
Graph-based identification of qubit network
(GidNET) for qubit reuse

Gideon Uchehara, Tor M. Aamodt, Olivia Di Matteo
Electrical and Computer Engineering

The University of British Columbia
Vancouver, Canada

{ gideon.uchehara, aamodt, olivia }@ece.ubc.ca

Abstract—Quantum computing introduces the challenge of
optimizing quantum resources crucial for executing algorithms
within the limited qubit availability of current quantum architec-
tures. Existing qubit reuse algorithms face a trade-off between
optimality and scalability, with some achieving optimal reuse
but limited scalability due to computational complexities, while
others exhibit reduced runtime at the expense of optimality. This
paper introduces GidNET (Graph-based Identification of qubit
NETwork), an algorithm for optimizing qubit reuse in quantum
circuits. By analyzing the circuit’s Directed Acyclic Graph (DAG)
representation and its corresponding candidate matrix, GidNET
identifies higher-quality pathways for qubit reuse more efficiently.
Through a comparative study with established algorithms, no-
tably QNET [1], GidNET not only achieves a consistent reduction
in compiled circuit widths by a geometric mean of 4.4%, reaching
up to 21% in larger circuits, but also demonstrates enhanced
computational speed and scaling, with average execution time
reduction of 97.4% (i.e., 38.5× geometric mean speedup) and
up to 99.3% (142.9× speedup) across various circuit sizes.
Furthermore, GidNET consistently outperforms Qiskit in circuit
width reduction, achieving an average improvement of 59.3%,
with maximum reductions of up to 72% in the largest tested
circuits. These results demonstrate GidNET’s ability to improve
circuit width and runtime, offering a solution for quantum
computers with limited numbers of qubits.

I. INTRODUCTION

Central to quantum computing is the efficient execution
of quantum circuits, a fundamental abstraction underpinning
the expression of many quantum algorithms. This necessitates
quantum circuit compilation, wherein high-level quantum al-
gorithms are transformed into optimized instructions tailored
to a target quantum processor. Essential factors in this opti-
mization include the number of qubits, their connectivity, gate
fidelity, and error rates, all aimed at minimizing computational
resources and errors during algorithm execution.

At the heart of circuit optimization lies the strategic manage-
ment of qubits, particularly through their reuse. The innovation
of qubit reuse algorithms, which re-purpose qubits in a circuit
to a dynamic format requiring fewer resources, marks a sig-
nificant stride in quantum computing [1]–[3]. This approach,
bolstered by the advent of mid-circuit measurement and reset,
enhances the scalability and efficiency of computations across
both trapped-ion [4] and superconducting systems [5], [6].
Transitioning from static to dynamic quantum circuits, which
adjust in real-time to measurement outcomes, qubit reuse is
essential across various applications, from error correction [7]

and tensor network state preparation [8] to entanglement
spectroscopy [9] and quantum machine learning [10]. By
mitigating quantum resource demands, it plays a crucial role
in overcoming scalability challenges, potentially enhancing
circuit fidelity [11] and reducing complexities [12]. The
industry’s movement towards dynamic circuit capabilities, evi-
denced by recent hardware enhancements [4], [5], underscores
the role of qubit reuse in advancing quantum computing.

The quest for efficient qubit reuse has led to the develop-
ment of two primary algorithmic approaches: exact algorithms
and greedy heuristics [2]. Exact algorithms, utilizing the Con-
straint Programming and Satisfiability (CP-SAT) model, offer
precision and serve as a valuable benchmark for small-scale
systems, albeit with limited scalability. Conversely, greedy
heuristic algorithms demonstrate polynomial growth in qubit
number and rapid execution times, at the expense of not always
achieving optimal results.

In this paper we propose the graph-based identification of
qubit network (GidNET) algorithm, a technique to bridge
the gap between the exactitude of CP-SAT models and the
scalability of greedy heuristics. GidNET leverages the Di-
rected Acyclic Graph (DAG) of a quantum circuit and its
matrix representation to identify pathways for qubit reuse. We
demonstrate through simulation that, compared to the QNET
algorithm in [1] and the Qiskit implementation of the qubit
reuse algorithm in [2], which we henceforth refer to as Qiskit,
GidNET not only achieves a consistent reduction in compiled
circuit width but also demonstrates enhanced computational
speed. Our contributions are summarized as follows:

• Introduction of ‘reuse sequences’ determined through
common neighbors in the circuit’s DAG leading to higher-
quality pathways for qubit reuse more efficiently.

• Achievement of consistently reduced compiled circuit
widths by a geometric mean of 4.4% and up to 21%
in larger circuits, surpassing existing algorithms [1], [2].

• Significant acceleration of computational runtime over
[1], with a geometric mean improvement of 97.4% (or
38.5×), reaching up to 99.3% (142.9×) across different
circuit sizes.

• Validation of GidNET’s theoretical complexity through
polynomial regression and F-tests, confirming its efficacy
against empirical data.

By optimizing qubit reuse, GidNET not only extends the
capabilities of existing quantum systems but also reduces
operational overhead and is expected to lead to improved
quality of circuit execution.

This paper is structured as follows. In Section II, we
review existing qubit reuse algorithms and introduce Gid-
NET’s approach. In Section III, we detail the data structures
employed by GidNET to facilitate efficient reuse. Section IV
describes the algorithm’s implementation and computational
complexity. Section V presents the empirical validation of Gid-
NET, demonstrating performance improvements over existing
algorithms. Finally, Section VI summarizes our findings and
discusses potential future enhancements to GidNET. All the
code referenced in this paper is publicly accessible on GitHub1

II. RELATED WORK AND THE NOVELTY OF GIDNET

In this section, we present quantum circuit cutting and ex-
plore existing algorithms for qubit reuse and their limitations,
and highlight the unique features of GidNET. We discuss how
GidNET leverages graph properties of a quantum circuit to
determine reuse, setting it apart from other methods in terms
of scalability and performance.

To maximize the utility of current noisy intermediate-scale
quantum (NISQ) devices, techniques such as quantum circuit
cutting and qubit reuse were developed. Algorithms for circuit
cutting split the original quantum circuit either by cutting
wires [13]–[19], gates [20]–[23], or both [24] into smaller
subcircuits that can be run separately, either on the same
quantum device or on different devices [25]. The results are
post-processed and combined using a classical computer. This
approach has several drawbacks. For example, the runtime for
circuit cutting increases exponentially in the number of cuts
on a circuit. In contrast, qubit reuse leverages the ability of a
quantum computer to perform mid-circuit measurements and
resets, allowing qubit to be reused after they are reset, without
necessitating exponential overhead [2].

Recent efforts have focused on algorithms and techniques
to enhance qubit reuse and overall quantum circuit efficiency
[1]–[3], [24], [26]–[28]. Qubit reuse is particularly appealing
because promising algorithms for integer factorization [29],
database search [30], machine learning [31], and other
applications require a large number of qubits. This demand
exceeds the capacities of current NISQ computers. The con-
cept of qubit reuse, specifically through wire recycling, was
pioneered by Paler et al. [32], emphasizing the underutilization
of qubits across quantum circuit computations. This seminal
work laid the foundation for subsequent research in qubit
reuse strategies. DeCross et al. [2] advanced the field by
addressing qubit reuse through mid-circuit measurements and
resets, presenting both an exact optimization model and a
heuristic for large-scale quantum circuits. Their work high-
lighted the dual circuit concept, underscoring the symmetry
in qubit requirements between a circuit and its temporal
reverse. Recent developments by Hua et al. [12] introduced a

1https://github.com/QSAR-UBC/GidNET-qubit-reuse-algorithm

compiler-assisted tool leveraging dynamic circuit capabilities
for qubit reuse. Their empirical analysis demonstrated notable
improvements in qubit efficiency and circuit fidelity on actual
quantum hardware. Brandhofer et al. [11] proposed an SAT-
based model for qubit reuse optimization, tackling the com-
putational challenges inherent in scaling qubit reuse methods.
Their approach aims to achieve optimal circuit configurations
with respect to various performance metrics, including circuit
depth and swap gate insertions.

Most recently, Fang et al. [1] presented a comprehensive
study on dynamic quantum circuit compilation, offering the
first general framework for optimizing this process through
graph manipulation. They formulated the problem using binary
integer programming, and introduced algorithms for assess-
ing circuit reducibility and devising dynamic compilation
schemes. Their comparative analysis highlights the superior
performance of their methods, providing a rigorous foundation
for future advances in dynamic circuit compilation [1].

Building on these works, but particularly inspired by both
the complexity of current quantum challenges and the inno-
vative approach by Fang et al. [1], we propose GidNET, a
qubit reuse algorithm that leverages advanced analysis tech-
niques of the quantum circuit’s graph structure, which many
of the related works above, apart from QNET [1], do not
exploit. Specifically, GidNET utilizes the circuit DAG and
the candidate matrix derived from its biadjacency graph. It
uniquely determines a greedily-optimized reuse sequence for
each qubit, leveraging a property we call common neighbors
to methodically select a sequence of qubits for reuse based
on interactions between qubits. GidNET ensures that each
decision on qubit reuse is informed by a clear understanding
of the existing network of qubit relationships, streamlining
the application of reuse and improving the outcome of circuit
compilation. This strategic approach contrasts with [1], which
broadly evaluates every edge in the candidate matrix to identify
the edge that maximizes the possibility of adding more edges
in subsequent steps in each iteration.

III. DATA STRUCTURES

This section summarizes the framework for circuit analysis
and qubit reuse introduced by [1] that is leveraged by Gid-
NET. Given a circuit Q, with set of n qubits {q0, ...,qn−1},
the first step is to compute the circuit’s DAG, G = (V, E),
which encapsulates the causal sequence of quantum opera-
tions. An example circuit and its DAG are shown in Figure 1a
and Figure 1b respectively. The DAG consists of three types
of vertices, V: roots (green), terminals (violet), and opera-
tions (blue). The roots are vertices with no incoming edges,
representing the first layer of quantum operations on each
qubit, usually reset operations. The terminals are vertices with
no outgoing edges, representing the last layer of quantum
operations, typically quantum measurements. Internal vertices
with incoming and outgoing edges correspond to intermediate
quantum operations, such as quantum gates. Directed edges
between these vertices represent qubits on which these oper-
ations are applied.

2

q0 : •

q1 :

q2 : •

q3 : •

q4 :

meas : /
5

0

��
1

��
2

��
3

��
4

��

(a)

qr
0 qr

4 qr
1

cx

qt
0

qr
2 qt

1

cx

qt
2

qr
3

cx

qt
3 qt

4

(b)

qr
0 qt

0

qr
1 qt

1

qr
2 qt

2

qr
3 qt

3

qr
4 qt

4

root (r) terminal (t)

(c)

Fig. 1: (a) A 5-qubit quantum circuit. (b) DAG, G for the circuit in Figure 1a. Green nodes are the roots of qubits while violet
nodes are terminals of qubits. Blue nodes are CNOT gates between two qubits. (c) Simplified DAG (biadjacency graph) G′,
derived from Figure 1b showing connections from roots (r) to terminals (t) of qubits. An edge, (qr

i,q
t
j) between two qubits

indicates a direct path from qubit qi to qubit qj in G, highlighting qubit pairs ineligible for reuse.

A circuit DAG can be further simplified to a bipartite graph
G′ = (R, T , E), where R and T denote the sets of roots and
terminals from the DAG representation, respectively. An edge
(r, t) ∈ E connects a root r ∈ R to a terminal t ∈ T
if there exists a directed path from r to t in the original
DAG, G. Each qr

i and qt
i represent the root and terminal

vertices of the i-th qubit respectively. The simplified DAG,
G′ is known as the biadjacency graph [1]. Figure 1c shows
the biadjacency graph of Figure 1b, and Figure 2b its matrix
representation, B. Row and column indices correspond to the
root and terminal nodes of qubits. The biadjacency graph is
crucial for the reuse process: if the terminal node of qubit qj

is connected to the root node of qubit qi in G′, the physical
qubit associated with qi cannot be measured and subsequently
reused to represent qubit qj because qj’s operation depends
on qi. For instance, in Figure 1c, qubit q4 cannot reuse qubit
q0 due to the edge from root qr

4 to terminal qt
0.

To determine which qubits can be reused, we construct
a candidate matrix, C, the adjacency matrix of a candidate
graph. Given a biadjacency matrix B [1],

C = 1n×n −BT , (1)

where 1n×n is an n × n all-ones matrix. Figure 2c and
Figure 2d show the candidate graph and matrix of the circuit
in Figure 1a respectively. The candidate graph is the graph
complement of the biadjacency graph where the edges are
from the terminals (rows of C) to the roots (columns of C).
Edges from a given qubit’s terminal are only connected to
the roots of qubits that do not share a direct connection with
the qubit’s terminal in the biadjacency graph. An edge in the
candidate graph from a qubit’s terminal to another qubit’s root
indicates that the latter qubit can reuse the former qubit once
the former qubit has completed its operation.

IV. GIDNET QUBIT REUSE ALGORITHM

In this section, we describe GidNET in detail. In Sec-
tion IV-B, we explain each operational phase, showcasing its
systematic approach to identifying and optimizing qubit reuse
sequences using the candidate matrix. In Section IV-C we
analyze the complexity of GidNET.

A qubit reuse algorithm transforms a static quantum circuit,
Q, into an equivalent dynamic circuit, D, using fewer qubits,
as illustrated in Figure 3. To avoid any ambiguity, we define
distinct categories of qubits: logical qubits denoted as q, are
those in the original static quantum circuit; virtual qubits
denoted as z, are qubits in the transformed dynamic circuit;
and physical qubits are actual qubits on quantum hardware.

A. Qubit reuse sequence

To explain the intuition behind GidNET, we examine the
reuse sequence for each virtual qubit in D.

Definition 1: Reuse sequence. We define Fi, the reuse
sequence of virtual qubit zi in a dynamic quantum circuit D,
as the sequence of logical qubits qj from the original static
circuit Q that are mapped onto zi. The number of virtual
qubits in D is the width of D.

Example 1: Reuse sequence illustration. The reuse se-
quences of virtual qubits z0 and z1 in the dynamic circuit
D of Figure 3b are F0 = {q0,q2,q3,q1} and F1 = {q4}.
D has width 2.

The purpose of GidNET is to compute the longest or
most optimized reuse sequences for D such that its width
is minimized. The order of logical qubits in each Fi plays
a pivotal role in the quality of the overall solution. To find
the optimal set of reuse sequences that results in the smallest
circuit width, one could explore all possible sequences that
form valid reuse sequences. A valid reuse sequence is one

3

qr
0 qt

0

qr
1 qt

1

qr
2 qt

2

qr
3 qt

3

qr
4 qt

4

(a)

1 0 1 1 1

0 1 0 0 0

0 0 1 1 1

0 0 0 1 1

1 0 1 1 1

qr
0

qr
1

qr
2

qr
3

qr
4

qt
0 qt

1 qt
2 qt

3 qt
4

(b)

qt
0 qr

0

qt
1 qr

1

qt
2 qr

2

qt
3 qr

3

qt
4 qr

4

(c)

0 1 1 1 0

1 0 1 1 1

0 1 0 1 0

0 1 0 0 0

0 1 0 0 0

qt
0

qt
1

qt
2

qt
3

qt
4

qr
0 qr

1 qr
2 qr

3 qr
4

(d)

Fig. 2: (a) The biadjacency graph (same as Figure 1c). (b) The biadjacency matrix B, labels rows (root) and columns
(terminals) from q0 to qn−1. (c) The candidate graph is the graph compliment of Figure 2a. An edge signifies that the root
qubit can reuse the terminal qubit post-operation. (d) The candidate matrix C, as defined in Equation 1, with rows (terminals)
and columns (roots) labeled (q0, ...,qn−1). A ‘1’ indicates a potential reuse opportunity.

that does not introduce a cycle in the DAG of D. Even
though finding the optimal set of reuse sequences may be
computationally cheap for a small quantum circuit, it gets
prohibitively expensive as circuit size increases.

To reduce the computational cost, GidNET randomly selects
from the available logical qubits to determine each Fi. This
randomness necessitates running the algorithm multiple times,
but improves the likelihood of identifying more optimized
qubit reuse sequences for D.

B. Description of GidNET Algorithm

The GidNET Algorithm 1 employs Algorithm 2 to
determine a set of reuse sequences for D. GidNET’s inputs
are a circuit, Q, the number of qubits in the circuit, n, and
the number of iterations, i, to run the algorithm. Its output is
a set containing the optimized reuse sequences with reduced
width for the dynamic circuit D.

Algorithm 1 starts by computing the biadjacency and candi-
date matrices of the input circuit (line 1) [1]. Line 2 initializes
the set of reuse sequences U with all the qubits in the circuit.
Line 3 checks if the candidate matrix is all zeros, indicating
an irreducible circuit. If true, line 4 returns U with all original
qubits, as no reuse is possible.

The core of the algorithm is lines 6-23, where reuse se-
quences for D are computed. Line 6 ensures this is repeated
i times, where i ∝ log(n). The choice of log(n) iterations
is empirically driven. After evaluating various options, we
found using log(n) iterations consistently achieved the highest
performance across different circuit sizes. Performance was
measured based on the likelihood of finding the lowest-width
circuit, and the quality of the solution relative to the number
of iterations. Using log(n) iterations provided an optimal
balance, ensuring a high probability of success in finding the
best circuit while minimizing computational resources.

Lines 7-8 guarantee that each iteration uses a fresh copy
of the circuit’s candidate matrix, C′, and creates a new reuse
sequence, U′. Line 9 ensures the algorithm stops when are no

Algorithm 1 GidNET Qubit Reuse Algorithm

Require: Q, n, i
Ensure: List of qubit reuse sequences

1: C← Compute the Candidate Matrix of Q
2: U← {{q0}, {q1}, ..., {qn−1}}
3: if ∀qt

i,qj (Cqt
i,qj

= 0) then
4: return U ▷ Irreducible circuit
5: end if
6: for range(i) do
7: C′ ← COPY(C)
8: U′ ← { }
9: while

∑
qt
i,qj

C′
qt
i,qj

> 0 do
10: r[qt

i]← sum of rows qt
i in C′ ▷ Equation 9

11: A← {qt
i} rows sums > 0, ▷ Equation 8

12: qt
i ← random element from A

13: Fi,C
′ ← BestReuseSequence(C′, qt

i) ▷ Algo. 2
14: if |Fi| > 1 then
15: U′ ← U′∥Fi
16: end if
17: end while
18: U′ ← MergeSubsets(U′)
19: U′ ← FinalizeReuse(U′, n)
20: if |U′| < |U| then
21: U← U′

22: end if
23: end for
24: return U

more edges in the candidate matrix. Lines 10 and 11 determine
the available qubits from C′ using Equation 8 and Equation 9
which are described in Definition 5, while line 12 randomly
selects a qubit from the available qubits A to compute its
reuse sequence. Using Algorithm 2, line 13 computes the
reuse sequence of the selected qubit and updates the candidate
matrix to remove one or more edges accordingly.

After identifying the reuse sequence of the selected qubit,

4

line 14 checks if it is valid (contains more than one qubit).
Line 15 appends a valid reuse sequence to the set of reuse se-
quences for D. In line 18, the algorithm consolidates the reuse
sequences by merging subsequences with common qubits that
could form a single reuse sequence. Line 19 adds any qubits
from the original circuit that lack a reuse sequence (ensuring
all qubits are accounted for). Lines 20-22 compare the reuse
sequence of the previous iteration to the current iteration,
ensuring that the best reuse sequences, i.e., the smallest set,
is chosen. A smaller set indicates that more qubits are being
reused within fewer sequences, effectively reducing the overall
width of the original circuit.

The remainder of this section goes through the details of
the most important subroutine in Algorithm 1 more carefully.

1) The BestReuseSequence Subroutine: The
BestReuseSequence subroutine (Algorithm 2) in line
13 of Algorithm 1 computes the reuse sequence, Fi, of qubit
qi using the candidate matrix, C.

Algorithm 2 Determine best reuse sequence for qubit qi

1: function BESTREUSESEQUENCE(C, qi)
2: Fi ← {qi}
3: Pi ← {qj} ▷ using Equation 2
4: while Pi ̸= ∅ do
5: D ← {} ▷ Placeholder for common neighbors
6: for qj ∈ Pi do
7: D[qj]← Nj ▷ using Equations 3 and 4
8: end for
9: if ∀qj ∈D,D[qj] = ∅ then

10: qj ← random element from Pi
11: Fi ← Fi ∪ {qj}
12: Pi ←D[qj]
13: else
14: S[qj]← Ij ▷ using Equations 6, 7, and 4
15: qj ←∼ {qj | S[qj] = max(S), ∀qj ∈ S}
16: Fi ← Fi ∪ {qj}
17: Pi ←D[qj]
18: end if
19: end while
20: for k = 1 to |Fi| − 1 do
21: qt

k ← Fi[k] ▷ terminal node
22: qr

k+1 ← Fi[k + 1] ▷ root node
23: C← UpdateCMatrix (C,qt

k,q
r
k+1) ▷ Algo. 3

24: end for
25: return Fi, C
26: end function

Examining the relationship between a qubit reuse se-
quence and the candidate matrix provides insight into
BestReuseSequence. This relationship can be explained by
highlighting the edges common to both the candidate graph
of the static quantum circuit Q and the simplified DAG, H′

of the transformed dynamic circuit D.
Example 2: Reuse sequence versus candidate matrix. The
simplified DAG H′ in Figure 3c has two distinct paths:

1) qr
0 → qt

0 → qr
2 → qt

2 → qr
3 → qt

3 → qr
1 → qt

1

2) qr
4 → qt

4

They correspond to the reuse sequences, F0 and F1 of virtual
qubits z0 and z1 respectively, in the dynamic circuit D. In this
representation, each qubit is replaced by a connection from its
root to its terminal, indicating when the qubit was initialized
and measured, respectively.

In the first path, the edges common to both the candidate
graph in Figure 2c and H′ in Figure 3c are the red-
colored edges, (qt

0,q
r
2), (qt

2,q
r
3) and (qt

3,q
r
1), connecting

the terminal of one qubit to the root of another qubit in H′.
Each edge is an entry in the candidate matrix C. The unique
set of logical qubits {q0,q2,q3,q1} constituting these edges
correspond to the qubits in F0, the reuse sequence of virtual
qubit z0. The second path in H′ has no edge going from the
terminal of a qubit to the root of another qubit. Hence, only
qubit q4 is in F1, the reuse sequence of virtual qubit z1.

Example 2 shows that the set of edges from terminals
to roots of any reuse sequence, Fi, is a subset of edges in
the candidate graph and hence, the candidate matrix. This
means that we can determine any Fi from C. However,
determining the edges that form Fi from the candidate matrix
is challenging. Finding an exact solution involves non-convex
optimization that would require O(n2) variables and O(n4)
[1], [2] constraints, making it impractical for large candidate
matrices. BestReuseSequence begins by identifying the sets of
qubits that can form a potential reuse sequence in the candidate
matrix (line 3 of Algorithm 2).

Definition 2: Potential reuse sequence. We define the poten-
tial reuse sequence, Pi, as the set of logical qubits that can
form a reuse sequence with logical qubit qi,

Pi = {qj | Cqt
i,qj

= 1, ∀j ∈ {0, 1, . . . , n− 1}}. (2)

Example 3: Potential reuse sequence illustration. To find
P0 of the candidate matrix in Figure 2d, we examine row qt

0

of C and its columns qj. The columns indexed by qr
1, qr

2, and
qr
3, where the entry in row qt

0 is 1, form this set. Thus, P0 =
{q1,q2,q3}. This indicates that qubits q1, q2, and q3 could
each potentially reuse q0 after q0 completes its operations
and could form a potential reuse sequence with q0.

The set Pi is important because for any reuse sequence,
Fj, that begins with logical qubit qi, all other qubits in that
sequence must be contained in Pi. This is because there is no
path in the DAG G, from qi to any qj ∈ Pi in the original
circuit.

The next step is to identify qubits in Pi that form the entries
in Fj and in what order. The constraint, however, is that the
reuse sequence must be acyclic, i.e., no qubit can appear in
Fj twice. To ensure this, any qubit qk added to Fj after qubit
qj must not have a pre-existing connection in G′ to qj, or to
any qubit preceding qj in Fj. This condition is satisfied if the
entry (qt

j,q
r
k) in the candidate matrix is 1.

Any of the qubits in Pi can be selected to be the first entry of
Fj. However, to determine which qj ∈ Pi will have the longest
reuse sequence while maintaining the acyclicity constraint, we

5

q0 : •

q1 :

q2 : •

q3 : •

q4 :

meas : /
5

0

��
1

��
2

��
3

��
4

��

(a) The original circuit, Q

z0 7→ q0 : • q2 : • q3 : • q1 :

z1 7→ q4 :

meas : /5
0

��
2

��
3

��
1

��
4

��

(b) The transformed dynamic circuit, D

qt
0 qr

0

qt
1 qr

1

qt
2 qr

2

qt
3 qr

3

qt
4 qr

4

(c) The simplified DAG, H′.

Fig. 3: (a) The original circuit Q uses 5 logical qubits (q0 . . .q4), whereas the dynamic circuit D in (b) uses just 2 virtual
qubits (z0, z1), at the expense of additional depth. (c) The simplified DAG H′ depicts only qubit connections, omitting gate
operations. It shows two reuse sequences. The first starts at q0 and passes through q2,q3,q1. The red lines are added to
facilitate identification of the qubit reuse sequence. The second is a direct path for q4, with no intermediate qubits.

compute the common neighbors, Nx for each qx ∈ Pi and
select the qubit whose Nx has the maximum size, |Nx|.
Definition 3: Common Neighbors. We define Nx, the com-
mon neighbors of qubit qx as:

Nx =
⋂

qk∈Tx

Pk, (3)

where

Tx = {Fj ∪ {qx}} (4)

is the updated reuse sequence.

The Nx with the maximum size is chosen because it contains
more qubits to select from, increasing the likelihood of finding
the longest path.

Example 4: Common neighbors illustration. Recall that in
example 3, we computed P0 = {q1,q2,q3}. To determine the
optimized F0 that could be derived from P0, we

1) Initialize F0 = {q0}
2) Using Equation 2 compute Pi for each qx ∈ P0 as:

P1 = {q0,q2,q3,q4}, P2 = {q1,q3} and P3 = {q1}
3) Using Equation 3 and Equation 2, compute Nx for each

qx ∈ P0:
• For q1:

T1 = F0 ∪ {q1} = {q0,q1},
N1 = P0 ∩ P1 = {q2,q3}.

• For q2:
T2 = F0 ∪ {q2} = {q0,q2},
N2 = P0 ∩ P2 = {q1,q3}.

• For q3:
T3 = F0 ∪ {q3} = {q0,q3},
N3 = P0 ∩ P3 = {q1}.

4) Compute the size of each Nx: |N1| = |N2| = 2, |N3| = 1.

Example 4 shows multiples Nx can have the same maximum
size. One option is to randomly select one of them, but this
may result in sub-optimal reuse sequences. Instead, we define a
secondary quality metric, which we denote as the reuse score.

Definition 4: Reuse score. We define the reuse score, Ij, of
qubit qj as:

Ij =
∑

{j ̸=k, ∀qj∈M}

|Nj ∩ Nk|, (5)

where M = {qj | |Nj| = s, ∀qj ∈ Pi} , (6)

and s = max ({|Nj| , ∀qj ∈ Pi}) (7)

is the maximum size of any set of common neighbors.

The qubit with the highest Ij is chosen because it has
a greater influence on the reuse sequence, Fj, compared to
other qubits. Here, influence means qj has greater potential
to further extend Fj if chosen, because of its Nx. If multiple
qubits have the same Ij, one of them is selected at random.
Example 5: Reuse score illustration. Given that |N1| = |N2|,
we compute Ij for each qubit,

I1 =
∑
{|N1 ∩ N2|} = 1, I2 =

∑
{|N2 ∩ N1|} = 1.

Since both qubits have the same reuse score, we can randomly
choose one to extend F0. Suppose q2 is selected. Then

F0 = T2 = {q0,q2}.

For every qubit qj selected from Pi and appended to Fi,
the Nx of the selected qubit qj becomes the updated Pi. The
set Pi is iteratively updated with Nx after each selection of qj

from Pi until no further qubits can be added to Fi from Pi.
Example 6: Reuse sequence computation. Having deter-
mined F0 = {q0,q2}, and P0 is updated to P0 = N2 =
{q1,q3}, we want to select the next qubit from the updated
P0. Following the steps in example 4, we have:

1) Using equations Equation 3 and Equation 2, we com-
pute Nx for each qx ∈ P0

• For q1:
T1 = F0 ∪ {q1} = {q0,q2,q1},
N1 = P0 ∩ P2 ∩ P1 = {q3}.

• For q3:
T3 = F0 ∪ {q3} = {q0,q2,q3},
N3 = P0 ∩ P2 ∩ P3 = {q1}.

2) compute the size of each Nx: |N1| = 1 and |N3| = 1.
Both q1 and q3 have the same |Nx| = 1. Computing Ij for
each yields I1 = I3 = 0. This means we can randomly select

6

either q1 or q3 to append to F0. Suppose q3 is randomly
selected, resulting in F0 = {q0,q2,q3}, then the updated
P0 = N3 = {q1}. Since there is only one element left in P0,
we append it to F0 and obtain F0 = {q0,q2,q3,q1} and
P0 = ∅. This completes the reuse sequence F0 of qubit q0.

Algorithm 3 Update Candidate Matrix After Selection

1: procedure UPDATECMATRIX(C, qt
i , qj)

2: Vr ← {qr
k |Cqt

i,q
r
k
= 0, ∀k ∈ {0, 1, . . . , n− 1}}

3: Vt ← {qt
k |Cqt

k,qj
= 0, ∀k ∈ {0, 1, . . . , n− 1}}

4: for (qt
k,q

r
l) ∈ {Qt} × {Qr} do

5: Cqt
k,q

r
l
← 0

6: end for
7: Cqt

i,q
r
k
← 0, ∀k ∈ {0, 1, . . . , n− 1}

8: Cqt
k,qj
← 0, ∀k ∈ {0, 1, . . . , n− 1}

9: return C
10: end procedure

After the reuse sequence of a qubit is determined, the
UpdateCMatrix procedure in algorithm 3 updates the candi-
date matrix, as done in [1]. This is crucial to avoid multiple
selections of an edge. It also prevents the creation of cycles
in the DAG and eliminates potential conflicts in qubit reuse.
It is possible that edges remain in the candidate matrix after
the update; this signals more qubit reuse opportunities. In this
case, a new set of available qubits is derived from the updated
candidate matrix.
Definition 5: Available qubits. We define the available qubits
in the candidate matrix as follows:

A = {qi | r[qi] > 0, ∀i ∈ {0, 1, . . . , n− 1}} (8)

where r is the sum of each row in C,

r[qi] =

n−1∑
j=0

C′
qt
i,qj

∀i ∈ {0, 1, . . . , n− 1}. (9)

Upon confirming availability of additional qubits, another
qubit is selected, its reuse sequence computed, and the candi-
date matrix updated. This process is repeated until no edges
remain in the candidate matrix (line 23 of Algorithm 2).

C. Complexity Analysis of the GidNET Qubit Reuse Algorithm

The time complexity of initializing variables and computing
matrices for a quantum circuit depends on its size. Given a
circuit with n qubits and m gates, it is converted into a DAG
in O(m) time, then simplified using Depth First Search (DFS).
Running DFS to determine an edge (qr

j,q
t
i) in the biadjacency

graph G′ has complexity O(m). In G′, there are at most n2

edges from roots qr
j to terminals qt

i, resulting in an overall
complexity of O(mn2). Computing the biadjacency matrix
from G′, and then the candidate matrix, both take O(n2).

After determining the optimized reuse sequence U, the
DAG is converted to a dynamic circuit. For dynamic circuit
conversion, edges are added to the DAG from U, requiring
O(m) for topological sorting and another O(m) for appending
instructions. The final step of updating instructions for each

qubit takes O(mn), resulting in a total time complexity of
O(m) + O(m) + O(mn) = O(mn). Hence, the total time
complexity for data structure creation and postprocessing is
O(m) +O(n2) +O(mn2) +O(mn) = O(mn2).

Next, we examine lines 6-17 of Algorithm 1. For each
of the log n iterations (line 6), the algorithm iterates over
the available qubits A in the candidate matrix (line 11) to
randomly select a qubit (line 12), leading to an outer loop
complexity that scales as O(log n). At each iteration, the
candidate matrix is duplicated to preserve its original state for
subsequent evaluations (line 7); this involves O(n2) operations
to replicate each matrix element. A significant portion of the
algorithm is spent in a while loop (lines 9-17), determining
potential reuse sequences (see Section IV-A) until exhaustion.
The sum operation within this loop, necessary to evaluate the
continuation condition (line 9), exhibits O(n2) complexity per
iteration. The progressive reduction of viable qubits reduces
the computational load of subsequent iterations.

The invocation of BestReuseSequence 2 (line 13) con-
stitutes the algorithmic core, tasked with identifying the
most efficient reuse sequence for a selected qubit. This
function’s complexity, preliminarily estimated at O(n3) (see
Section IV-C1), dominates the overall computational effort,
attributed to extensive matrix operations and sequence updates.
Assuming the main loop iterates p times, where p < n,
the cumulative complexity approximates to O(p · n3). Post-
calculation, the algorithm merges overlapping sequences and
adjusts the reuse list to include all qubits. MergeSubsets (line
18) merges pairs of elements in the final reuse sequence into
interconnected subsequences, ensuring all elements connected
directly or indirectly are in the same subsequence. This
involves iteratively checking and merging pairs with a function
that finds a common subsequence for a given pair, and another
function that merges two subsequences while maintaining
their order. The merging process, including additional passes
to ensure all interconnected subsequences are fully merged,
yields a time complexity of O(µ × ν × k2), where µ is the
number of pairs, ν is the number of merged subsequences, and
k is the average length of each subsequence.

FINALIZEREUSE (line 19) ensures all qubits are accounted
for. It first creates a set of all qubits in the current reuse
sequence, then compares this to a set of the original qubits
(n) to find any missing qubits. Missing qubits are appended
as individual elements to the set of reuse sequences. This
guarantees that every qubit is present, either as part of a
reuse sequence or independently, resulting in a complete and
finalized qubit reuse list. The time complexity is O(n).

Considering the algorithm’s iterative nature and the sig-
nificant impact of converting the circuit DAG to simplified
DAG, the BestReuseSequence function, and MergeSubsets
the cumulative complexity of GidNET can be conservatively
approximated as O(mn2 + µνk2 + pn3 log n).

1) Complexity Analysis of BestReuseSequence Function:
The BestReuseSequence function (Algorithm 2) is pivotal
in determining the optimal reuse sequence for a qubit qt

i.
Initialization of Fi (line 2) and Pi (line 3) are O(1) and O(n)

7

operations respectively. In lines 4-19, the while loop iterates
over potential qubits in Pi until no further qubits can be added
to Fi, potentially engaging with all n qubits in Pi. Inside the
while loop, for each qubit, qj in the current Pi, Nj is computed
and stored in the placeholder D. Each Nj requires O(n)
complexity. Thus, the for loop runs in O(n)×O(n) = O(n2)
to compute all Nj.

Lines 9-12 handle the case where all computed Nj in D are
empty, which involves checking if all values in D are empty,
in time O(n). Lines 13-18 are the cases where at least one
Nj is not empty and multiple qubits, qj have maximum Nj.
Finding the placeholder S in line 14 using Equations 6, 7, and
4 involves iterating over each qj in M. During each iteration, it
computes intersections with O(n) complexity, calculates the
sum of intersections with O(n) complexity and updates S
with O(1) complexity. This results in a total complexity of
O(n) × (O(n) + O(n) + O(1)) = O(n2). Line 15 has O(n)
complexity, while each update in lines 16-17 requires O(1)
complexity. Hence, the dominant time complexity of lines 9-
18 is O(n2).

Finally, lines 20-24 call UpdateCMatrix to update C if
|Fi| > 1. Each call to UpdateCMatrix is O(n2) (see Al-
gorithm 3 in Section IV-C2), and the loop runs up to n
times giving a total complexity of O(n2) × O(n) = O(n3).
Thus, the overall time complexity of the BestReuseSequence
is O(n2) +O(n3) +O(n2) +O(n3) = O(n3).

2) Complexity Analysis of Update Candidate Matrix After
Selection: The function updates the matrix based on a chosen
qubit’s terminal qt

i and another qubit’s root qr
j. Identifying

nodes not directly connected to qt
i and qj requires examining

each element along a specified row and column, which is O(n)
overall. Setting an entire row and column to zero is also O(n).
The most intensive task is the nested loop that runs for all pairs
in the Cartesian product of the set of root vertices Vr, and the
set of terminal vertices Vt (lines 4-6), updating the matrix
to account for indirect connections and possibly requiring a
review and update of every matrix entry. This step dominates,
leading to an overall complexity of O(n2).

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we present the experimental setup, bench-
marking results, and the statistical methods used to validate
the performance improvements of GidNET.

Two qubit reuse algorithms were compared against GidNET:
QNET [1], and the Qiskit implementation [33] of the qubit
reuse algorithm in [2]. Due to the proprietary implementation
of [2], direct access was unavailable as it requires a sub-
scription to Quantinuum’s H-series hardware 2. The authors
provided detailed insights into the algorithm’s principles for
academic understanding. For our study, we assume the Qiskit
implementation reflects the original algorithm’s functionality.

Experimental validation of GidNET was conducted on a set
of benchmark circuits, including both Google random circuit

2M. DeCross, E. Chertkov, M. Kohagen, and M. Foss-Feig, personal
communication, April 18, 2024.

sampling (GRCS) and Quantum Approximate Optimization
Algorithm (QAOA) circuits. We specifically chose these cir-
cuits because they were used in prior works to assess qubit
reuse algorithms on near-term quantum devices [1], [2].

Benchmarks were conducted on a virtual machine hosted
by an Acer Nitro N50-640 desktop running Windows 11 x64.
The host system was equipped with a 12th Gen Intel(R)
Core(TM) i7-12700F 2.10 GHz processor and 16 GB of RAM.
Virtualization was facilitated by VMware Workstation 17,
which ran an Ubuntu 22.04.1 LTS virtual machine. The VM
was configured with 8 CPU cores, 16 GB of RAM.

To assess the runtime efficiency of GidNET, QNET, and
Qiskit, "%timeit -o" command was employed within a
JupyterLab notebook environment. While it is acknowledged
that high-performance computing resources could potentially
enhance the feasibility range of the tested algorithms, the
results presented herein aim to approximate the conditions
accessible to most researchers and developers.

To ensure consistency, each randomly generated circuit
was seeded such that each algorithm operated on identical
circuit configurations. Performance data collected from the
application of the three algorithms was analyzed to determine
their efficacy. Runtime and circuit width before and after
application of each algorithm were recorded. Statistical tests
using polynomial regression were employed to validate the
theoretically obtained complexity analyses of GidNET and
QNET against experimental results.

A. Google Random Circuit Sampling (GRCS)

GRCS was introduced to demonstrate quantum computers’
capability to solve problems intractable for classical com-
puters, using random quantum circuits [34]. GRCS utilizes
circuits designed for qubits arranged in an n1 × n2 lattice,
which incorporates several cycles of quantum gates on all
qubits. First, a layer of Hadamard gates is applied across
all qubits. Subsequent cycles include a structured pattern: a
layer of controlled Z (CZ) alternately arranged according to
some pre-defined patterns, succeeded by a layer of single-qubit
gates—{X1/2, Y 1/2, T}—targeted at qubits not involved in
the CZ gates during the same cycle.

GRCS circuits with 16 to 144 qubits were generated at
depths 11, 12, and 15 for each qubit number. The performance
of the algorithms was evaluated based the reduction in circuit
width and the overall runtime.

Due to the random nature of GidNET and QNET, each
GRCS circuit was benchmarked 10 times, and the best (or
smallest) compiled circuit width recorded. Qiskit was only run
once for each circuit since it is a deterministic algorithm.

Figure 4 shows the final circuit widths. GidNET achieved
an improved circuit width for depth 11 GRCS circuits by an
average of 4.4% (the geometric mean is used for averages
reported throughout), with reductions reaching up to 21% for
circuit size 56 compared to QNET. Also, GidNET offers a
substantial advantage in width reduction over Qiskit, outper-
forming it by an average of 59.3%. This improvement becomes
increasingly significant for larger circuits, reaching up to 72%

8

width reduction for circuit sizes 132 and 144. For depths 12
and 15, GidNET and QNET achieved similar performance, but
they consistently outperformed Qiskit.

20 40 60 80 100 120 140
Initial Circuit Width

20

40

60

80

100

Fi
na

l C
ir

cu
it

 W
id

th

GidNET

QNET

Qiskit

Depth 11

Depth 12

Depth 15

Fig. 4: Comparison of the final circuit width achieved after
qubit reuse compilation by GidNET, QNET, and Qiskit algo-
rithms for GRCS circuits. GidNET performed better than the
other algorithms in most cases.

To determine runtime performance, each circuit configura-
tion was run a total of 7 times. The average runtime from these
executions was then computed, and is shown in Figure 5.

20 40 60 80 100 120 140
Initial Circuit Width

10 1

100

101

102

103

104

Av
er

ag
e

Ru
nt

im
e

(s
)

GidNET

QNET

Qiskit

Depth 11

Depth 12

Depth 15

GidNET Fit: c n3

QNET Fit: c n5

Fig. 5: Comparison of GidNET, QNET, and Qiskit average
runtimes for GRCS circuits.

Our study demonstrates that for GRCS circuits of depth 11,
GidNET is faster by an average of 97.4% (or 38.5×) reaching
up to 99.3% (or 142.9×) for circuit size 144 compared
to QNET. This result shows GidNET’s superior ability to
optimize quantum circuits, evidencing not only reduced circuit
width but also enhanced runtime performance. Although Qiskit
is on average 92.1% (or 12.7×) faster in runtime, the signifi-

cant improvement in circuit width (59.3%) by GidNET can be
considered an acceptable tradeoff. For GRCS circuits of depths
12 and 15, GidNET is on average 46.9× and 48.7× faster than
QNET respectively. Although Qiskit is 7.3× and 1.7× faster
for GRCS circuits of depths 12 and 15 respectively, GidNET
achieved a much better average width reduction (53.6% and
40.0%, respectively).

B. Quantum Approximate Optimization Algorithm (QAOA)

The second benchmark set comprised the Quantum Approx-
imate Optimization Algorithm (QAOA) [1], [2], [35], which
is designed for solving combinatorial optimization problems
on quantum computers. The algorithm operates by applying
a unitary transformation U(β⃗, γ⃗), structured as a product
of alternating operators, which are iteratively optimized to
minimize the cost function encoded in the quantum circuit.
The core of the QAOA is formed by repeatedly applying two
types of unitary transformations for a total of p layers, where
p influences solution quality and computational complexity:

U(β⃗, γ⃗) =

p∏
n=1

UB(βn)UC(γn). (10)

Here, UB(βn) = e−iβnHB and HB =
∑

i Xi is the mixing
Hamiltonian, and UC(γn) = e−iγnHC encodes the problem’s
cost Hamiltonian. We used that of MaxCut,

HC =
1

2

∑
(i,j)∈E

(1− zizj). (11)

We explored the runtime efficiency, and solution quality (with
respect to the final or compressed circuit width) of applying
the three algorithms to QAOA MaxCut problems on random
unweighted three-regular (U3R) graphs. An U3R graph is a
type of graph in which each vertex is connected to exactly
three other vertices [36]. The structural simplicity of U3R
graphs, where the number of quantum gates mirrors the num-
ber of edges and scales linearly with the number of vertices,
makes it a standard benchmark for QAOA on current hardware
[37]–[39]. Their shallow, broad layout, coupled with sparse
gate connectivity, position MaxCut QAOA circuits as an ideal
testbed for qubit reuse strategies.

Each algorithm was tested on QAOA circuits for two depths,
p = 1 (Figure 6 and Figure 7) and p = 2 (Figure 8
and Figure 9), to evaluate how depth affects compression
and performance for varying number of qubits. For each fixed
number of qubits, 20 random U3R graphs were generated
using the NetworkX package [40]. The same set of random
graphs were utilized to construct QAOA circuits for each of
the three competing qubit reuse algorithms. Both GidNET and
QNET algorithms were run 10 times for each circuit generated
from each random graph, and the best result was recorded.

Figure 6 shows the boxplot comparing the circuit widths
achieved by GidNET, QNET, and Qiskit for various circuit
sizes. The range of widths, indicated by the vertical span
of the boxes and whiskers, provides insight into the spread
and median values of the circuit widths for each qubit reuse

9

framework’s performance for different circuit sizes. Outliers
are shown as individual points beyond the whiskers. The
presence of outliers can indicate specific instances where a
framework handles certain circuits unusually well (or poorly).

6 10 14 18 22 26 30 34 38 42 46 50
Initial Circuit Width

5

10

15

20

25

Fi
na

l C
ir

cu
it

 w
id

th

GidNET
QNET
Qiskit

Fig. 6: Comparison of final circuit widths achieved after qubit
reuse compilation by GidNET, QNET, and Qiskit for QAOA
circuits, p = 1.

GidNET and QNET show similar performance in terms of
circuit width across most sizes, with tightly grouped medians
that are generally lower than those of Qiskit. Qiskit tends to
have a wider spread and higher median values, particularly
for larger circuit sizes. The presence of more outliers in
Qiskit’s data could suggest that it is either particularly sensitive
to certain circuit configurations or it might exploit specific
configurations more effectively than others.

To determine the algorithmic runtime, each QAOA circuit
generated from the U3R graph configuration was evaluated
seven times. The average runtime across evaluations was
computed to provide a consistent measure of performance.

In evaluating the complexity of the three qubit reuse algo-
rithms across various QAOA circuit sizes for p = 1, GidNET
demonstrated significant performance superiority when com-
pared to QNET and Qiskit as shown in Figure 7. Our analysis
showed that on average, GidNET operates approximately
87.9% (or 8.3×) faster than QNET and 98.1% (or 52.6×)
faster than Qiskit. This substantial speed advantage highlights
GidNET’s ability in managing qubit resources, positioning it
as a highly effective tool for qubit reuse.

Figure 8 compares the performance of GidNET and QNET
qubit reuse algorithms on QAOA circuits with p = 2. Both
algorithms demonstrated similar effectiveness across circuit
sizes, with GidNET showing a marginal advantage in achiev-
ing slightly smaller widths, especially as circuit complexity
increased. Our result shows that on average, GidNET achieved
1.4% improvement in circuit width reduction reaching up to
3.4% for circuit size 42 over QNET. The variability in widths
also grew with circuit size for both algorithms. We excluded

10 20 30 40 50
Initial Circuit Width (n)

10 3

10 2

10 1

100

101

102

Av
er

ag
e

Ru
nt

im
e

(s
)

GidNET Fit: c n3

QNET Fit: c n5

GidNET Experimental
QNET Experimental
Qiskit Experimental

Fig. 7: Comparison of GidNET, QNET and Qiskit Average
Runtime for QAOA Circuit, p=1.

the Qiskit qubit reuse algorithm from this analysis as its longer
runtime made it impractical especially for larger circuits.

6 10 14 18 22 26 30 34 38 42 46 50
Initial Circuit Width

5

10

15

20

25

30

35

Fi
na

l C
ir

cu
it

 w
id

th

GidNET
QNET

Fig. 8: Comparison of final circuit widths after qubit reuse
compilation by GidNET and QNET for QAOA circuits, p=2.

Figure 9 compares the runtimes of GidNET and QNET
for QAOA circuits with p = 2. The analysis reveals that
GidNET generally demonstrates better runtime, particularly as
the circuit size increases. GidNET shows an average runtime
improvement of 82.9% (5.8×) over QNET. This performance
becomes more pronounced for larger circuits: for 50-qubit
circuits, we observe a runtime improvement of about 97.4%
(38.5×). This pattern indicates that GidNET is particularly ef-
fective in managing the increased complexity of larger circuits,
making it a potentially more suitable choice for extensive qubit
reuse tasks where runtime is critical.

10

10 20 30 40 50
Initial Circuit Width (n)

10 3

10 2

10 1

100

101

Av
er

ag
e

Ru
nt

im
e

(s
)

GidNET Fit: c n2

QNET Fit: c n5

GidNET Experimental
QNET Experimental

Fig. 9: Comparison of GidNET and QNET Average Runtime
for QAOA Circuit, p=2 (average over 7 runs of 1 graph).

C. Statistical Validation of Complexity Analysis

Statistical analysis via polynomial regression was employed
to evaluate how well the theoretically obtained complexity
analyses of GidNET and QNET align with experimental
results. This approach involved fitting polynomial models to
the runtime data, with each model’s coefficients tested to
ascertain their impact. The primary objective was to validate
the theoretical predictions against actual performance as circuit
complexity increased. The selected degrees of the polynomials
were based on reported computational complexities. QNET’s
complexity was previously established as O(mn + n5) [1],
prompting our choice of a fifth-degree polynomial (n5) for
its analysis. Similarly, GidNET, with a reported complexity of
O(mn2+µνk2+pn3 log n), was analyzed using a third-degree
polynomial (n3).

F-tests and R-squared values were employed to assess the
models across various circuits. The results are summarized
in Table I. To avoid cluttering Figure 5, we show only the
polynomial fit for depth 11 GRCS circuits for GidNET and
QNET. The F-statistics were 2874.84 for GidNET and 3725.56
for QNET, indicating strong model fits, with R-squared values
at 0.9990 and 0.9996 respectively, demonstrating that nearly
all variance in the experimental data was accounted for.

In the case of QAOA circuits with p = 1, GidNET’s F-
statistic was 614.2, and QNET’s was 19968.28, with cor-
responding R-squared values of 0.9999 and 0.99996, indi-
cating that both models provide a highly adequate fit to
the reported complexities. For QAOA circuits with p = 2,
GidNET was fitted with polynomial n2. This is because,
although polynomial n3 and n2 have approximately the same
R-squared value of 0.998, n3 with F-statistic of 800.95 shows
a worse fit compared to n2 with F-statistic of 1117.60. Also,
depending on the circuit structure, it is common that not all
the GidNET iterations are needed to achieve optimal reuse.
QNET maintained a strong model fit with an F-statistic of

1925.77 and an R-squared value of 0.9996. These results not
only substantiate the regression models’ fit but also reinforce
the credibility of the statistical validation by directly tying it
to the theoretical framework of each algorithm.

TABLE I: Statistical Analysis Results for GidNET and QNET
on Various Circuits

Algorithm Circuit R-squared Value F-statistic
GidNET GRCS Circuit (d = 11) 0.9990 2874.84
QNET GRCS Circuit (d = 11) 0.9996 3725.56
GidNET QAOA Circuit (p = 1) 0.9971 614.2
QNET QAOA Circuit (p = 1) 1.0000 19968.28
GidNET QAOA Circuit (p = 2) 0.9976 1117.60
QNET QAOA Circuit (p = 2) 0.9996 1925.77

We suspect the variations in the fit of polynomial models for
QAOA and GRCS circuits can be attributed to the difference
in circuit sizes used in the experiments. Specifically, QAOA
circuits were tested with a smaller number of qubits compared
to the GRCS circuits. The accuracy of the polynomial models
tends to improve for circuits with more qubits.

VI. CONCLUSION AND FUTURE WORK

This paper introduces GidNET (Graph-based Identification
of qubit NETwork), a novel algorithm aimed at optimizing
qubit reuse in quantum circuits to manage quantum resource
constraints in current architectures. By leveraging the circuit’s
DAG and candidate matrix, GidNET efficiently identifies path-
ways for qubit reuse to reduce quantum resource requirements.

The core advantage of GidNET over other algorithms lies
in its ability to offer improved solutions with more scalable
computational demands. Our comparative analysis with exist-
ing algorithms, particularly QNET, shows that GidNET not
only achieves smaller compiled circuit widths by an average
of 4.4%, with reductions reaching up to 21% for larger circuits,
but speeds up computations, achieving significant runtime
improvements by an average of 97.4% (or 38.5×) reaching
up to 99.3% (or 142.9×) across varying circuit sizes. This
makes GidNET a highly effective choice for larger and more
complex quantum circuits where both compilation time and
qubit management are crucial factors. These results under-
score the critical role of advanced qubit reuse strategies in
optimizing quantum computations, providing a robust solution
that bridges the gap between exact algorithmic precision and
heuristic scalability, and a valuable benchmark for further
development in this field.

GidNET, while offering advancements in qubit reuse op-
timization for quantum circuits, is not without limitations.
For example, the performance of GidNET could vary across
different quantum hardware architectures, requiring specific
tailoring to individual systems. Hence, future enhancements
to GidNET could involve adapting it for specific quantum
hardware architectures, and expanding its scope to multi-
objective optimizations that consider not only circuit width but
also depth and gate count. Additionally, integrating machine
learning techniques could refine its graph-based strategies,
potentially offering more dynamic and optimized qubit reuse

11

sequences. A better method for updating the candidate matrix
could result in improved complexity of GidNET making it
possible to use GidNET for industry grade circuits requiring
large number of qubits. These advancements could make Gid-
NET a more versatile and powerful tool in optimizing quantum
circuits for practical quantum computing applications.

ACKNOWLEDGMENTS

GU acknowledges funding from the NSERC CREATE in
Quantum Computing Program, grant number 543245. TA
acknowledges funding from NSERC. ODM is funded by
NSERC, the Canada Research Chairs program, and UBC.

REFERENCES

[1] K. Fang, M. Zhang, R. Shi, and Y. Li, “Dynamic quantum circuit
compilation,” arXiv preprint arXiv:2310.11021, 2023.

[2] M. DeCross, E. Chertkov, M. Kohagen, and M. Foss-Feig, “Qubit-reuse
compilation with mid-circuit measurement and reset,” Physical Review
X, vol. 13, no. 4, p. 041057, 2023.

[3] M. Sadeghi, S. Khadirsharbiyani, and M. T. Kandemir, “Quantum circuit
resizing,” arXiv preprint arXiv:2301.00720, 2022.

[4] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses,
M. Allman, C. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer et al.,
“Demonstration of the trapped-ion quantum ccd computer architecture,”
Nature, vol. 592, no. 7853, pp. 209–213, 2021.

[5] IBM, “Quantum dynamic circuits,” 2023, online; accessed
2023-04-10. [Online]. Available: https://www.ibm.com/quantum/blog/
quantum-dynamic-circuits

[6] A. D. Córcoles, M. Takita, K. Inoue, S. Lekuch, Z. K. Minev, J. M.
Chow, and J. M. Gambetta, “Exploiting dynamic quantum circuits in
a quantum algorithm with superconducting qubits,” Physical Review
Letters, vol. 127, no. 10, p. 100501, 2021.

[7] C. Ryan-Anderson, N. Brown, M. Allman, B. Arkin, G. Asa-Attuah,
C. Baldwin, J. Berg, J. Bohnet, S. Braxton, N. Burdick et al., “Imple-
menting fault-tolerant entangling gates on the five-qubit code and the
color code,” arXiv preprint arXiv:2208.01863, 2022.

[8] E. Chertkov, J. Bohnet, D. Francois, J. Gaebler, D. Gresh, A. Hankin,
K. Lee, D. Hayes, B. Neyenhuis, R. Stutz et al., “Holographic dynamics
simulations with a trapped-ion quantum computer,” Nature Physics,
vol. 18, no. 9, pp. 1074–1079, 2022.

[9] J. Yirka and Y. Subaşı, “Qubit-efficient entanglement spectroscopy using
qubit resets,” Quantum, vol. 5, p. 535, 2021.

[10] C. Harvey, R. Yeung, and K. Meichanetzidis, “Sequence processing with
quantum tensor networks,” arXiv preprint arXiv:2308.07865, 2023.

[11] S. Brandhofer, I. Polian, and K. Krsulich, “Optimal qubit reuse for near-
term quantum computers,” in 2023 IEEE International Conference on
Quantum Computing and Engineering (QCE), vol. 1. IEEE, 2023, pp.
859–869.

[12] F. Hua, Y. Jin, Y. Chen, S. Vittal, K. Krsulich, L. S. Bishop, J. Lapeyre,
A. Javadi-Abhari, and E. Z. Zhang, “Exploiting qubit reuse through
mid-circuit measurement and reset,” arXiv preprint arXiv:2211.01925,
2022.

[13] T. Peng, A. Harrow, M. Ozols, and X. Wu, “Simulating large quantum
circuits on a small quantum computer,” Physical Review Letters, vol.
125, p. 150504, 2020.

[14] G. Uchehara, T. M. Aamodt, and O. Di Matteo, “Rotation-inspired cir-
cuit cut optimization,” in 2022 IEEE/ACM Third International Workshop
on Quantum Computing Software (QCS). IEEE, 2022, pp. 50–56.

[15] M. A. Perlin, Z. H. Saleem, M. Suchara, and J. C. Osborn, “Quantum
circuit cutting with maximum-likelihood tomography,” npj Quantum
Information, vol. 7, no. 1, p. 1–11, 2021.

[16] W. Tang, T. Tomesh, M. Suchara, J. Larson, and M. Martonosi, “Cutqc:
using small quantum computers for large quantum circuit evaluations,” in
Proceedings of the 26th ACM International conference on architectural
support for programming languages and operating systems, 2021, pp.
473–486.

[17] A. Lowe, M. Medvidović, A. Hayes, L. J. O’Riordan, T. R. Bromley,
J. M. Arrazola, and N. Killoran, “Fast quantum circuit cutting with
randomized measurements,” Quantum, vol. 7, p. 934, 2022.

[18] L. Brenner, C. Piveteau, and D. Sutter, “Optimal wire cutting with
classical communication,” arXiv preprint arXiv:2302.03366, 2023.

[19] H. Harada, K. Wada, and N. Yamamoto, “Optimal parallel wire cutting
without ancilla qubits,” arXiv preprint arXiv:2303.07340, 2023.

[20] C. Piveteau and D. Sutter, “Circuit knitting with classical communica-
tion,” arXiv preprint arXiv:2205.00016, 2022.

[21] K. Mitarai and K. Fujii, “Overhead for simulating a non-local channel
with local channels by quasiprobability sampling,” Quantum, vol. 5, p.
388, 2021.

[22] C. Ufrecht, M. Periyasamy, S. Rietsch, D. D. Scherer, A. Plinge, and
C. Mutschler, “Cutting multi-control quantum gates with zx calculus,”
arXiv preprint arXiv:2302.00387, 2023.

[23] K. Mitarai and K. Fujii, “Constructing a virtual two-qubit gate by
sampling single-qubit operations,” New Journal of Physics, vol. 23,
no. 2, p. 023021, 2021.

[24] S. Brandhofer, I. Polian, and K. Krsulich, “Optimal qubit reuse for near-
term quantum computers,” in 2023 IEEE International Conference on
Quantum Computing and Engineering (QCE), vol. 1. IEEE, 2023, pp.
859–869.

[25] O. Di Matteo, M. A. Perlin, Z. H. Saleem, M. Suchara, and J. C.
Osborn, “Quantum-circuit cutting fills a gaping quantum computing
hole,” Communications of the ACM, vol. 65, no. 1, p. 18–20, 2022.

[26] F. Hua, Y. Jin, Y. Chen, S. Vittal, K. Krsulich, L. S. Bishop, J. Lapeyre,
A. Javadi-Abhari, and E. Z. Zhang, “Caqr: A compiler-assisted approach
for qubit reuse through dynamic circuit,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, 2023, pp. 59–71.

[27] A. Pawar, Y. Li, Z. Mo, Y. Guo, Y. Zhang, X. Tang, and J. Yang,
“Integrated qubit reuse and circuit cutting for large quantum circuit
evaluation,” arXiv preprint arXiv:2312.10298, 2023.

[28] S. Niu, A. Hashim, C. Iancu, W. A. de Jong, and E. Younis, “Pow-
erful quantum circuit resizing with resource efficient synthesis,” arXiv
preprint arXiv:2311.13107, 2023.

[29] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th annual symposium on foundations
of computer science. Ieee, 1994, pp. 124–134.

[30] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, 1996, pp. 212–219.

[31] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp.
195–202, 2017.

[32] A. Paler, R. Wille, and S. J. Devitt, “Wire recycling for quantum circuit
optimization,” Physical Review A, vol. 94, no. 4, p. 042337, 2016.

[33] Q. Community, “Qiskit qubit reuse,” https://github.com/
qiskit-community/qiskit-qubit-reuse, 2023, gitHub repository.

[34] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding,
Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, “Characterizing
quantum supremacy in near-term devices,” Nature Physics, vol. 14, no. 6,
pp. 595–600, 2018.

[35] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[36] Y. Chai, Y.-J. Han, Y.-C. Wu, Y. Li, M. Dou, and G.-P. Guo, “Shortcuts
to the quantum approximate optimization algorithm,” Physical Review
A, vol. 105, no. 4, p. 042415, 2022.

[37] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum
approximate optimization algorithm: Performance, mechanism, and im-
plementation on near-term devices,” Physical Review X, vol. 10, no. 2,
p. 021067, 2020.

[38] M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger, F. Arute,
K. Arya, J. Atalaya, J. C. Bardin, R. Barends, S. Boixo et al., “Quantum
approximate optimization of non-planar graph problems on a planar
superconducting processor,” Nature Physics, vol. 17, no. 3, pp. 332–
336, 2021.

[39] S. Ebadi, A. Keesling, M. Cain, T. T. Wang, H. Levine, D. Bluvstein,
G. Semeghini, A. Omran, J.-G. Liu, R. Samajdar et al., “Quantum
optimization of maximum independent set using rydberg atom arrays,”
Science, vol. 376, no. 6598, pp. 1209–1215, 2022.

[40] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

12

https://www.ibm.com/quantum/blog/quantum-dynamic-circuits
https://www.ibm.com/quantum/blog/quantum-dynamic-circuits
https://github.com/qiskit-community/qiskit-qubit-reuse
https://github.com/qiskit-community/qiskit-qubit-reuse

	Introduction
	Related Work and the Novelty of GidNET
	Data Structures
	GidNET Qubit Reuse Algorithm
	Qubit reuse sequence
	Description of GidNET Algorithm
	The BestReuseSequence Subroutine

	Complexity Analysis of the GidNET Qubit Reuse Algorithm
	Complexity Analysis of BestReuseSequence Function
	Complexity Analysis of Update Candidate Matrix After Selection

	Experimental Setup and Results
	Google Random Circuit Sampling (GRCS)
	Quantum Approximate Optimization Algorithm (QAOA)
	Statistical Validation of Complexity Analysis

	Conclusion and Future Work
	References

