
Divergence-Aware Warp Scheduling

Timothy G. Rogers
Department of Computer and

Electrical Engineering
University of British Columbia

tgrogers@ece.ubc.ca

Mike O’Connor
NVIDIA Research

moconnor@nvidia.com

Tor M. Aamodt
Department of Computer and

Electrical Engineering
University of British Columbia

aamodt@ece.ubc.ca

ABSTRACT
This paper uses hardware thread scheduling to improve the perfor-
mance and energy efficiency of divergent applications on GPUs.
We propose Divergence-Aware Warp Scheduling (DAWS), which
introduces a divergence-based cache footprint predictor to estimate
how much L1 data cache capacity is needed to capture intra-warp
locality in loops. Predictor estimates are created from an online
characterization of memory divergence and runtime information
about the level of control flow divergence in warps. Unlike prior
work on Cache-Conscious Wavefront Scheduling, which makes re-
active scheduling decisions based on detected cache thrashing,
DAWS makes proactive scheduling decisions based on cache us-
age predictions. DAWS uses these predictions to schedule warps
such that data reused by active scalar threads is unlikely to ex-
ceed the capacity of the L1 data cache. DAWS attempts to shift
the burden of locality management from software to hardware, in-
creasing the performance of simpler and more portable code on
the GPU. We compare the execution time of two Sparse Matrix
Vector Multiply implementations and show that DAWS is able to
run a simple, divergent version within 4% of a performance op-
timized version that has been rewritten to make use of the on-chip
scratchpad and have less memory divergence. We show that DAWS
achieves a harmonic mean 26% performance improvement over
Cache-Conscious Wavefront Scheduling on a diverse selection of
highly cache-sensitive applications, with minimal additional hard-
ware.

Categories and Subject Descriptors
C.1.4 [Computer System Organization]: Processor Architectures—
Parallel Architectures; D.1.3 [Software]: Programming Techniques—
Concurrent Programming

General Terms
Design, Performance

Keywords
GPU, Caches, Scheduling, Divergence
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MICRO-46, December 7-11, 2013, Davis, CA, USA.
Copyright 2013 ACM 978-1-4503-2638-4/13/12...$15.00.
http://dx.doi.org/10.1145/2540708.2540718

Cache
A[0]

A[64]

A[96]

A[128]

Warp0 0 - - -

Warp1 - 567

int C[]={0,64,96,128,160,160,192,224,256};

void sum_row_csr(float* A,) {

 float sum = 0;

 int i =C[tid];

 while(i < C[tid+1]) {

 sum += A[i];

 ++i;

 }

Example Compressed Sparse Row Kernel

Warp1 4567

Warp00123

Warp1 - 567

Time0 Time1 Time2

2st Iter

1st Iter Stop

Warp0 0123

1st Iter 33rd Iter

Go

Go

Go

Go

Go

2nd Iter

Cache Cache

1st Iter
Divergent Branch

Uncoalesced
Load

Active
Thread IDs

A[0]

A[64]

A[96]

A[128]

A[32]

A[160]

A[192]

A[224]

Figure 1: DAWS example. Cache: 4 entries, 128B lines, fully as-
soc. By Time0, warp 0 has entered loop and loaded 4 lines into
cache. By Time1, warp 0 has captured spatial locality, DAWS
measures footprint. Warp 1 is prevented from scheduling as
DAWS predicts it will oversubscribe cache. By Time2, warp 0
has accessed 4 lines for 32 iterations and loaded 1 new line. 3
lanes have exited loop, decreasing footprint. Warp 1 and warp
0 are allowed to capture spatial locality together.

1. INTRODUCTION
In the face of diminished voltage scaling [10], massively mul-

tithreaded programmable accelerators, like Graphics Processing
Units (GPUs), can potentially make more efficient use of the avail-
able chip power budget. GPUs gain some of their efficiency by uti-
lizing a Single Instruction Multiple Thread (SIMT) [27] execution
model. SIMT execution groups a collection of threads into a warp
(or wavefront) to run them on the hardware’s Single Instruction
Multiple Data (SIMD) cores. SIMT execution can be very efficient
on highly regular code where control flow and memory accesses
can be predicted by the programmer, who can restructure their al-
gorithm to make it more efficient on a GPU, if necessary. However,
restructuring highly irregular applications can be difficult or im-
possible without completely redesigning the software. Moreover,
porting an existing piece of parallel code to an accelerator and hav-
ing it run efficiently is a challenge [34]. Running irregular code on
a GPU can cause both memory and control flow divergence. Mem-
ory divergence (or an uncoalesced memory access) occurs when
threads in the same warp access different regions of memory in the
same SIMT instruction. Control flow (or branch) divergence oc-
curs when threads in the same warp execute different control flow
paths. This work focuses on improving the performance of several
such irregular applications through warp scheduling.

Figure 1 presents a small example of divergent code to illus-
trate how scheduling can be used can make effective use of on-chip
cache capacity. The example code sums each row of a Compressed

Sparse Row (CSR) [5] data set. Each thread in the kernel sums one
row using a loop. This code is divergent due to the data dependent
nature of each sparse row’s length and the position of each row’s
values in memory. This translates into branch divergence when
threads within a warp travel through the loop a different number
of times and memory divergence when threads access A[i]. This
code has three key characteristics that can be leveraged to make
effective use of cache capacity: (1) Each thread has spatial local-
ity across loop iterations, since i is incremented by 1. (2) Each
warp’s load to A[i] can access multiple cache lines. (3) The num-
ber of cache lines accessed when a warp loads A[i] is dependent on
the warp’s active mask. Figure 1 also illustrates how our proposed
Divergence-Aware Warp Scheduling (DAWS) technique takes these
characteristics into account to maximize on-chip cache utilization.
In the example, two warps (each with 4 threads) share a cache with
4 entries. Warp 0 enters the loop first and each of its threads loads
its section of A into the cache. During warp 0’s execution of the
loop, Divergence-Aware Warp Scheduling learns that there is both
locality and memory divergence in the code. At Time1, warp 1 is
ready to enter the loop body. Divergence-Aware Warp Scheduling
uses the information gathered from warp 0 to predict that the data
loaded by warp 1’s active threads will evict data reused by warp
0 which is still in the loop. To avoid oversubscribing the cache,
Divergence-Aware Warp Scheduling prevents warp 1 from entering
the loop by de-scheduling it. Now warp 0 captures its spatial local-
ity in isolation until its threads begin to diverge. By Time2, warp
0 has only one thread active and its cache footprint has decreased.
Divergence-Aware Warp Scheduling detects this divergence and al-
lows warp 1 to proceed since the aggregate footprint of warp 0 and
warp 1 fits in cache.

The code in Figure 1 contains intra-warp locality. Intra-warp lo-
cality occurs when data is loaded then re-referenced by the same
warp [33]. The programmer may be able to re-write the code in
Figure 1 to remove intra-warp locality. Hong et al. [16] perform
such an optimization to Breadth First Search (BFS). However, this
can require considerable programmer effort. Another option is
to have the compiler restructure the code independent of the pro-
grammer, however static compiler techniques to re-arrange pro-
gram behaviour are difficult in the presence of data dependant ac-
cesses [35]. One of this paper’s goals is to enable the efficient exe-
cution of more workloads on accelerator architectures. We seek to
decrease the programmer effort and knowledge required to use the
hardware effectively, while adding little to the hardware’s cost.

Previously proposed work on Cache-Conscious Wavefront Schedul-
ing (CCWS) [33] uses a reactionary mechanism to scale back the
number of warps sharing the cache when thrashing is detected.
However, Figure 1 illustrates that cache footprints in loops can be
predicted, allowing thread scheduling decisions to be made in a
proactive manner. Our technique reacts to changes in thread ac-
tivity without waiting for cache thrashing to occur. By taking ad-
vantage of dynamic thread activity information, Divergence-Aware
Warp Scheduling is also able to outperform a scheduler that stat-
ically limits the number of warps run based on previous profiling
runs of the same workload [33].

This paper makes the following contributions:
• It quantifies the relationship between data locality, branch

divergence and memory divergence in GPUs on a set of eco-
nomically important, highly cache-sensitive workloads.

• It demonstrates that code regions can be classified by both
data locality and memory divergence.

• It demonstrates, with an example, that DAWS enables unop-
timized GPU code written in a scalar fashion to attain 96% of

the performance of optimized code that has been re-written
for GPU acceleration.

• It proposes a novel Divergence-Aware Warp Scheduling
(DAWS) mechanism which classifies static load instructions
based on their memory usage. It uses this information, in
combination with the control flow mask, to appropriately
limit the number of scalar threads executing code regions
with data locality. DAWS achieves a harmonic mean 26%
speedup over Cache-Conscious Wavefront Scheduling [33]
and 5% improvement over a profile-based warp limiting so-
lution [33] with negligible area increase over CCWS and
only 0.17% more area than simple warp schedulers.

This work focuses on a set of GPU accelerated workloads from
server computing and high performance computing that are both
economically important and whose performance is highly sensi-
tive to level one data L1D cache capacity. These workloads en-
compass a number of applications from server computing such as
Memcached [15], a key-value store application used by companies
like Facebook and Twitter, and a sparse matrix vector multiply ap-
plication [9] which is used in Big Data processing.

2. A PROGRAMMABILITY CASE STUDY
This section presents a case study using two implementations

of Sparse Matrix Vector Multiply (SPMV) from the SHOC bench-
mark suite [9] 1. This case study is chosen because it is a real
example of code that has been ported to the GPU then optimized.
Example 1 presents SPMV-Scalar which is written such that each
scalar thread processes one row of the sparse matrix. This is simi-
lar to how the algorithm might be implemented on a multi-threaded
CPU. The bold code in SPMV-Scalar highlights its divergence is-
sues. Example 2 shows SPMV-Vector which has been optimized
for performance on the GPU. Both pieces of code generate the
same result and employ the same data structure. The bold code in
SPMV-Vector highlights the added complexity introduced by GPU-
specific optimizations.

One goal of this work is to enable less optimized code such as
Example 1 to achieve performance similar to the optimized code
in Example 2. In SPMV-Scalar, the accesses to cols[j] and val[j]
will have significant memory divergence and the data-dependent
loop bounds will create branch divergence. Like the code in Fig-
ure 1, SPMV-Scalar has spatial locality within each thread since
j is incremented by one each iteration. Divergence-Aware Warp
Scheduling seeks to capture this locality.

In the SPMV-Vector version each warp processes one row of the
sparse matrix. Restructuring the code in this way removes much
of the memory divergence present in the scalar version since the
accesses to cols[j] and val[j] will have spatial locality across each
SIMT instruction. However, this version of the code forces the pro-
grammer to reason about warp length, the size of on-chip shared
memory, and it requires a parallel reduction of partial sums to be
performed for each warp. In addition to writing and debugging the
additional code required for SPMV-Vector, the programmer must
tune thread block sizes based on which machine the code is run
on. Even if the programmer performed all these optimizations
correctly, there is no guarantee that SPMV-Vector will outperform
SPMV-Scalar since the shape and size of the input matrix may ren-
der the optimizations ineffective. Previous work has shown that
sparse matrices with less non-zero elements per row than the GPU’s

1For brevity, some keywords in the original version of Examples 1
and 2 were removed. All of our experiments are run without modi-
fying the original kernel code.

Example 1 Highly Divergent SPMV-Scalar Kernel

__global__ void
spmv_csr_scalar_kernel(const float* val,

const int* cols,
const int* rowDelimiters,
const int dim,
float* out)

{
int myRow = blockIdx.x * blockDim.x

+ threadIdx.x;
texReader vecTexReader;

if (myRow < dim)
{

float t = 0.0f;
int start = rowDelimiters[myRow];
int end = rowDelimiters[myRow+1];
// Divergent Branch
for (int j = start; j < end; j++)
{

// Uncoalesced Loads
int col = cols[j];
t += val[j] * vecTexReader(col);

}
out[myRow] = t;

}
}

Example 2 GPU-Optimized SPMV-Vector Kernel

__global__ void
spmv_csr_vector_kernel(const float* val,

const int* cols,
const int* rowDelimiters,
const int dim,
float * out)

{
int t = threadIdx.x;
int id = t & (warpSize-1);
int warpsPerBlock = blockDim.x / warpSize;
int myRow = (blockIdx.x * warpsPerBlock)

+ (t / warpSize);
texReader vecTexReader;

__shared__ volatile
float partialSums[BLOCK_SIZE];

if (myRow < dim)
{

int warpStart = rowDelimiters[myRow];
int warpEnd = rowDelimiters[myRow+1];
float mySum = 0;
for (int j = warpStart + id;

j < warpEnd; j += warpSize)
{

int col = cols[j];
mySum += val[j] * vecTexReader(col);

}
partialSums[t] = mySum;

// Reduce partial sums
if (id < 16)

partialSums[t] += partialSums[t+16];
if (id < 8)

partialSums[t] += partialSums[t+ 8];
if (id < 4)

partialSums[t] += partialSums[t+ 4];
if (id < 2)

partialSums[t] += partialSums[t+ 2];
if (id < 1)

partialSums[t] += partialSums[t+ 1];

// Write result
if (id == 0)
{

out[myRow] = partialSums[t];
}

}
}

Shader Core

Memory
Port

Shader Core

Memory
Port

Memory Partition

L2
Cache
Portion

Port

Off-Chip
DRAM

Channel
Controller

Memory Partition

L2
Cache
Portion

Port

Off-Chip
DRAM

Channel
ControllerInterconnect

Network

Memory Partition

L2
Cache
Portion

Port

Off-Chip
DRAM

Channel
Controller

Shader Core

Memory
Port

Fetch/

Decode

Warp Issue Arbiter

Registers/

Execution

I-Buffer/

Scoreboard
Warps Ready

[1:N]

Inst. (WID) Lost

Locality

Detected

Memory Unit

L1D

Cache

Inst. +

Exec Mask

Coalescer

Host CPU

GPU

Launch Kernel

Branch

Unit

1

2

3

4

5

7

6

Figure 2: Overview of our baseline GPGPU-Sim pipeline.

warp width do not take advantage of the potential increase in coa-
lesced accesses offered by SPMV-Vector [6].

This reliance on per-machine tuning and the unpredictability of
manual optimization techniques can make programming GPUs dif-
ficult. In Section 7.2 we demonstrate that Divergence-Aware Warp
Scheduling allows the programmer to write the simpler, more portable
SPMV-Scalar while still capturing almost all of the performance
benefit of SPMV-Vector.

This case study should not be construed to suggest that Divergence-
Aware Warp Scheduling can replicate the performance of any hand
tuned optimization or generally solve the performance issues sur-
rounding divergence on GPUs. The study is presented as one real
world example of optimized GPU code to demonstrate how intel-
ligent warp scheduling can capture almost as much locality as this
particular hand tuned implementation.

3. BASELINE ARCHITECTURE
Figure 2 presents the GPU-like accelerator architecture we study

in this paper. The applications we study are written in CUDA [1]
or OpenCL [23]. These programs begin their execution on a host
CPU which assigns kernels of work to the GPU. Scalar threads are
grouped together by the application developer into thread blocks.
Thread blocks can communicate via a shared on-chip scratchpad
memory. Thread blocks are subdivided by the hardware into warps.
Threads within the same warp execute in lock-step. Our base-
line architecture assigns thread blocks to each shader core until the
core’s static resources (shared memory scratchpad, register space)
are exhausted. Our shader cores are able to schedule warps from
multiple thread blocks concurrently.

3.1 Core Microarchitecture and
Issue Arbitration

Figure 2 also illustrates the microarchitecture of our baseline.
The pipeline has decoupled fetch and issue stages. The fetch (1
in Figure 2) and issue (2) stages communicate via an instruction
buffer (3). Each warp has dedicated slots in the instruction buffer.
The fetch stage updates a valid bit for each instruction, which indi-
cates if the instruction has been filled. Each buffer entry also con-
tains a ready bit which is updated by an in-order scoreboard and
informs the Warp Issue Arbiter (WIA) if this instruction is ready to
issue. The purpose of the WIA is to select which of the multiple
ready warps is issued next. Our paper focuses on this decision.

3.2 Memory Stage and Branch Unit

There are several memory space classes in GPUs. This work
focuses on global and local memory which is cached in the core
by the L1D cache (4). Issuing a memory instruction from a sin-
gle warp can generate up to W data cache accesses where W is
the number of threads per warp. Our baseline attempts to reduce
the number of memory accesses generated from each warp by coa-
lescing (5) the accesses of its lanes. Coalescing reduces the num-
ber of memory requests by merging accesses from multiple lanes
into cache line sized chunks when there is spatial locality across
the warp [1]. These coalesced requests are sent to the L1D cache.
Memory instructions whose lanes all touch the same cache line can
generate as little as one memory access. Memory divergence oc-
curs when coalescing fails to reduce the number of memory re-
quests generated by an instruction to two or less. The GPU’s L1D
caches are not coherent, but they evict global data on writes and
reserve cache lines on misses.

Our work uses information from the branch unit (6) to make
warp scheduling decisions. When scalar threads within the same
warp take different control flow paths, only one path can be ex-
ecuted at a time due to the SIMT nature of the hardware. Our
baseline handles control flow divergence by clearing the execu-
tion mask of threads not executing at the current Program Counter
(PC) and handles re-convergence with a post dominator (PDOM)
re-convergence stack described by Fung et al. [12].

The GPGPU-Sim Manual [2] describes the pipeline and all the
components of the baseline architecture in more detail.

3.3 Previously Proposed Warp Limiting
Techniques

In this paper, we compare Divergence-Aware Warp Scheduling
against Cache Conscious Wavefront Scheduling (CCWS) [33].
CCWS is a dynamic warp throttling mechanism that reacts to feed-
back from the memory system (7). CCWS limits the number of
warps allowed to issue memory instructions when it detects the
Warp Issue Arbiter is issuing loads from so many warps that lo-
cality private to one warp is not being captured by the cache. This
loss of intra-warp locality is detected using L1D cache victim tags
private to each warp. These victim tags are used to determine if a
cache miss might have been a hit had the warp that missed been
given more exclusive access to the L1D cache. Warps losing the
most locality are prioritized by de-scheduling warps that have lost
the least locality. CCWS backs off warp exclusivity over time, as
long as no lost locality is detected.

We also compare against a Static Warp Limiting (SWL) [33]
mechanism that limits the number of warps interleaved to a static
value set when the kernel is launched. Specifically we compare
against Best-SWL which uses profiling to tailor the warp limit to
the best value for a given workload.

4. DIVERGENCE, LOCALITY AND
SCHEDULING

A key observation of our work is that a program’s memory di-
vergence, control flow divergence and locality can be profiled, pre-
dicted and used by the warp scheduler to improve cache utilization.
This section is devoted to describing this observation in detail and
is divided into two parts. Section 4.1 explores where locality occurs
in our highly cache-sensitive benchmarks and Section 4.2 classifies
the locality in ways that are useful for our warp scheduler.

4.1 Application Locality
Figure 3 presents the hits and misses for all the static load in-

struction addresses (PCs) in our highly cache-sensitive benchmarks

(described in Section 6). Each hit is classified as either an intra-
warp hit (when data is loaded then re-referenced by the same warp)
or an inter-warp hit (when one warp loads data that is hit on by an-
other). This data was collected using Cache-Conscious Wavefront
Scheduling. The loops in each program are highlighted by dashed
boxes. This figure demonstrates that the bulk of the locality in our
programs is intra-warp and comes from a few static load instruc-
tions. These load instructions are concentrated in the loops of the
program.

To understand the locality in these loops, Figure 4 presents a
classification of intra-warp hits from loads within the loops of each
application. Loads are classified as Accessed-This-Trip if the cache
line was accessed by another load on this loop iteration. If the value
in cache was not Accessed-This-Trip, then we test if it was accessed
on the previous loop trip. If so, it is classified as Accessed-Last-
Trip. If the line was not accessed on either loop trip, it is classified
as Other, indicating that the line was accessed outside the loop or
in a loop trip less recent than the last one. This data demonstrates
that the majority of data reuse in these applications is Accessed-
Last-Tip. If the scheduler can keep the data loaded by a warp on
one loop iteration in cache long enough to be hit on in the next loop
iteration, most of the locality in these applications can be captured.

To illustrate the source of this locality in the code, consider the
code for SPMV-Scalar in Example 1. Figure 4 indicates that all
of the intra-warp locality within the loop of this code is Accessed-
Last-Trip. This comes from the loading cols[j] and val[j]. When
inside this loop, each thread walks the arrays in 4 byte strides since
j is incremented by one each iteration.

Based on these observations, we design our scheduling system
to ensure that when intra-warp locality occurs in a loop, much of
the data loaded by a particular warp in one iteration remains in the
cache for the next iteration. We attempt to ensure this happens by
creating a cache footprint prediction for warps executing in loops.
The prediction is created from information about the loads inside
the loop and the current level of control flow divergence in a warp
on its current loop iteration.

4.2 Static Load Classification
To predict the amount of data each warp will access on each

iteration of the loop, we start by classifying the static load instruc-
tions inside the loop. We classify each static load instruction based
on two criteria, memory divergence (detailed in Section 4.2.1) and
loop trip repetition (Section 4.2.2).

4.2.1 Memory Divergence
If the number of memory accesses generated by a load equals

the number of lanes active in the warp that issues it, then the load
is completely diverged. Loads that generate one or two accesses
no matter how many threads are active are completely converged.
Anything in between is somewhat diverged. To understand the
relationship between memory divergence and static instructions,
consider Figure 5. Figure 5 plots the number of threads active
and accesses generated for every dynamic load instruction in BFS,
grouped by the load instruction’s PC. This figure illustrates that
memory divergence behaviour can be characterized on a per-PC
basis. Some PCs are always converged (328, 400 and 408 in Fig-
ure 5), some are almost always completely diverged (272) and oth-
ers are consistently somewhat diverged (240). This result is consis-
tent across all the highly cache-sensitive applications we studied.
For simplicity, DAWS classifies each static load instruction that is
not consistently converged as diverged.

This figure also demonstrates that there is a significant amount of
control flow divergence in this application. This control flow diver-

0
20
40
60
80

8
0

1
5

2

1
6

8

2
4

0

2
7

2

3
2

8

4
0

0

4
0

8

5
4

4

1
5

2

1
6

0

2
3

2

2
4

0

1
6

5
6

1
6

6
4

1
7

4
4

1
7

5
2

1
4

0
8

1
4

6
4

1
5

2
8

1
5

6
0

1
5

6
8

1
6

0
0

1
6

4
8

1
6

6
4

1
6

9
6

1
7

0
4

1
7

3
6

1
7

9
2

1
8

5
6

6
6

4

6
7

2

BFS PC SPMV-Scalar PC GC PC KMN PC

H
it

s/
M

is
se

s
P

K
I Misses PKI

Inter-Warp Hits PKI
Intra-Warp Hits PKI

Loop Bounds

0

20

40

1
6

0

1
7

6

2
1

6

3
7

6

3
9

2

4
2

4

4
7

2

5
4

4

6
0

0

1
6

2
4

1
6

7
2

1
7

2
8

1
7

9
2

1
8

6
4

1
9

4
4

2
0

8
0

2
1

1
2

2
1

9
2

2
9

6
0

2
9

7
6

2
9

9
2

3
0

8
8

3
1

5
2

3
2

0
0

3
2

8
0

3
3

1
2

3
3

6
8

3
3

8
4

3
4

5
6

3
4

8
8

3
5

0
4

3
6

8
0

3
7

5
2

4
2

9
6

4
4

0
8

4
5

0
4

4
5

2
0

4
6

0
8

4
6

5
6

4
7

1
2

4
7

5
2

4
7

9
2

4
8

4
0

4
8

6
4

4
9

1
2

5
3

9
2

5
5

1
2

5
6

6
4H

it
s/

M
is

se
s

P
K

I

MEMC PC

Figure 3: Intra-warp hits, inter-warps hits and misses per thousand instructions (PKI) for all the static load instructions in each of
our highly cache-sensitive benchmarks, identified by PC. The PCs contained in loops are highlighted in dashed boxes.

0

0.2

0.4

0.6

0.8

1

1.2

BFS MEMC SPMV-Scalar GC KMN AVG-HCS

Fr
ac

ti
o

n
 o

f
In

tr
a

-W
ar

p

H
it

s

Other Accessed-Last-Trip Accessed-This-Trip

Figure 4: Classification of intra-warp hits within loops using
an 8M L1D cache. Accessed-This-Trip=hit on data already ac-
cessed this loop iteration. Accessed-Last-Trip=hit on data ac-
cessed in immediately-previous loop iteration.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

R
e

q
u

e
st

s
G

e
n

e
ra

te
d

Threads Active

PC=408
PC=272
PC=400
PC=240
PC=328

Figure 5: Number of threads active and number memory ac-
cesses generated for each dynamic load in BFS’s loop. Accesses
are grouped by PC.
gence makes a solution that statically limits the number of warps
when the kernel is launched [33] suboptimal, since it does not adapt
to thread activity as the program executes. Some of the static loads
in Figure 5 never have more than 8 threads active (for example, PC
328). These loads occur inside a branch within the loop and are
only generated in BFS when a thread is processing a node with an
unexplored edge.

Additionally, all 32 threads are never active in this loop due to
branch divergence occurring prior to loop execution. The loop is
only executed if a node is on the program’s exploration frontier,
which can be relatively sparsely distributed across threads. This il-
lustrates that there is an opportunity to improve the estimated cache
footprint for a loop by taking advantage of branch prediction. How-
ever, for the cache footprint prediction generated by DAWS, we as-
sume the worst possible case (i.e., all of the loads in the loop get
uncovered by all threads active on this loop iteration). Exploring
branch prediction is beyond the scope of this work.

4.2.2 Loop Trip Repetition
Multiple static loads within one loop-trip may reference the same

cache line. The Accessed-This-Trip values in Figure 4 demonstrate
this can be significant. These loads do not increase the cache foot-
print because the data they access has already been accounted for
by another load. We introduce the concept of a repetition ID to filter
them out. All loads predicted to reference the same cache line are

assigned the same repetition ID. When predicting the cache foot-
print of a loop, only one load from each repetition ID is counted.
Classification the repetition ID is done either by the compiler (pre-
dicting that small offsets from the same pointer are in the same line)
or by hardware (described in Section 5.2.2).

5. DIVERGENCE-AWARE WARP
SCHEDULING (DAWS)

The goal of DAWS is to keep data in cache that is reused by
warps executing in loops so that accesses from successive loop it-
erations will hit. DAWS does this by first creating a cache-footprint
prediction for each warp. Then, DAWS only allows load instruc-
tions to be issued from warps whose aggregate cache footprints are
predicted to be captured by the L1D cache.

Figure 6 illustrates how DAWS works at a high level. A pre-
diction of the cache footprint for each warp is created. These pre-
dictions are summed to create a total cache footprint. At time T0,
all warps have no predicted footprint. Warps that enter loops with
locality are assigned a prediction and consume a portion of the es-
timated available cache. When a warp exits the loop its predicted
footprint is cleared. When the addition of a warp’s prediction to the
total cache footprint exceeds the effective cache size, that warp is
prevented from issuing loads. The value of the effective cache size
is discussed later in Section 5.1. To illustrate DAWS in operation,
consider what happens at each time-step in Figure 6. Between time
T0 and T1, warp 0 enters a loop. From a previous code character-
ization, DAWS has predicted that this loop has intra-warp locality
and one divergent load. Sections 5.1 and 5.2 present two variations
of DAWS that perform this code characterization in different ways.
Warp 0’s active mask is used to predict that warp 0 will access 32
cache lines (one for each active lane) in this iteration of the loop.
The value of the footprint prediction for more complex loops is dis-
cussed in detail in Section 5.1.1. Between time T1 and T2, warp 1
enters the loop with only 16 active threads and receives a smaller
predicted footprint of 16. Between T2 and T3, warp 2 reaches the
loop. The addition of Warp 2’s predicted cache footprint to the cur-
rent total cache footprint exceeds the effective cache size, therefore
warp 2 is prevented from issuing any loads. Between T3 and T4,
16 of warp 0’s 32 threads have left the loop (causing control flow
divergence) which frees some predicted cache capacity, allowing
warp 2 to issue loads again.

The DAWS warp throttling mechanism is somewhat similar to
the lost locality scoring system presented in CCWS [33], however
there are several key differences. In CCWS, scores are assigned
based on detected lost locality. Warps losing the most locality are
given more exclusive cache access by preventing warps losing the
least locality from issuing loads. CCWS is a reactive system that
has to lose locality before trying to preserve it. DAWS is a proactive

T
o

ta
l
C

a
c
h

e
 F

o
o

tp
ri

n
t

(l
in

e
s
)

Time

EffCacheSize

Warp 0's

CacheFP

T0 T1 T2

WZ
Warp Cannot

Issue Loads

...

Legend

...
T3

Warp 0

Enters Loop

(32 Active)

W0

Warp 1

Enters Loop

(16 Active)
W1

W2

Warp 2

Attempts to Enter Loop

(16 Active)

No
Loads

Warp 0

16 threads

leave loop

(16 Active) W0

W1

W2

T4

32

48

64

W1

W0 W0

Figure 6: High level view of how DAWS’s cache footprint
prediction mechanism dynamically throttles the number of
threads sharing the cache. CacheFP=Cache Footprint

system that tries to prevent lost locality before it happens. DAWS
is also proactive in decreasing the level of thread throttling. As
threads within warps progress through a loop a different number of
times, the data accessed by their divergent loads is reduced caus-
ing DAWS to decrease their predicted cache footprint. DAWS takes
this control flow divergence into account immediately and scales up
the number of warps allowed to issue load instructions as appropri-
ate. In contrast, CCWS scales back thread throttling by a constant
factor each cycle, unless more lost locality is detected. In CCWS,
when warps with the most exclusive cache access stop losing local-
ity, their exclusivity is lost and they have to start missing again to
get it back. DAWS ensures that all warps in loops with intra-warp
locality do not lose their cache exclusivity until they exit the loop.

Figure 7 presents the microarchitecture required to implement
our two proposed Divergence-Aware Scheduling Techniques. Sec-
tion 5.1 details Profiled Divergence-Aware Warp Scheduling
(Profiled-DAWS), which uses off-line profiling to characterize mem-
ory divergence and locality. Section 5.2 presents Detected Divergence-
Aware Warp Scheduling (Detected-DAWS), which detects both lo-
cality and memory divergence as the program executes. Both tech-
niques make use of feedback from the branch unit (A in Fig-
ure 7) which tells the Warp Issue Arbiter the number of active
lanes for any given warp. Detected-DAWS is implemented on top
of Profiled-DAWS. In Detected-DAWS, locality and memory di-
vergence information is detected as the program runs based on
feedback from the memory system (B). This feedback allows
Detected-DAWS to classify static load instructions based on dy-
namic information about how much locality each instruction has
and how many memory accesses it generates.

5.1 Profiled Divergence-Aware Warp
Scheduling (Profiled-DAWS)

Figure 7 presents the microarchitecture for both Profiled- and
Detected-DAWS. Both versions of DAWS are implemented as an
extension to the WIA’s baseline warp prioritization logic. The out-
put of the scheduler is a Can Issue bit vector that prevents warps
from issuing. The task of the scheduler is to determine this bit vec-
tor. As described in Section 5, this is driven by cache footprint
predictions.

To create the cache footprint prediction for each warp, DAWS
must classify the behaviour of static load instructions in loops. One
method to predict the behaviour of static load instructions is to do
a profiling pass of the application. To provide a bound on the po-
tential of an online solution, we propose Profiled-DAWS. We clas-
sify each static load instruction using the two criteria presented in
Section 4.2: (1) Is the load converged or diverged? (2) Does the
load contribute to the footprint for this iteration of the loop (i.e.,

Warp Issue Arbiter (WIA)

Dynamic Load Classifier

(Detected-DAWS Only)

Prioritize

Warps
Can

Issue

[1:N]

Inst.

To

Issue

 (WID/Tag/HasLocality) on load

 (#access generated) on coalescer result

Divergence Aware Scheduler

(Profiled- and Detected-DAWS)

Static Load Classification Table

..
.

PCLoadIsDiv RepID

Intra-Loop

Repetition

Detector

Cache Footprint Prediction Table

W1 FootprintPred

..
.

Active

Lanes

PCLoopBegin

Sampling Warp Table

..
.

Memory

Divergence

Detector

..
.

Shader Core

WIA

Registers/Execution
Memory Unit

L1D

Cache

Active

Lanes

Coalescer

Feedback Unit

(Detected-DAWS

Only)

Locality/

Memory

Divergence

Intersection

PCLoopBegin

PCLoad Tag WID

..
.

PCLoad DivCount

PCLoopBegin WID HasLocality

Branch Unit

Warps

Ready [1:N]

A

B

C

D

E

F G

A

B

Figure 7: Detailed core model used for our DAWS solutions. N
is the number of warp issue slots on the core.

The load’s repetition ID)? To collect this information for Profiled-
DAWS, we perform an analysis of compiled assembly code and
use runtime information gathered from a profiling pass of each ap-
plication. Determining if a load is converged or diverged is done
by profiling all the accesses of each load, similar to the analysis
done on BFS in Section 4.2.1. To determine intra-loop repetition
we do not use profile information. Instead, we examine the assem-
bly and assume that all loads using the same base address register
whose displacement values are within one cache line are repeated
in a loop iteration. Profiling similar to the analysis in Section 3 is
performed to determine which loops in the code have locality.

From a microarchitectural perspective, the classification infor-
mation for all static load instructions in loops is stored in a static
load classification table (C). Each entry in the table contains the
PC of the first instruction in the loop where the load is located
(PCLoopBegin), a flag indicating if it is a diverged load (IsDiv) and
a repetition ID (RepID) that is used to indicate the intra-loop repeti-
tion ID of the load. Although only necessary for Detected-DAWS,
the PC of the load instruction PCLoad is also stored here. Profiled-
DAWS populates this table when a kernel is launched. These values
are based on profiling information from previous runs of the kernel.
The table is finite in size and can be spilled to memory, however our
applications have at most 26 static load instructions within loops.

The cache footprint prediction for each warp is stored in the
cache footprint prediction table (D). This table has one entry for
each warp issue slot on the core. In our baseline this is 32 entries.
Each entry of the table contains the value of the predicted footprint
(in cache lines) and the PC identifying the loop (PCLoopBegin).
The scheduler checks instructions as they are issued, looking for
loop begin/end points. To identify the loop bounds, we require that

the compiler adds markers to the first and last instruction of each
loop. This can be implemented by using two previously unused bits
in the opcode (one bit for loop start, one bit for loop end), or by
adding an additional instruction to indicate loop start/end. The cur-
rent CUDA compiler already outputs the loop bounds in the form
of comments. We anticipate that our small addition of loop bound
markers would have a minor impact. NVIDIA GPUs use a virtual
ISA, which has made it easier to modify the hardware ISA in each
of the last 3 architecture iterations.

When the scheduler detects that a warp has issued the first in-
struction of a loop, it uses the number of active lanes in the warp
(A) to create the warp’s prediction for this loop iteration. This
value is written to the warp’s entry in the cache footprint prediction
table. Section 5.1.1 details how the cache footprint prediction is
computed. The update logic also writes the PC of the first instruc-
tion in the loop to the table (PCLoopBegin). When the warp leaves
the loop, the prediction table entry for the warp is cleared. To pre-
vent deadlock, predicted footprints are also cleared while a warp
waits at a barrier.

To determine the aggregate cache footprint, a prefix sum of each
warp’s cache footprint is performed, starting with the oldest warps.
All of the warps whose prefix sum is less than our calculated ef-
fective cache size (defined in Equation 1) are eligible for issuing.
Warps whose prefix sum is greater than the effective cache size are
prevented from issuing load instructions.

EffCacheSize = kAssocFactor · TotalNumLines (1)

To decide how many cache lines DAWS should assume are avail-
able in the L1D cache (i.e., determining our EffCacheSize value),
we need to take the associativity of the cache into account. If we
had a fully associative cache, we could assume that an LRU re-
placement policy would allow us to take advantage of every line in
the cache. Since the L1D caches we study are not fully associative
(our baseline is 8-way) our technique multiplies the number of lines
in the cache by the kAssocFactor. The value of kAssocFactor
is determined experimentally and explored in more detail in sec-
tion 7.3.

If the working set of one warp is predicted to exceed the L1D
cache capacity, then no warps are de-scheduled and scheduling
proceeds in an unthrottled fashion inside this loop. Doing no de-
scheduling inside loops that load more data than is predicted to fit in
cache reverts the system to hiding latency via multithreading again.
We did not observe these large predictions in our workloads.

The prediction update logic is run each time the first instruction
in a loop is issued. This way the prediction is reflective of threads
leaving the loop because of differing loop trip counts across the
warp.

5.1.1 Warp-Based Cache Footprint Prediction
This section explains how the number of cache lines accessed for

a given warp in a single iteration of a loop with significant intra-
warp locality is predicted. In a single threaded system, predicting
the number of cache lines accessed in a loop iteration could be
achieved by summing all the static load instructions predicted to
be issued in the loop, while accounting for repetition caused by
multiple static loads accessing the same data. However, to create
a prediction of the data accessed by a warp in one loop iteration,
both memory and control flow divergence must be taken into ac-
count. We first find which loop the warp in question is executing
within by looking at the PCLoopBegin for this warp in the predic-
tion table. Next, we query the static load classification table for all
the entries with this PCLoopBegin (i.e., entries for all of the loads
in this loop). It sums all the entries returned as follows. If the entry

indicates that the load is diverged (i.e., the IsDiv bit is set), then this
entry contributes as many cache lines as there are active threads. If
the entry is converged (and there is more than one thread active),
then this entry contributes two cache lines to the prediction. All
entries with one active thread contribute one cache line. During the
summation, each intra-loop repetition group (identified by RepID)
is only counted once. If there are different divergence characteris-
tics within the same repetition ID, then we count it as diverged. In
our applications, we did not observe a diverged load accessing data
loaded by a converged load (or vice-versa) in the same loop itera-
tion. The result of this summation is written to this warp’s entry in
the cache footprint prediction table.

5.1.2 Predicted Footprint of Warps Outside Loops
In the previous sections, we only considered de-scheduling warps

within loops because this is where the bulk of the application’s
memory accesses are. However, some applications may load a sig-
nificant amount of data outside of loops. Figure 3 shows that PCs
1568 and 1600 from the GC benchmark both occur outside of the
program’s loop and access a significant amount of data, which can
interfere with the accesses of warps within the loop. For this reason,
if there are warps executing inside a loop, warps outside of loops
can be de-scheduled. If any of the entries in the cache footprint
prediction table is non-zero (i.e., at least one warp is in a loop),
loads issued by warps outside of loops have their predictions up-
dated as if they are executing their closest loop. Ideally a warp’s
closest loop is the next loop they will execute. For our purposes,
we define a warp’s closest loop as the next loop in program order.
Since warps may skip loops, this may not always be the case, but
in our applications this approximation is usually true.

5.1.3 Dealing with Inner Loops
DAWS also detects when a warp has entered an inner loop. When

a warp issuing a new loop begin instruction already has a PCLoopBegin

value in the cache footprint prediction table that is less than the PC
of the new instruction, then we assume the warp has entered an in-
ner loop. When this happens, the footprint prediction table entry for
the warp is updated normally, giving the warp the prediction of the
inner loop. However, when the warp leaves the inner loop, it does
not clear either the prediction value or the PCLoopBegin. When
the outer loop begins its next iteration, it detects it is an outer loop
(because the PC entry in the table is greater than the outer loop’s be-
ginning PC) and it recomputes the predicted footprint based on the
inner loop’s loads. This effectively limits the warps that can enter
the outermost loops based on the predicted footprint of the inner-
most loop. We made this design decision because we observed that
the majority of data reuse came from the innermost loop and there
is significant data reuse between successive runs of the innermost
loop. If we do not limit the number of warps entering the outer
loop based on the inner loop, then there is the potential for multi-
ple warps to interleave their inner loop runs, which can evict data
repeatedly used by the inner loop. This can be applied to any ar-
bitrary loop depth, but none of our applications had a loop depth
greater than two.

5.2 Detected Divergence-Aware Warp
Scheduling (Detected-DAWS)

Profiled-Divergence-Aware Warp Scheduling (Profiled-DAWS)
relies on two key pieces of profile information. First, it requires
that loops with intra-warp locality be known in advance of running
the kernel. Second, it requires that all the global and local mem-
ory loads in those loops are characterized as converged or diverged
and that all the intra-loop-trip repetition between those loads is

known. Detected-Divergence-Aware Warp Scheduling (Detected-
DAWS) requires no profile information. The only requirement for
Detected-DAWS is that the compiler mark the beginning and end-
ing of the program’s loops. Detected-DAWS detects both memory
divergence and intra-loop-trip repetition at runtime and populates
the static load classification table (C in Figure 7) dynamically us-
ing the dynamic load classifier. Detected-DAWS operates by fol-
lowing the execution of a sampling warp through a loop. The first
warp with more than two active threads that enters a loop is set as
the sampling warp for the loop. The sampling warp id (WID) and
(PCLoopBegin) for each loop being sampled are stored in the sam-
pling warp table (E). When the sampling warp leaves the loop,
the next warp to enter with two or more active threads becomes the
new sampling warp for the loop. At any given time, multiple loops
can be sampled but only one warp can sample each loop. The sam-
pling warp table also stores a locality counter (HasLocality) that
is used to indicate if loads for this loop should be entered into the
static load classification table. Like the static load classification
table, the sampling warp table is finite in size. Each of our applica-
tions has at most five loops. The dynamic load classifier interprets
memory system feedback about loads issued from sampling warps.

It is worth noting that, other than the addition of PCLoad to each
static load classification table entry, nothing about the divergence
aware scheduler used in Profiled-DAWS changes. The scheduler
just operates with incomplete information about the loops until the
dynamic load classifier has filled the static load classification table.

The following subsections describe how the dynamic load clas-
sifier uses the memory system feedback to populate the static load
classification table.

5.2.1 Finding Loops with Locality
This section describes how Detected-DAWS determines which

loops have intra-warp locality. Memory system feedback (B) in-
forms the scheduler when loops have intra-warp locality. The feed-
back unit sends signals to the dynamic load classifier on each load
issued signifying if the load has intra-warp locality. The feedback
unit reports both captured and lost intra-warp locality. To report this
locality, cache lines in the L1D cache are appended with the WID of
the instruction that initially requested them. Lost intra-warp local-
ity is detected through the warp ID filtered victim tags mechanism
described in CCWS [33]. Hits in the L1D cache on data that one
warp loads and re-references are reported as captured intra-warp
locality. If a load has neither lost nor captured intra-warp locality
then the feedback unit informs the dynamic load classifier that the
load has no intra-warp locality. Whenever the classifier is informed
that a load from a sampling warp has taken place, it modifies that
loop’s locality counter in the sampling warp table. If the load was
an instance of intra-warp locality, the counter is incremented oth-
erwise the counter is decremented. DAWS creates cache footprint
predictions for loops with positive locality counters.

5.2.2 Dynamically Classifying Static Loads
in Hardware

Once a loop is marked as having intra-warp locality, the dynamic
load classifier starts generating static load classification table en-
tries for the loop. To avoid having more than one entry for each
static load in the static load classification table, Detected-DAWS
requires the PC of the load be stored (PCLoad). Before inserting
a new entry into the table, the dynamic load classifier must ensure
that this PCLoad does not already exist in the table. If the entry does
exist, the dynamic classifier updates the existing entry. The classi-
fier consists of two components, an intra-loop repetition detector
(F) and a memory divergence detector (G).

Table 1: GPGPU-Sim Configuration

Compute Units 30
Warp Size 32

SIMD Pipeline Width 8
Number of Threads / Core 1024
Number of Registers / Core 16384

Shared Memory / Core 16KB
Constant Cache Size / Core 8KB
Texture Cache Size / Core 32KB, 64B line, 16-way assoc.

Number of Memory Channels 8
L1 Data Cache 32KB, 128B line, 8-way assoc. LRU

L2 Unified Cache 128k/Memory Channel,
128B line, 8-way assoc. LRU

Compute Core Clock 1300 MHz
Interconnect Clock 650 MHz

Memory Clock 800 MHz
DRAM request queue capacity 32

Memory Controller out of order (FR-FCFS)
Branch Divergence Method PDOM [12]
GDDR3 Memory Timing tCL=10 tRP =10 tRC=35

tRAS=25 tRCD=12 tRRD=8
Memory Channel BW 8 (Bytes/Cycle)

Memory Divergence Detector: The memory divergence detec-
tor is used to classify static load instructions as convergent or diver-
gent. It receives information about load coalescing from the mem-
ory feedback unit. After an instruction passes through the memory
coalescer, the resulting number of memory accesses is sent to the
dynamic load classifier. The classifier reads this value in combina-
tion with the active thread count of the load instruction. If more
than two threads in the instruction were active when the load was
issued, the number of accesses generated is tested. If the number of
accesses generated is greater than two, the divergence counter for
this PC is incremented. If two or less accesses are generated, the
counter is decremented. If the divergence counter is greater than
one, this load is considered diverged, otherwise it is considered
converged.

Intra-Loop Repetition Detector: The Intra-Loop Repetition
Detector (ILRD) dynamically determines which static load instruc-
tions access the same cache line in the same loop iteration. It is
responsible for populating the RepID field of the static load clas-
sification table. Each entry in the detector contains a tag, PCLoad

and WID. On each load executed by a sampling warp, the ILRD is
probed based on the tag of the load. If the tag is not found, the tag
and PC/warp id for the instruction that issued the load are written
to the table. If the tag is found, then both the PC issuing the new
load and the PC in the table are marked as intra-loop repeated and
assigned the same repetition ID. When the sampling warp branches
back to the start of the loop, all the values in the ILRD for this
warp are cleared. Without the WID, multiple loops could not be
characterized concurrently because the sampling warp for one loop
could clear the entries for another. The ILRD is modeled as a set
associative tag array, with an LRU replacement policy.

6. EXPERIMENTAL METHODOLOGY
We model Profiled-DAWS and Detected-DAWS as described in

Section 5.1 and 5.2 in GPGPU-Sim [3] (version 3.1.0) using the
configuration in Table 1. Loop begin and end points are inserted
manually in the assembly.

The highly cache-sensitive and cache-insensitive workloads we
study are listed in Table 2, four of which come from the CCWS
infrastructure available online [32]. The SPMV-Scalar benchmark
comes from the SHOC benchmark suite [9].

Our benchmarks are run to completion which takes between 14
million and 1 billion instructions.

7. EXPERIMENTAL RESULTS

Table 2: GPU Compute Benchmarks (CUDA and OpenCL)

Highly Cache Sensitive
Name Abbr. Name Abbr.
BFS Graph Traversal [7] BFS Kmeans [7] KMN
Memcached [15] MEMC Garbage Collection [4, 36] GC
Sparse Matrix
Vector Multiply (Scalar) [9] SPMV-Scalar

Cache Insensitive (CI)
Name Abbr. Name Abbr.
Needleman-Wunsch [7] NDL Back Propagation [3] BACKP
Hot Spot [7] HOTSP LU Decomposition [7] LUD
Speckle Red.
Anisotropic Diff. [7] SRAD

Table 3: Configurations for Best-SWL and CCWS.

Best-SWL CCWS Config
Benchmark Warps Actively Name Value

Scheduled
BFS 5 KTHROTTLE 8
MEMC 7 Victim Tag Array 8-way
SPMV-Scalar 2 (512 total entries)
GC 2 16 entries per warp
KMN 4 Warp Base Score 100
All Others 32

This section is organized as follows, Section 7.1 examines the
performance of our workloads using Profiled-DAWS, Detected-DAWS
and other warp schedulers. Section 7.2 presents the results of our
programmability case study introduced in Section 2. The remain-
der of this section is devoted to analyzing varying aspects of our
design and exploring its sensitivity.

7.1 Performance
All data was collected using GPGPU-Sim running the following

scheduling mechanisms:

GTO A greedy-then-oldest scheduler [33]. GTO runs a single
warp until it stalls then picks the oldest ready warp. Warp
age is determined by the time the warp is assigned to the
shader core. For warps that are assigned to a core at the same
time (i.e., they are in the same thread block), warps with
the smallest scalar threads IDs are prioritized. Other simple
schedulers (such as oldest-first and loose-round-robin) were
implemented and GTO scheduling performed the best.

Best-SWL Static Wavefront Limiting as described in [33]. Warp
limitation values from 1 to 32 are attempted and the highest
performing case is selected. A GTO policy is used to select
between warps. The warp limiting value used for each appli-
cation is shown in Table 3.

CCWS Cache-Conscious Wavefront Scheduling as described in [33].
The configuration parameters presented in Table 3 are used.

Profiled-DAWS Profiled Divergence-Aware Warp Scheduling as
described in Section 5.1. Loop profiles were generated man-
ually based on PC statistics collected in sampling application
runs. The applications were profiled with input data different
from the evaluation data. GTO prioritization logic is used.

Table 4: Configuration parameters used for DAWS

DAWS Config
ILRD size 64 entries per core, 8-way set associative
Associativity Factor 0.6
Victim Tag Array Same as CCWS in Table 3

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

B
FS

M
EM

C

SP
M

V
-S

ca
la

r

G
C

K
M

N

H
M

EA
N

-H
C

S

B
A

C
K

P

H
O

TS
P

LU
D

SR
A

D

N
D

L

H
M

EA
N

-C
I

Highly Cache-Sensitive Cache-Insensitive

N
o

rm
al

iz
e

d
 IP

C

GTO CCWS Best-SWL Profiled-DAWS Detected-DAWS

Figure 8: Performance of various scheduling techniques, nor-
malized to CCWS.

0

0.2

0.4

0.6

0.8

1

1.2

BFS MEMC SPMV-Scalar GC KMN

Fr
ac

ti
o

n
 o

f
In

st
ru

ci
o

n
s

Is
su

e
d

W[0:4]
W[4:8]
W[8:12]
W[12:16]
W[16:20]
W[20:24]
W[24:28]
W[28:32]

Figure 9: Breakdown of warp lane activity. Breakdown is
presented as a fraction of total instructions executed. W[0:4]
means 0 to 4 of an instruction’s 32 lanes are active.

Detected-DAWS Detected Divergence-Aware Warp Scheduling as
described in Section 5.2, with the configuration used in Ta-
ble 4 GTO prioritization logic is used.

Figure 8 presents the Instructions Per Cycle (IPC) of our eval-
uated schedulers, normalized to CCWS. It illustrates that Profiled-
DAWS and Detected-DAWS improve performance by a harmonic
mean 25% and 26% respectively over CCWS on our highly cache-
sensitive applications. In addition, they do not cause any perfor-
mance degradation in the cache-insensitive applications. The cache-
insensitive applications have no loops with detected intra-warp lo-
cality. Profiled-DAWS and Detected-DAWS are able to outper-
form Best-SWL by a harmonic mean 3% and 5% respectively. The
performance of Profiled-DAWS and Detected-DAWS against Best-
SWL is highly application dependent. Detected-DAWS is able to
outperform Best-SWL on BFS by 20%, however it sees a 4% slow-
down on SPMV-Scalar.

Figure 9 can help explain the skewed performance results against
Best-SWL. It presents the control flow divergence in each of our
highly cache-sensitive applications. It shows warp lane activity for
all issued instructions. Bars at the bottom of each stack indicate
less control flow divergence, as more lanes are active on each is-
sued instruction. The two applications where DAWS improves per-
formance relative to Best-SWL (BFS and MEMC) also have the
most control flow divergence. The performance of Best-SWL is
hampered most when there is significant control flow divergence.
Selecting the same limiting value for every core over the course of
the entire kernel is not optimal. This divergence occurs because
of both loop-trip count variation across a warp and a discrepancy
in the level of control flow divergence on each shader core. We
also evaluated Detected-DAWS without control flow awareness by
assuming all lanes were active on every loop iteration. Removing
control flow awareness results in a 43% and 91% slowdown for
BFS and MEMC respectively versus Detected-DAWS. Other ap-
plications showed no significant performance change.

Figure 10 presents the L1D cache misses, intra-warp hits and
inter-warp hits per thousand instructions (PKI) for our highly cache-

BFS MEMC SPMV-Scalar GC KMN AVG-HCS

0
20
40
60
80

100
120
140
160
180

G
TO

B
e

st
-S

W
L

C
C

W
S

P
ro

fi
le

d
-D

A
W

S
D

e
te

ct
e

d
-D

A
W

S

G
TO

B
e

st
-S

W
L

C
C

W
S

P
ro

fi
le

d
-D

A
W

S
D

e
te

ct
e

d
-D

A
W

S

G
TO

B
e

st
-S

W
L

C
C

W
S

P
ro

fi
le

d
-D

A
W

S
D

e
te

ct
e

d
-D

A
W

S

G
TO

B
e

st
-S

W
L

C
C

W
S

P
ro

fi
le

d
-D

A
W

S
D

e
te

ct
e

d
-D

A
W

S

G
TO

B
e

st
-S

W
L

C
C

W
S

P
ro

fi
le

d
-D

A
W

S
D

e
te

ct
e

d
-D

A
W

S

G
TO

B
e

st
-S

W
L

C
C

W
S

P
ro

fi
le

d
-D

A
W

S
D

e
te

ct
e

d
-D

A
W

S

H
it

s/
M

is
se

s
P

K
I

Miss
Inter-Warp Hits
Intra-Warp Hits

Figure 10: L1D intra-warp hits, inter-warp hits and misses per
thousand instructions (PKI) of various schedulers.

0

0.05

0.1

0.15

0.2

0.25

B
FS

M
EM

C

SP
M

V
-

Sc
al

ar G
C

K
M

N

B
A

C
K

P

H
O

TS
P

LU
D

SR
A

D

N
D

L

V
TA

 H
it

s
P

K
I

CCWS
Profiled-DAWS
Detected-DAWS

Figure 11: Victim tag array hits per thousand instructions
(PKI) (indicating lost intra-warp locality).

sensitive benchmarks. It demonstrates that Profiled-DAWS and
Detected-DAWS result in fewer cache misses than CCWS, which
can account for a portion of the overall speedup. Since Profiled-
DAWS and Detected-DAWS are able to predict the cache footprint
of warps before they lose locality based on profile information cre-
ated by other warps they can apply thread limiting before CCWS,
removing the unnecessary cache misses. In addition, Profiled-DAWS
and Detected-DAWS do not de-prioritize warps once they have en-
tered a loop with locality. The scheduling point system in CCWS
can potentially de-prioritize warps hitting often in cache when they
stop producing accesses that hurt locality. We performed exper-
iments and found that 46% of CCWS’s lost locality occurs af-
ter a warp has been de-scheduled while in a loop. CCWS pri-
oritizes warps based solely on detected lost locality. Warps may
be de-scheduled inside a high-locality loop before they complete
the loop, resulting in the eviction of their reused data. Once loops
are properly classified, this type of lost locality never occurs using
DAWS. DAWS ensures that once a warp enters a high-locality loop,
it is not de-scheduled until the warp exits the loop or encounters a
barrier. None of our highly cache-sensitive applications have bar-
rier instructions. Figure 10 also demonstrates that the cache miss
rate in Profiled-DAWS and Detected-DAWS is similar to that of
Best-SWL. This suggests that the performance increase seen by
Profiled-DAWS and Detected-DAWS over Best-SWL comes from
decreasing the level of warp limiting when the aggregate footprint
of threads scheduled can still be contained by the cache.

Figure 11 plots victim tag array hits, which indicate a loss of
intra-warp locality. There is no victim tag array required to im-
plement Profiled-DAWS, but for the purposes of this data, one is
added. This figure illustrates that there is a large reduction in de-
tected instances of lost locality when using the DAWS solutions.
In addition, this figure shows a slight increase in detected lost lo-
cality in Detected-DAWS versus Profiled-DAWS. This is because
Detected-DAWS requires some time to classify static load instruc-
tions before appropriate limiting is able to take effect.

BFS MEMC SPMV-Scalar GC KMN

0

0.2

0.4

0.6

0.8

1

G
TO

B
e

st
-S

W
L

C
C

W
S

P
ro

fi
le

d
-D

A
W

S

D
e

te
ct

e
d

-D
A

W
S

G
TO

B
e

st
-S

W
L

C
C

W
S

P
ro

fi
le

d
-D

A
W

S

D
e

te
ct

e
d

-D
A

W
S

G
TO

B
e

st
-S

W
L

C
C

W
S

P
ro

fi
le

d
-D

A
W

S

D
e

te
ct

e
d

-D
A

W
S

G
TO

B
e

st
-S

W
L

C
C

W
S

P
ro

fi
le

d
-D

A
W

S

D
e

te
ct

e
d

-D
A

W
S

G
TO

B
e

st
-S

W
L

C
C

W
S

P
ro

fi
le

d
-D

A
W

S

D
e

te
ct

e
d

-D
A

W
S

Fr
ac

ti
o

n
 o

f
To

ta
l G

TO
 C

yc
le

s Nothing Issued Warps De-Scheduled Instruction Issued

Figure 12: Breakdown of core activity normalized to GTO’s
total cycles for each application.

4.9

0

0.5

1

1.5

2

GTO CCWS Best-SWL Profiled-DAWS Detected-DAWS

N
o

rm
al

iz
e

d

Ex
e

cu
ti

o
n

 T
im

e

Figure 13: Execution time (lower values are faster) of SPMV-
Scalar using various warp schedulers normalized to the best
performing scheduler from SPMV-Vector.

Figure 12 breaks down core activity into cycles where an instruc-
tion issues, cycles where there are no instructions to issue (i.e.,
no warps are ready to be issued) and cycles where an instruction
could have issued, if its warp had not been de-scheduled by the
scheduling system. This is aggregate information collected over
all the shader cores. This figure demonstrates that both Profiled-
DAWS and Detected-DAWS reduce the number of cycles spent de-
scheduling warps versus CCWS.

7.2 Programmability Case Study Results
In this section we examine the results of our case study pre-

sented in Section 2. To run these experiments, the size of on-chip
scratchpad memory was increased to 48k, while leaving the L1D
cache size constant. This was done so that shared memory usage
would not be a limiting factor for SPMV-Vector and our results
would not be biased towards SPMV-Scalar. The input sparse ma-
trix is randomly generated by the SHOC framework. The matrix
has 8k rows with an average of 82 non-zero elements per row. Fig-
ure 13 presents the execution time of SPMV-Scalar from Example 1
using our evaluated schedulers normalized to the GPU-optimized
SPMV-Vector from Example 2 using its best performing sched-
uler. Like the other cache-insensitive applications we studied, the
scheduler choice for SPMV-Vector makes little difference. There
is < 1% performance variation between all the schedulers we eval-
uated. This figure demonstrates that SPMV-Scalar suffers signifi-
cant performance loss when using previously proposed schedulers
like GTO and CCWS. Best-SWL captures almost all the perfor-
mance of SPMV-Vector, but requires the user to profile the appli-
cation/input data combination with different limiting values before
running. Detected-DAWS does not requiring any profiling infor-
mation or additional programmer input and its execution time is
within 4% of SPMV-Vector’s.

Figure 14 compares several properties of SPMV-Scalar using
Detected-DAWS to SPMV-Vector using its best performing sched-
uler. This graph shows that SPMV-Scalar has some advantages over
SPMV-Vector, if Detected-DAWS is used. SPMV-Scalar executes
2.8x less dynamic instructions, decreasing the amount of dynamic
power consumed on each core. SPMV-Scalar also requires 32x
less warps, decreasing shader initialization overhead (which is not

32 30

0

2

4

6

8

10

Instructions
Issued

Off-Chip Reads Off-Chip Writes Warps Created Interconnect
Full

R
at

io
 N

o
rm

al
iz

e
d

 t
o

SP

M
V

-S
ca

la
r

SPMV-Scalar SPMV-Vector

Figure 14: Ratio of various metrics for SPMV-Scalar using
Detected-DAWS vs. SPMV-Vector using its best performing
scheduler. Interconnect Full=instances where cores cannot ac-
cess the interconnect due to contention.

0.4

0.6

0.8

1

1.2

1.4

1.6

1 0.9 0.8 0.7 0.6 0.5 0.4

N
o

rm
al

iz
e

d
 IP

C

Associativity Factor

BFS MEMC
SPMV-Scalar GC
KMN HMEAN

Figure 15: Detected-DAWS performance as the cache associa-
tivity factor is swept. Normalized to CCWS.

modeled in GPGPU-Sim) and the number of scheduling entities the
GPU must deal with.

Since SPMV-Vector and SPMV-Scalar both perform the same
computation on the same input, they fundamentally read and write
the same data to and from memory. However, cache system per-
formance and memory coalescing result in a discrepancy in the
amount of off-chip traffic generated by each workload. Reads in
SPMV-Vector are coalesced since lanes in each warp access con-
secutive values. However, since DAWS captures much of SPMV-
Scalar’s spatial locality in the L1D cache, there is only a 25% in-
crease in read traffic. As a reference point, SPMV-Scalar using
GTO produces > 15× more reads than SPMV-Vector. In addition,
off-chip writes using SPMV-Vector are increased 8 fold. This hap-
pens because SPMV-Scalar is able to coalesce writes to the output
vector since each warp attempts to write multiple output values in
one SIMT instruction. SPMV-Vector must generate one write re-
quest for each row of the matrix and since the L1D caches evict
global data on writes, all of these writes go to memory. The last
metric compared indicates that contention for the interconnect is
greatly increased using SPMV-Vector.

7.3 Determining the Associativity Factor
Figure 15 plots the performance change of our highly cache-

sensitive applications as the kAssocFactor is swept. All the ap-
plications consistently peak at 0.6, except BFS which peaks shows
a small performance gain at 0.7 versus 0.6. This is consistent with
the assertion that kAssocFactor should be mostly independent of
the application. The slight performance improvement for BFS at
0.7 can be explained by the fact that it has branches inside its loop
that cause some of the loads to be infrequently uncovered, as dis-
cussed in Section 4.2.1. Since DAWS overestimates by assuming
all the loads in the loop are uncovered, a larger kAssocFactor
makes up for this per-warp overestimation by raising the effective
cache size cutoff.

7.4 Area Estimation
The tables added for Profiled-DAWS (i.e., the cache footprint

prediction table and the static load classification table) are each

modeled with only 32 entries and are negligible in size. The ad-
ditional area added by Detected-DAWS comes from a victim tag
array, the other tables are 64 entries or less. A victim tag array
is also used in CCWS, so there is negligible area difference be-
tween Detected-DAWS and CCWS. However, compared to Best-
SWL or GTO schedulers both CCWS and Detected-DAWS have a
CACTI [37] estimated area overhead of 0.17% which is discussed
in more detail in [33].

7.5 Dynamic Energy Estimation
We investigated two energy models for GPUs to evaluate the ef-

fect DAWS has on energy, GPUSimPow [28] and GPUWattch [26].
Due to the recent release date of these simulators, we were unable
to fully integrate our solution into their framework. However, we
extracted the nJ per operation constants used in GPUWattch for
DRAM reads, DRAM pre-charges and L2/L1D cache hits/misses,
which are the metrics that dominate the overall energy consumed
in the highly cache-sensitive applications and are the key metrics
effected by DAWS. This calculation shows that DAWS consumes
2.4× less and 23% less dynamic energy in the memory system than
GTO and CCWS respectively. This power reduction is primarily
due to an increase in the number of L1D cache hits, reducing power
consumed in the memory system. This estimate does not include
the dynamic energy required for Detected-DAWS or CCWS tables,
victim tag array or logic. We anticipate this energy will be small in
comparison to the energy used in the memory system.

8. RELATED WORK
There are a number of works that suggest throttling the number

of threads in a system can benefit performance. Bakhoda et al. [3]
demonstrate that limiting the number thread blocks assigned to a
core can reduce contention for the memory system. Guz et al. [14]
present an analytical model that quantifies the "performance valley"
that exists when the number of threads sharing a cache is increased.
Cheng et al. [8] also propose an analytical model. They quantify
thread interference at the memory stage in a stream programming
language.

In addition to the previously discussed CCWS and Best-SWL [33],
there are a number of other papers evaluating warp scheduling poli-
cies on GPUs. Lakshminarayana and Kim [24] evaluate warp schedul-
ing in a GPU without hardware managed L1D caches. Fung et
al. [12, 11] examine the impact of thread scheduling when tech-
niques aimed at reducing control flow divergence are performed.
Gebhart and Johnson et al. [13] and Narasiman et al. [30] both
propose two level scheduling techniques aimed at reducing power
and improving performance respectively. In contrast to these tech-
niques which statically determine active and inactive groups, DAWS
dynamically selects the number of warps for active scheduling based
on code locality predictions and dynamic control flow information.
Jog et al. [20] and Kayiran et al. [22] propose locality aware thread
block schedulers that seek to limit the number of thread blocks
sharing the L1D cache. Their techniques apply warp limiting at
a coarse grain. DAWS seeks to maximize cache usage using fine
grain divergence information and code region characterization. Lee
et al. [25] and Jog et al. [21] explore prefetching on the GPU, with
the latter focusing on prefetching-aware scheduling. In contrast
to prefetching, which cannot improve performance in bandwidth
limited applications, DAWS makes more effective use of on-chip
storage to reduce memory bandwidth. Meng et al. [29] present dy-
namic warp subdivision which splits warps, allowing threads that
hit in cache to continue, even if their warp peers miss. Their tech-
nique attempts to improve performance by loading data into the
cache more quickly, while DAWS attempts to limit the number of

threads sharing the cache at once.
There are a number of works that attempt to improve cache hit

rate by improving the replacement policy (e.g., [18, 31] among
others). Work on improving cache replacement can be considered
orthogonal to work on scheduling. Jaleel et al. [17] use information
from the last level cache to make OS level scheduling decisions
about which threads should be assigned to which cores. Our work
focuses on the low level thread scheduler in a GPU and uses fine
grained information about per-PC locality to make predictions. Jia
et al. [19] evaluate GPU L1D cache locality in a current GPU and
use a compile time algorithm to detect loads with no locality that
should bypass the cache. In contrast, our paper focuses on runtime
scheduling decisions about what to do with loads that have locality.

9. CONCLUSION
This work quantifies the relationship between memory diver-

gence, branch divergence and locality on a set of workloads com-
monly found in server computing. We demonstrate that divergence
and locality characteristics of static load instructions can be accu-
rately predicted based on previous behaviour. Divergence-Aware
Warp Scheduling uses this predicted code behaviour in combina-
tion with live thread activity information to make more locality-
aware scheduling decisions. Divergence-Aware Warp Scheduling
is a novel technique that proactively uses predictions to prevent
cache thrashing before it occurs and aggressively increases cache
sharing between warps as their thread activity decreases.

Our simulated evaluations show that our fully dynamic technique
(Detected-DAWS) results in a harmonic mean 26% performance
improvement over Cache Conscious Wavefront Scheduling [33]
and 5% improvement over the profile-based Best-SWL [33]. Per-
formance relative to Best-SWL is improved as much as 20% when
workloads have significant control flow divergence.

Our work increases the efficiency of several highly divergent,
cache-sensitive workloads on a massively parallel accelerator. Our
programmability case study demonstrates that Divergence-Aware
Warp Scheduling can allow programmers to write simpler code
without suffering a significant performance loss by effectively shift-
ing the burden of locality management from software to hardware.

10. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful feedback.

We also thank Tayler Hetherington for his help with the GPUWattch
power model. This work was supported by an NVIDIA Gradu-
ate Fellowship and the Natural Sciences and Engineering Research
Council of Canada.

11. REFERENCES
[1] NVIDIA CUDA C Programming Guide v4.2, 2012.
[2] T. M. Aamodt et al. GPGPU-Sim 3.x Manual.

http://gpgpu-sim.org/manual/index.php5/
GPGPU-Sim_3.x_Manual, 2012.

[3] A. Bakhoda et al. Analyzing CUDA Workloads Using a Detailed
GPU Simulator. In ISPASS 2009, pages 163–174.

[4] K. Barabash and E. Petrank. Tracing Garbage Collection on Highly
Parallel Platforms. In ISMM 2010, pages 1–10.

[5] R. Barrett et al. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, 2nd Edition. SIAM, 1994.

[6] N. Bell and M. Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In SC 2009.

[7] S. Che et al. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In IISWC 2009, pages 44–54.

[8] H.-Y. Cheng et al. Memory Latency Reduction via Thread Throttling.
In MICRO-43, pages 53–64, 2010.

[9] A. Danalis et al. The Scalable Heterogeneous Computing (SHOC)
benchmark suite. In GPGPU 2010.

[10] H. Esmaeilzadeh et al. Dark Silicon and the End of Multicore
Scaling. In ISCA 2011, pages 365–376.

[11] W. Fung and T. Aamodt. Thread Block Compaction for Efficient
SIMT Control Flow. In HPCA 2011, pages 25 –36.

[12] W. W. L. Fung et al. Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow. In MICRO-40.

[13] M. Gebhart and D. R. Johnson et al. Energy-Efficient Mechanisms
for Managing Thread Context in Throughput Processors. In ISCA
2011, pages 235–246.

[14] Z. Guz et al. Many-Core vs. Many-Thread Machines: Stay Away
From the Valley. Computer Architecture Letters, pages 25 –28, jan.
2009.

[15] T. H. Hetherington et al. Characterizing and Evaluating a Key-Value
Store Application on Heterogeneous CPU-GPU Systems. In ISPASS
2012, pages 88 –98.

[16] S. Hong et al. Accelerating CUDA Graph Algorithms at Maximum
Warp. In PPoPP 2011, pages 267–276.

[17] A. Jaleel et al. CRUISE: Cache Replacement and Utility-Aware
Scheduling. In ASPLOS 2012, pages 249–260.

[18] A. Jaleel et al. High Performance Cache Replacement Using
Re-Reference Interval Prediction (RRIP). In ISCA 2010, pages
60–71.

[19] W. Jia, K. A. Shaw, and M. Martonosi. Characterizing and Improving
the use of Demand-Fetched Caches in GPUs. In ICS 2012, pages
15–24.

[20] A. Jog et al. OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance. In ASPLOS 2013.

[21] A. Jog et al. Orchestrated Scheduling and Prefetching for GPGPUs.
In ISCA, 2013.

[22] O. Kayiran et al. Neither More Nor Less: Optimizing Thread-level
Parallelism for GPGPUs. In PACT 2013.

[23] Khronos Group. OpenCL.
http://www.khronos.org/opencl/.

[24] N. B. Lakshminarayana and H. Kim. Effect of Instruction Fetch and
Memory Scheduling on GPU Performance. In Workshop on
Language, Compiler, and Architecture Support for GPGPU, 2010.

[25] J. Lee, N. B. Lakshminarayana, H. Kim, and R. Vuduc. Many-Thread
Aware Prefetching Mechanisms for GPGPU Applications. In
MICRO-43, pages 213–224, 2010.

[26] J. Leng et al. GPUWattch: Enabling Energy Optimizations in
GPGPUs. In ISCA 2013.

[27] E. Lindholm et al. NVIDIA Tesla: A Unified Graphics and
Computing Architecture. Micro, IEEE, 28(2):39–55, March-April
2008.

[28] M. Maas et al. How a Single Chip Causes Massive Power Bills
GPUSimPow: A GPGPU Power Simulator. In ISPASS 2013.

[29] J. Meng, D. Tarjan, and K. Skadron. Dynamic Warp Subdivision for
Integrated Branch and Memory Divergence Tolerance. In ISCA 2010,
pages 235–246.

[30] V. Narasiman et al. Improving GPU Performance via Large Warps
and Two-Level Warp Scheduling. In MICRO-44, pages 308–317,
2011.

[31] M. K. Qureshi et al. Adaptive Insertion Policies for High
Performance Caching. In ISCA 2007, pages 381–391.

[32] T. G. Rogers. CCWS Simulation Infrastructure.
http://www.ece.ubc.ca/~tgrogers/ccws.html, 2013.

[33] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-Conscious
Wavefront Scheduling. In MICRO-45, 2012.

[34] S. Rul et al. An Experimental Study on Performance Portability of
OpenCL Kernels. In Application Accelerators in High Performance
Computing, 2010.

[35] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
Processors. In ISCA 1995.

[36] D. Spoonhower, G. Blelloch, and R. Harper. Using Page Residency
to Balance Tradeoffs in Tracing Garbage Collection. In Proc. of Int’l
Conf. on Virtual Execution Environments (VEE 2005), pages 57–67.

[37] S. Wilton and N. Jouppi. CACTI: An Enhanced Cache Access and
Cycle Time Model. Solid-State Circuits, IEEE Journal of,
31(5):677–688, May 1996.

http://gpgpu-sim.org/manual/index.php5/GPGPU-Sim_3.x_Manual
http://gpgpu-sim.org/manual/index.php5/GPGPU-Sim_3.x_Manual
http://www.khronos.org/opencl/
http://www.ece.ubc.ca/~tgrogers/ccws.html

	Introduction
	A Programmability Case Study
	Baseline Architecture
	Core Microarchitecture and Issue Arbitration
	Memory Stage and Branch Unit
	Previously Proposed Warp Limiting Techniques

	Divergence, Locality and Scheduling
	Application Locality
	Static Load Classification
	Memory Divergence
	Loop Trip Repetition

	Divergence-Aware Warp Scheduling (DAWS)
	Profiled Divergence-Aware Warp Scheduling (Profiled-DAWS)
	Warp-Based Cache Footprint Prediction
	Predicted Footprint of Warps Outside Loops
	Dealing with Inner Loops

	Detected Divergence-Aware Warp Scheduling (Detected-DAWS)
	Finding Loops with Locality
	Dynamically Classifying Static Loads in Hardware

	Experimental Methodology
	Experimental Results
	Performance
	Programmability Case Study Results
	Determining the Associativity Factor
	Area Estimation
	Dynamic Energy Estimation

	Related Work
	Conclusion
	Acknowledgments
	References

