
Zatel: Sample Complexity–Aware Scale–Model
Simulation for Ray Tracing

Davit Grigoryan
University of British Columbia

Canada
davitggc@student.ubc.ca

Yuan Hsi Chou
University of British Columbia

Canada
yuanhsi@ece.ubc.ca

Tor M. Aamodt
University of British Columbia

Canada
aamodt@ece.ubc.ca

Abstract—Ray tracing is a computationally intensive rendering
technique that simulates the behavior of light rays as they
interact with objects in a scene. It is becoming increasingly
popular in video games and is already the de facto standard
for animated movies. However, current hardware still struggles to
efficiently ray trace complex scenes and requires further research.
To evaluate early-stage hardware proposals that accelerate ray
tracing for GPUs, one either uses cycle-accurate simulators,
which are highly accurate and flexible but slow, or other models
that are an order of magnitude faster but provide limited output
with high error margins. In this paper, we propose Zatel, a
prediction methodology for evaluating GPU performance on
ray tracing workloads. We observe that the desired metrics
can be estimated with reasonable accuracy by only tracing a
representative subset of pixels. Furthermore, the parallel nature
of GPUs allows us to split the scene into chunks, which lets
Zatel execute faster using downscaled GPU configurations. We
incorporate these two optimization steps into Zatel and evaluate
it on a benchmark suite for ray tracing using Vulkan-Sim, a
cycle-accurate simulator. By relying on Vulkan-Sim, architectural
changes are captured through the simulator, and Zatel does not
need to be updated to support each change. Zatel records less
than 1% error with 10× simulation time speedup for measuring
simulation cycles on a mobile GPU.

Index Terms—Ray Tracing, Simulation, Graphics processors,
Modeling methodologies

I. INTRODUCTION

Ray tracing is a rendering technique that simulates the path
of light, creating photorealistic effects that are either difficult
or near-impossible with rasterization. However, ray tracing is
computationally expensive to execute and, thus, is primarily
used in offline rendering applications such as films [1] and
computer-aided design (CAD) [2]. Many advancements are
currently being made in the hardware space such as the
implementation of specialized accelerators so that real-time
ray-tracing applications like video games can run at higher
frame rates [3], [4].

When generating early-stage hardware proposals for ray
tracing workloads, one way to evaluate them is through cycle-
accurate simulators as they provide the most accurate and
detailed profiling information while allowing high flexibility
for GPU configurations. However, they are also very slow
due to simulating a large number of GPU cores serially on a
central processing unit (CPU) [5]–[7]. For instance, simulating
a single 1080p frame from a real-world workload can take
up to weeks to finish. Therefore, workload simulations can

become a bottleneck during the early design phase, when
fast decision-making is crucial [8]. The long simulation times
also push researchers to evaluate their proposed architectural
changes on miniature workloads [9], which do not adequately
represent a real-world workload.

Such a demand resulted in the creation of performance
models that are an order of magnitude faster but less accurate,
which can be used to quickly evaluate different hardware
ideas and choose the most optimal subset to investigate
further. Current ones use either sampling or analytical mod-
eling techniques to estimate the performance of the proposed
architectures. The sampling method simulates a representative
portion of the workload and extrapolates the output to approx-
imate the final results [10]–[12]. Analytical models use traced
information in combination with mathematical equations to
predict the metrics [8], [13]–[15]. These performance models,
however, also have their shortcomings. Most notably, they
are not fitted for ray tracing as they cannot fully capture the
complexity of such workloads, resulting in high mean absolute
error (MAE) [16].

There have been some attempts to use analytical models
for ray tracing workloads; however, they were designed for
older generations of GPUs and can not capture the complexity
of modern GPU architectures [17], [18]. Additionally, most
of the models provide limited profiling output. For instance,
the current state-of-the-art GPU analytical model, GCoM,
proposed by Lee et al. [15] can only construct the cycles-
per-instruction (CPI) stack and does not provide information
on other metrics like cache miss rate and ray tracing unit
utilization statistics, which are highly desirable for the design
stage. Furthermore, when the microarchitecture changes, the
performance models may also need to be drastically modified.
MDM [14] was proposed as one of the first analytical models,
GPUMech [13], did not adequately model memory-divergent
applications. GCoM was released after GPUs underwent sig-
nificant changes like dividing cores into sub-cores, which
MDM did not capture.

In this paper, we present Zatel1, a prediction methodology
for evaluating GPU performance on ray tracing workloads that
reduces the workload simulation bottleneck while avoiding
many of the key problems observed in other performance

Fig. 1. Overview of ray tracing rendering method

models. Zatel exploits the inherent parallelism of GPUs by
partitioning the workload into groups and simulating each
group concurrently using a downscaled GPU. It further re-
duces the simulation time by selecting representative pixels
from each group to trace. Liu et al. [19] propose a similar
technique for scaling down the CPU architecture. They reduce
the number of cores and shared resources, then run the
scaled-down model on the target workload without splitting
it. Since they are not downsizing the workload, they also
need to extrapolate the performance using machine learning.
We offer a simpler methodology that runs the downscaled
GPU on workload partitions and combines the results by
either averaging or summing them. Zatel is also designed
to use an already available cycle-accurate simulator, Vulkan-
Sim [7], in its evaluations. Since the methodology uses the
simulator at its core, it can estimate any metric that Vulkan-
Sim provides, as desired by the user. Moreover, Zatel only
requires minimal changes to represent new hardware proposals
as most microarchitecture details are captured by Vulkan-Sim,
which can be easily updated to follow trends in GPU design.
Thus, our paper makes the following contributions:

1) We provide a prediction methodology for evaluating ray
tracing workloads on GPUs.

2) We propose a performance estimation technique that is
independent of the underlying GPU architecture.

3) We present a novel approach of GPU downscaling
with the selection of representative pixels to predict the
performance metrics.

II. BACKGROUND & MOTIVATION

A. Ray Tracing

Ray tracing is a rendering method that generates photore-
alistic images by simulating lighting. It models the path the
light takes from the camera to the final intersecting object for
each pixel of the image plane. We illustrate a simple example
of ray tracing in Fig. 1 that shoots primary and secondary
rays. The algorithm begins by first tracing the primary ray as
shown in 1 . If the ray hits an object in the scene, the red
sphere, in this case, we cast a secondary ray towards the light
source (shown in green). If the path of the secondary ray is
unoccluded, like in 2 , that means the pixel is not a shadow.
As for the ray in 3 , the casted secondary ray gets obstructed,

1Zatel in Armenian means both divide and separate, describing our two
core optimization strategies.

Fig. 2. Vulkan-Sim’s modeled GPU architecture [7]

which leads to a shadow. To reduce the search space for
the ray intersecting the scene, the base geometric primitives
are structured into an acceleration structure, typically as a
bounding volume hierarchy (BVH) tree [20]. The BVH tree is
a spatial tree-like structure where each subtree is a collection
of geometric primitives tightly enclosed in an axis-aligned
bounding box (AABB).

B. Graphics Processing Units (GPUs)

GPUs are highly parallel devices capable of concurrently
executing numerous threads. To downscale the target GPU,
we need to understand its underlying architecture. The archi-
tecture, as depicted in Fig. 2, features Streaming Multiproces-
sors (SMs) consisting of execution units, L1D, texture, and
constant cache, connected via a crossbar [21]. Modern GPUs
incorporate ray tracing accelerators (RT units) in each SM to
offload application-specific computations [22]. SMs connect
to memory partitions via an interconnection network, and
memory controllers manage an L2 cache, DRAM scheduler,
and off-chip DRAM channel. Programs running on GPUs
execute multiple threads in parallel, organized into warps of
32 scalar threads. In applications like ray tracing, each thread
in a warp processes the same program with different data, such
as unique ray directions for pixel tracing on the image plane.

C. Motivation

Current ray tracing programs face performance challenges
due to the computational intensity of the rendering tech-
nique, causing bottlenecks in real-time applications. Thus,
accelerating these programs requires further research and
development on ray tracing accelerator units [23]. While
building a GPU with a ray tracing accelerator for testing is an
option, the process is extremely time-consuming and comes
with exorbitant costs. To address this, researchers resort to
cycle-level simulators known for their flexibility, capable of
simulating various architectural changes in GPUs. However,
these simulators are exceptionally slow, requiring weeks for a
single simulation run on a realistic workload. If errors occur,
reruns necessitate additional waiting time. Moreover, there
are currently no models tailored for evaluating ray tracing
workloads specifically, given their substantial differences from
other GPU workloads [16]. To bridge this gap, we introduce
Zatel, designed explicitly for evaluating GPU performance in
ray tracing workloads.

Fig. 3. High-level steps that Zatel takes to produce performance statistics.

Fig. 4. Quantizing the generated heatmap to remove noise

III. ZATEL’S DESIGN

Zatel is an effective prediction methodology for evaluating
GPU performance metrics on ray tracing workloads at large
resolutions. It exploits the parallel nature of GPUs and ray
tracing workloads to simulate parts of a scene concurrently
and further reduce the number of simulated pixels for each part
to reduce the simulation time. Parallel simulation is achieved
by partitioning the workload into groups and assigning each
a downscaled GPU, which allows simulating each group
simultaneously on different CPU cores. Zatel further reduces
the simulation time of each simulation instance by selecting
the representative pixels to trace.

A. Overview

Zatel goes through seven high-level steps to estimate the
desired metrics of a workload. All the steps are visualized
in Fig. 3. Zatel first performs preprocessing in steps 1 and
2 by obtaining the execution time heatmap of the desired

workload and doing color quantization to remove the noise.
In steps 3 and 4 , Zatel chooses a scaling factor of K (in
this example, K = 4) to downscale the GPU configuration
and divide the scene into K groups. Afterwards, it reduces
the simulation time by selecting representative pixels for each
group in step 5 . Finally, Zatel runs a simulation instance for
each group and combines the results in steps 6 and 7 .

B. Preprocessing

To identify the critical sections of the workload, we first
generate an execution time heatmap, which highlights the
time-intensive sections of the scene. We generate it in 1
by profiling the runtime of each pixel and normalizing it by
the longest runtime, which is then mapped to a temperature
color using NVIDIA’s heat gradient [24], where warmer colors
indicate lengthier ray trace times. This is followed by color
quantization 2 using K-Means clustering to merge similar
colors and create distinct groups, eliminating noise. Fig. 4

shows an example of a quantized heatmap, where, for instance,
the darker blueish colors are merged into a distinct dark blue.

Profiling can be done on real GPU hardware or using
Vulkan-Sim’s functional mode. As the heatmap highlights
time-consuming regions of the ray tracing algorithm, both
options yield comparable results. The specific GPU hardware
used is mostly irrelevant for the same reason. We choose to
generate the heatmap on a hardware GPU as it can be done
in seconds, unlike Vulkan-Sim’s functional mode.

C. Downscaling GPU Configuration

The primary concept behind Zatel’s optimization strategy
is to partition the workload’s image plane into groups and
assign each group to a downsized GPU for ray tracing 3 .
This benefits from the inherent parallelism of GPUs, where
independent processing units simultaneously trace different
portions of the image plane.

To downscale the GPU, we focus on reducing independent
components, with SMs identified as a key element. From
shared components, we choose to only reduce memory par-
titions since they can be modeled as being divided between
SMs, and thus, their count can be proportionally reduced.

We choose the downscaling factor K to be the greatest
common divisor (gcd) of the number of selected components.
After picking K, we divide the number of selected components
by it. As an example, assume we want to downscale a GPU
with 80 SMs and 10 memory controllers. We get the gcd of
these two numbers as K = 10. After dividing the number of
such parts by K, we get a new, downsized GPU configuration
with 8 SMs and 1 memory partition.

Regarding other shared components, such as the off-chip
memory, interconnection network, and LLC, there is no need
to downscale them by the same factor K. Since the peak
off-chip DRAM bandwidth is proportional to the number
of memory controllers, we automatically shrink the DRAM
by dividing the number of memory partitions. Moreover,
each memory controller also contains the L2 cache; thus,
downscaling memory partitions also proportionally reduces
the number of LLC available. The mesh topology of the
interconnect changes automatically with the number of SMs
and memory controllers. Hence, there is no need to explicitly
change any configuration of shared GPU resources.

D. Dividing the Image Plane

Once the downsizing factor K is determined and the GPU
configuration is adjusted accordingly, the next step 4 is to

Fig. 5. Splitting the plane into 3 rows and 2 columns using coarse-grained
method for K = 6

Fig. 6. Visualization of fine-grained division method

Fig. 7. Pixels of group i = 0 using fine-grained method; we picked chunks’
height to be 2 pixels for the left image and 8 for the right one

partition the image plane into K groups. The goal is to provide
each downscaled Vulkan-Sim instance with a group of pixels
to trace. This paper introduces and contrasts two methods of
scene division – coarse-grained and fine-grained divisions. In
both approaches, the scene is segmented into distinct groups,
each containing an equal number of pixels.

For the coarse-grained division method, we directly split
the scene into K groups, where K is the chosen downscaling
factor. Fig. 5 shows an example of dividing the scene into
K = 6 groups using coarse-grained partitioning.

The fine-grained method divides the image plane in a more
interleaved fashion to better sample the characteristics of the
scene. Fig. 6 shows an image plane split into small, same-
sized chunks and is evenly assigned in a round-robin fashion
to four downscaled GPUs (0-3). Fig. 7 shows the result of
fine-grained division on a sample heatmap. The left heatmap
is divided into chunks of 32× 2 pixels, and, for visualization
purposes, we choose the height of a chunk to be 8 pixels
when dividing the right heatmap. By making the chunks’ area
small, we can recognize the fox in these heatmaps, allowing
each group to homogeneously capture the complexity of the
workload. Zatel chooses the chunk’s width to be 32 to match
the warp size of 32 threads. Zatel also chooses to keep the
chunk height small (2 pixels) to maintain a small chunk area
while retaining thread divergence characteristics.

The fine-grained method captures the overall scene’s com-
plexity but also promotes thread divergence as rays in different
chunks may diverge during traversal. Meanwhile, the coarse-
grained option emphasizes ray locality since rays are close to
each other. We compare these methods in Section IV-E.

Fig. 8. Representative pixels subset of a group

E. Selecting Representative Pixels

After splitting the image plane into groups, we can further
reduce the number of traced rays by selecting a subset of
pixels per group to simulate 5 . Similar to the scaling factor
K, by simulating fewer pixels, Zatel will execute faster while
only losing minimal accuracy. When selecting a subset of
pixels from the group, we need to specify the number of
pixels to trace and which pixels to select before launching
each individual simulation instance on each group.

To choose the number of pixels to simulate, the first naive
method chooses a constant percentage of pixels. This simple
method allows us to better predict the reduction in simulation
time and evaluate the error margins with higher confidence.
However, we found that tracing different groups with the same
percentage leads to each taking drastically different simulation
times and resulting in varied accuracies. To solve this, we
propose varying the number of pixels per group based on
their heatmap’s temperature distribution. We discovered that
the accuracy strongly correlates with how effectively the GPU
gets saturated when ray tracing our selected pixels. Thus,
the warmer the average temperature of our selected pixels
is, the more the GPU gets utilized, resulting in an overall
better accuracy for the group. In addition, having similar
average temperatures for each group’s selected pixels will
result in each taking similar simulation times, leading to better
load balancing. We further empirically found that tracing less
than 30% of pixels gives intolerable error and more than
60% doesn’t provide dramatic improvements in accuracy. We
thoroughly explore how the selected percentage influences
both accuracy and speedup in Section IV-D.

By combining the above two observations, we can derive
an equation for the number of pixels to be traced (1). We
denote the percentage of pixels to be traced as P , the number
of pixels in the group M , and assign each quantized color
with a value ci ∈ [0, 1] based on their shifted hue parameter,
which shows how cool the color is (0 meaning the color is
hot and 1 meaning the color is cold). Zatel uses the following
expression to compute P :

P =
1

M
×

⌊
M−1∑
i=0

ci

⌉
for 0.3 ≤ P ≤ 0.6 (1)

Equation (1) selects the subset’s size proportional to how
cold the heatmap’s average temperature is and then bounds
P between 0.3 and 0.6, keeping the groups’ accuracy and
speedup relatively the same.

Now that we know how many pixels to trace, we need to
select which exact pixels represent the group. This process is

done in two steps: the first step divides the group into section
blocks and the second step selects these blocks until it reaches
the desired color distribution and number of pixels. For the
first step of this process, since the fine-grained method already
divides the scene into chunks, we only need to further divide
each group into a grid of section blocks for the coarse-grained
method. Fig. 8 shows an example of selecting section blocks
with the coarse-grained group. In this example, the group
gets split into section blocks of 32 × 2 pixels. Afterwards,
Zatel chooses enough section blocks to meet the percentage
requirement set by equation (1).

We choose the block’s width as the number of threads
in a warp, so it maps nicely to a warp and better occupies
the GPU. This leads to metrics like average warp occupancy
being captured more accurately. For block height, since the
number of pixels to be selected is fixed, a larger block height
results in fewer blocks being chosen, leading to some parts
of the group being left uncaptured. However, larger block
heights emphasize simulating rays closer to each other, better
capturing the traced region’s spatial locality. Smaller block
sizes lead to higher ray divergence and, at the same time, allow
us to trace pixels from different areas of the group. Thus, as
a balancing measure, we choose the height to be two.

The second step is to decide which section blocks to include.
We assign each quantized color a distribution percentage pj
based on the occurrence of the color in the group, which
determines how many pixels of that color to include. Next,
to distribute the quantized colors, this paper proposes two
methods: uniformly and temperature-based. Uniform distribu-
tion assigns colors such that they match the color distribution
of the group itself. For example, if 50% of the colors in
the group are dark blue, approximately half of the subset’s
pixels should be colored dark blue as well. Such an approach
captures the overall complexity of the scene better; however,
it might not saturate the GPU as well as the temperature-
based method. The temperature-based distribution emphasizes
the pixels that take longer to trace, stressing the hardware
components better. It assigns each color a value c′j = 1− cj ,
representing its warmth, then maps each value to a percentage
using the functions below:

pj =
c′j
C

where C =

M−1∑
j=0

c′j (2)

pj =
c′5j
C

where C =

M−1∑
j=0

c′5j (3)

We can intuitively associate each quantized color’s warmth
value c′j to the weight that the color carries on saturating the
GPU. The more weight the color has, the more important it is
to include that color in the representative pixels. In equation
(2), by summing the color values c′j , we determine that colored
region’s overall impact on stressing the GPU. To normalize
this value, we divide it by the sum of the weights of all pixels
C. We can further modify (2) by heuristically amplifying each
color’s weight by raising it to the power of five, as shown in

.reg .u32 %shader_passes;
filter_shader %shader_passes;
.reg .pred %does_pass;
setp.eq.u32 %does_pass, %shader_passes, 0;
@%does_pass bra shader_exit;

Listing 1. Injected PTX code snippet in the ray generation shader

(3). Amplifying the warm colors’ values stresses the hardware
even more, resulting in better accuracy while maintaining
similar simulation times. If there are not enough pixels with
the desired color, we randomly choose other section blocks
until we reach the required number of pixels.

F. Modifying the Simulator

After selecting the subset of pixels for all groups, we gen-
erate K files, each containing the group’s pixels’ coordinates
that need to be traced. We then feed these coordinates to
Vulkan-Sim so that it will only trace the specified pixels. Since
Vulkan-Sim doesn’t have a built-in way of filtering out pixels,
we create a custom PTX instruction filter_shader that
writes 0 to the destination register if the pixel shouldn’t be
traced and a 1 otherwise. We inject that instruction at the
beginning of the ray tracing shader, as shown in Listing 1,
which exits it if the pixel should be skipped. Since the filtered-
out shaders do not do anything else after exiting, their impact
on the final performance statistics is negligible.

G. Extrapolating the Predictions for Each Group

When evaluating Zatel, we detected systematic bias toward
metrics like IPC, L2 cache miss rate, DRAM efficiency, and
bandwidth utilization. The IPC metric, for instance, is usually
underestimated since the number of instructions increases
faster than simulation cycles with the larger percentage of
pixels we trace. When a group accesses an uncached data,
it causes a cache miss, after which the value gets fetched into
the cache. Since Zatel runs simulation instances for each group
independently, they do not share the L2 cache entries. Thus,
each simulated group causes a cache miss, leading to a higher
predicted L2 cache miss rate. DRAM efficiency and bandwidth
utilization are frequently underestimated for a similar reason.
Therefore, the predicted values should be extrapolated based
on the percentage of pixels traced in the group. The direct
way is to linearly extrapolate absolute metrics, such as the
simulation cycles. For example, assume that after tracing
10% of pixels, we get the simulation cycles as 100, 000.
To extrapolate, Zatel divides the simulation cycles by the
fraction of pixels traced, yielding 100, 000/0.1 = 1, 000, 000
simulation cycles as our final prediction.

Another option is to use a regression model for extrapolating
our results. Since the absolute error decreases exponentially
the more pixels get traced (more in Section IV-F), we propose
using an exponential regression model to extrapolate the
prediction results. We then simulate the group at three different
percentages to feed into our regression model and extrapolate
the value for 100% of pixels traced.

Fig. 9. The used LumiBench scenes with their respective heatmaps [16]

TABLE I
METRICS EVALUATED

Metric Description
GPU Instructions Per Cycle # of instructions executed per cycle
GPU Simulation Cycles # of cycles required to ray trace the scene
L1D Total Cache Miss Rate Total cache miss rate over all L1D instances
L2 Total Cache Miss Rate Total cache miss rate over all L2 instances

RT Unit Avg Efficiency Average # of active rays per warp over all
ray tracing accelerator units

DRAM Efficiency DRAM bandwidth utilization with pending
requests waiting to be processed

Bandwidth Utilization DRAM bandwidth utilization without pend-
ing requests waiting to be processed

H. Combining the Results

The last step of Zatel is combining Vulkan-Sim’s output
from each simulation group into a final performance prediction
7 . Some metrics are encapsulated when simulated on just

a single group, such as the cache miss rates, while other
metrics, such as IPC, require combining the results across all
the groups. As an example, assume Zatel splits the image plane
into two groups and gets 20 IPC with 0.70 L1D miss rate for
the first group and 50 IPC with 0.60 L1D miss rate for the
second one. In Zatel, we split the image plane into groups
using the fine-grained division method. This ensures that
each group homogeneously samples the scene’s characteristics.
Thus, the instruction count executed by each group should
be very close to each other. Since GPU’s cores are modeled
as processing units that run in parallel, then in the same
cycle, the first half of the GPU executes 20 instructions while
the second half executes 50 instructions, totaling to 70 IPC
during the original GPU’s overall execution. Meanwhile, if the
two groups capture the complexity of the workload, then the
overall L1D cache miss rate during the whole GPU’s execution
should be averaged to 0.65.

IV. EVALUATION

A. Methdology

Zatel consists of two optimization steps: dividing the scene
into groups on which we run the downscaled GPU and further
selecting representative pixels for each group. We test each
optimization step separately by determining their effect on
execution time speedup and prediction accuracy. Afterwards,
we choose optimal values for the predictor’s parameters to
achieve maximal speedup without losing much accuracy. Each
optimization step is evaluated on LumiBench’s selected subset
of scenes shown in Fig. 9. We simulate these workloads at
512×512 resolution with 2 samples per pixel to stress the GPU
like a real-world workload while maintaining a reasonable sim-
ulation time. These scenes were selected to specifically stress
individual aspects of GPU hardware. We run the simulations
using Vulkan-Sim, and the metrics used to evaluate Zatel are
described in Table I. Note that we refer to the speedup as the
decrease in simulation time rather than improved workload
performance unless stated otherwise. We also extrapolate the
results of each group linearly as our baseline. To illustrate the
impact of GPU saturation on the model’s accuracy, we run all
experiments on two different GPU configurations in Table II –
a Mobile System-on-Chip (SoC) and an NVIDIA Turing RTX
2060. We first evaluate the fully optimized version of Zatel,
then explain how each optimization strategy contributes to
the gained speedup and the predicted metrics’ accuracies. The
code is available at https://github.com/ubc-aamodt-group/zatel-
scale-model-sim-rt.

B. Fully Optimized Results

We choose to evaluate the final version of Zatel on the
PARK scene, which is the most difficult path tracing workload
from LumiBench. Thus, such a scene saturates a GPU close to
a real-world 1080p workload. Fig. 10 plots the absolute error
of different metrics on the PARK scene for Mobile SoC and
RTX 2060 GPU configurations. Since Mobile SoC contains 8

TABLE II
GPU CONFIGURATIONS FOR EVALUATION [7]

Mobile SoC Turing RTX 2060
Streaming Multiprocessors (SM) 8 30

Memory Controllers 4 12
Registers / SM 32768 65536
RT Units / SM 1

Max Warps / SM 32
Warp Size 32

Warp Scheduler Greedy-then-Oldest
RT Unit Max Warps 4
RT Unit MSHR Size 64

L1D Data Cache & Shared Mem 64KB, Fully assoc. LRU, 20 cycles
L2 Unified Cache 3MB, 16-way assoc. LRU, 160 cycles
Instruction Cache 128KB, 16-way assoc., 20 cycles

Compute Core Clock 1365 MHz
Interconnect Clock 1365 MHz

L2 Clock 1365 MHz
Memory Clock 3500 MHz

Fig. 10. Errors of metrics using Mobile SoC and RTX 2060 on PARK

Fig. 11. RTX 2060 architecture’s performance improvement over Mobile SoC

SMs and 4 memory partitions, we use a downscaling factor
of K = 4. The RTX 2060 configuration has 30 SMs with
12 memory partitions, giving us a scaling factor of K = 6.
When running Zatel on the PARK scene using Mobile SoC,
we register a speedup of 9.2× while only getting 0.7% error
for the simulation cycles with other metrics falling within 10%
error. For RTX 2060, we get a speedup of 11.6× with three
metrics within the 10% error and four metrics below 40%
error. Overall, Zatel achieves an MAE of 4.5% for Mobile
SoC and 15.1% for RTX 2060 with both configurations gaining
about 10× speedup. When evaluating an arbitrary scene, Zatel
uses equation (1) to ensure enough pixels are traced to achieve
reasonable accuracy. However, since PARK quickly saturates
most GPUs, we also assign Zatel to trace only up to 10% of
pixels for each group. By drastically reducing the percentage
of pixels traced, we get 50× speedup with only a 5.2% MAE
on Mobile SoC, cutting down the simulation wait time from
almost a week to less than three hours. These low MAE values
confirm that Zatel is an excellent choice for evaluating new
GPU architectures, especially mobile GPUs, on workloads that

Fig. 12. Three heatmaps with different temperature distribution

fully stress the hardware, which most real-world workloads do.
Furthermore, Zatel would not require being constantly updated
since it runs a cycle-level simulator at its core.

Fig. 11 plots the normalized metrics of the RTX 2060 config
relative to the Mobile SoC baseline. The orange bar shows
the results of Vulkan-Sim with the RTX 2060 configuration
when simulated at a full resolution of 512 × 512 and the
blue bars show the predicted metrics using Zatel. Zatel is
able to capture the relative performance trends when changing
the simulated GPU architecture as seen from the similar
blue and orange bars for each metric, where the maximum
difference in normalized metrics is 37.6% for the L2 cache
miss rate and minimum difference is 0.6% for L1D cache
miss rate. This also highlights Zatel’s ability to accurately
predict performance results when designing a new architecture,
making it a reliable tool to quickly estimate performance with
large scene resolutions.

The state-of-the-art analytical model for GPGPU applica-
tions, GCoM, achieves a much higher MAE of 26.7% against
Accel-Sim with a speedup of only 7.6x for a single design
point, significantly worse than Zatel for ray tracing workloads.
Moreover, unlike Zatel, if a significant architectural change is
introduced, GCoM’s error could increase substantially. Prin-
cipal Kernel Analysis (PKA) [11] is more similar to Zatel
since it selects representative kernels and thread blocks to
capture the performance of a workload. However, these GPU
models can not be executed on graphics applications. Even if
they could, most would not capture the unique characteristics
of ray tracing. For instance, PKA consists of two methods:
Principal Kernel Selection and Principal Kernel Projection.
Principal Kernel Selection is irrelevant since ray tracing only
launches one kernel. Principal Kernel Projection terminates the
simulation when the desired metric stabilizes. Since most of
our evaluated workloads, especially ones with many reflective
objects, involve tracing highly divergent rays, Principal Kernel
Projection might stop the simulation too early, outputting a
value with high error.

C. Selecting the Distribution Method and Section Block Size

We tune several optimization parameters in Zatel to produce
the results in Section IV-B. We test four section block sizes:
32 × 1, 32 × 2, 32 × 16, and 32 × 32, and three distribution
methods (Section III-E): uniform, linearly dependent on tem-
perature (lintmp), and exponentially dependent on temperature
(exptmp). We test each possible combination on the three
scenes in Fig. 12 with different temperature distributions.
These scenes were generated relative to each other by using the

TABLE III
TUNING ZATEL BY CHOOSING THE MOST OPTIMAL DISTRIBUTION AND SECTION SIZE FOR EACH METRIC OF SCENES

Metrics

GPU IPC
GPU Sim Cycles
L1D Miss Rate
L2 Miss Rate

BW Utilization
DRAM Efficiency
RT Avg Efficiency

SHIP
Best Dist Best Section MAE
uniform any 36.0%
uniform any 73.1%
uniform any 13.9%
uniform any 8.8%

any any 37.3%
uniform any 12.5%

any any 19.9%

WKND
Best Dist Best Section MAE

any 32× 16 29.5%
uniform any 88.3%
uniform any 2.7%

any any 6.6%
any any 34.4%
any any 6.7%

exptmp any 3.9%

BUNNY
Best Dist Best Section MAE

any 32× 32 16.3%
any any 13.6%
any any 0.7%
any any 3.8%
any any 16.3%
any 32× 32 5.7%
any any 8.1%

same scaling value; thus, identically colored pixels represent
the same tracing time. We choose to trace 2-4% of the overall
pixels to understand whether the accuracy trend is impacted
by the percentage. Since selecting blocks out of viable options
is random, we run Zatel on each scene five times and average
the results. The sampled results for each scene are in Table III;
the “any” cell means no clear distinction between options.

The prediction MAEs over the listed metrics for SHIP
(coldest), WKND (mix of warm and cold), and BUNNY
(warmest) are 21.0%, 13.9%, and 8.5%. Such an observation
suggests that the uniformly warmer the heatmap is (i.e. the
better the scene saturates the modeled GPU), the more accurate
Zatel will be. We further notice that the errors of each metric
decrease from SHIP to BUNNY, except for the RT unit’s
average efficiency. For that metric, we get an MAE of 3.9% for
WKND and 8.1% for BUNNY. By including up to 4% of the
pixels with the exptmp distribution, the traced pixels would
come from the warmest regions of WKND and BUNNY,
which are redder for WKND. This leads to the RT unit metrics
other than RT average efficiency also being more accurately
predicted for WKND. Such an observation suggests that for
evaluating RT unit-related metrics, the exptmp distribution is
a more optimal choice. We also notice a high MAE of greater
than 70% for simulation cycles in the SHIP and WKND
scenes while for the BUNNY scene, it is only 13.6%. Such a
variance in errors occurs due to tracing only 2% to 4% of the
overall pixels, leading to an overcalibrated scaling since GPU
simulation cycles usually follows a logarithmic trendline.

Based on results in Table III, we choose uniform distribution
for the used metrics. Since the block’s size has negligible
impact on the overall prediction results, we choose a dimen-
sion of 32 × 2. Such a height value promotes ray divergence
in warps while maintaining some locality. If users want to
estimate more RT unit-related metrics, they should use exptmp
distribution in conjunction with the uniform distribution.

D. Effect of Selecting Representative Subset of Pixels

Next, we check how the number of pixels traced affects
accuracy and execution time speedup. We run the model on
{10%, 20%, . . . , 90%} of pixels without GPU downscaling
and compare the estimated results to the simulator’s output
when ray tracing the full workload. Although we evaluate the
correlation between accuracy and the percentage of pixels sim-
ulated for both the Mobile SoC and RTX 2060 configurations,

Fig. 13. Simulation cycles error per scene (RTX 2060)

we find both results in the same trends. We show figures for
RTX 2060 since it is more popularly used.

Fig. 13 shows the correlation between the number of pixels
traced and the Zatel’s error in estimating the number of
simulation cycles for each scene. We pick simulation cycles as
our primary metric of examination since it is used to compare
the performance of different hardware designs and ultimately
select the best option. At 10% of pixels traced, we notice
that the absolute error for simulation cycles drastically varies
between scenes. We get more than 100% of absolute error for
the SPRNG scene and 14.7% for the BUNNY scene. For the
Mobile SoC configuration, we also get a high absolute error
of 9.1% for CHSNT and the lowest error of 0.4% for SPNZA,
around 23 times difference. As the percentage of pixels traced
increases, the errors exponentially converge to 0. When tracing
50% of pixels, the difference between most scenes’ absolute
errors decreases to 4.1% for RTX 2060 configuration and 3.6%
for Mobile SoC. One reason for the error variance, especially
at 10%, is we choose section blocks randomly. Another reason
is error bounds also depend on the workload.

The SPRNG scene is a special case in Fig. 13. Since there
are only two objects in the scene, most rays end up terminating
early. Thus, the GPU gets underutilized, and it takes a similar
number of simulation cycles to trace from 10% to 100% of
pixels of SPRNG. Zatel estimates the number of simulation
cycles by linearly extrapolating the results to 100%. So, for
10%, it estimates a much higher number by assuming that the
GPU is properly stressed.

Fig. 14 shows the simulation time it took to trace the given
percentage of pixels. We notice that the longer it takes to
simulate the pixels (i.e. the better the GPU is saturated), the
less the workload’s error bound becomes. For both configu-
rations, one of the longest-running scene by a high margin is
BATH with a rising slope of 0.21 hours per percentage for

Fig. 14. Running time of Zatel per scene (RTX 2060)

Fig. 15. Running time Speedups per scene (RTX 2060)

Fig. 16. Mean absolute error per listed metric over all scenes (RTX 2060)

Mobile SoC configuration and 0.34 hours per percentage for
RTX 2060 configuration. Similarly, BATH also occupies the
lowest absolute errors for simulation cycles, being bounded by
2.5% for Mobile SoC configuration and 20% for RTX 2060
configuration. Such a trend confirms our hypothesis that the
better the scene saturates the GPU, the more accurate Zatel
estimates performance metrics.

When considering the speedup gained by each scene in
Fig. 15, we notice that all the scenes share similar speedups
for each percentage of pixels traced for both configurations.
Moreover, they all exponentially converge to 1× as we trace
more pixels. From the collected data points, we derive (4),
plotted as a gray curve in Fig. 15, that predicts the gained
speedup based on the percentage of pixels traced, helping users
choose the best configuration of Zatel for their study.

speedup(perc) = 181× perc−1.15 for perc ≥ 10% (4)

We further present the absolute error of each metric over all
the selected scenes against the selected percentage of pixels
in Fig. 16. The error lines describe each metric’s maximum
and minimum error percentage. Similar to Fig. 13 and 15, we
notice that the MAE for all metrics decreases exponentially the
more pixels we trace. As a comparison, the recorded highest
absolute error at 10% of pixels traced above 100% for the

Fig. 17. Metrics’ overall error per downscaling factor on the representative
subset of LumiBench scenes

Fig. 18. Metrics’ overall error per downscaling factor on the used LumiBench
scenes

Fig. 19. Gained speedup from GPU downscaling

simulation cycles on RTX 2060 configuration. By tracing only
20% more pixels, we get the highest error down by more than
2 times for RTX 2060 and around 3 times for Mobile SoC.
Additionally, we find that the metrics that are getting saturated
the quickest, such as L1D and L2 cache metrics, exhibit the
smallest error margins. For RTX 2060, at 10% pixels traced,
the recorded MAEs for both cache metrics differ around two
times since the L2 cache is 3MB while the L1D cache is only
64KB. On the Mobile SoC configuration, however, the errors
of the L1D and L2 cache metrics are around the same (below
2%) independent of the percentage value since such smaller
GPUs get fully stressed more easily.

E. Effect of Downscaling GPU

Zatel splits the image plane into groups and simulates each
using a downscaled GPU in parallel. In this section, we sweep
the downscaling factors from 2 to 6 and then evaluate them on
LumiBench’s scenes. We also assess how our proposed group
division techniques – fine-grained and coarse-grained – affect
the simulation time speedup and accuracy of Zatel.

We examine how downscaling affects the accuracy of
predicted metrics in Fig. 17 for the representative subset of

Fig. 20. Error per scene using exponential regression (RTX 2060)

scenes outlined by LumiBench. Similar to Fig. 16, we see an
exponential rise in MAE as we trace fewer pixels. However,
certain metrics show consistent absolute errors regardless of
the scaling factor when compared to directly reducing the
traced pixel count. For fine-grained division, we observe
maximum absolute error for simulation cycles and IPC under
12% even for the downscaling factor of 6, which allows us to
trace only 16.7% of pixels. In Fig. 16, we see that for 10%
of traced pixels, even minimum absolute errors for simulation
cycles and IPC are greater than 15%. For other metrics like
DRAM efficiency, we see that reducing the number of memory
partitions actually resulted in a much higher MAE of 20%,
compared to less than 8% by simply tracing 10% of pixels. We
suspect that read and write requests to DRAM and the number
of active cycles do not scale linearly as we hoped. Extending
the subset of scenes and running on the ones in Fig. 9, results
in higher absolute errors for the IPC and simulation cycles
metrics, as shown in Fig. 18. When splitting some of the scenes
outside the representative subset into groups, like SPRNG,
they do not adequately stress the downscaled GPU, leading
to higher errors. However, we also suspect that such larger
errors can result from modifying part of Zatel or the container
it runs on during its development. Since fine-grained division
captures the overall complexity of the scene, we get lower and
more stable MAE values compared to coarse-grained division.

We included the running time speedups in Fig. 19 to
examine if downscaling the GPU gives a meaningful speedup
in comparison to only reducing number of pixels. When
comparing the simulation time speedups with the ones in
Fig. 15, we get similar results. Thus, downscaling the GPU
configuration does not significantly reduce the execution time
of Zatel. On the upside, this allows us to predict the speedup
using equation (4). We choose to go with the fine-grained
division method for better and more consistent accuracy and
simulation time speedup per scene.

F. Choosing the Extrapolation Method

Beyond the previous optimizations, we also explore another
model of extrapolation, the exponential regression model, by
comparing it to linear extrapolation as our baseline (Sec-
tion III-G). We simulate three times at 20%, 30%, and 40% to
obtain three data points to feed into our regression model and
extrapolate the value for 100% of pixels. Fig. 20 illustrates
the estimated metrics’ error per scene using regression. We
compare these errors with the ones directly from tracing

only 40% of pixels. The error lines in the plot represent the
difference between the two. If the error line is inside the bar,
the predicted value using regression is less accurate by the
line’s size than if we traced only 40%. For RTX 2060, we get
that 62% of metrics have higher errors when we use regression
compared to directly tracing 40% of pixels. Moreover, we only
gained a maximum of less than 10% in accuracy while losing
around 25% in metrics like IPC and bandwidth utilization for
the CHSNT scene. Similarly, for Mobile SoC, around the same
percentage of metrics have higher errors than the baseline,
and we gain approximately as much accuracy as we lose
(4%). Since our data points are already partially inaccurate, the
model overfits them, resulting in a high error. Thus, regression
does not provide a clear advantage over using one data point
while requiring running the simulator three times.

V. RELATED WORK

A. Evaluation using Simulation

To thoroughly evaluate the proposed architectural changes,
the standard go-to method is using detailed simulators [5]–
[7]. Villa et al. [25] and Sun et al. [26] achieved a speedup of
around 2-3 times by making them multi-threaded. Villa et al.
also sped up their simulation time by running a single iteration
of the target workload instead of the whole application. They
then extrapolate the results. Similarly, PKA and TBPoint [27]
only simulate the representative part of the workload based
on the recorded microarchitecture-independent features. Wang
et al. [28] present a more statistical approach that estimates
the performance based on the trace information gotten from
profiling the source code. Yu et al. [29] generate downscaled
but representative workloads to speed up the simulation. Zatel
downscales both the workload and the GPU configuration to
estimate the performance statistics with a fast simulation time.

B. Evaluation using GPU Analytical Models

One of the first analytical models for GPUs was
GPUMech [13] which used interval analysis to estimate the
CPI stacks of the workload. However, it gave high errors for
the emerging memory-divergent workloads. MDM [14] was
able to more accurately predict such workloads with a 6.1×
speedup. GCoM [15] further modeled GPU subcore effects
and is the current state-of-the-art analytical model. In industry,
companies like NVIDIA also try creating analytical models
like Need for Speed [8] to speed up the estimation of their
GPUs’ performance. Liu et al. [16] show in the LumiBench
paper that current analytical models were not able to capture
the complexity of ray tracing workloads.

C. Evaluation using Machine Learning Models

Another way to estimate GPUs’ performance is to use ML
models. They work like a black box and are not dependent
on the modeled GPU microarchitecture. Wu et al. [30] use
machine learning estimation techniques to predict both the
performance and power consumption of tested GPU hardware.
They train their model on numerous GPU hardware configu-
rations. Guerreiro et al. [31] propose a model that takes in the

PTX instructions with the information about the hardware to
estimate the performance. Poise [32] uses a regression model
to select a warp scheduling decision for a new application. We
tried using a regression model to extrapolate our results but it
did not provide a clear advantage.

VI. CONCLUSION

We propose Zatel, a prediction methodology for estimating
GPU performance on ray tracing workloads. Zatel downscales
the given GPU configuration by a factor of K, divides the
scene into K groups, for each group selects a representative
subset of pixels, and assigns a cycle-level simulator to trace the
chosen pixels for each group. Using these optimization steps,
Zatel records up to less than 1% error with 10 times simulation
time speedup for measuring a metric like simulation cycles on
a mobile GPU. We promote Zatel as a fast and reasonably
accurate methodology for evaluating GPUs’ performance on
complex ray tracing workloads.

ACKNOWLEDGMENT

The authors thank the reviewers for their feedback. We
would also like to thank Jonathan Lew, Lufei Liu, and Mo-
hammadreza Saed for their feedback on earlier drafts of this
paper. The paper is funded in part by grants from Huawei
Technologies. This research was also supported in part through
computational resources and services provided by Advanced
Research Computing at the University of British Columbia.

REFERENCES

[1] P. Christensen, J. Fong, J. Shade, W. Wooten, B. Schubert, A. Kensler,
S. Friedman, C. Kilpatrick, C. Ramshaw, M. Bannister, B. Rayner,
J. Brouillat, and M. Liani, “Renderman: An advanced path-tracing
architecture for movie rendering,” ACM Trans. Graph., vol. 37, no. 3,
2018.

[2] Ray Tracing Rendering Software. [Online]. Available:
https://www.autodesk.com/solutions/ray-tracing

[3] Nvidia Corporation. (2023) Nvidia Ada GPU ar-
chitecture. [Online]. Available: https://images.nvidia.com/aem-
dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf

[4] Advanced Micro Devices Inc. (2023) AMD RDNA architecture.
[Online]. Available: https://www.amd.com/en/technologies/rdna

[5] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in Proc.
IEEE Symp. on Perf. Analysis of Systems and Software (ISPASS), 2009,
pp. 163–174.

[6] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An extensible simulation framework for validated GPU modeling,” in
Proc. IEEE/ACM Int’l Symp. on Computer Architecture (ISCA), 2020,
pp. 473–486.

[7] M. Saed, Y. H. Chou, L. Liu, T. Nowicki, and T. M. Aamodt, “Vulkan-
Sim: A GPU architecture simulator for ray tracing,” in Proc. IEEE/ACM
Symp. on Microarch. (MICRO), 2022, pp. 263–281.

[8] O. Villa, D. Lustig, Z. Yan, E. Bolotin, Y. Fu, N. Chatterjee, N. Jiang, and
D. Nellans, “Need for speed: Experiences building a trustworthy system-
level gpu simulator,” in Proc. IEEE Symp. on High-Perf. Computer
Architecture (HPCA), 2021, pp. 868–880.

[9] Y. H. Chou, T. Nowicki, and T. M. Aamodt, “Treelet prefetching for ray
tracing,” in Proc. IEEE/ACM Symp. on Microarch. (MICRO), 2023, p.
742–755.

[10] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” SIGPLAN Not., vol. 37,
no. 10, p. 45–57, oct 2002.

[11] C. Avalos Baddouh, M. Khairy, R. N. Green, M. Payer, and T. G. Rogers,
“Principal kernel analysis: A tractable methodology to simulate scaled
gpu workloads,” in Proc. IEEE/ACM Symp. on Microarch. (MICRO).
Association for Computing Machinery, 2021, p. 724–737.

[12] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Proc. IEEE/ACM Int’l Symp. on Computer Architecture
(ISCA). Association for Computing Machinery, 2003, p. 84–97.

[13] J.-C. Huang, J. H. Lee, H. Kim, and H.-H. S. Lee, “Gpumech: Gpu
performance modeling technique based on interval analysis,” in Proc.
IEEE/ACM Symp. on Microarch. (MICRO), 2014, pp. 268–279.

[14] L. Wang, M. Jahre, A. Adileho, and L. Eeckhout, “Mdm: The gpu
memory divergence model,” in Proc. IEEE/ACM Symp. on Microarch.
(MICRO), 2020, pp. 1009–1021.

[15] J. Lee, Y. Ha, S. Lee, J. Woo, J. Lee, H. Jang, and Y. Kim, “Gcom:
A detailed gpu core model for accurate analytical modeling of modern
gpus,” in Proc. IEEE/ACM Int’l Symp. on Computer Architecture (ISCA),
2022, p. 424–436.

[16] L. Liu, M. Saed, Y. Chou, D. Grigoryan, T. Nowicki, and T. Aamodt,
“Lumibench: A benchmark suite for hardware ray tracing,” in Proc.
IEEE Symp. on Workload Characterization (IISWC), 2023, pp. 1–14.

[17] V. Govindaraju, P. Djeu, K. Sankaralingam, M. Vernon, and W. R. Mark,
“Toward a multicore architecture for real-time ray-tracing,” in Proc.
IEEE/ACM Symp. on Microarch. (MICRO), 2008, pp. 176–187.

[18] P. Ganestam and M. Doggett, “Auto-tuning interactive ray tracing using
an analytical gpu architecture model,” in Proceedings of the 5th Annual
Workshop on General Purpose Processing with Graphics Processing
Units, ser. GPGPU-5. Association for Computing Machinery, 2012, p.
94–100.

[19] W. Liu, W. Heirman, S. Eyerman, S. Akram, and L. Eeckhout, “Scale-
model architectural simulation,” in Proc. IEEE Symp. on Perf. Analysis
of Systems and Software (ISPASS), 2022, pp. 58–68.

[20] A. Marrs, P. Shirley, and I. Wald, Eds., Ray Tracing Gems II. Apress,
2021.

[21] T. Aamodt, W. Fung, M. Martonosi, and T. Rogers, General-Purpose
Graphics Processor Architectures. Morgan & Claypool Publishers,
2018.

[22] L. Liu, W. Chang, F. Demoullin, Y. H. Chou, M. Saed, D. Pankratz,
T. Nowicki, and T. M. Aamodt, “Intersection prediction for accelerated
GPU ray tracing,” in Proc. IEEE/ACM Symp. on Microarch. (MICRO),
2021, pp. 709–723.

[23] J. Peddie, “Applications of ray tracing,” Ray Tracing: A Tool for All,
2019.

[24] Profiling DXR Shaders with Timer Instrumentation. [Online].
Available: https://developer.nvidia.com/blog/profiling-dxr-shaders-with-
timer-instrumentation/

[25] O. Villa, A. Tumeo, S. Secchi, and J. B. Manzano, “Fast and accu-
rate simulation of the cray xmt multithreaded supercomputer,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 12, pp.
2266–2279, 2012.

[26] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K. Ziabari,
Z. Chen, R. Ubal, J. L. Abellán, J. Kim, A. Joshi, and D. Kaeli, “Mg-
pusim: Enabling multi-gpu performance modeling and optimization,” in
2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA), 2019, pp. 197–209.

[27] J.-C. Huang, L. Nai, H. Kim, and H.-H. S. Lee, “Tbpoint: Reducing
simulation time for large-scale gpgpu kernels,” in Proc. IEEE Int’l
Parallel and Distributed Processing Symp. (IPDPS), 2014, pp. 437–446.

[28] X. Wang, K. Huang, A. Knoll, and X. Qian, “A hybrid framework for fast
and accurate gpu performance estimation through source-level analysis
and trace-based simulation,” in 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2019, pp. 506–518.

[29] Z. Yu, L. Eeckhout, N. Goswami, T. Li, L. K. John, H. Jin, C. Xu,
and J. Wu, “Gpgpu-minibench: Accelerating gpgpu micro-architecture
simulation,” IEEE Transactions on Computers, pp. 3153–3166, 2015.

[30] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“Gpgpu performance and power estimation using machine learning,”
in 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), 2015, pp. 564–576.

[31] J. Guerreiro, A. Ilic, N. Roma, and P. Tomás, “Gpu static modeling
using ptx and deep structured learning,” IEEE Access, 2019.

[32] S. Dublish, V. Nagarajan, and N. Topham, “Poise: Balancing thread-level
parallelism and memory system performance in gpus using machine
learning,” in 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2019, pp. 492–505.

