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Abstract

Manycore accelerators such as graphics processor units

(GPUs) organize processing units into single-instruction,

multiple data “cores” to improve throughput per unit

hardware cost. Programming models for these acceler-

ators encourage applications to run kernels with large

groups of parallel scalar threads. The hardware groups

these threads into warps/wavefronts and executes them

in lockstep—dubbed single-instruction, multiple-thread

(SIMT) by NVIDIA. While current GPUs employ a per-warp

(or per-wavefront) stack to manage divergent control flow,

it incurs decreased efficiency for applications with nested,

data-dependent control flow. In this paper, we propose and

evaluate the benefits of extending the sharing of resources

in a block of warps, already used for scratchpad mem-

ory, to exploit control flow locality among threads (where

such sharing may at first seem detrimental). In our pro-

posal, warps within a thread block share a common block-

wide stack for divergence handling. At a divergent branch,

threads are compacted into new warps in hardware. Our

simulation results show that this compaction mechanism

provides an average speedup of 22% over a baseline per-

warp, stack-based reconvergence mechanism, and 17% ver-

sus dynamic warp formation on a set of CUDA applications

that suffer significantly from control flow divergence.

1. Introduction
Many throughput computing workloads exhibit data

level parallelism [6] yet achieve poor performance on cur-

rent single-instruction, multiple data (SIMD) based accel-

erator architectures due to divergent control flow, or branch

divergence [12, 9, 19, 13]. While conventional SIMD ar-

chitectures can support correct execution of divergent con-

trol flow through vector lane masking (predication) [4]

and/or stack-based reconvergence mechanisms [15, 7, 9],

such mechanisms reduce throughput. Given the signifi-

cant potential area and energy consumption advantages of

SIMD hardware versus general purpose parallel hardware,

improved control-flow mechanisms are desirable.

Proposals for attacking this challenge include novel
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(a) Starvation eddy scheduling problem. While not-

reconverging as soon as possible may benefit latency toler-

ance [20], it is a major cause of reduced SIMD efficiency in

dynamic warp formation [10]. In the execution flow, shaded
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cessing element.
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Figure 1. Dynamic warp formation pathologies.

0% 25% 50% 75% 100%

TBC

DWF

PDOM

(a) SIMD Efficiency

0% 100% 200% 300%

TBC

DWF

PDOM

(b) Normalized Memory Stalls

Figure 2. Overall performance (details in Sec. 5).

stream programming language extensions [12], allowing

vector lanes to run in scalar mode for short code se-

quences [14], dynamically re-grouping scalar threads into

new “warps” [9], and simply abandoning vector hardware

altogether [19, 13]. Each exhibits varying tradeoffs.

Dynamic warp formation (DWF) [9] captures a signifi-

cant fraction of the benefits of multiple-instruction, multi-

ple data (MIMD) hardware on multi-threaded SIMD pro-

cessing units employing large multi-banked caches. How-

ever, the benefits of DWF can be affected by the schedul-

ing policy used to issue ready warps [9, 10] and memory

systems that limit bandwidth to first level memory struc-

tures. Figure 1(a) shows an example that helps to illustrate

a form of pathological scheduling behaviour that can occur

in DWF. This figure compares various single-instruction,



multiple-thread (SIMT) control flow handling mechanisms

for a branch hammock1 diverging at block A. Each basic

block contains the activemask for two warps where a “0”

means the corresponding lane is masked off. The stack

based reconvergence mechanism (PDOM) executes block

B and C with decreased SIMD efficiency, but reconverges at

block D. The bottom right of Figure 1(a) illustrates a case

where the threads at block C fall behind those at B. While

this scheduling can increase latency tolerance [20], it can

also lead to a reduction in performance [10] since ideally

the warps at block B and C could form fewer warps at block

D. We call this fall-behind behaviour a starvation eddy, and

find it affects the SIMD efficiency of many CUDA applica-

tions run with DWF as shown in Figure 2(a) (applications

and configuration in Section 5). Here SIMD efficiency is

the average fraction of SIMD processing elements that per-

form useful work on cycles where the SIMD processing unit

has a ready instruction to execute. Furthermore, CUDA ap-

plications tend to be written assuming threads in a warp

will execute together and should therefore access nearby

memory locations. DWF tries to optimize control flow be-

haviour at the potential expense of increasing memory ac-

cesses (demonstrated in Figure 1(b)). Across the work-

loads we study, this leads to 2.7× extra stalls at the memory

pipeline (Figure 2(b)).

In this paper, we explore an alternative hardware mech-

anism for improving the performance of applications that

suffer from control flow divergence on GPU-like manycore

accelerators. This mechanism maintains the key benefits of

DWF of creating new warps to improve SIMD efficiency,

while largely eliminating the DWF pathologies described

above. The key insight is that typical control flow inten-

sive CUDA applications exhibit sufficient “control flow lo-

cality” within the group of scalar threads used for bulk-

synchronous parallel execution that full DWF and/or MIMD

flexibility is not necessary to regain most of the perfor-

mance loss due to branch divergence. Extending the ex-

isting per-warp reconvergence stack mechanisms to encom-

pass warps executing within a thread block and dynamically

compacting threads after divergent branches using simpli-

fied DWF hardware achieves more robust performance. The

contributions of this paper are:

• It evaluates challenges faced by dynamic warp forma-

tion running CUDA applications, and devises an im-

proved scheduling policy to address these challenges.

• It proposes a novel “thread block compaction” (TBC)

mechanism that exploits control flow locality among

threads within a thread block to robustly provide the

benefits of dynamic warp formation.

• It extends immediate post-dominator based reconver-

gence with likely-convergence points.
1Note that the mechanisms studied in this paper support CUDA and

OpenCL programs with arbitrary control flow within a kernel.
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Figure 3. Abstract GPU architecture exposed by
the CUDA programming model.

Figure 1(a) shows that TBC eliminates the starvation eddy

with the block-wide stack enforcing reconvergence at block

D. This leads to a significantly higher SIMD efficiency with

TBC versus PDOM or DWF (Figure 2(a)) and fewer mem-

ory pipeline stalls compared to DWF (Figure 2(b)).

2. Baseline SIMT Accelerator
This section describes our baseline GPU-like manycore

accelerator and dynamic warp formation.

2.1. Architecture
We study GPU-like manycore accelerator architectures

running CUDA applications [21, 24]. A CUDA program

starts on a CPU then launches parallel compute kernels onto

the accelerator. Each kernel launch in CUDA dispatches a

hierarchy of threads (a grid of blocks of warps of scalar

threads running the same compute kernel) onto the accel-

erator. Blocks are allocated as a single unit of work to a

single-instruction, multiple thread (SIMT) [16] core which

is heavily multi-threaded. Threads within a block can com-

municate via an on-chip “shared memory”. The SIMT cores

access banks of a globally coherent last-level (L2) cache

and DRAM memory channels via an on-chip network.

With the SIMT execution model, scalar threads are man-

aged as a SIMD execution group called a warp (or wave-

front in AMD terminology). In the CUDA programming

model, each warp contains a fixed group of scalar threads

throughout a kernel launch. This arrangement of scalar

threads into warps is exposed to the CUDA programmer/-

compiler for various control flow and memory access opti-

mizations [24]. In this paper, we refer to warps with this

arrangement as static warps to distinguish them from the

dynamic warps that are dynamically created via dynamic

warp formation or thread block compaction.

2.2. Microarchitecture
Figure 4 illustrates our understanding of the multi-

threaded microarchitecture within a SIMT core of a contem-

porary GPU that we assumed while developing thread block

compaction. We defined this microarchitecture, described

below, by considering details found in recent patents [8,

17, 7]. In our evaluation, we approximate some details to

simplify our simulation model: We model the fetch unit as

always hitting in the instruction cache, and allow an instruc-

tion to be fetched, decoded and issued in the same cycle. We
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Figure 4. SIMT core microarchitecture of a contemporary GPU. N = #warps/core, W = #threads in a warp.

also employ a simplified scoreboard that forbids concurrent

execution of subsequent instructions from the same warp

and a unified pipeline that services both ALU and MEM

instructions. These restrictions have little performance im-

pact, because the applications we study usually have more

warps interleaved on the hardware than pipeline stages.

2.2.1 Fine Grained Multi-Threading

Each SIMT core interleaves up to N warps on a cycle-by-

cycle basis (we used N=32). Each warp has a program

counter (PC) in the fetch unit (see 1 in Figure 4), a ded-

icated slot ( 2 ) in the instruction buffer, and its own stack

( 3 ) to manages branch divergence within that warp.

Each slot ( 2 ) in the instruction buffer contains a v-bit in-

dicating when an instruction is present, and an r-bit indicat-

ing that ( 2 ) it is ready for execution. Every cycle the fetch

unit selects the PC for a warp with an empty instruction slot

( 2 ), and fetches the corresponding instruction from the in-

struction cache ( 5 ). The instruction is decoded ( 6 ) and

placed in an empty slot in the instruction buffer ( 2 ). This

instruction waits in the instruction buffer until its ready bit

( 2 ) is set by the scoreboard ( 7 ), indicating prior instruc-

tions from this warp have completed. Instructions within

a warp execute in-order. Our evaluation employs a simple

scoreboard that only tracks prior instruction completion for

each warp. This scoreboard can be enhanced to track per-

warp register dependencies [8], potentially allowing multi-

ple instructions per warp in the pipeline.

The issue logic ( 9 ) selects a warp with a ready instruc-

tion in the instruction buffer to issue for execution. As an

instruction issues it acquires the activemask ( 10 ) from the

top entry on the corresponding warp’s reconvergence stack

in the branch unit. The activemask disables threads in the

warp that should not execute due to branch divergence. Af-

ter a branch from a warp is decoded, none of its instructions

can be fetched until the branch outcome is known. Once

issued ( 11 ), the slot in the instruction buffer ( 2 ) that con-

tained the instruction is marked invalid, signaling the fetch

unit that it may fetch the next instruction for this warp.

The issued instruction fetches its operands from the reg-

ister file. It is then executed in the corresponding pipeline

(ALU 12 or MEM 13 ). Instructions write their results to

the register file and notify the scoreboard ( 8 ). The score-

board updates the r-bit ( 2 ) of the next fetched instruction

of the corresponding warp.

When a memory instruction issues ( 13 ), the address gen-

eration unit (AGU) generates addresses for each thread in

the warp. For shared memory accesses2, the bank conflict

handling unit ensures that the shared memory banks process

conflicting accesses in successive cycles. For “global” and

“local” memory accesses [24], the access coalescing unit

merges accesses from different lanes to the same cache line

into a single wide access and the data cache processes these

wide accesses one per cycle. The constant cache operates

similarly, except accesses to different addresses are serial-

ized without coalescing. Texture accesses are serviced by

the texture unit, which accesses a texture cache.

2.2.2 Stack-Based Branch Divergence Hardware

Below, we summarize the reconvergence stack mechanism

we model in our baseline, which is similar to that described

by Fung et al. [9, 10]. If different threads in a warp have

different outcomes when a branch executes, i.e., the branch

diverges, new entries will be pushed onto the warp’s recon-

vergence stack ( 3 ). Each entry’s reconvergence PC (RPC)

is set to the immediate post-dominator3 of the branch. Each

bit in the activemask indicates whether the corresponding

thread follows the control flow path corresponding to the

stack entry. The PC of the top-of-stack (TOS) entry is sent

to the fetch unit to initiate execution of the instruction at the

target path of the branch. Reaching the reconvergence point

is detected when the next PC equals the RPC at the TOS en-

try. When this occurs, the top of the stack is popped (current

GPUs use special instructions to manage the stack [15, 7]).

2Shared memory is an on-chip scratchpad memory in NVIDIA GPUs.
3Closest point in the program that all paths leaving the branch must go

through before exiting the function.
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Figure 5. SIMD efficiency of CUDA applications.

See Section 5 for methodology.

While this mechanism allows divergent threads to recon-

verge at the earliest statically known convergence point,

it may result in low SIMD efficiency in applications with

deeply nested data dependent control flow or loop bounds

that vary across threads in a warp. In these situations dif-

ferent threads within a warp may follow different execution

paths. We use SIMD efficiency to identify CUDA applica-

tions that diverge heavily (DIVG) but also study a represen-

tative set of coherent (COHE) applications in which threads

in a warp follow the same execution paths (Figure 5). We

classify a benchmark as DIVG if it has SIMD efficiency be-

low 76% and COHE otherwise (NNC contains 16 threads

per block and no branch divergence).

2.3. Dynamic Warp Formation

Dynamic warp formation (DWF) [9] regroups threads

executing the same instruction into new warps to improve

SIMD efficiency. Warp scheduling policies significantly

impact DWF [9], since a large group of threads needs to

progress through the kernel at roughly the same pace. The

previous best (on average) policy known, majority, incurs

poor performance when a small number of threads “falls

behind” the “majority” of threads [10]. Such starvation ed-

dies reduce opportunities for such threads to regroup with

the “majority” leading over time to lower SIMD efficiency.

Figure 6 compares DWF with majority schedul-

ing against the baseline reconvergence stack mechanism

(PDOM) on the DIVG applications. While DWF improves

performance significantly on BFS2, FCDT, and MUMpp,

other applications suffer a slowdown4. One application,

NVRT executes incorrectly with DWF, because it uses a

single manager thread in each static warp to continually ac-

quire tasks from a global queue (atomically acquire a range

of task IDs) for other worker threads in the warp. The

per-warp reconvergence stack enforces an implicit synchro-

nization as it forces the worker threads in the warp to wait

4In our previous evaluation [9, 10], each SIMT core had large multi-

bank L1 caches to buffer the memory system impact of DWF, whereas each

SIMT core in this paper only has a much smaller, single banked L1 cache,

which may be desirable in practice to reduce the complexity and area of

the memory system. The applications evaluated in our prior study [9, 10]

also lacked the memory coalescing optimizations found in most CUDA

applications (including those evaluated here) masking the impact of thread

regrouping on the memory system.
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while this manager thread is acquiring tasks. DWF exe-

cutes NVRT incorrectly because it does not enforce this be-

haviour. With DWF the worker threads incorrectly execute

ahead with obsolete task IDs when the manager thread is

acquiring new tasks. In general, we observed three prob-

lems when running CUDA applications on DWF enabled

execution model: (1) Applications relying on implicit syn-

chronization in a static warp (e.g. NVRT) execute incor-

rectly; (2) Starvation eddies may reduce SIMD efficiency;

(3) Thread regrouping in DWF increases non-coalesced

memory accesses and shared memory bank conflicts.

2.4. Warp Barrier
In this section we propose an extension to DWF, called a

warp barrier. This mechanism keeps threads in their orig-

inal static warps until they encounter a divergent branch.

After a top-level divergence, threads can freely regroup be-

tween diverged warps but a “warp barrier” is created per

static warp at the immediate post-dominator of the top-level

divergent branch. A top-level divergence is a divergent

branch that is not control dependent upon an earlier diver-

gent branch. A dynamic warp may contain threads with dif-

ferent warp barriers. When a dynamic warp reaches a warp

barrier those threads associated with the barrier are restored

to their original static warp and wait until all threads from

this static warp have arrived at the barrier. The remaining

threads in the dynamic warp continue execution using the

original DWF mechanisms [9]. The warp barrier mech-

anism confines starvation eddies between top-level diver-

gence and reconvergence points while preserving the static

warp arrangements reduces memory divergence [20] and

shared memory bank conflicts. Warp barriers are distinct

from syncthreads() in CUDA – they are created dy-

namically only at divergent branches and there is one per

static warp rather than one per thread block.

Figure 6 compares the performance of DWF with this

warp barrier mechanism (DWF-WB) against the origi-

nal DWF and the baseline per-warp reconvergence stack

(PDOM). With the warp barrier, NVRT executes properly

and achieves a 60% speedup over PDOM. Three other ap-

plications that suffer slowdowns with the original DWF

(HOTSP, LPS, NAMD) now achieve speedup. However,

MUMpp loses performance with the warp barrier and shows

a slight slowdown versus PDOM. In addition, RAY and WP



continue to suffer from starvation eddies while using warp

barriers. A deeper investigation suggests these applications

require additional barriers between the top-level divergence

and reconvergence of a static warp. Such barriers are a a

natural property of reconvergence stacks and this led us to

propose thread block compaction.

3. Thread Block Compaction
In CUDA (OpenCL) threads (work items) are issued to

the SIMT cores in a unit of work called a “thread block”

(work group). Warps within a thread block can communi-

cate through shared memory and quickly synchronize via

barriers. Thread block compaction extends this sharing to

exploit control flow locality among threads within a thread

block. Warps within a thread block share a block-wide re-

convergence stack for divergence handling instead of hav-

ing separate per-warp stacks. At a divergent branch, the

warps synchronize and their threads are “compacted” into

new warps according to the branch outcome of each thread.

The compacted warps then execute until the next branch or

reconvergence point, where they synchronize again for fur-

ther compaction. Compaction of all the divergent threads

after they have reached the reconvergence point will re-

stored their original warp grouping before the divergent

branch was encountered.

As threads with a different program counter (PC) value

cannot be merged in the same warp, DWF is sensitive to

scheduling. When branch divergence occurs, a sufficient

number of threads needs to be present at the divergent

branch to be merged into full warps. Ideally, threads should

be encouraged to be clustered at a local region in the ker-

nel program, but variable memory access latency and com-

plex control flow make this hard to achieve. Moreover, even

if this scheduling could be achieved, it will cluster mem-

ory accesses, discouraging overlap between memory access

and computation and may increase memory latency via in-

creased contention in the memory system.

Thread block compaction simplifies this scheduling

problem with block-wide synchronization at divergent

branches. This ensures that the maximum number of

threads wait at a branch or reconvergence point, while other

threads can be scheduled focusing on improving pipeline

resource utilization. With the use of a reconvergence stack,

we can keep track of the warps that will eventually arrive at

the reconvergence point and eliminate the starvation eddy

problem described in Section 2.3 for DWF. The synchro-

nization overhead at branches can be covered by switch-

ing the execution to a different thread block running on the

same SIMT core. In Section 6.2, we explore the perfor-

mance impact of several thread block prioritization policies.

While sharing a single control flow stack among all

warps in a block can in theory reduce performance when

threads in different warps follow diverging control flow

paths, we find this type of code to be rare. It tends to

Example 1 Code that exhibits branch divergence.

t = threadIdx.x; // block A

flag = (t==1)||(t==6)||(t==7);

if( flag )

result = Y; // block B

else

result = Z; // block C

return result; // block D
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compaction.

occur where CUDA programmers work around the limita-

tion of one concurrent kernel launch at a time on pre-Fermi

NVIDIA GPUs by having different warps in a block execute

different code following a top-level “if” or “switch”

statement. If better support were desired for such code,

we could employ prior proposals for enabling stack-based

reconvergence mechanisms to overlap execution of por-

tions of the same warp that follow different control flow

paths [20]. We leave evaluation of such extensions to fu-

ture work and instead focus on what we observe to be the

common case for existing applications.

3.1. High-Level Operation

Figure 7 illustrates the high-level operation of thread

block compaction. The code in Example 1 translates into

the control flow graph in Figure 7. In this example, each

warp contains four threads and each thread block contains

eight threads. The numbers in each basic block of the

control-flow graph (left portion of figure) denote the threads

that execute that block. All threads execute block A and D,

while only threads (1,6,7) execute block C and only threads

(2,3,4,5,8) execute block B.

Two warps composed of threads 1-4, and 5-8 begin exe-

cuting at the start of block A. Since there is no divergence,

there is only a single entry in the block-wide reconvergence

stack ( 1 in Figure 7). Two warps ( 2 ) are created from

the active threads ( 1 ). The two warps are scheduled on the

pipeline independently until they reach the end of block A



( 3 ), where they “synchronize” at the potentially divergent

branch. This synchronization allows the hardware to deter-

mine if any of the warps has diverged at the branch. As an

optimization, the programmer/compiler can statically anno-

tate non-divergent branches (such as bra.uni in the PTX-

ISA [23]) in the kernel, allowing the warps to skip synchro-

nization at these branches. After both warps have executed

the branch, two new entries ( 4 ) will have been pushed onto

the stack, each containing the active threads that will exe-

cute the “taken” or “not taken” side of the branch (block C

or B, respectively). The active threads on the top entry are

compacted into a single warp that executes basic block C

( 5 ). As this warp reaches the reconvergence point D ( 6 ),

its entry is popped from the reconvergence stack ( 7 ), and

the active threads that execute basic block B are compacted

into two warps ( 8 ). After these two warps have reached

the reconvergence point D ( 9 ), their corresponding entry

is popped from the stack, and threads resume execution in

two full warps with their original arrangements before the

divergent branch ( 10 ).

The lower part of Figure 7 compares the execution flow

of thread block compaction with the baseline per-warp re-

convergence mechanism. In this example, thread block

compaction compacts threads (1,6,7) into a single warp at

basic block C ( 11 ). This reduces the overall execution time

by 12.5% over the baseline in this example.

The pushing and popping of the entries on and off the

block-wide reconvergence stack, as branches and reconver-

gence points are encountered, uses the same reconvergence

points as the per-warp reconvergence stack in the baseline

SIMT core.

3.2. Implementation

Figure 8 illustrates the modifications to the SIMT core

microarchitecture to implement thread block compaction.

The modifications consist of three major parts: a modi-

fied branch unit ( 1 ), a new hardware unit called the thread

compactor ( 2 ), and a modified instruction buffer called the

warp buffer ( 3 ). The branch unit ( 1 ) has a block-wide re-

convergence stack for each block. Each entry in the stack

consists of the starting PC (PC) of the basic block that cor-

responds to the entry, the reconvergence PC (RPC) that in-

dicates when this entry will be popped from the stack, a

warp counter (WCnt) that stores the number of compacted

warps this entry contains, and a block-wide activemask that

records which thread is executing the current basic block.

The thread compactor ( 2 ) consists of a set of priority en-

coders that compact the block-wide activemask into com-

pacted warps with thread IDs. The warp buffer ( 3 ) is an

instruction buffer that augments each entry with the thread

IDs associated with compacted warps.

To retain compatibility with applications that rely on

static warp synchronous behaviour (e.g., reduction in

the CUDA SDK), the thread compactor can optionally be

disabled to allow warps to retain their static/compile-time

arrangement (e.g., when launching a kernel via an exten-

sion to the programming API).

In comparison to DWF [9], thread block compaction ac-

complishes the lookup-and-merge operation of the “warp

LUT” and the “warp pool” [9] with simpler hardware. In

DWF, an incoming warp is broken down every cycle and

the warp LUT has to locate an entry in the warp pool that

can merge with the individual threads. In thread block com-

paction, warps are only broken down at potentially diver-

gent branches and partial warps are accumulated into block-

wide activemasks. The compaction only occurs once after

the activemasks have been fully populated and the com-

pacted warps are stored at the warp buffer until the next

branch or reconvergence point.

3.3. Example Operation
Figure 9 presents an example of how the hardware in

Figure 8 implements thread block compaction. The active-

mask in the block-wide reconvergence stack is divided into

groups, each corresponding to a vector lane in all static

warps in the thread block5. Threads are constrained to stay

in their vector lane during warp compaction to avoid the

need to migrate register state and to simplify the thread

compactor. Each thread can locate its corresponding bit in-

side its vector lane group via its associated static warp. For

example, thread 5 in the first vector lane of static warp W2

corresponds to the second bit of the first group ( 4 ).

The activemask in the block-wide reconvergence stack is

incrementally populated as warps arrive at a branch. Since

warps are allowed to execute independently as long as they

do not encounter branches or reconvergence points, it is

possible for warps to arrive at the branch at the end of block

A ( 1 ) in an arbitrary order. In the example, warp (W2) ar-

rives at the branch first and creates two target entries on the

stack ( 2 ). Each thread in the warp updates one of these

entries based upon its branch outcome. For instance, since

thread 5 goes to block C ( 3 ), it updates the first new entry

on the stack ( 5 ). On the other hand, since thread 6 goes to

block B ( 6 ), it updates the second new entry on the stack

( 8 ). In subsequent cycles, the other warps (W3 and W1)

arrive at the branch and update the activemasks of the two

new stack entries ( 9 and 10 , bits updated at each warp’s

arrival are shown in bold).

As the warp arrives at the potentially divergent branch,

WCnt of the original TOS entry is decremented to keep

track of pending warps. When WCnt reaches zero ( 11 ), the

TOS pointer increments to point at the new top target entry.

The activemask of this new TOS entry is sent to the thread

compactor for warp generation ( 12 ). WCnt of this entry is

also updated to record the number of compacted warps to

be generated (calculated by counting the maximum number

5Example shows 3 warps, but each thread block can have up to 32

warps/1024 threads [24].
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Figure 9. Example showing how the activemask

in the block­wide reconvergence stack can be

incrementally populated for a divergent branch.

of set bits in all lanes’ activemask). A single block-wide

activemask can generate at most as many compacted warps

as the static warps in the executing thread block.

For branches that NVIDIA’s CUDA compiler marks

as potentially divergent, we always create two entries for

taken and not-taken outcomes when the first warp reaches a

branch even if that warp is not divergent. If all threads in a

block branch to the same target one of the entries will have

all bits set to zero and will be immediately popped when it

becomes the top of stack.

Figure 9 also shows the operation of the thread com-

pactor ( 13 ). The block-wide activemask sent to the thread

compactor is stored in multiple buffers, each responsible for

threads in a single home vector lane [9]. Each cycle, each

priority encoder selects at most one thread from its corre-

sponding inputs and sends the ID of this thread to the warp

buffer ( 4 in Figure 8). The bits corresponding to the se-

lected threads will be reset, allowing the encoders to select

from the remaining threads in subsequent cycles.

When the compacted warps encounter another divergent

branch, the process described above repeats, pushing new

entries onto the block-wide stack. Eventually, as each of

these compacted warps reaches the reconvergence point

(block D in this example), WCnt of block C entry decre-

ments. When this WCnt reaches zero, the entry is popped

(TOS pointer decrements). The activemask of the new TOS

entry is sent to the thread compactor to generate warps that

execute block B, and WCnt of this entry is updated accord-

ingly. After these compacted warps have reached the re-

convergence point as well, the block-wide stack is popped

again, shifting execution to the top-level entry. Similarly,

the full activemask of this entry is sent to the thread com-

pactor, with its WCnt updated to the corresponding warp

count in preparation for the next divergent branch.

4. Likely-Convergence Points

The post-dominator (PDOM) stack-based reconvergence

mechanism [9, 10] uses reconvergence points identified us-

ing a unified algorithm rather than by translating control

flow idioms in the source code into instructions [15, 7, 2].

The immediate post-dominator of a divergent branch se-

lected as the reconvergence point is the earliest point in a

program where the divergent threads are guaranteed to re-

converge. In certain situations, threads can reconverge at an

earlier point to improve SIMD efficiency. We believe this

observation motivates the inclusion of the break instruc-

tion in recent NVIDIA GPUs [7].

The code in Example 2 exhibits this earlier reconver-

gence. It results in the control flow graph in Figure 10 where

edges are marked with the probability with which individual

scalar threads follows that path. Block F is the immediate

post-dominator of A and C since F is the first location where

all paths starting at A (or C) coincide. In the baseline mech-

anism, when a warp diverges at A, the reconvergence point



Example 2 Example for likely-convergence.

while (i < K) {

X = data[i]; // block A

if( X = 0 )

result[i] = Y; // block B

else if ( X = 1 )// block C

break; // block D

i++; // block E

}

return result[i]; // block F
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Figure 10. Likely­convergence points improve in­

dividual warp SIMD efficiency by reconverging
before the immediate post­dominator.
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Figure 11. Performance and resource impact of
likely­convergence points on both baseline per­

warp reconvergence stack (PDOM) and thread

block compaction (TBC).

is set to F. However, the path from C to D is rarely followed

and hence in most cases threads can reconverge at E.

We extend the PDOM reconvergence stack with likely-

convergence points to capture the potential performance

benefits from such “probabilistic” reconvergence. Two new

fields per stack entry are added, one for the PC of the

likely-convergence point (LPC) and the other (LPos) that

records the stack position of a special likely-convergence

entry created when a branch has a likely-convergence point

that differs from the immediate post-dominator. The likely-

convergence point of each branch can be identified with ei-

ther control flow analysis or profile information (potentially

collected at runtime). Figure 10 shows a warp that diverges

at A ( 1 ). When the divergence is detected three entries are

pushed onto the stack. The first entry ( 2 ) is created for the

likely-convergence point E6. Two other entries for the taken

6In our experimental evaluation, we restricted likely-convergence

points to the closest enclosing backwards taken branch to capture the im-

pact of “break” statements within loops [7].

and fall through of the branch are created as in the baseline

mechanism. The warp diverges again at C ( 3 ), and two7

new entries are created ( 4 ). Execution continues with the

top entry until it reaches E, and the likely-convergence point

is detected since PC == LPC. When this occurs, the top en-

try is popped and merged with the likely-convergence entry

( 5 ) as the LPos field indicates. When thread 3 and 4 reach

F ( 6 ), since PC == RPC, the stack is popped ( 7 ). Thread 1

then executes B ( 8 ) and its entry is popped at E ( 9 ), when

PC == LPC. Finally, the likely-convergence entry executes

until it reaches the immediate post-dominator, where it is

popped ( 10 ).

Likely-convergence points (LCP) are applicable to both

the baseline per-warp reconvergence stack (PDOM) and the

block-wide stack used in thread block compaction (TBC).

Figure 11 shows the performance impact of extending

PDOM and TBC with likely-convergence points (-LCP).

Only data for MUM and NVRT are shown because we have

only identified likely-convergence points that differ from

the immediate post-dominators in these two applications.

The impact of LCP for MUM is minimal: 2% speedup

for TBC and 5% for PDOM. In contrast, it greatly benefits

NVRT: 30% speedup for TBC, 14% for PDOM. Although

LCP pushes an extra entry onto the stack for each divergent

branch applicable, it can reduce the stack capacity require-

ment if multiple divergent entries are merged into fewer

likely-convergence entries. This happens in most cases,

except for TBC running MUM, where the unused likely-

convergence entries increases the maximum stack usage.

5. Methodology

We model our proposed hardware changes using a mod-

ified version of GPGPU-Sim (version 2.1.1b) [3]. We eval-

uate the performance of various hardware configurations on

the CUDA benchmarks listed in Table 1. Most of these

benchmarks are selected from Rodinia [5] and the bench-

marks used by Bakhoda et al. [3]. We did not exclude any

benchmarks due to poor performance on thread block com-

paction but excluded some Rodina benchmarks that do not

run on our infrastructure due to their reliance on undocu-

mented behaviour of barrier synchronization in CUDA. We

also use some benchmarks from other sources:

Face Detection is a part of Visbench [19]. Recommended

optimizations [18] for SIMD efficiency were applied.

MUMMER-GPU++ improved MUMMER-GPU [26] re-

ducing data transfers with a novel data structure [11].

NAMD is a popular molecular dynamics simulator [25].

Ray Tracing (Persistent Threads) dynamically dis-

tributes workload in software to mitigate hardware

inefficiencies [1]. We render the “Conference” scene.

7Since likely-convergence and immediate post-dominator are the same.



Table 1. Benchmarks
Name Abbr. BlockDim #Instr. Blocks/core

Divergent Set

BFS Graph Traversal [5] BFS2 (512x1x1), 28M 2

(256x1x1)

Face Detection [19] FCDT 2x(32x6x1) 1.7B 5,4

HotSpot [5] HSP (16x16x1) 157M 2

3D Laplace Solver [3] LPS (32x4x1) 81M 6

MUMMER-GPU [3] MUM (256x1x1) 69M 4

MUMMER-GPU++ [11] MUMpp (192x1x1) 140M 3

NAMD [25] NAMD 2x(64x1x1) 3.8B 7

Ray Tracing NVRT (32x6x1) 700M 3

(Persistent Threads) [1]

Coherent Set

AES Cryptography [3] AES (256x1x1) 30M 2

Back Propagation [5] BACKP 2x(16x16x1) 193M 4,4

Coulumb Potential [3] CP (16x8x1) 126M 8

gpuDG [3] DG (84x1x1), 569M 4,5,6

(112x1x1),

(256x1x1)

Heart Wall Detection [5] HRTWL (512x1x1) 8.9B 1

LIBOR [3] LIB 2x(64x1x1) 162M 8,8

Leukocyte [5] LKYT (175x1x1) 6.8B 5,5,1

Merge Sort [5] MGST (96x1x1) 2.3B 1,3,8,3,4,2,4

2x(32x1x1),

2x(128x1x1),

2x(256x1x1),

(208x1x1)

NN cuda [5] NNC (16x1x1) 6M 5,8,8,8

Ray Tracing [3] RAY (16x8x1) 65M 3

Stream Cluster [5] STMCL (512x1x1) 941M 2

StoreGPU [3] STO (128x1x1) 131M 1

Weather Prediction [3] WP (8x8x1) 216M 4

Our modified GPGPU-Sim is configured to model a

GPU similar to NVIDIA’s Quadro FX5800, with the addi-

tion of L1 data caches and a L2 unified cache similar to

NVIDIA’s Fermi GPU architecture [22]. We configure the

L2 unified cache to be significantly larger than that on Fermi

(1MB vs. 128 kB per memory channel) to make dynamic

warp formation more competitive against thread block com-

paction. In Section 6.4, we explore the sensitivity of both

techniques to changes in memory system by reducing the

L2 cache to 128kB per memory channel. Table 2 shows the

major configuration parameters.

6. Experimental Results
Figure 12 shows the performance of TBC and DWF rel-

ative to that of PDOM. TBC uses likely-convergence points

whereas PDOM does not and DWF and DWF-WB use ma-

jority scheduling [9]. For the divergent (DIVG) bench-

mark set, TBC has an overall 22% speedup over PDOM.

Much of its performance benefits are attributed to speedups

on the applications that have very low baseline SIMD ef-

ficiency (BFS2, FCDT, MUM, MUMpp, NVRT). While

DWF can achieve speedups on these benchmarks as well

(except of NVRT, which fails to execute), it also exhibits

slowdowns for the other benchmarks that have higher base-

line SIMD efficiency (HOTSP, LPS, NAMD), lowering the

overall speedup to 4%. DWF with warp barrier (DWF-WB)

recovers from most of this slowdown and executes NVRT

properly, but loses much of the speedup on MUMpp. Over-

all, TBC is 17% faster than the original DWF and 6% faster

than DWF-WB.

Table 2. GPGPU­Sim Configuration
# Streaming Multiprocessors 30

Warp Size 32

SIMD Pipeline Width 8

Number of Threads / Core 1024

Number of Registers / Core 16384

Shared Memory / Core 16KB

Constant Cache Size / Core 8KB

Texture Cache Size / Core 32KB, 64B line, 16-way assoc.

Number of Memory Channels 8

L1 Data Cache 32KB, 64B line, 8-way assoc.

L2 Unified Cache 1MB/Memory Channel, 64B line, 64-way assoc.

Compute Core Clock 1300 MHz

Interconnect Clock 650 MHz

Memory Clock 800 MHz

DRAM request queue capacity 32

Memory Controller out of order (FR-FCFS)

Branch Divergence Method PDOM [9]

Warp Scheduling Policy Loose Round Robin

GDDR3 Memory Timing tCL=10 tRP =10 tRC =35

tRAS=25 tRCD=12 tRRD=8

Memory Channel BW 8 (Bytes/Cycle)

Applications in the coherent (COHE) benchmark set are

not significantly effected by branch divergence, hence we

do not anticipate significant benefits from DWF or TBC.

DWF suffers significant slowdowns on some applications in

this benchmark set (HRTWL, LKYT, RAY, STO and WP),

due to starvation eddy and extra memory stalls from thread

regrouping (see Section 6.1). DWF-WB recovers much of

this slowdown, however, RAY and WP still suffer from the

starvation eddy problem.

Across all benchmarks, TBC obtains an overall 10%

speedup over PDOM. The performance benefits of DWF-

WB are mostly offset by slowdowns in other applications,

making it perform evenly with PDOM.

6.1. In-Depth Analysis
Figure 13(a) and 14(a) show the breakdown of the SIMT

core cycle for both DIVG and COHE benchmark sets. At

each cycle, the SIMT core can either issue a warp contain-

ing a number of active threads (Wn-m means between n

and m threads are enabled when a warp issues), be stalled

by the downstream pipeline stages (Stall), or not issue any

warp because none are ready in the I-Buffer/Warp-Buffer

(W0 Mem if the warps are held back by pending memory

accesses, and W0 Idle otherwise). This data shows that

in some applications (HOTSP, NAMD, HRTWL, MGST,

RAY and WP), starvation eddies cause DWF to introduce

extra divergence, turning some of the warps with more ac-

tive threads (W29-32) into warps with fewer active threads.

In other applications (e.g. LPS, MUM and NAMD), the

extra stalls from DWF undermine the benefit of merging di-

vergent threads into warps. DWF-WB reduces stalls and

divergence versus DWF in these applications, but the star-

vation eddy problem persists with DWF-WB for RAY and

WP.

TBC can usually improve SIMD efficiency as well

as DWF-WB, and it does not introduce significantly ex-

tra stalls or divergences. However, the synchronization

overhead at branches can introduce extra W0 idle and
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Figure 12. Performance of Thread Block Compaction (TBC) and Dynamic Warp Formation (DWF) relative to

baseline per­warp post­dominator reconvergence stack (PDOM) for the DIVG and COHE benchmark sets.
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W0 Mem. This is mostly why DWF-WB performs better

than TBC for HOTSP, LPS, NAMD and NVRT. For NAMD

and NVRT, TBC achieves a lower SIMD efficiency than

DWF-WB because DWF can form warps from any threads

within a SIMT core, while TBC can only do so from threads

within a thread block. BFS, MUM, and MGST transition

from compute-bound to memory-bound with TBC (indi-

cated by the extra W0 Mem for them), limiting its benefit.

Figure 13(b) and Figure 14(b) show the breakdown of

memory pipeline stalls modeled in our simulator normal-

ized to the baseline and highlights that DWF introduces ex-

tra memory stalls. TBC introduces far fewer extra memory

stalls. These extra stalls do not out-weight the benefits of

TBC to control flow efficiency on several applications (e.g.

FCDT, MUMpp, NVRT and HRTWL). Section 6.3 shows

how the L1 data cache in each SIMT core absorbs the extra

memory accesses generated by TBC, leaving the memory

subsystem undisturbed.

6.2. Thread Block Prioritization

Figure 15 compares the performance of TBC among dif-

ferent thread block prioritization policies. A thread block

prioritization sets the scheduling priority among warps from

different thread blocks, while warps within a thread block

are always scheduled with loose round-robin policy [9]:

Age-based (AGE) The warps from the oldest thread block

(in the order that thread blocks are dispatched to a

SIMT core) have the highest priority. This tries to stag-

ger different thread blocks, encouraging them to over-

lap each other’s synchronization overhead at branches.

Round-robin (RRB) Thread block priority rotates every

cycle, encouraging warps from different thread blocks

to interleave execution.

Sticky round-robin (SRR) Warps in a thread block that

is currently issuing warps retain highest priority un-

til none of the thread block’s warps are ready for issue.

Then, the next thread block gets highest priority.

Overall, AGE (default policy for the paper) achieves the

highest performance, but it can leave the SIMT cores with

a lone-running thread block near the end of a kernel launch.

The lack of interleaving reduces overall performance for

LPS, NAMD and LIB. RRB encourages even progress

among thread blocks, but increases memory system con-

tention in STMCL. SRR provides robust performance.

6.3. Impact on Memory Subsystem

Figure 16 shows the average memory traffic (in bytes

for both reads and writes) between a SIMT core and the

memory subsystem outside the core with TBC normalized

to PDOM. Traffic does not increase significantly with TBC

(within 7% of PDOM), indicating that the L1 data cache has

absorbed the extra memory pressure due to TBC. If mem-

ory accesses from a static warp would have coalesced into

a 128B chunk, and this static warp is compacted into multi-

ple dynamic warps by TBC upon a branch divergence, then

they will access the same blocks in the L1 data cache.

Memory traffic of DG increases by 2.67X due to in-

creased texture cache misses when using AGE based prior-

itization (which tends to reduce interleaving from different

thread blocks). TBC combined with the RRB policy re-

duces traffic of DG by increasing the texture cache hit rate.
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Figure 14. Detail performance data of TBC and
DWF relative to baseline (PDOM) for the COHE

benchmark set.

6.4. Sensitivity to Memory Subsystem

Figure 17 shows the speedup of TBC and DWF over

PDOM, but with smaller L2 caches (128 kB, 8-way per

memory channel). The relative performance between the

different mechanisms remains unchanged for the COHE

benchmarks. Two of the DIVG benchmarks (MUM and

MUMpp) become more memory-bound with a less pow-

erful memory system, lowering the speedup of TBC (15%

with RRB and 13.5% with AGE for the DIVG benchmarks).

Smaller L2 caches reduce DWF’s performance on MUMpp

from 28% speedup to 4% slowdown. In comparison, the

speedups with DWF-WB and TBC remain robust to the

change in the memory system.

7. Implementation Complexity

Most of the implementation complexity for thread block

compaction is the extra storage for thread IDs in the warp

buffer, and the area overhead in relaying these IDs down

the pipeline for register accesses. The register file in each

Table 3. Maximum stack usage for TBC­LCP
DIVG COHE

#Entries #Entries #Entries

BFS2 3 AES 1 NNC 3

FCDT 5 BACKP 2 RAY 9

HOTSP 2 CP 1 STMCL 3

LPS 5 DG 2 STO 1

MUM 13 HRTWL 5 WP 8

MUMpp 14 LIB 1

NAMD 5 LKYT 3

NVRT 5 MGST 38

SIMT core also needs to be banked per lane as in dynamic

warp formation [9] to support simultaneous accesses from

different vector lanes to different parts of the register file.

The scheduler complexity that DWF imposes is mostly

eliminated via the block-wide reconvergence stacks in

thread block compaction. The bookkeeping for thread

grouping is done via activemasks in the stack entries. The

activemasks can be stored in a common memory array.

Each entry in this memory array has T bits (T = max

#threads supported on a SIMT core). The T bits in each

entry are divided among the multiple thread blocks running

on a SIMT core. In this way, the total #bits for activemask

payload does not increase over the baseline per-warp stacks.

One potential challenge to TBC is that the block-wide

stack can in the theoretical worst case be deeper than with

per-warp stacks. Table 3 shows the stack usage for TBC

with likely-convergence points across all the applications

we study. Most applications use fewer than 16 entries

throughout their runtime. For exceptions such as MGST the

bottom of the stack could potentially be spilled to memory.

We synthesized the 32-bit priority encoders used in thread

compactors (sufficient for the maximum thread block size

of 1024 threads [24]) in 65 nm technology and found their

aggregate area to be negligible (<< 1mm
2).

8. Conclusion

In this paper, we proposed a novel mechanism, thread

block compaction, which uses a block-wide reconvergence

stack shared by all threads in a thread block to exploit their

control flow locality. Warps run freely until they encounter

a divergent branch, where the warps synchronize, and their

threads are compacted into new warps. At the reconver-

gence point the compacted warps synchronize again to re-

sume in their original arrangements before the divergence.

We found that our proposal addresses some key challenges

of dynamic warp formation [9]. Our simulation evaluation

quantifies that it achieves an overall 22% speedup over a

per-warp reconvergence stack baseline for a set of divergent

applications, while introducing no performance penalty for

a set of control-flow coherent applications.
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Figure 15. Performance of TBC with various thread block prioritization policies relative to PDOM for the
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