partition is symmetric to an inbox buffer in 
another. Therefore, in the communication phase, only the message 
array is transferred. Once transferred, TOTEM uses the user-
defined aggregation function to update the remote neighbors’ state 

in the S array at the remote partition with the new values. Similar 

to E, the entries in the inbox buffers are sorted by vertex ids to 
improve pre-fetching and cache efficiency when doing the update. 

Optimizing access to boundary edges. To show the benefit of 
aggregating the communication along boundary edges, we test a 
naïve graph partitioning algorithm (i.e., random partitioning) and 
compare how much communication would happen with and 
without aggregation. Figure 6 shows β resulted from two- and 
three- way partitioning of a power-law graph (e.g., setup with one 
and two GPUs, respectively). The x-axis varies |V| while keeping 
|E| constant at 512M, hence varying the density of the graph (the 
density decreases as |V| increases).  

Increasing the number of partitions for the naïve partitioning 
increases β (from 50% for two partitions to 62% for three) as the 
probability of having a remote neighbor increases. More 
importantly, β is significantly reduced (between 3% to 16%) by 
aggregating boundary edges that have the same remote destination 
vertex. Note that decreasing the density of the graph reduces the 
opportunity for aggregation. However, even for a highly sparse 
graph, denoted by the most right data point in Figure 6, 
aggregation is still beneficial, reducing β by four times.  

The worst case inputs are the Erdos-Renyi purely random graphs 
(The power-law RMAT graphs are advantageous as multiple 
edges from the same partition will point to the high degree 
vertexes and thus enable aggregation).  Most graphs processed in 
practice, however, are power-law, thus this optimization is likely 
to be useful.  

Finally, it is important to mention that aggregation works for 
algorithms where it is possible to reduce, at the source partition, 
into one value the values sent to the same remote vertex. For 
example, the “visited” status in BFS, minimum “distance” in 
SSSP and “rank” sum in PageRank.  

 
Figure 6: resulted β with and without aggregation while 

varying the number of vertices, and using a random 

partitioning algorithm. (|E| = 512M).  

 

Figure 5: An illustration of the main data structures and the 

communication infrastructure in a two-way partitioning 

scenario. 



Nonetheless, for algorithms where aggregation is not feasible, 
careful partitioning [9] has the potential to minimize the number 
of boundary edges, and reducing the communication overhead. 

Summary of optimizations. In the following we summarize the 
main optimizations used by TOTEM. (they have been discovered 
through an iterative exploration process and provide sizeable 
gains. Lack of space prevents us to present a detailed evaluation 
of the performance impact of each of these optimizations). 

(i) A compressed graph representation to reduce the memory 
footprint. 

(ii) Aggregating boundary edges to reduce communication 
overhead. This technique has been used in cluster setups 
[11], and we show its application and effectiveness on 
heterogeneous platforms. 

(iii) Sorting vertex ids in the inbox buffers to improve pre-
fetching and cache efficiency when updating the vertices’ 
local state. 

(iv) Processing the local and remote edges separately to improve 
data access locality. 

Limitations. Two main limitations related to the current 
implementation of TOTEM are worth mentioning. First, the 
implementation assumes fixed structure graphs, as the used CSR 
data structure makes it expensive to support updates to the graph 
structure during the algorithm execution (e.g., creation of new 
edges or vertices). This is a tradeoff. CSR enables a lower 
memory footprint and efficient iteration over the graph’s elements 
(vertices and edges), which are essential for performance. Any 
other graph data structure that aims to enable mutable graphs will 
have to have some form of dynamic memory management (e.g., 
linked lists), which is expensive to support, particularly on GPUs. 

The second limitation is related to the way communication is 
performed. During the communication phase of each superstep, 
the current implementation copies the whole outbox buffer of a 
partition to the inbox buffer of a remote partition assuming that 
there is a message to be sent via every edge between the two 
partitions. This is efficient for algorithms that communicate via 
each edge in every superstep, such as PageRank. However, this 
may be considered an overhead for other algorithms that 
communicate only via a selective set of edges in each superstep. 
For example, in the level-synchronized BFS algorithm, at a given 
superstep, only the vertices at the frontier communicate data via 
their outgoing edges. Additional compression techniques could be 
employed to lower the communication volumes.  

Summary. The current implementation is space efficient, and 
simplifies the communication phase at the expense of adding 
communication overhead for some algorithms. An alternative 
implementation that enables selective communication via 
boundary edges, on the other hand, will avoid communicating 
inactive edges, but requires maintaining additional state (e.g., a 
bitmap to identify active remote edges or a thread-safe queue), 
and communicating a destination vertex id along with each 
message. We chose the former solution for its simplicity and 
acceptable performance, which is demonstrated in the next 
section. 

5. EVALUATION 
Goals. The evaluation aims to show the benefits of a 
heterogeneous platform compared to a platform based solely on 
CPUs. Particularly, it aims to address the following questions.  

First, how does TOTEM compare to the performance predicted by 

the model described in Section 3? Such comparison allows us to 
validate the model and understand, for each use case, how much 
room is possibly left for optimizations. 

Second, how do the workload characteristics affect the 

performance predicted by the model and the one achieved by 

TOTEM? We focus on one graph characteristic, graph density as it 
affects the communication overhead – a key overhead in 
distributed memory platforms. 

Third, how does TOTEM scale when increasing the number of 

GPUs? New commodity systems are able to host multiple GPUs, 
which can be harnessed to offload larger part of the graph, and 
achieve better overall performance.  

Workload. We use graphs generated using Recursive MATrix (R-
MAT) scale-free graph generation algorithm [4], a graph 
generator adopted by the Graph500 benchmark. We use the 
benchmark’s default configuration parameters (A=0.57, B=0.19, 
C=0.19 and D=0.05). In all experiments, we use a random 
partitioning algorithm. Finally, for each data point, we present the 
average over 20 runs. 

Algorithms. We implemented two graph algorithms on top of 
TOTEM. We look at these algorithms as representatives of the two 
ends of the computation-to-communication ratio spectrum. First, 
PageRank, has a relatively high computation-to-communication 
ratio, and is less sensitive to communication overhead and 
memory access latency. The algorithm is based on the one 
described in [11]. It is worth noting that, to the best of our 
knowledge, this is the first work to implement and evaluate 
PageRank on GPUs.  

Second, BFS, which has a low computation-to-communication 
ratio. BFS mainly does memory lookups with no major 
computation; hence it is more sensitive to memory access latency. 
The kernel implementation of BFS is based on the one described 
in [7]. 

Due to space constraints, we do not present the implementation of 
the algorithms. Also, all figures show two side-by-side plots for 
PageRank (left) and BFS (right). 

Expected model prediction accuracy. We expect the model to 
predict better for PageRank than BFS. This is because PageRank 
is more computationally intensive; hence it will be less sensitive 
to the overheads introduced by TOTEM and not modeled (e.g., sub-
optimal communication efficiency and extra memory lookups to 
handle boundary edges). 

Testbed. We conduct the experiments on a machine with the 
following characteristics: dual-socket Intel Xeon (E5520) clocked 
at 2.27GHz per core, 16GB of host memory, two Tesla C2050 
NVIDIA GPU (448 cores clocked at 1.1GHz, 3GB of memory). 
The cards are connected to the host via a PCI Express 2.0 x16 
bus. The machine runs Fedora14, CUDA release 4.1 and driver 
version 64-285.05.33. TOTEM and the algorithms were compiled 
using g++ 4.5.1 with “-O3” option. OpenMP was used to 
parallelize the CPU code. Finally, all CPU-side processing was 
performed on the two CPU sockets. 



5.1 TOTEM and the Performance Model 
We first compare the speedup achieved by TOTEM and predicted 
by the model by offloading part of a graph to one GPU only. 
Figure 7 shows the speedup while varying α (|V| = 32M and |E| = 
1B). The observed rcpu is 155ME/s for BFS (which is comparable 
to latest numbers reported on a similar CPU model [8]), and 
81ME/s for PageRank. The observed β is 50%, but after 

aggregation, which both algorithms apply, β is reduced to only 

2%.  

The plot shows that the achieved speedup follows the pattern 
predicted by the model. Also, as expected, the prediction is better 
for PageRank than for BFS. 

Nonetheless, offloading 50% of the edges, which is the maximum 
we were able to fit on the GPU’s 3GB device memory, offers 
tangible gains: out of the maximum possible 2x speedup indicated 
by the model, PageRank achieves 98%, while BFS achieves 84% 
of this maximum speedup. 

To understand on which phase (computation or communication) 
and processor (CPU or GPU) the bulk of time is spent, we look at 
the breakdown of total execution time. Figure 8 shows the 
percentage of time spent on each phase. Two points are worth 
discussing.  

First, the GPU processes its partition at a faster rate such that 
processing the CPU partition will remain the main bottleneck 
even when using a high-end CPU. For example, in the case of 
BFS, the GPU is 5 to 20 times faster. Recent published work on 
high-end dual-socket CPU, and using a highly tuned BFS kernel, 
(shown in Table 1) promises an at most 4x speedup compared to 
our measured CPU performance for the same workload. This 

indicates that our assumption that the GPU finishes its processing 
faster will hold in practice. 

Second, the CPU-GPU communication overhead is almost 20x 
lower than the computation. This is due to the aggressive 
aggregation of boundary edges which efficiently diminishes this 
overhead. Therefore, even when using a high-end CPU (and 
assuming 4x computation speedup), the computation will remain 
the main bottleneck. 

5.2 The Effect of Workload Characteristics 
To expose the effect of communication overhead, Figure 9 shows 
the predicted and achieved speedup while varying the density of 
the graph (by varying |V| and keeping |E| constant at 512M). 
Figure 6 (left) shows the observed β.  

Figure 9 shows that the achieved speedup for both PageRank and 
BFS deviate from the model as the graph density is reduced. 
Figure 10 shows the predicted (based on Equation 1) and 
measured time spent on the communication and computation 
phases for the data point where the deviation is the highest, |V| = 
256M. 

In the case of BFS, the deviation in speedup is due to 
communication. As mentioned before, reducing the density of the 
graph while applying aggregation increases β; hence the 
communication overhead increases. Two factors generate this 
deviation. First, for the model, we set c, the communication 
throughput, to the PCI-E bus bandwidth. However, other practical 
factors affect the communication throughput, such as pre- and 
post-transfer overheads. TOTEM has a post-transfer overhead of 

 
Figure 9: Predicted and achieved speedup while varying graph 

density. The number of vertices is indicated on the x-axis. (|E| 

= 512M). The higher the number of vertices, the lower is the 

graph’s density. Note the compressed y-axis. 

 

Figure 10: Predicted and measured time spent on the 

computation and communication phases for the datapoint 

where the deviation form the model is the highest (|V| = 256M, 

|E| = 512M). 

 

Figure 7: Predicted and achieved speedup while varying the 

percentage of edges on the host. (|V|=32M, |E|=1B). 

 

Figure 8: Breakdown of execution time. The computation 

phase is dominated by the processing of the CPU partition. 

The GPU partition, processed concurrently, is shown for 

comparison.  



delivering the messages from the inbox buffer to the destination 
vertices’ local state, which is not captured by the model. The 
second factor is related to a limitation in TOTEM’s implementation 
(discussed at the end of Section 4.2) that results in extra 
transferred data, and almost an order of magnitude difference 
between predicted and measured communication. 

In the case of PageRank, the computation phase dominates, and 
the small, less than 10%, speedup prediction error is generated by 
the achieved computation time which is sub-linear with respect to 
the offloaded proportion of the graph. 

5.3 Adding a Second GPU 
Adding a second GPU enables offloading a larger portion of the 
graph which, according to the model, provides additional 
speedup.  Figure 11 shows the predicted and achieved speedup for 
a setup with two GPUs. In this experiment, we increased the 
number of edges of the graph to |E|=1.5B (|V|=32M). At α=30%, 
each GPU partition fills the GPU’s device memory. 

The figure shows that the model’s prediction matches the 
achieved speedup for PageRank, while the memory-bound BFS 
deviates more from the model, yet it follows the trend indicated. 
As discussed in Section 4.2, increasing the number of partitions 
increases β, hence the communication overhead. Similar to the 
reason presented above, the deviation in the case of BFS is mainly 
the result of extra communication incurred by TOTEM’s 
implementation. As α increases, less workload is offloaded, hence 
the number of boundary edges is reduced, rendering a lower 
communication overhead which results in better prediction 
accuracy.  

Nevertheless, the results show that TOTEM is able to efficiently 
harness the added GPU, achieving linear speedup for PageRank 
and sublinear speedup for BFS.  

6. SUMMARY AND DISCUSSION 
GPU-acceleration is now a popular approach; however it has not 
been explored often for irregular applications. This paper 
investigates the feasibility of processing large graphs on single-
node, GPU-accelerated heterogeneous platforms. In particular, the 
focus is on understanding whether (and in what scenarios) it is 
beneficial to harness GPUs to aid graph processing. In the 
following, we summarize the contributions of the paper and our 
plans to extend them. 

Performance modeling. We presented a simple, yet effective 
performance model that helps estimating the benefits of 

offloading part of the graph workload. Given the current 
characteristics of heterogeneous platforms, the model shows that 
it is beneficial to partition the graph workload and process it on a 
heterogeneous platform, and highlights the importance of 
minimizing the communication overhead to improve the overall 
performance. 

Notwithstanding the model’s simplicity and its demonstrated 
usefulness, it can be improved (at the cost of making it more 
complex). For example, the model assumes that the processing 
rate rcpu is constant, determined by a benchmark independent of 
the graph characteristics of the actual workload. A more accurate 
modeling of rcpu would take into account the characteristics of the 
partition. To address this issue, we plan to analyze the effect of 
workload characteristics (e.g., degree distribution and graph 
structure) on obtained performance. We plan to perform 
controlled experiments on diverse hardware while varying graph 
characteristics, and feed the results to a machine learning 
approach to better predict rcpu for partitions with specific 
characteristics. 

Most importantly, considering the hardware characteristics as 
parameters in this machine learning methodology has the potential 
to predict what is more beneficial, adding more CPU sockets or 
accelerators, given a workload pattern and energy or dollar 
budget; hence providing valuable information needed for efficient 
system provisioning. 

A graph processing engine for heterogeneous platforms. We 
presented the design and implementation of TOTEM, a graph 
processing engine for heterogeneous single-node platforms. We 
discussed a number of design decisions and optimizations TOTEM 
applies and their tradeoffs. TOTEM’s importance, however, comes 
not only from enabling harnessing single-nodes, but also as a 
building block to harness GPU-accelerated clusters which have 
become common in the HPC space. For instance, three of the first 
five supercomputers in the latest (November, 2011) Top500 
supercomputer list host GPUs [20] and heterogeneous 
architectures are increasingly popular [18].  

Furthermore, TOTEM can be used as a back-end module of a 
domain specific language (DSL) for graph processing. For 
example, it can be used to extend the DSL developed by Hong et 
al. for graph analysis which currently targets only symmetric 
shared-memory platforms [6]. 

Our plan is to extend TOTEM to harness GPU-accelerated clusters. 
Shared-nothing architectures that aggregate heterogeneous nodes, 
that is, clusters of GPU-accelerated nodes, can offer a cost-
efficient, yet high performance graph processing platform. The 
fact that new commodity nodes can support multi-hundred 
gigabytes of memory space, offers the opportunity to aggregate 
large memory space using smaller number of components; 
therefore, reducing the inter-node communication cost. At the 
same time, adding GPUs to each node offsets the loss in 
parallelism resulted from reducing the number of nodes. 

Performance evaluation. We implemented and evaluated two 
graph algorithms on top of TOTEM. Our evaluation demonstrated 
the efficacy of the performance model, and the important gains 
offered by offloading part of the workload to one or more GPU.  

We plan to extend our evaluation to more sophisticated graph 
partitioning algorithms than random partitioning. The ideal here is 
a low-cost partitioning technique that leads to partitions such that 
the generated workload for a partition matches well the strength of 

 

Figure 11: Predicted and achieved speedup after adding a 

second GPU. Note that having a second GPU allows using 

lower values of α as more edges can be offloaded. (|V|=32M, 

|E|=1.5B).  



the processing element the partition is allocated to (e.g., assign the 
few high-degree nodes of a power-law graph to fast sequential 
processor, the CPU, and the many nodes with a limited number of 
neighbors to the GPU).  

Finally, we consider two future evaluation directions. First, 
investigating the tradeoffs offered by emerging heterogeneous 
architectures with shared memory between the CPU and the GPU, 
which eliminate the high-latency PCI-E communication bus (e.g., 
AMD Fusion). At a first look, the potential seems limited: as 
presented in the evaluation section, aggregation significantly 
reduces the communication overhead, eliminating it as a 
bottleneck. Moreover, since graph problems are memory-bound, 
integrated platforms have all processing elements compete to 
access the memory system, as opposed to platforms based on 
discrete GPUs. Still, such architectures can benefit from 
partitioning algorithms that map the graph partitions to the 
heterogeneous characteristics of the hardware. The second 
direction is to compare the energy and performance aspects of 
heterogeneous and symmetric architectures. Recent CPU models 
(e.g., Intel’s Sandy Bridge) offer higher hardware multithreading 
and better memory bandwidth, two key improvements for graph 
processing. We believe that the performance model and its 
planned extensions will allow this type of exploration. 

7. ACKNOWLEDGMENTS 
We thank Greg Redekop and Samer Al-Kiswany for their 
insightful comments on earlier versions of this paper and for 
helping with early implementations of the algorithms we have 
used. 

8. REFERENCES 
[1] Agarwal, V., Petrini, F., Pasetto, D., and Bader, D.A. 

Scalable Graph Exploration on Multicore Processors. 
SuperComputing, (2010). 

[2] Barabasi, A.-L. Linked: How Everything Is Connected to 
Everything Else and What It Means. Recherche 67, (2003). 

[3] Barrett, R., Berry, M., Chan, T.F., et al. Templates for the 

Solution of Linear Systems: Building Blocks for Iterative 

Methods, 2nd Edition. SIAM, 1994. 

[4] Chakrabarti, D., Zhan, Y., and Faloutsos, C. R-MAT�: A 
Recursive Model for Graph Mining. SDM, (2004). 

[5] Harish, P., Narayanan, P., Aluru, S., Parashar, M., Badrinath, 
R., and Prasanna, V. Accelerating Large Graph Algorithms 
on the GPU Using CUDA. HiPC, (2007). 

[6] Hong, S., Chafi, H., Sedlar, E., and Olukotun, K. Green-
Marl: A DSL for Easy and Efficient Graph Analysis. 
ASPLOS, (2012). 

[7] Hong, S., Kim, S.K., Oguntebi, T., and Olukotun, K. 
Accelerating CUDA graph algorithms at maximum warp. 
PPoPP, (2011). 

[8] Hong, S., Oguntebi, T., and Olukotun, K. Efficient Parallel 
Graph Exploration on Multi-Core CPU and GPU. PACT, 
(2011). 

[9] Karypis, G. and Kumar, V. A Fast and High Quality 
Multilevel Scheme for Partitioning Irregular Graphs. SIAM 

Journal on Scientific Computing 20, 1 (1998). 

[10] Katz, G.J. and Kider Jr, J.T. All-pairs shortest-paths for large 
graphs on the GPU. SIGGRAPH/EUROGRAPHICS, (2008). 

[11] Malewicz, G., Austern, M.H., Bik, A.J.., et al. Pregel: a 
system for large-scale graph processing. SIGMOD, (2010). 

[12] Merrill, D., Michael, G., and Grimshaw, A. Scalable GPU 
Graph Traversal. PPoPP, (2012). 

[13] Pinedo, M.L. Scheduling: Theory, Algorithms, and Systems. 
Springer Verlag, 2012. 

[14] Scarpazza, D.P., Villa, O., and Petrini, F. Efficient Breadth-
First Search on the Cell/BE Processor. IEEE TPDS 19, 10 
(2008). 

[15] Valiant, L.G. A bridging model for parallel computation. 
Communications of the ACM 33, 8 (1990). 

[16] Vineet, V. and Narayanan, P.J. CUDA cuts: Fast graph cuts 
on the GPU. Conference on Computer Vision and Pattern 

Recognition Workshops, IEEE (2008). 

[17] Xia, Y. and Prasanna, V.K. Topologically Adaptive Parallel 
Breadth-First Search on Multicore Processors. ICPDCS, 
(2009). 

[18] TITAN: Paving the Way to Exascale. 2011. 

[19] Graph500. 2012. http://www.graph500.org. 

[20] Top500. 2012. http://www.top500.org/.  

 

 


