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ABSTRACT

Graphics processor units (GPUs) are designed to efficiently exploit
thread level parallelism (TLP), multiplexing execution of 1000s of
concurrent threads on a relatively smaller set of single-instruction,
multiple-thread (SIMT) cores to hide various long latency opera-
tions. While threads within a CUDA block/OpenCL workgroup can
communicate efficiently through an intra-core scratchpad memory,
threads in different blocks can only communicate via global mem-
ory accesses. Programmers wishing to exploit such communication
have to consider data-races that may occur when multiple threads
modify the same memory location. Recent GPUs provide a form
of inter-block communication through atomic operations for sin-
gle 32-bit/64-bit words. Although fine-grained locks can be con-
structed from these atomic operations, synchronization using locks
is prone to deadlock. In this paper, we propose to solve these prob-
lems by extending GPUs to support transactional memory (TM).
Major challenges include supporting 1000s of concurrent transac-
tions and committing non-conflicting transactions in parallel. We
propose KILO TM, a novel hardware TM design for GPUs that
scales to 1000s of concurrent transactions. Without cache coherency
hardware to depend on, it uses word-level, value-based conflict
detection to avoid broadcast communication and reduce on-chip
storage overhead. It employs speculative validation using a novel
bloom filter organization to increase transaction commit parallelism.
For a set of TM-enhanced GPU applications, KILO TM captures
59% of the performance of fine-grained locking, and is on average
128× faster than executing all transactions serially, for an estimated
hardware area overhead of 0.5% of a commercial GPU.

Categories and Subject Descriptors

C.1.4 [Computer System Organization]: Processor Architectures—
Parallel Architectures; D.1.3 [Software]: Programming Techniques—
Concurrent Programming

General Terms

Design, Performance

1. INTRODUCTION
Recently, there has been much interest in the use of GPUs to

provide cost-effective parallel performance. GPUs have the poten-
tial to provide higher computation per unit cost since they devote a
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larger fraction of their area to functional units rather than schedul-
ing logic. Applications that benefit from running on a GPU tend
to contain plenty of data parallelism coupled with regular mem-
ory access patterns that ensure efficient use of off-chip memory
bandwidth. In this work, we explore a generic manycore accelera-
tor architecture similar to contemporary GPUs from NVIDIA and
AMD and focus on the challenge of running applications that re-
quire some form of synchronization.

A common problem with using lock-based synchronization is the
potential for deadlocks. Manycore accelerators such as GPUs use
more threads to deliver more throughput at a lower cost and energy
consumption. More threads, and correspondingly larger problem
sizes, exacerbate the challenge of lock-based programming by in-
creasing the number of ways in which a deadlock can manifest [4].

One obstacle preventing GPUs from tackling a wider variety of
application workloads is the difference between CPU and GPU
programming models. This is particularly true for synchroniza-
tion primitives, which perform poorly and can interact in intri-
cate ways (from a programmer perspective) with the underlying
multi-threaded execution hardware on a GPU. We believe it is nec-
essary to simplify the programming of highly parallel workloads
that require data synchronization. Enabling transactional mem-
ory (TM) [28] on GPUs simplifies synchronization, and provides
a powerful programming model that promotes fine grained com-
munication and strong scaling of parallel workloads. This work
focuses on enabling TM on a GPU efficiently and evaluates a de-
tailed implementation to understand the trade-offs involved.

The contributions of this paper are:
• It proposes the use of hardware transactional memory (HTM)

for GPU computing.
• It proposes KILO TM, a novel, scalable HTM design. The

design combines aspects of value-based conflict detection [42,
19], RingSTM [49], and Scalable TCC [16] (Transactional
Coherence and Consistency) to support 1000s of concurrent
transactions without requiring a cache coherency protocol. It
detects conflicts at word-level granularity and employs spec-
ulative validation to increase transaction commit parallelism.

• It proposes an extension to SIMT [35] hardware to handle
control flow divergence due to transaction aborts.

• It introduces the recency bloom filter which incorporates a
notion of time and supports implicit, multi-item removal.

• It evaluates the potential of transactional memory on a set of
GPU computing workloads that employ transactions.

• It describes an extension to the GPU hardware thread sched-
uler to control transaction concurrency, and shows that the
mechanism benefits high-contention workloads.

Our evaluation shows that KILO TM captures 59% of the perfor-
mance of fine-grained locking. We find that KILO TM outperforms
fine-grained locking for low contention applications that require
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Figure 1: High-Level GPU architecture exposed by the CUDA

programming model. TX Log Unit, Commit Unit added for

KILO TM. SIMT stack modified to support transactions.

acquiring multiple locks to enter a critical section. On the other
hand, we find that TM applications ported from CPU-optimized
versions can perform poorly on GPUs regardless of the data syn-
chronization mechanism used (fine-grained locking or TM). Opti-
mizing these applications for GPUs would involve redesigning the
algorithm and data structures, possibly requiring data synchroniza-
tion at a much finer-granularity to expose more parallelism. Doing
so without TM would require rewriting much of the application
before testing for correctness, a risky investment that might deter
wider adoption of GPU computing for these types of applications.
Our estimation with CACTI [47] indicates that implementing KILO
TM on an NVIDIA Fermi GPU [40] would increase area by only
0.5%, a small overhead for the large increase in programmability.

The rest of this paper is organized as follows: Section 2 briefly
reviews relevant background information. Section 3 motivates TM
on GPUs, and outlines the challenges in adopting prior HTMs on
GPUs. Section 4 describes KILO TM, our TM design for a GPU
that supports 1000s of concurrent transactions. Section 5 describes
our methodology and benchmark applications, Section 6 presents
results, Section 7 discusses related work, and Section 8 concludes.

2. BACKGROUND

2.1 Transactional Memory
Transactional memory [28, 27] simplifies software development

for parallel architectures by providing the programmer with the il-
lusion that blocks of code, called transactions, execute atomically.
With TM, the programmer does not need to write code with locks
to ensure mutual exclusion. For example, in the ATM benchmark
(Section 5), each scalar thread uses a transaction to specify that
funds should be debited from one account and deposited into an-
other account as a single action. If two threads try to access the
same account at the same time, one transaction will be restarted.
In the absence of such conflicts, all transactions can perform the
transfer in parallel.

2.2 Baseline GPU Architecture
Figure 1 shows the high-level organization of our baseline GPU-

like manycore accelerator that runs CUDA and OpenCL applica-
tions [39, 41, 31]. A CUDA program starts on a CPU and then
launches parallel compute kernels onto a GPU. Each kernel launch
dispatches a hierarchy of threads (a grid of blocks of warps of
scalar threads running the same compute kernel) onto the accel-
erator. Blocks are allocated as a single unit of work to a heavily
multi-threaded SIMT core. Threads within a block can communi-
cate via an on-chip shared memory1. The SIMT cores access a dis-
tributed, shared, read/writeable last-level (L2) cache and off-chip
DRAM via an on-chip network.

With the SIMT execution model, scalar threads are managed as
a SIMD execution group called a warp (or wavefront in AMD ter-
minology). Each warp contains 32 scalar threads [41].

116kB scratchpad memory per SIMT core.

SIMT Stack - Branch Divergence Hardware. Each warp has
a SIMT stack that serializes the execution of different subsets of
threads that diverge to different control flow paths. We summarize
the SIMT stack mechanism in our baseline below [23, 24].

If some threads in a warp have different outcomes when a branch
executes, i.e. the branch diverges, new entries are pushed onto the
warp’s SIMT stack. Each entry contains a reconvergence PC (RPC)
which is set to the immediate post-dominator2 of the branch. Each
bit in the active mask indicates whether the corresponding thread
follows the control flow path corresponding to the stack entry. The
PC of the top-of-stack (TOS) entry indicates the target path of the
branch. Reaching the reconvergence point is detected when the
next PC equals the RPC at the TOS entry. When this occurs, the
top of the stack is popped (current GPUs use special instructions to
manage the stack [34, 18, 3]). This switches execution to the next
branch target that is to be executed by the other subset of threads.
After all threads reach the reconvergence point, the TOS entry will
reveal a full active mask with the reconvergence PC of the divergent
branch, indicating that the threads have effectively reconverged.

Memory Subsystem. When a warp executes a memory instruc-
tion, each scalar thread in the warp sends a scalar memory access
to the memory subsystem in the SIMT core. For shared memory
accesses, each shared memory bank processes conflicting accesses
in successive cycles. For global and local memory spaces [41], ac-
cesses from different threads in the same warp to the same cache
line are merged (coalesced) into a single wide access. The L1 data
cache services these wide accesses one per cycle.

Each thread has access to a private local memory space [41],
which is used mainly for register spilling. The local memory is
stored in off-chip DRAM and cached in the per-core L1 data cache
and the last-level (L2) cache. It is organized such that consecutive
32-bit words are accessed by consecutive scalar threads in a warp.
When all the threads in a warp are accessing the same address in
their own local memory space, their accesses can be coalesced into
a single wide access that can be serviced by the L1 data cache in a
single cycle.

The L1 data caches in the SIMT cores are not coherent. Simi-
lar to NVIDIA Fermi [40], a write hit at a memory location in the
global memory space [41] evicts the cache line from the L1 and
sends the updated contents to the L2 cache bank at the correspond-
ing memory partition. A stale version of the same cache line may
be cached in another SIMT core. To ensure that a global mem-
ory access always returns coherent data, the CUDA application can
configure the GPU hardware to skip the L1 cache for all global
memory accesses [41]. These accesses are then serviced directly
by the L2 cache.

Atomic Operations. Current GPUs provide hardware atomic
operations for simple single-word read-modify-write operations [41,
31]. These are implemented by extending alpha blending hard-
ware [54, 37] (Atomic Op. Unit in Figure 1) to perform these read-
modify-write operations to individual locations atomically.

3. TRANSACTIONAL MEMORY ON GPU:

OPPORTUNITIES AND CHALLENGES
Atomic operations on current GPUs enable implementation of

locks, allowing complex irregular algorithms [12]. Fine-grained
locking enables higher concurrency in applications, but requires the
application developer to consider all possible interactions between
locks to ensure deadlock-free code – a challenging task [33]. With
tens of thousands of threads running concurrently on a GPU, the
number of possible interactions among these fine-grained locks can

2Closest point in the program that all paths leaving the branch must
go through before exiting the function.



Example 1 CPU spin-lock code. CAS = compare-and-swap.

A: while(CAS(lock,0,1)==1);

B: // Critical Section ...

C: lock = 0;

A

B

PC RPC T0
B - - 1
A B 0TOS

T1
1
1

GPU Deadlock E.g.

Example 2 Spin-lock implementation on GPU to avoid deadlock
due to implicit synchronization in warps [1].

A: done = 0;

B: while(!done){

C: if(CAS(lock,0,1)==0){

D: // Critical Section ...

E: lock = 0;

F: done = 1;

G: }

H: }

be overwhelming in practical applications. This problem is well
known to the supercomputing community and has inspired special
debugging tools to summarize thread behaviours for deadlock/data-
race analysis [4]. Concurrent with this work, IBM has announced
support for TM in their upcoming BlueGene/Q supercomputer [5].

In this paper, we propose to increase support for irregular algo-
rithms on GPUs by extending GPU architecture to support TM [28].
While originally proposed for CPUs, we find TM to be a natural
extension to the existing GPU/CUDA programming model. From
a programmer’s perspective, a transaction is executed as an atomic
block of code in isolation. A thread in a transaction is never blocked
waiting to synchronize with another thread. This is important be-
cause a CUDA/OpenCL application can launch many more threads
than the GPU hardware can concurrently execute. Like transac-
tions, thread execution sequencing is abstracted away in the CUDA
programming model. The hardware thread schedulers on current
GPUs can execute transactions with simple extensions.

In addition to the traditional deadlock problem, GPU applica-
tion developers have to deal with interactions between the SIMT
stack and atomic operations. Example 1 shows how a critical sec-
tion may be guarded by the acquisition and release of a fine-grained
lock (line A and C) on the CPU. On a GPU, this code may dead-
lock [1]. This can happen if the threads in the same warp attempt
to acquire the same lock at line A. For example, consider a warp
with two threads, T0 and T1, both trying to acquire the same lock.
T0 succeeds and exits the loop, but waits at the start of the critical
section (line B) for reconvergence, while T1 still spins in the loop
(see inset at right in Example 1). T1 will continue spinning and
waiting for the lock held by T0 and never exit, forming a deadlock.
To remove the deadlock, the program must be modified to use code
similar to Example 2. This issue is known among GPU application
developers [1] and explored in more detail by Ramamurthy [43].
With TM, the GPU hardware can be designed to handle such inter-
actions between transactions and the SIMT stack (see Section 4.1).

Figure 2 compares the performance of a set of GPU TM applica-
tions (described in Section 5) running on an ideal GPU TM system
against fine-grained lock versions of the applications. In this ideal
TM system, TM overheads related to detecting conflicting trans-
actions are removed. The performance shown is normalized to that
obtained by serializing all transaction executions via a single global
lock. On average, the applications running on ideal TM achieve
279× speedup over serializing all transactions, which is 24% faster
than fine-grained locking.

Table 1 shows the IPC of these applications with the ideal TM
system and fine-grained locking. Some of our applications (CL, BH
and CC) achieve reasonable performance, while others suffer from
GPU performance bottlenecks such as control flow and memory di-
vergence (see Section 6.2 for further discussion). We believe these

Table 1: Raw performance (IPC) of applications described in

Section 5 (Peak IPC = 240).

Applications → HT-H HT-L ATM CL BH CC AP

Ideal TM 6.6 5.9 4.2 9.4 10.5 33.4 0.5

FG Lock 8.1 6.5 4.2 8.8 9.5 51.0 0.5
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Figure 2: Performance comparison between applications run-

ning on an ideal TM system and their respective fine-grained

(FG) locking version (applications described in Section 5).

applications can be optimized via performance tuning – identifying
bottlenecks and redesigning the applications incrementally to ad-
dress these bottlenecks one by one. Performance tuning is beyond
the scope of this work. Transactional memory arguably provides
an easier programming model for performance tuning because it
allows GPU application developers to rework algorithms and data
structures without concern for deadlock. This work focuses on en-
abling TM on GPUs efficiently, and with minimum overhead.

3.1 Challenges with Prior HTMs on GPUs
Hardware transactional memory (HTM) has been researched ex-

tensively. Many proposed HTMs leverage cache coherence for
conflict detection among concurrent transactions, while assuming
that each transaction owns a private L1 cache. Even though recent
GPUs have caches [40], the caches local to a SIMT core are not co-
herent and are shared among 100s of threads that execute concur-
rently on the core. GPUs are designed to exploit fine-grained data
parallelism; adjacent memory words are often accessed by differ-
ent threads. These differences raise many challenges in adopting
existing HTMs for GPUs.

An emerging class of manycore accelerators, such as Intel’s Lar-
rabee [46], feature fewer concurrent threads per core and coherent
caches that can be partitioned per thread. The following challenges
may be less severe for this class of manycore accelerators.

3.1.1 Access Granularity and Write Buffering
Each line in the L1 data caches could be extended to identify and

isolate speculative data written by individual transactions. How-
ever, each transaction might obtain only a few cache lines before
the cache overflows because there are fewer L1 cache lines than
scalar threads on a SIMT core. Transactions typically lack the spa-
tial locality required to fully use a cache line and make poor use of
the few lines they can access. Furthermore, the fine-grained, inter-
leaved accesses among different threads can introduce significant
false-sharing and reduce the accuracy of conflict detection.

3.1.2 Transaction Rollback
Many proposed HTMs checkpoint the architectural state of the

hardware thread at the start of a transaction for restoration upon
rollback. Maintaining copies for 10s of registers at transaction
boundaries in a CPU core is relatively cheap. GPUs, however, are
designed to execute 1000s of concurrent threads, and spend signif-
icant hardware resources on register file storage. NVIDIA Fermi
has 2MB of register file storage, which exceeds its aggregate cache
capacity [40]. Naively checkpointing this many registers would in-
troduce significant overheads.



3.1.3 Scaling Conflict Detection
A key challenge for scaling TM beyond 1000s of concurrent

transactions is designing a conflict detection mechanism that works
effectively at this scale. Naive broadcast-based conflict detection
scales poorly; T concurrent transactions will broadcast to T-1 other
transactions, generating O(T 2) traffic.

Many proposed TMs use global metadata, such as a cache coher-
ence directory, to eliminate unnecessary traffic. Recently, directory
based cache coherence protocols supporting up to 1000 cores have
been proposed [29, 58, 22]. However, GPUs such as Fermi [40] do
not have a private cache for each thread.

Using bloom filters to represent read- and write-sets of a trans-
action [56, 15, 36] allows each thread to quickly react to incoming
requests and enables fine-grained conflict detection. We experi-
mented with an ideal version of a signature-based HTM (lazy con-
flict detection and lazy version management) with each transaction
maintaining both its read- and write-sets in a bloom filter. We used
the parallel bloom filters described by Sanchez et al. [45]. Each fil-
ter contained 4 separate sub-signatures and each sub-signature was
indexed by a unique H3 hash function. We had to use a 1024-bit
filter per thread (3.8MB of total storage for 30720 threads) to keep
the false conflict rate below 20% for the benchmarks CL, BH and
AP. Using 512-bit filters increased the rate to 60%.

3.1.4 Commit Bottleneck
Even if we reduce the bloom filter storage by limiting the num-

ber of concurrent transactions (Section 4.6), the bloom filters of all
transactions and the directory cannot be modified when one of the
transactions is committing. Otherwise, a conflicting access may
go undetected when a transaction that has resolved all of its con-
flicts is updating memory [16]. Scalable TCC [16] solves this issue
by locking entries in the directory, but its commit protocol seri-
alizes transaction commit at each directory bank. LogTM-SE [56]
uses eager version management, writing speculative data directly to
global memory, to allow transactions to commit in parallel. How-
ever, data isolation of each transaction is maintained by eager con-
flict detection via a cache coherence protocol. The potential com-
mit bottleneck and the signature storage explosion (Section 3.1.3)
issue persuaded us towards exploring alternatives.

4. KILO TRANSACTIONAL MEMORY
In this section, we present KILO Transactional Memory, a TM

system scalable to 1000s of concurrent transactions. KILO TM
does not leverage a cache coherence protocol for conflict detec-
tion among running transactions. Instead, each transaction per-
forms word-level, value-based conflict detection against committed
transactions by comparing the saved value of its read-set against the
value in memory upon its completion [42, 19]. A changed value in-
dicates a conflict. This mechanism offers weak isolation [27]. Each
transaction buffers its saved read-set values and memory writes in
a read-log and a write-log (in address-value pair) in local memory
(lazy version management). When a transaction finishes executing,
it sends its read- and write-log to a set of commit units for con-
flict detection (validation), each of which replies with the outcome
(pass/fail) back to the transaction at the core. Each commit unit
validates a subset of the transaction’s read-set. If all commit units
report no conflict detected, the transaction permits the commit units
to publish the write-log to memory. To improve commit parallelism
for non-conflicting transactions, transactions speculatively validate
against committed transactions in parallel, leveraging the deeply
pipelined memory subsystem of the GPU. The commit units use
an address-based conflict detection mechanism to detect conflicts
among these transactions (we call these hazards to distinguish them
from the conflicts detected via value comparison). A hazard is re-

A:  t = tid.x;    if (…) {
B:    tx_begin;C:    x[t%10] = y[t] + 1;
D:    if (s[t])E:      y[t] = 0;
F:    tx_commit;G:    z = y[t];
    }H:  w = y[t+1];
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Figure 3: SIMT stack handling divergence due to transaction

aborts (validation fail). Thread 6 and 7 have failed validation

and are restarted. Stack entry type: Normal (N), Transaction

Retry (R), Transaction Top (T). For each scenario, added en-

tries or modified fields are shaded.

solved by revalidating one of the conflicting transactions at a later
time. Section 4.5 describes the protocol in detail.

In KILO TM, transaction-specific communication (conflict de-
tection and memory updates) occurs only between the commit units
and the committing thread (shown in Figure 4a). This restriction
permits the communication packets from different threads to be
pipelined and interleaved, as long as the end-to-end message order
between the SIMT cores and the commit units is maintained. KILO
TM restricts each transaction to have a single entry and a single
exit, matching ‘atomic{}’ semantics in common TM language
extensions [27]. Transaction boundaries are conveyed to hardware
with tx_begin and tx_commit instructions in the compute ker-
nel. Nested transactions are flattened [27] into a single transaction.

Figure 1 highlights the changes required to implement KILO TM
on our baseline GPU architecture. These include an extension to
the SIMT stack, a Transaction Log Unit, and a Commit Unit.

4.1 SIMT Stack Extension
When a warp finishes a transaction, each of its active threads will

try to commit. Some of the threads may abort and need to reexecute
their transactions, while other threads may pass the validation and
commit their transactions. Since this outcome may not be unani-
mous across the entire warp, a warp may diverge after validation.

Figure 3 shows how the SIMT stack can be extended to handle
control flow divergence due to transaction aborts. When a warp en-
ters the transaction (at line B, tx_begin), it pushes two special
entries onto the SIMT stack ( 1 ). The first entry of type R stores
information to restart the transaction. Its active mask is initially
empty, and its PC field points to the instruction after tx_begin.
The second entry of type T tracks the current transaction attempt.
At tx_commit (line F), any thread that fails validation sets its
mask bit in the R entry. The T entry is popped when the warp fin-
ishes the commit process (i.e., its active threads have either com-
mitted or aborted) ( 2 ). A new T entry will then be pushed onto
the stack using the active mask and PC from the R entry to restart
the threads that have been aborted. Then, the active mask in the R

entry is cleared ( 3 ). If the active mask in the R entry is empty,
both T and R entries are popped, revealing the original N entry
( 5 ). Its PC is then modified to point to the instruction right af-
ter tx_commit, and the warp resumes normal execution. Branch
divergence of a warp within a transaction is handled in the same
way as non-transactional divergence ( 4 ).



4.2 Scalable Conflict Detection
Section 3.1.3 discussed how signature-based conflict detection is

prone to the commit bottleneck and storage explosion when scaled
to 1000s of threads. Typical conflict detection used in HTMs checks
the existence of conflicts and identifies the specific conflicting trans-
actions. One insight Spear et al. present with RingSTM [49] is that
a committing transaction only needs to detect the existence of con-
flicts with transactions that have committed. Transactions with de-
tected conflicts can self-abort without interfering with execution of
other running transactions. This reduces storage and traffic require-
ments because the TM system does not need to maintain a set of in-
flight sharers/modifiers for each memory location, and each trans-
action only performs the detection once before it commits. How-
ever, in our experiment with RingSTM, we had to use 512-bit write-
signatures in the commit record ring to keep the false conflict rate
below 40% (1.9MB of total storage for a ring with 30720 records
to support 30720 concurrent transactions). Value-based conflict de-
tection [42, 19] exhibits similar traffic requirements as RingSTM.
Transactions detect conflicts with other committed transactions, but
without using any global metadata – only values from global mem-
ory are used. KILO TM combines aspects of RingSTM and value-
based conflict detection in hardware, and extends them to permit
concurrent validations (Section 4.5).

A transaction is doomed if it has observed an inconsistent view
of memory (e.g., in between memory reads to two different loca-
tions, another transaction has committed and updated both loca-
tions). These doomed transactions may enter an infinite loop. To
ensure that doomed transactions are eventually aborted, we use a
watchdog timer to trigger a validation pass. This satisfies opac-

ity [26] with minimum overhead for GPUs.

4.3 Version Management
KILO TM manages global memory accesses in hardware and

uses software for version management of registers and local mem-
ory space. Section 3.1.2 discussed how blindly checkpointing each
transaction is too expensive on GPUs. We observed that the original
values in many registers are rarely used when a transaction restarts,
and do not need to be restored. A compiler could determine which
registers are both read and written within a transaction and insert
code to checkpoint and restore them before/after a transaction. We
observed that transactions in the BH benchmark require restoring
two registers on average. Other benchmarks do not require any reg-
ister restoration upon transaction aborts. Hence, we do not model
the register checkpoint overhead as we believe it to be minor com-
pared to validation and commit overheads in our workloads.

Accesses to global memory are buffered in the read/write-log in
local memory. A small bloom filter can be used to detect whether
a transaction is reading a value in its write-set. A hit in the filter
will trigger the transaction log unit to walk the write-log. Since the
member set of the filter is constrained to only the memory accesses
of a single transaction, a small filter should produce reasonably few
false positives. In our evaluations, this detection is perfect.

4.4 Transaction Log Storage and Transfer
The read- and write-logs of transactions in KILO TM are stored

as linear buffers in local memory located in off-chip DRAM, cached
in the per-core L1 data cache, and mapped to physical addresses
such that consecutive 32-bit words are accessed by consecutive
scalar threads in a warp. GPU applications can specify the max-
imum size of local memory to avoid overflow.

When a warp accesses global memory in a transaction, a new
entry is appended to the read/write-log for all threads in the warp.
Entries for the inactive threads are marked with a special address
to void the entry. This organization allows the log accesses to be
coalesced. If only part of a warp needs to walk the write-log for
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Figure 4: Commit Unit. (a) Communication flow with a SIMT
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data, the entire warp will wait for the walk to finish before pro-
ceeding to the next instruction. When threads in a warp are ready to
validate their transactions (before commit), the transaction log unit
walks the read- and write-logs of each thread and sends the address-
value pairs to the commit unit in the corresponding memory parti-
tion. The individual entries sent to the same memory partition are
grouped into a single larger packet to reduce interconnection traffic.

This transaction log design addresses the fact that per-core caches
in contemporary GPUs are shared by 100s of threads. GPUs em-
ploy a flexible register allocation scheme that balances the number
of registers per warp against the number of concurrent warps to
avoid spilling registers. Hence, memory reads rarely access data
written by the same transaction, reducing the penalty of storing the
write-log as a linear buffer.

4.5 Distributed Validation/Commit Pipeline
A naive implementation of value-based conflict detection seri-

alizes transaction commits. Memory updates from a transaction
(its write-set) are invisible to others until the transaction commits.
Two conflicting transactions validating concurrently will observe
no changes to their read-sets, and will subsequently update global
memory with their contradicting write-sets. While serializing all
transaction commits prevents this potential data race, it also pre-
vents non-conflicting transactions from committing in parallel [9].

To enable parallel commits, prior STMs with value-based con-
flict detection [19, 42] use a set of versioned locks, each serializing
commit to a memory region. Each transaction checks/acquires the
locks of all the memory regions that require protection during vali-
dation and commit. Acquiring locks imposes significant overhead.

KILO TM increases commit parallelism by using a set of com-

mit units that quickly detect conflicts among a limited set of trans-
actions. GPU memory subsystems are deeply pipelined to support
a large number of in-flight accesses to maximize throughput. The
commit units leverage this capability. In each commit unit, a subset
of transactions are speculatively validated in parallel. This valida-
tion only detects conflicts with the already committed transactions.
Later, a hazard detection mechanism is applied to conservatively
detect all potential conflicts. Any hazard is resolved by deferring
one of the conflicting transactions and revalidating its read-set af-
ter the other transaction has updated global memory. Revalidation
serializes the validation/commit process among transactions when
necessary. This mechanism guarantees forward progress by giving
the deferred transaction a second chance to validate and commit in
case the earlier transaction failed.

Each memory partition has a commit unit (shown in Figure 4b)
that handles validations and commits of TM accesses to that mem-
ory partition. Before a transaction starts the validation/commit pro-
cess, it acquires a commit ID (CID) from a centralized ID vendor
(similar to Scalable TCC [16]). This commit ID is associated with
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of the bounded ring buffer stored inside commit unit.

a logical entry in the commit unit at every memory partition, and
dictates the relative commit order of this transaction (so that the
conflict/hazard resolution is unanimous among all commit units).
Each commit unit has a ring buffer of commit entries [49] orga-
nized in the logical stages shown in Figure 5. Each entry tracks
the state of a committing transaction in this memory partition. The
Status field in each commit unit ring buffer entry in Figure 4b in-
dicates the current status of the transaction. The YCID and RCID

fields are used for hazard detection. The RCID of a transaction is a
pointer to the oldest committing transaction when this transaction
started speculative validation. Transactions that committed before
this transaction started speculative validation do not trigger a haz-
ard with this transaction. The YCID of a transaction points to the
youngest conflicting transaction detected to have a hazard with this
transaction. The transaction needs to wait for the conflicting trans-
action to retire before it can start revalidation. The ReadSet and
WriteSet Buffers consist of bounded linear buffers that store, for
value comparison, the exact address-value pairs of each transac-
tional access to this memory partition.

The following is an overview of the validation/commit process
of a transaction at different logical stages (Figure 5):
Log Transfer + Speculative Validation. The transaction transfers
its read- and write-logs to an allocated entry in the commit unit
( 1 ). The incoming read-set is speculatively validated against the
current values in global memory (accessing L2 cache/DRAM 2 ).
Hazard Detection. Once the read- and write-logs have been trans-
ferred to the commit unit, the read-set of the transaction is checked
against the Last Writer History unit (LWH) for hazard detection

( 3 ), detecting conflicts between the transaction and all committing
transactions in the later stages. Existence of a hazard indicates that
the speculative validation may have accessed stale data in global
memory that will be updated before the transaction commits. The
hazard is resolved in the Validation Wait stage.
Validation Wait. Each transaction waits for the speculative valida-
tion to complete before advancing to later stages ( 4 ). Transactions
with hazards will wait until all conflicting transactions have retired
to revalidate their read-set with the updated global memory ( 5 ).
Finalizing Outcome. This stage finalizes the outcome of each
transaction by replying with the local outcome (pass/fail) of the
transaction to the core ( 6 ). After a transaction has received replies
from all commit units, it will broadcast the final outcome (pass/fail)
to all commit units ( 7 ). Each commit unit entry waits for its final
outcome before proceeding to the next stage.
Commit. Each passed transaction updates the global memory at
this stage ( 8 ). Failed transactions are skipped.
Retire. The commit unit entry associated with each transaction is
deallocated, releasing storage for future transactions. The core is
informed so that the thread running the transaction can proceed to
the next instruction, or restart the failed transaction ( 9 ).

4.5.1 Commit Unit Resource Allocation
When a warp executes tx_commit, the transaction log unit ac-

quires credits from a per-core credit pool of commit unit entries
before acquiring contiguous commit IDs and proceeding with the
commit. Insufficient credits prevent the warp from acquiring the
commit IDs until the credits are returned when the validation/com-
mit operation of another warp completes. In this paper, we assume
that the commit units always have enough entries to support all in-
flight transactions. Section 6.4.2 measures the resources required.

4.5.2 Hazard Detection, Last Writer History Update
At the Hazard Detection stage, each transaction checks the in-

tegrity of its speculative validation via the Last Writer History unit
(LWH) in Figure 4b. This unit has an approximate but conserva-
tive representation of the write-sets of all older transactions at the
later stages that have not yet retired. The LWH unit identifies the
youngest conflicting transaction (returns its commit ID) in the later
stages that may modify the read-set of the transaction at the haz-
ard detection stage. If this conflicting transaction retired before the
current transaction started validating (its CID<RCID of the current
transaction), no hazard remains. Otherwise, a hazard is detected.
The hazard is resolved in the Validation Wait stage by waiting for
this conflicting transaction (now tracked by YCID) to retire, and
then revalidating the transaction with the updated memory. After
detection, the current transaction updates the LWH unit with its
write-set. This mechanism leverages the same intuition described
in Section 4.2. The LWH unit can approximately maintain the latest
pending writer to each memory location, as a slightly younger false
writer only slightly lengthens the wait at Validation Wait stage.

The LWH unit has an address-indexed set-associative lookup ta-
ble and a recency bloom filter. The two structures, in combination,
conservatively track the CID of the youngest transaction in later
stages that may write to a given memory location. The lookup ta-
ble stores the exact write-sets from recent transactions, whereas the
bloom filter stores the approximate write-sets from distant transac-
tions. As write-sets from newer transactions are deposited into the
lookup table, entries are updated (replacing the CID if addresses
match), or evicted into the bloom filter to free up storage for dif-
ferent addresses. The recency bloom filter has multiple sub-arrays
of buckets (each bucket storing a CID) indexed by a hash of the
given memory address. Each evicted entry updates a CID bucket
in each sub-array according to the hashed written memory address.
Due to address aliasing in each sub-array, an older CID writing to
an address may be replaced by a younger CID writing to a differ-
ent address. When the bloom filter is queried with an address, one
CID is retrieved from each sub-array. The oldest retrieved CID
is returned as it is least likely to have been aliased by a younger
writer. This oldest CID can also be aliased, causing the LHW unit
to report a false writer. The write-set of a retiring transaction is
implicitly removed from the LWH unit as its CID can no longer
trigger a hazard.

4.5.3 Unbounded Transactions
If the commit entry’s read-set buffer overflows, the commit unit

will continue to speculatively validate the address-value pair of the
incoming read-set, but will stop populating the read-set buffer. The
commit unit will ask the transaction to resend its read-set from the
SIMT core during hazard detection and revalidation. Similarly, if
the commit entry’s write-set buffer overflows, the commit unit will
ask the transaction to resend the write-set during LWH update after
hazard detection and memory update at the Commit stage.

4.6 Concurrency Control
While KILO TM can support thousands of concurrent transac-

tions, limiting the number of concurrent transactions can improve



the performance of high-contention applications (with transactions
that are likely to abort), and lowers the resource requirement for
KILO TM. To limit the number of concurrent transactions within a
SIMT core, we use a counter to track the number of warps currently
in transactions. We will explore adaptive mechanisms (e.g., [57, 7])
that react to the dynamic contention in applications in the future.

5. METHODOLOGY
We model our proposed hardware changes by extending GPGPU-

Sim 3.0 [6]. We evaluate performance of various hardware config-
urations on the benchmarks listed in Table 2. We add transactions
with empty functions tx_begin() and tx_commit() that are
recognized by the simulator as transaction boundaries. The follow-
ing CUDA/OpenCL applications are used in our evaluations.

Hash Table (HT) is a microbenchmark in which each thread
inserts an element into a chained hash table. Each slot in the hash
table is a linked list of key-value pairs. We use two table sizes to
create high contention (HT-H with 8k entries) and low contention
(HT-L with 80k entries) workloads.

Bank Account (ATM) is a microbenchmark with ∼16k concur-
rent threads accessing an array of structs that represents 1M bank
accounts. Each transaction transfers money between two accounts.

Cloth Physics (CL) is based on “RopaDemo”, which simulates
the cloth physics for a T-shirt [11]. Performance is limited by the
Distance Solver kernel, which implements a spring-mass system
using a set of constraints between cloth particles. To forbid two
constraints concurrently modifying the same particle, the original
demo processes these constraints sequentially in octets (i.e., 8 at
a time). We modified this kernel to process all ∼4k distance con-
straints of each T-shirt in parallel transactions.

Barnes Hut (BH) is based on the tree-based n-Body algorithm
implemented by Burtscher et al. [12] with 30000 bodies. We focus
on the iterative tree-building kernel using lightweight locks, which
we modified to use transactions. Each thread in this kernel appends
a body into the octree, and inserts any branch node required to iso-
late its body in a unique leaf node. Each level of traversal down the
tree and the node insertions are protected by separate transactions.

CudaCuts (CC) applies a maxflow/mincut algorithm to segmen-
tation of a 200×150 pixel image [53]. It consists of Push kernels
that use atomic operations to push excessive flow from a node to its
neighbours, and Relabel kernels that change the height of a node
when excessive flow cannot be pushed. We grouped consecutive
atomic operations in the Push kernels into transactions.

Data Mining (AP) is based on Apriori in the RMS-TM bench-
mark suite [2, 30]. We evaluate the apriori_gen() function,
which was modified [43] to use CUDA, with each thread process-
ing a unique record. As in the CPU TM version, transactions are
used to protect candidate insertion and support value counting.

Our modified GPGPU-Sim is configured to model a GPU simi-
lar to NVIDIA Quadro FX5800, extended with L1 data caches and
a L2 unified cache similar to NVIDIA Fermi [40]. We validated
GPGPU-Sim 3.0 with the NVIDIA Quadro FX5800 configuration
(no cache extensions and using PTX instead of SASS) against the
hardware GPU and observed an IPC correlation of ∼0.93 for a
subset of the CUDA SDK benchmarks. GPGPU-Sim incorporates
a configurable interconnection network simulator [20]. Traffic in
each direction between the SIMT cores and the memory partitions
are serviced by two separate crossbars. The crossbars can transfer
a 32-byte flit per interconnect cycle to/from each memory partition
(∼160GB/s per direction). Each flit takes 5 cycles to traverse the
crossbar. The 30 SIMT cores are grouped in 10 clusters. Cores
in a cluster share a common port to each crossbar (concentration
of three). The memory partition has an out-of-order memory ac-

Table 3: GPGPU-Sim Configuration
# SIMT Cores 30 (10 clusters of 3)

Warp Size 32

SIMD Pipeline Width 8

Number of Threads / Core 1024

Number of Registers / Core 16384

Branch Divergence Method PDOM [23]

Warp Scheduling Policy Loose Round Robin

Shared Memory / Core 16KB

Constant Cache Size / Core 8KB

Texture Cache Size / Core 5KB, 32B line, 20-way assoc.

L1 Data Cache / Core 48KB, 128B line, 6-way assoc.
(transactional and local memory access only)

L2 Unified Cache 64KB/Memory Partition, 128B line, 8-way assoc.

Interconnect Topology 1 Crossbar/Direction (SIMT Core Concentration=3)

Interconnect BW 32 (Bytes/Cycle) (160GB/dir.)

Interconnect Latency 5 Cycle (Interconnect Clock)

Compute Core Clock 1300 MHz

Interconnect Clock 650 MHz

Memory Clock 800 MHz

# Memory Partitions 8

DRAM Req. Queue Capacity 32

Memory Controller Out-of-Order (FR-FCFS)

GDDR3 Memory Timing tCL=10 tRP =10 tRC=35 tRAS=25
tRCD=12 tRRD=8 tCDLR=6 tWR=11

Memory Channel BW 8 (Bytes/Cycle)

Min. L2/DRAM Latency 460 Cycle (Compute Core Clock)

KILO TM

Commit Unit Clock 650 MHz

Validation/Commit BW 1 Word/Cycle/Memory Partition

#Concurrent TX 2 Warps/Core (1920 threads)

Last Writer History Unit Size 5kB (See Section 6.3.2)

cess scheduler. We model detailed GDDR3 timing. Every memory
access sent to L2 cache/DRAM has a minimum pipeline latency
of 460 cycles (in compute core clocks) to match that observed by
microbenchmarks of NVIDIA Quadro FX5800 [55]. The actual
latencies of individual accesses can be higher due to delays from
memory access scheduling and queuing as DRAM bandwidth sat-
urates. We have an optimistic performance model for atomic op-
erations (used in fine-grained locking). Atomic compare-and-swap
operations on GPGPU-Sim have ∼4× higher throughput than on
NVIDIA Fermi GPU, while other types of atomic operations on
GPGPU-Sim perform roughly the same as Fermi. Table 3 lists the
other major configuration parameters.

We model all interconnection network traffic between the SIMT
cores and the commit units. Packets from the transaction log unit
are sized according to the payload within the packet, and they con-
tend for the same interconnection port with packets for normal
memory accesses. Each short commit protocol message occupies a
single flit. Packets containing multiple read/write-log entries (see
Section 4.4) may occupy multiple flits, taking multiple cycles to
transfer. In our evaluations, KILO TM validates and commits each
transaction as directed by the timing simulation. In our simulation,
timing of committing transactions affects functional behaviour of
the application, and hence any undetected data-race would likely
lead to an application error, which we verify does not occur.

6. EXPERIMENTAL RESULTS
6.1 Performance

In this section, we compare the performance of KILO TM against
the ideal TM system (Ideal TM) and fine-grained locking (FG Lock)
described in Section 3. Figure 6 shows the execution time of each
application with KILO TM and fine-gained locking normalized to
the execution time of Ideal TM. In our evaluations, KILO TM uses
commit units with unlimited capacity.

With unlimited transaction concurrency (Inf. TransWarp), KILO
TM is on average 4.1× slower than Ideal TM. HT, CL, and BH are
affected the most. These applications have many concurrent trans-
actions with high contention (Figure 7). Although BH’s overall



Table 2: Benchmarks. #Inst obtained from Ideal TM version. Other metrics refer to KILO TM with unlimited concurrency.
#Blk/ #Inst #Aborts Read-Set Write-Set Max #

Name Abbr. #Inst Blk Grid SIMT #Committed per TX per TX (#Words) (#Words) Concurrent TX
Size Size Core TX (Avg) Avg Max Avg Max Avg Max (KILO TM)

Hash Table (CUDA) HT-H 632k 192 120 4 23040 26 1.39 2 1.0 1 4.0 4 23040
HT-L 501k 192 120 4 23040 26 0.14 2 1.0 1 4.0 4 23040

Bank Account (CUDA) ATM 4.1M 192 120 3 122880 8 0.03 3 3.0 3 2.0 2 16131

Cloth Physics [11] (OpenCL) CL 6.8M 512 118 1 60200 53 1.06 8 11.2 12 4.8 8 22816

Barnes Hut [12] (CUDA) BH 15M 288 60 1 264106 48 0.15 14 4.3 40 0.82 14 8640

CudaCuts [53] (CUDA) CC 104M 256 133 1 114677 21 0.004 3 1.4 4 1.4 4 735

Data Mining [2, 30] (CUDA) AP 39M 64 112 4 4550 89 0.32 6 15.7 174 6.2 109 192
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abort-commit ratio is relatively low, it starts with a high-contention
period when all transactions are competing to insert nodes near the
root of the octree. When conflicting transactions attempt to commit
concurrently, the commit unit defers revalidating one transaction.
This reduces overall performance. Notice that AP has relatively
few concurrent transactions, so its high abort-commit ratio has lit-
tle impact on performance (Table 2).

Limiting each core to two transaction warps (2 TransWarp/Core
in Figure 6, 1920 threads globally) reduces contention in HT-H,
CL, and BH and improves their performance with KILO TM by
2-3×. ATM speeds up by 2.3× from improved hazard detection
accuracy. The performance of HT-L improves by 66%, while AP is
unaffected. CC’s performance drops by 34% because of this limit.
In CC, warps are typically diverged before entering transactions.
CC would not be penalized with thread-level concurrency control.
Overall, KILO TM performs significantly better with this concur-
rency limit, capturing 52% of Ideal TM and 59% of fine-grained
locking performance.

Concurrency Control. Figure 8 compares the performance of
KILO TM under different concurrency limits versus serializing ex-
ecution of all transactions. HT-L, ATM, CL and BH achieve the
best performance with transaction execution limited to two warps
per core (2 TransWarp/Core), while HT-H performs best with trans-
action execution limited to one warp per core (1 TransWarp/Core).
CC prefers unlimited transaction concurrency. AP is insensitive to
the limit. Overall, KILO TM performs best with transaction con-
currency limited to two warps per core, achieving on average 128×
speedup over serially executing each transaction.

Effects on Abort-Commit Ratio. Figure 7 compares the abort-
commit ratios between KILO TM and the ideal TM system. KILO
TM and Ideal TM show similar abort-commit ratios with transac-
tion concurrency limited to two warps per core. With unlimited
transaction concurrency, contention at the commit unit defers mem-
ory updates from older transactions that would have been made
visible much earlier with Ideal TM. Younger transactions that were
originally reading the updated values in Ideal TM now conflict with
the older uncommitted transactions.

6.2 Execution Time Breakdown
To provide further insight, Figure 9 shows a breakdown of the

cumulative per-hardware thread cycles, scaled by the overall exe-
cution time of each application. At each cycle, a thread can be in
a warp stalled by Concurrency control (TC), be in a warp commit-
ting its transactions (TO), have passed commit and be Waiting for
other threads in its warp to pass (TW), be executing an eventually
Aborted (TA) or committed/Useful (TU) transaction, be acquiring
a lock or performing an Atomic operation (AT), be waiting at a
Barrier (BA), or be performing non-atomic non-transactional work
(NL). We compare the thread-state distributions between the fine-
grained locking versions of the benchmarks (FGL), and the trans-
actional versions running on Ideal TM (IDEAL), KILO TM with
transaction concurrency limited to two warps per core (KL), and
KILO TM with unlimited transaction concurrency (KL-UC).

We observe the overheads of lock acquisition (AT) in the lock-
based versions to be proportional to the inherent contention in their
transactional versions. Transactional HT-H and CL have the largest
abort-commit ratios in Figure 7 and their lock-based counterparts
have the greatest locking overheads in Figure 9. HT-L, ATM and
CC have lowest abort-commit ratios and the smallest locking over-
heads. Lock-based BH has a significant locking overhead because
of the initial high-contention period, as explained in Section 6.1.
Lock-based AP shows insignificant locking overhead, despite a high
abort-commit ratio in its transactional version, due to limited par-
allelism in its implementation. For the lock-based benchmarks,
the NL cycles include the execution of the critical sections and are
therefore greater than in the transactional versions. Detailed anal-
ysis (not shown) indicates that lock-based benchmarks suffer from
increased branch divergence, further increasing their NL cycles.

Threads running on KILO TM with unlimited transaction con-
currency spend much of their time waiting to be committed (TO).
This overhead is significantly reduced by limiting transaction exe-
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cution to two warps per core in exchange for long waits in concur-
rency control (TC). For most benchmarks this provides an overall
gain in performance. CC’s performance on KILO TM, however,
degrades with concurrency control. This is because CC’s originally
low commit overhead remains unchanged with reduced concur-
rency, and because CC benefits from increased transaction concur-
rency as indicated by its scaling performance in Figure 8. Figure 10
shows the cumulative execution cycle breakdown of each core. At
each cycle, a SIMT core may issue a warp (EXEC), be stalled
by downstream pipeline stages (STALL), have all warps blocked
by the scoreboard due to data hazards, concurrency control, pend-
ing commits or any combination thereof (SCRB), or not have any
warps ready to issue in the instruction buffer (IDLE). This figure
shows that limiting concurrency in KILO TM reduces stalling and
waiting at the scoreboard. Stalling is reduced as a result of fewer
concurrent transactional memory accesses, while shorter and fewer
commits reduce the amount of time spent waiting at the scoreboard.

The amount of time spent on transactional work, indicated by TU
and TA in Figure 9, is lower on KL than on KL-UC and IDEAL.
This is also due to the reduction in STALL cycles in Figure 10 for
KL. Reduced stalling leads to faster transaction completion. BH
saw only a small decrease in transaction time when concurrency
was reduced. This is because BH contains inherent and limiting
memory dependencies that are visible in Figure 10 as SCRB cycles
on IDEAL TM. Similar to TU and TA, TW also decreases with
reduced concurrency as passed transactions spend less time waiting
for failed transactions in their warp to re-execute and commit.

In Figure 9, HT-H, HT-L and ATM spend less time doing useful
transactional work (TU) on KL-UC than on IDEAL, even though
both have unlimited concurrency. This is because KILO TM caches
global memory writes in write-logs stored in the L1 data cache. HT-
H benefits most from this buffering during transaction execution

as its transactions are dominated by writes (See Table 2). HT-L
and ATM’s lower data locality negates some of the benefit of write
buffering. CL and BH are dominated by reads and gain little benefit
from write buffering. The memory write overhead of write buffer-
ing is eventually incurred during transaction commit (TO).

CC and AP both suffer from load imbalance as indicated in Fig-
ure 10 by the significant portion of IDLE cycles - the portion of
the time when the cores run out of warps to execute. The inter-
thread load imbalance suffered by CC is exacerbated by transac-
tional overheads. AP suffers from inter-core load imbalance. AP
spends most its execution in non-transactional work, but the over-
head of KILO TM still impacts performance because of the time
involved in transferring logs for the large transactions. AP spends
90% of its core cycles in IDLE. This behaviour contributes to the
low absolute performance of AP. We created the CUDA version of
AP from its CPU TM version without changing much of the algo-
rithm and data structures. An improved version may redesign the
algorithm to spread the workload across more threads.

Overall, even with a significant portion of time spent on execut-
ing aborted transactions, the Ideal TM system performs comparably
to fine-grained locking. This indicates that the performance penal-
ties of KILO TM may be reduced with future refinements.

6.3 Sensitivity Analysis

6.3.1 L2 Cache Miss from Validation Access

We observe that >90% of validation accesses for KILO TM hit
in the L2 cache for all benchmarks with transactional execution
limited to two warps per core. This also applies to most bench-
marks with unlimited concurrent transactions, but for HT-L, ATM
and CL, the cache hit rate for validation access is lower (70% for
HT-L, 46% for ATM and 62% for CL). These extra accesses are
easily handled by the GPU memory subsystem. In a sensitivity
study with idealized validation accesses that always hit in the L2
cache, performance of ATM and CL improves only by 11% and
17%, respectively. Other benchmarks (including HT-L) are in-
sensitive to this change. In this study, KILO TM employs LWH
units that detect hazards perfectly. About 50% of the validation-
induced L2 cache accesses in CL are pending hits. In ATM, the
extra L2 cache misses improve the row-hit rate in the open-row,
out-of-order DRAM controller, increasing the bandwidth efficiency
by 5%. The improved efficiency partly compensates the penalty
from validation-induced DRAM accesses. In HT-L, these L2 cache
misses increase the DRAM bandwidth utilization by 5% and do not
impact performance. This ability to handle extra memory accesses
in GPUs shows why value-based conflict detection is a viable solu-
tion for supporting TM on GPUs.

6.3.2 Hazard Detection Sensitivity

We explored the performance of KILO TM with different haz-
ard detection mechanisms. We compared two versions of the LWH
mechanism described in Section 4.5.2 and an additional mechanism
based on a bloom filter array. The first 5kB LWH consists of a 512-
entry, 4-way set-associative lookup table (3kB) and a 1024-bucket
bloom filter (2kB) split into 4 separate sub-arrays, each array in-
dexed by a unique H3 hash function (similar to the parallel bloom
signature described by Sanchez et al. and Ceze et al. [45, 15]). The
second 512B LWH configuration consists of a 64-entry lookup ta-
ble and a 64-bucket bloom filter. A second detection mechanism,
bloom filter array (BF Array), encodes the read-set and write-set
of each transaction into two 512-bit signatures in the commit unit.
Each signature consists of 4 sub-signatures with each indexed by a
unique H3 hash function. Incoming read/write accesses check for
conflicts against all signatures in the commit unit in parallel.
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Figure 11: Buffer usage in active commit unit (CU) entries.

KILO TM with 5kB LWH unit performs almost identically to
perfect hazard detection. The 512B LWH reduces the storage by
10× but increases execution time by only 36% on average. Despite
taking 24× more storage than the LWH unit (120kB vs. 5kB per
commit unit), BF Array slows down KILO TM by up to 7.8× (4.3×
on average). The lookup table plus bloom filter design in a LWH
unit dedicates extra resources to ensure that an unnecessarily reval-
idating transaction and its false writers are far apart in the commit
unit pipeline, minimizing the stalling at the Validation Wait stage.

6.4 Implementation Complexity of KILO TM
In each SIMT core, KILO TM implementation involves extend-

ing the SIMT stack to support transactions, employing concurrency
control, and adding a transaction log unit. Even though each trans-
action log unit manages 1000s of transactions, most of the book-
keeping is amortized across the warp. For example, threads in the
same warp have the same read-log and write-log sizes, and they al-
ways have consecutive commit IDs. The L1 data cache stores the
read-/write-logs. Evicted entries are written back to L2/DRAM.
We believe the area overhead of a transaction log unit is negligible.

The area overhead of a commit unit consists of the storage re-
quired for the LWH unit, the entries in the ring buffer, and the read-
and write-set storage buffers for each entry. Section 6.3.2 showed
that a 5kB LWH unit is sufficient. Each commit unit ring buffer
entry occupies 10 bytes for the status, RCID and YCID fields, and
pointers to a shared pool of the read- and write-set buffers. The
area required for the read- and write-set buffers is a product of the
size of each buffer and the number of buffers present. Section 6.4.1
examines how large each fixed-size buffer should be to limit buffer
overflow. Section 6.4.2 examines how many of these fixed-size
buffers are required concurrently.

6.4.1 Read-Set/Write-Set Buffer Capacity
Figure 11 shows the cumulative distribution of the read- and

write-set buffer usage for the active ring buffer entries in the com-
mit units. The distributions show that an 8-word (64 Bytes) read-set
buffer and an 8-word write-set buffer can serve >90% of the com-
mit unit ring buffer entries. If the read-set or the write-set buffer
overflows (a rare event), the penalty involves resending the read-
and write-log. We leave performance evaluation with finite-sized
read- and write-set buffers as future work.

6.4.2 Commit Unit Capacity
As not all commit unit ring buffer entries will need read- and

write-set buffers, dynamically allocating these buffers from a shared
pool reduces the area overhead of buffers. Figure 12 shows the av-
erage and maximum number of read- and write-set buffers required
for 4 different buffer allocation schemes. The All and Accessed

allocation schemes allocate fixed-size read- and write- buffers for
a commit unit ring buffer entry when it is created, and deallocate
the buffers when the entry retires. All allocates the two buffers for
all active entries in the ring buffer, while Accessed only allocates
buffers for the entries whose transaction has accessed this memory
partition. The number of ring buffer entries in the All and Accessed
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Figure 12: Number of in-flight, allocated read and write buffers

for different buffer allocation schemes. All ⊇ Accessed ⊇ Used

⊇ Needed. Y-axis on right shows number of commit unit ring

buffer entries with buffers allocated for All and Accessed.

schemes is given by the right Y-axis in Figure 12. The Used allo-
cation scheme improves upon Accessed by allowing a single fixed-
size read- or write-set buffer to be allocated if the transaction has
an empty write-set or read-set buffer for this memory partition, re-
spectively. Needed further improves upon Used by allowing buffers
to be deallocated before the ring buffer entry retires. For example,
buffers are deallocated as soon as a transaction fails. In Figure 12,
the number of concurrent transactions is limited to two warps per
core (1920 in total) via concurrency control, and there is no capac-
ity limit on the number of ring buffer entries.

HT-H, HT-L, ATM, CL and BH use ∼700 ring buffer entries
on average (All). BH’s maximum number of entries exceeds the
concurrent transaction limit because it has many read-only transac-
tions. The SIMT core considers a read-only transaction to be done
when it receives the local outcome reply from commit units, allow-
ing the next waiting transaction to proceed before the correspond-
ing commit unit entries are retired. We observed that the number of
in-flight entries exceeded the concurrent transaction limit of 1920
for only <1% of the execution time for BH. CC and AP have sig-
nificantly fewer concurrent transactions and therefore require fewer
entries. A commit unit with 1920 entries with two 64B buffers
for all entries (All) would require 240kB for read- and write-set
storage, and 19kB for the ring buffer storage (10B per ring buffer
entry). The Accessed, Used and Needed optimizations reduce the
storage requirement for buffers. To serve most of the Needed buffer
usage, ∼500 buffers per commit unit (32kB per unit, 256kB for the
whole GPU) are enough. The rare worst case can be handled by
deferring validation/commit via the credit-based allocation mecha-
nism described in Section 4.5.1. We leave the performance evalua-
tion of this allocation mechanism as future work.

6.4.3 Area Estimation
We assume that both the 32kB read- and write-set buffer pool

and the 19kB ring buffer have 4 banks of SRAM arrays. The 5kB
last writer history unit (Section 6.3.2) consists of a 3kB lookup ta-
ble and a 2kB bloom filter, each an SRAM array. Using CACTI
5.3 [47], we estimate the area of each commit unit (the aggre-
gate area of these arrays) to be 0.40mm

2 in a 40nm technology.
NVIDIA Fermi GPU features 6 memory partitions [40], so imple-
menting the commit units on Fermi architecture requires an area of
2.41mm

2. This is just 0.5% of Fermi’s 520mm
2 die area.

7. RELATED WORK
Cache Coherence Protocol Based HTMs. Many existing hard-

ware and hybrid TM systems focus on leveraging the sharer/modi-
fier information maintained by cache coherency hardware for con-
flict detection and using thread-private caches for version manage-
ment. Some of the HTMs propose to extend the cache coherence
protocol with new coherence states for conflict detection and ver-



sion management [16, 52, 17, 21]. Other HTMs monitor the cache
coherency traffic (of an existing protocol) for conflict detection,
using per-transaction metadata stored in signatures [36, 56, 13], or
extra bits added to the cache line [38, 10, 44].

Cache Coherence Protocol for ManyCore Architecture. Sev-
eral cache coherence directories scalable to 1000 cores have been
proposed [29, 58, 22]. Tarjan et al. propose a sharing tracker that
tracks cache lines in the private cache of each GPU core (a SIMT
core) imprecisely [51]. It only maintains a subset of sharers for a
cache line, insufficient for correct conflict detection.

Signature-Based Conflict Detection. In BulkTM [15], a com-
mitting transaction broadcasts its write-set in a bloom filter based
signature, which is compared for conflicts against the signature and
the L1 cache tags at each recipient transaction. SigTM [36] and
LogTM-SE [56] eagerly detect conflicts with signatures by mon-
itoring the address of each incoming cache coherence request. A
software conflict resolution handler is invoked when the address
hits the signatures. Other HTMs (TMACC [13], FlexTM [48]) use
signatures to handle unbounded transactions.

Software transactional memory (STM) systems also use signa-
tures for conflict detection. RingSTM [49] uses a ring of commit
records that hold the write-signatures of recently committed trans-
actions. Before each transactional load, the transaction compares
its read-signature against the write-signatures of newly committed
transactions added to the commit records since the transaction’s
last load. A match indicates a new conflict and the transaction is
aborted. In InvalSTM [25], a committing transaction compares its
write-signature against the read- and write-signatures of other run-
ning transactions. A contention manager is invoked upon a match.

To handle unbounded transactions in hazard detection, each com-
mit unit in KILO TM uses a last writer history unit that tracks the
write-sets of all committing transactions via a novel recency bloom
filter. This bloom filter has commit IDs in its buckets and is im-
plicitly cleared as the associated transactions retire. The recency
bloom filter has some similarities to a time-out bloom filter [32].
The time-out bloom filter was proposed for use in network packet
sampling, where the key result is the existence of a similar packet
occurring within a given window. In contrast, the recency bloom
filter provides greater detail. In the presence of a conflict it returns
the identity of the conflict rather than simply a pass/fail result. The
identity it returns is that of the most recent item inserted into the
bloom filter that can possibly conflict.

KILO TM and RingSTM [49] are conceptually similar in that
both use a ring to order transaction commits, and detect conflicts
between read-set of a transaction and write-sets of committed trans-
actions. KILO TM uses value-based conflict detection to eliminate
storage for committed write-sets, and uses a LWH unit to detect
hazards (conflicts) among committing transactions. Each transac-
tion in KILO TM stores its read-set in exact address-value pairs. It
also features multiple commit units, each with a separate ring, and
maintains consistent commit order via a protocol similar to Scal-
able TCC [16]. KILO TM enforces opacity via a watchdog timer,
removing the need to validate before every transactional read.

Value-Based Conflict Detection. JudoSTM [42] allows parallel
commits with a set of versioned locks each guarding a memory re-
gion. Each transaction checks/acquires the locks of all the regions
that requires protection during validation and commit. NORec [19]
uses a single global versioned lock to offer fast checking with a
small number of concurrent threads. DPTM [50] is a cache coher-
ence protocol based HTM. It uses value-based conflict detection
to mitigate the false conflicts that are caused by false sharing of
cache lines between transactions. KILO TM uses value-based con-
flict detection, but the motivation is to eliminate global metadata

for conflict detection with 1000s of concurrent transactions. It uses
special hardware to allow non-conflicting transactions to validate
and commit in parallel.

Transaction Scheduling. In this paper, we describe an exten-
sion to the GPU hardware thread scheduler to control the number
of concurrent transactions. It is effective for high-contention work-
loads. There exist other transaction schedulers that dynamically
adjust concurrency according to predicted contention [57, 7] or the
detected transaction footprint [8]. We leave the exploration of such
adaptive transaction schedulers on GPUs as future work.

STM for GPUs. Cederman et al. have proposed two versioned
lock-based STMs (blocking/non-blocking) on GPUs [14]. In their
evaluations, while STM-based data structures scale well, they per-
form ∼10× slower than lock-free data structures. KILO TM, our
GPU hardware extension to support TM, uses value-based conflict
detection to remove the storage overhead for versioned locks. With
dedicated hardware to increase commit parallelism and limit con-
currency, KILO TM performs much closer to fine-grained locking,
which should perform on-par with lock-free data structures.

8. CONCLUSION
This paper proposes the use of transactional memory for GPU

computing. Transactions can simplify parallel programming by
making it easier to reason about parallelism. This becomes more
important as the number of threads increases and as more soft-
ware is ported to take advantage of GPUs’ better peak performance
and power efficiency. Compared to lock-based programming, TM
simplifies the porting/creation of applications that require data syn-
chronization on GPUs. Specifically, TM is a better fit to the current
GPU programming models. The isolation property of TM is similar
to how GPU threads are exposed in the programming model. The
application specifies as many transactions as it can, the TM system
attempts to execute them in parallel, but transactions can run in iso-
lation. The GPU hardware can be designed to automatically han-
dle interactions between data synchronization and the SIMT stack,
solving an obstacle that prevented fine-grained data synchroniza-
tion from being widely used in GPU applications. Furthermore,
TM frees the programmer from deadlock concerns as they rework
the algorithms and data structures to optimize the performance of
their application.

This paper proposes KILO TM, a novel HTM system scalable
to 1000s of concurrent transactions. It uses value-based conflict
detection to offer weak isolation, avoid the need for coherence, re-
duce metadata overheads, support unbounded transactions, and de-
tect conflicts at the granularity of individual words. We describe a
scalable parallel commit protocol and the changes to a SIMT hard-
ware organization required to support transactions. KILO TM uses
a novel speculative validation mechanism to improve the valida-
tion and commit parallelism for non-conflicting transactions. By
design, it favors applications with low contention transactions. We
have evaluated KILO TM with a set of TM-enhanced GPU applica-
tions with various degrees of exposed parallelism (the granularity
of the decomposition of work into threads) and contention. We find
that applications with low exposed parallelism (e.g. AP) perform
poorly on the GPU regardless of the data synchronization mecha-
nism used. We argue that these applications can be further paral-
lelized more easily with TM. Our evaluation suggests that KILO
TM performs well (relative to fine-grained locking) on applications
with low contention and high exposed parallelism (HT-L, ATM,
CC). KILO TM performs poorly (relative to fine-grained locking)
on applications with high contention and high exposed parallelism
(HT-H, CL, BH). For these applications, limiting transaction con-
currency lowers contention, and improves their performance with
KILO TM. The programmer can lower contention in their appli-



cation via performance tuning, identifying transactions with high
contention and reworking the code to reduce contention [59]. Ap-
plications with contention varying during execution (e.g. BH) may
benefit from more dynamic mechanisms that control the transaction
concurrency according to the current level of contention [57, 7].

Overall, our evaluation shows KILO TM captures 59% of fine-
grained locking performance and is 128× faster than executing
transactions serially on the GPU. Our evaluation with an idealized
TM system indicates that TM on GPU can perform as well as fine-
grained locking. These results motivate the need for TM on GPUs
and the need for novel TM systems, like KILO TM, that better ad-
dress the challenges in this new domain.
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[52] S. Tomić et al. EazyHTM: Eager-Lazy Hardware Transactional
Memory. In MICRO, 2009.

[53] V. Vineet and P. Narayanan. CudaCuts: Fast Graph Cuts on the GPU.
In CVPRW ’08, 2008.

[54] B. A. Wallace. Merging and Transformation of Raster Images for
Cartoon Animation. In SIGGRAPH, 1981.

[55] H. Wong et al. Demystifying GPU microarchitecture through
microbenchmarking. In ISPASS, 2010.

[56] L. Yen et al. LogTM-SE: Decoupling Hardware Transactional
Memory from Caches. In HPCA, 2007.

[57] R. M. Yoo and H.-H. S. Lee. Adaptive Transaction Scheduling for
Transactional Memory Systems. In SPAA, 2008.

[58] H. Zhao et al. SPACE: Sharing Pattern-based Directory Coherence
for Multicore Scalability. In PACT, 2010.

[59] F. Zyulkyarov et al. Discovering and understanding performance
bottlenecks in transactional applications. In PACT, 2010.


