
Collision Prediction for Robotics Accelerators
Deval Shah

Department of Electrical and Computer Engineering
University of British Columbia

Vancouver, Canada
devalshah@ece.ubc.ca

Tor M. Aamodt
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada
aamodt@ece.ubc.ca

Abstract—Motion planning in dynamic environments is an
important task for autonomous robotics. Emerging approaches
employ neural networks that can learn by observing (e.g., human)
experts. Such motion planners react to the environment by
continually proposing candidate paths to reach a goal. Some
of these candidate paths may be unsafe–i.e., cause collisions.
Hence, proposed paths must be checked for safety using collision
detection. We observe that 25%− 41% of the resulting collision
detection queries can be eliminated if we can anticipate which
queries will return an unsafe result. We leverage this observation
to propose a mechanism, COORD, to predict whether a given
robot position (pose) along a proposed path will result in a
collision. By prioritizing the detailed evaluation of predicted
collisions, COORD enables quickly eliminating invalid paths
proposed by neural network and other sampling based motion
planners. COORD does this by exploiting the physical spatial
locality of different robot poses and using simple hashing and
saturating counters. We demonstrate the potential of collision
prediction on different computation platforms, including CPU,
GPU, and ASIC. We further propose a hardware collision
prediction unit (COPU), and integrate it with an existing collision
detection accelerator. This results in an average 17.2%− 32.1%
decrease in number of collision detection queries across different
motion planning algorithms and robots. When applied to a
state-of-the-art neural motion planner [41], COORD improves
performance/watt by 1.23× on average for motion planning
queries of varying difficulty levels. Further, we find that the
benefits of collision prediction grow as the compute complexity
of motion planning queries increases and provides 1.30× im-
provement in performance/watt in narrow passages and cluttered
environments.

Index Terms—Robotics, Hardware acceleration, Motion plan-
ning, Collision detection, Collision prediction

I. INTRODUCTION

Motion planning is a fundamental computing task in au-
tonomous robotics. Given the current state of the environment
and an end goal, motion planning finds a feasible and safe
path to reach the goal. Motion planning is used to enable
object manipulation, full-body movement, and navigation (e.g.,
self-driving cars). The market for autonomous robots that can
aid humans is gaining increased attention in part due to rapid
progress in machine learning. For example, robots may enable
improvements in health-care and assistance to older adults.
In such settings these robots would be required to navigate
safely in cluttered environments while reacting to dynamic
obstacles in real-time [25], [32]. Collision detection is used
to ensure the safety of a robot’s movements and is the most

(a) Naive scheduling (b) Spatially-aware
scheduling

(c) Oracle scheduling

B1 B2 B3 B4 B5 B6
Motion Planning Benchmarks

0%

50%

100%

C
om

pu
ta

tio
n

(N
or

m
al

iz
ed

)

Naive Scheduling
Spatially-Aware (Baseline)

COORD Predictor Oracle Predictor

(d)
Fig. 1: (a)-(c) represent different scheduling orders of robot link-
environment collision detection queries (CDQs) for a motion-
environment collision check. Here, red-colored parts correspond to
CDQs executed, and gray-colored parts correspond to CDQs skipped
as a collision is found. (d) Comparison of the proposed colli-
sion predictor COORD with a naive sequential scheduler, baseline
Spatially-Aware Scheduler [43], and Oracle collision predictor. The
plot compares the reduction in collision detection computation across
a range of motion planning problems B1-B6.

time and energy-consuming part of several motion planning
approaches [5], [35], [39], [41].

Collision detection is a computationally intensive task that
must be performed in real-time to ensure safety and effective-
ness of an autonomous robot. While prior work has explored
CPU and GPU-based acceleration of motion planning and
collision detection [2], [5], [9], [28], [39], [40], achieving
real-time operation in highly dynamic environments on such
hardware can be challenging. To improve robot productivity
specialized hardware has been proposed to accelerate collision
detection [3], [20], [31], [34], [43], [45], [48]. These works
have primarily focused on accelerating an individual collision
detection query. Shah et al. [43] proposed a scheduling policy
to reduce redundant computation by reordering collision de-
tection queries. We find these approaches often perform more
collision detection queries than may be necessary especially
in cluttered environments.

Figure 1 illustrates the source of this inefficiency and hints
at how it may be overcome. In Figure 1a a motion of a robot
arm is divided up into n sample poses, P1 to Pn, checked by
running repeated Collision Detection Queries (CDQ) starting

from the beginning pose, P1, sequentially towards the goal,
Pn. The red highlighted poses indicate evaluated CDQs. Shah
et al. [43] improve upon this “naive” ordering by employing
a spatially-aware ordering to reduce the number of evaluated
CDQs as shown in Figure 1b. In this paper we aim to further
reduce the number of CDQ evaluations by predicting which
of the sample points, if any, result in a collision. In the
ideal case, an unsafe motion would then require only a single
CDQ evaluation to rule out an unsafe motion as illustrated in
Figure 1c. Our limit study, using an “oracle” predictor, shows
that the number of CDQ evaluations performed during motion
planning can potentially be reduced by 25.1%−40.7% versus
spatially-aware scheduling [43].

Our key insight, is that the physical spatial locality of
CDQ outcomes can be leveraged to enable accurate and
implementable collision prediction. We predict a pose to be
in collision if a “nearby” pose was found to collide with the
environment. As the robot and environment are assumed to
be dynamic, collision predictions are based only on CDQ out-
comes since the last environment measurement (i.e., mapping).
We design a hashing function that bins physically nearby robot
poses together and enables a small and densely populated
collision history table. We further study the impact of envi-
ronment characteristics, prediction strategies, and hash table
update strategies on collision prediction precision and recall.
We leverage insights from these studies to propose COORD, a
collision prediction approach to reduce computation for robot
motion planning.

We integrate COORD with CPU and GPU-based collision
detection and analyze its impact on execution time, com-
putation, and collision prediction overheads. Further, several
collision detection hardware accelerators have been stud-
ied [3], [17], [34], [43] to meet the realtime requirements
and energy constraints of robotic systems. We propose a
hardware Collision Prediction Unit (COPU) that can be tightly
integrated with a specialized accelerator for collision detection.
Figure 1d compares the computation performed by COPU,
baseline accelerator [43], and Oracle predictor (Methodol-
ogy described in Section V). COPU results in 17.2% −
32.1% reduction in the collision detection queries on average
across different motion planning algorithm-robot combina-
tions. The proposed COPU increases performance/watt and
performance/mm2 of the baseline accelerator by 1.23× and
1.11×, respectively, while providing 1.18× higher collision
detection throughput. Further, the proposed Collision Predic-
tion unit results in 23.4% − 42.9% reduction in the collision
detection queries for demanding benchmarks across different
motion planning algorithm-robot combinations. Finally, we
discuss the scope and limitations of the proposed approach
and demonstrate its integration with two more accelerators for
potential performance improvement. In summary, we make
the following contributions in this work:

• We demonstrate the potential of collision prediction to re-
duce collision detection queries during motion planning.

• We propose a collision history table and explore different
hashing approaches for collision prediction including CO-

(a) Robot in physical space (b) Robot in C-space
Fig. 2: (a) and (b) represents a robot with 2 DOFs in the physical
and C-space, respectively. The C-space is two-dimensional as the
robot has 2 DOFs. P1 and P2 represent the poses of the robot, and
M12 represents the motion of the robot between these two poses. A
pose P is represented using the values of its joints x and y, which
corresponds to a point in the C-space with coordinates (x,y).

ORD, a hashing function that groups physically nearby
positions of a robot.

• We evaluate COORD with CPU and GPU-based execu-
tion of collision detection.

• We propose a hardware Collision Prediction Unit (COPU)
suitable for integration within hardware accelerators for
collision detection and evaluate it on various robots,
environments, and motion planning algorithms.

II. BACKGROUND AND MOTIVATION

This section briefly summarizes relevant background on
robot motion planning and collision detection.

A. Motion Planning

An autonomous robot’s computational tasks are typically
divided into a pipeline consisting of perception, motion plan-
ning, and control stages. Motion planning often dominates [4]
and is used to find a collision-free and safe path for a robot
from its current position to a goal position. Its complexity
increases exponentially with the Degrees of Freedom (DOFs)
of a robot. Classical motion planning algorithms (e.g., Brooks
and Lozano-Perez [7]) operate in the configuration space (C-
space) of the robot. The C-space of the robot has the same
dimensions as its DOFs, where each dimension represents the
extent of its DOF (e.g., the angle of joint for a rotational DOF).
Figure 2a-2b gives an example of the physical space and C-
space of a robot with two DOFs. A pose/position of the robot
is specified by the values of its DOFs and is represented as a
point in the C-space (e.g., P1 and P2 in Figure 2b). Similarly,
a motion between two poses is represented as a line in the
C-space (e.g., M12 in Figure 2b).

After decades of research, a wide range of algorithms exist
for motion planning, including end-to-end learning-based,
optimization-based, and sampling-based motion planning ap-
proaches. In this paper, we focus on sampling-based motion
planning [6], [14], [15], [22], [26], [41], [50]. This approach
is favored for robots with high DOF because it avoids the
complexity of mapping environmental obstacles into C-space
while providing a balance between motion planning quality
and runtime.

A sampling-based motion planning algorithm is divided
into two parts: sampling and collision checks. Figure 3a-3b
give an example of motion planning using MPNet [41]. A

(a) Trajectory sampling (b) Collision detection
Fig. 3: (a) and (b) represent trajectory sampling and collision de-
tection in MPNet sampling-based motion planning algorithm [41].
Collision detection is performed in the physical space, and a mo-
tion/pose from the C-space is transformed in the physical space for
collision detection.

neural network is used for sampling and provides intermediate
milestones in the C-space between the start and goal positions
for determining an approximate trajectory (Figure 3a). Thus
the trajectory consists of multiple short “motions” (i.e., lines
in the C-space). Collision detection is performed to determine
which sampled poses and motions from this trajectory are
collision-free to further refine the trajectory (Figure 3b). Thus,
key computation kernels for typical sampling-based motion
planning algorithms include pose-environment and motion-
environment collision detection queries. These queries are
performed multiple times for a single motion planning query.

B. Collision Detection

Collision detection, the most time-consuming part of
sampling-based motion planning [4], [27], determines whether
a given pose or short motion will cause part of the robot to oc-
cupy space currently occupied by an object in the environment.
Figure 4a gives an example of collision detection. Typically,
the physical space occupied by a robot pose is conservatively
approximated using a set of simple volumes that collectively
bound the space filled by the actual robot. Examples of simple
volumes include Oriented Bounding Boxes (OBBs) [3], [43]
or spheres [47] (Figure 4b). Similarly, the environment is con-
servatively represented using simple volumes that bound the
space actually occupied by obstacles. An individual Collision
Detection Query (CDQ) determines whether a given bounding
volume for the robot’s pose intersects any bounding volume
for the environment. Collision detection for a robot pose can
be performed by evaluating a CDQ for each bounding volume
used to represent the robot pose.

Collision detection for a motion can be performed using
either continuous [8], [47] or discrete [13] approaches. In the
discrete approach, illustrated in Figure 4c, collision detection
for a motion is performed by uniformly dividing that motion
into multiple discrete poses and performing collision detection
for each pose. This approach can be sensitive to the resolution
(step size) used for discretization. In contrast, continuous
collision checking typically first creates a volume representing
the space occupied by the robot during the motion then per-
forming collision detection between this volume and the envi-
ronment, which can be compute-intensive. Recent continuous
collision checking approaches [47] using pose-environment
collision queries create a dependency between these queries,
and require finding the distance to closest obstacle. In this

(a) (b) (c)
Fig. 4: (a) represents pose-environment collision detection for a robot,
(b) OBB-based (left) and Sphere-based (right) representation of a
robot’s physical space, and (c) represents collision detection for a
motion from P1 to Pn, which is discretized into multiple poses to be
checked for collision with the environment.

paper we explore discrete collision detection approaches as
these typically provide parallelism between multiple pose-
environment collision checks, and require simple Boolean
pose-environment collision check result (True or False).

During operation in dynamic environments the motion
planning pipeline is repeatedly executed. During a single
execution obstacle occupancy is typically considered fixed.
During this single execution several collision detection checks
are performed for different possible poses (e.g., P1/P2 from
Figure 2a) and motions (e.g., M12 from Figure 2a). An
important consequence of this process that we exploit in this
paper is that several CDQs are performed for different robot
poses with the same occupancy information.

C. Motion Planning and Collision Detection Acceleration

Collision detection is a computationally intensive part of
motion planning, and it can take more than 90% of runtime [4],
[5], [35], [39], [41]. Several CPU and GPU-based acceleration
approaches have been proposed for collision detection [10],
[13], [24], [39]. However, the runtime and energy consumption
constraints make specialized collision detection accelerators
more suitable for mobile robots. Consequently, several special-
ized accelerators have been proposed for collision detection in
motion planning [3], [31], [34], [43], [45], [48].

Figure 5 represents our baseline generic sampling-based
motion planning acceleration system. During a motion plan-
ning query, the controller initiates the process of sampling 1 .
Sampled poses and motions are sent to a scheduler 2 , which
sends these poses and/or motions for collision check 3 . Prior
works have proposed spatially-aware [43] or speculative [3]
scheduling policies. A pose or a motion is converted from C-
space to a set of simple geometric shapes in physical space 4 .
For a robotic arm, transformation matrices for all links can be
calculated using the DH parameters (4 × 4 matrices) of the
robot and matrix multiplications [12], [38]. A transformation
matrix (4× 4 matrix containing rotation and translation) for a
link can be further used to find the coordinates and rotation of
geometric shapes (e.g., OBBs [3], [43], spheres [47]) bounding
the space occupied by the link. These smaller objects are
then sent to Collision Detection Units (CDUs) that perform
collision checking with the environment (i.e., CDQs) 5 . The
results from the CDUs are aggregated and sent back to the

Fig. 5: Baseline sampling-based motion planning acceleration system.

controller 6 . The controller communicates collision outcomes
of different poses and motions with the sampling and path
search module to expand/refine the planned trajectory 7 . Note
that the above describes a generic flow that can be executed on
CPU, GPU, or ASIC platforms. Depending upon the motion
planning algorithm, one or more blocks may be eliminated.

In this work, we discuss collision prediction integration
with different compute platforms used for collision detection,
including CPU, GPU, and ASIC. We propose a hardware
collision prediction unit that can be tightly integrated with
collision detection accelerators (Section IV).

III. COLLISION PREDICTION

This section provides a limit study to motivate collision
prediction in motion planning. Further, it describes our key
insight for collision prediction, motivates the use of a collision
history table, and explores different hashing functions. Finally,
we introduce the proposed collision prediction approach, CO-
ORD.

A. Collision Prediction Limit Study

As explained in Section II-B, a motion-environment or
pose-environment collision check is carried out by execut-
ing multiple smaller CDQs (e.g., OBB-environment collision
check) and combining the output of all CDQs using an OR
operation. Thus, if any of these CDQs returns True for
collision, the entire motion/pose is determined to be in a
collision, and execution of subsequent CDQs is skipped. For
a collision-free motion/pose, the execution order of CDQs
does not matter, as all CDQs are performed before concluding
that the motion/pose is collision-free. However, for colliding
motions/poses, the execution order of CDQs affects the com-
putation performed. Our profiling of 1000 motion planning
queries covering different motion planning algorithms and
robots shows that 52% − 93% motions checked for collision
in these motion planning algorithms are colliding. Thus, there
is a potential to reduce the collision checking time for these
colliding motions by focusing on the execution order of CDQs.

Figure 1 compares three scheduling approaches to demon-
strate their impact on the number of CDQs executed. Here,
each pose is represented using three OBBs. For naive ordering,
all poses are checked for collision serially (Figure 1a), and 18

CDQs are executed before concluding that the motion collides
with the obstacle. Shah et al. [43] proposed a coarse-step
scheduling policy (CSP) for ordering the poses in a motion
such that physically distant poses in this motion are checked
first. They used a step size greater than 1 to select the order.
Hence in this case, a step size of 3 results in the order P1,
P4, P7,..,P2,P5,...Pn. Thus, with CSP, 9 CDQs are executed
before finding a collision, as shown in Figure 1b. However, an
Oracle predictor needs to execute only one CDQ for a colliding
motion/pose, as shown in Figure 1c. Thus, a predictor has
significant potential to reduce the number of CDQs executed
(i.e., computation).

We perform a limit study of the potential reduction in the
number of CDQs performed during motion planning using
three motion planning algorithm-robot combinations (method-
ology described in Section V). Figure 6 compares the number
of CDQs executed using a naive, CSP-based, and Oracle
prediction-based ordering of CDQs. We have divided each
motion planning algorithm into two stages, labeled S1 and
S2, based on the type of CDQs performed in these stages. For
example, in S1 of MPNet, different motions are checked for
collision to find a suitable and short path to the end goal. In
this exploration stage, the majority of the motions checked are
colliding. Whereas in S2, the trajectory (i.e., set of motions)
determined by S1 is checked for feasibility. The majority of
the motions checked in this stage are collision-free. Collision
prediction does not reduce computation for a collision-free
motion. Thus, collision prediction provides a higher reduction
in the number of CDQs executed in S1 (44%) compared to S2
(0.02%). Overall, Oracle prediction results in 29.7%, 25.1%,
and 40.7% reduction in the number of CDQs compared to
CSP ordering. Further, we measure the potential improvement
in the performance/watt on a collision detection hardware
accelerator. Our evaluation using microarchitectural simulators
suggests that an Oracle predictor (100% precision and recall
with zero cycle latency) can provide 1.11− 1.44× increase in
performance/watt for different motion planning algorithms and
7-DOF robotic arms (methodology described in Section V).

We further analyze the advantage of Oracle prediction for
varying difficulty levels in motion planning. The evaluated
benchmarks consist of environmental scenarios and motion
planning tasks of varying difficulty levels. For cluttered en-
vironments (e.g., more obstacles) or difficult motion planning
queries (e.g., passing through narrow area), motion planning
typically requires more time as it needs to check multiple
possible motions and poses to find a collision-free trajectory.
We use the number of CDQs performed during a motion
planning query to approximate its difficulty level and divide
the benchmarks into five equal-size groups, G1-G5, where the
difficulty level increases from G1 to G5. Figure 7 compares
the number of CDQs for CSP and Oracle prediction for
G1-G5 groups. The Oracle predictor achieves 9%, 14.3%,
18.7%, 28.3%, and 42.5% reduction in the number of CDQs
compared to CSP, respectively. This shows a higher potential
for improving motion planning for cluttered and challeng-
ing environments. Service and assistive robots suitable for

S1 S2 Overall0.0

0.5

1.0

#C
D

Q
s e

xe
cu

te
d

(N
or

m
al

iz
ed

 to
 S

1-
N

ai
ve

)
Naive
CSP

Oracle

(a) MPNet [41]-Baxter robot [42]

S1 S2 Overall0.0

0.5

1.0

1.5

2.0

#C
D

Q
s e

xe
cu

te
d

(N
or

m
al

iz
ed

 to
 S

1-
N

ai
ve

)

Naive
CSP

Oracle

(b) GNNMP [50]-KUKA robot [1]

S1 S2 Overall0.00

0.25

0.50

0.75

1.00

#C
D

Q
s e

xe
cu

te
d

(N
or

m
al

iz
ed

 to
 S

1-
N

ai
ve

)

Naive
CSP

Oracle

(c) BIT* [14]-2D path planning
Fig. 6: Comparison of the number of CDQs executed during motion planning for different scheduling policies.

G1 G2 G3 G4 G5
Groups of motion planning queries

0

2

#C
ol

lis
io

n
Q

ue
rie

s
(N

or
m

al
iz

ed
)

CSP Oracle

Fig. 7: Collision prediction for GNN motion planning for a 7-DOF
KUKA robot. Here, G1-G5 represent difficulty levels of motion
planning queries, G5 being the highest.

healthcare and older adults must perform motion planning in
cluttered environments in real time [25], [32]. Several works
focus on improving motion planning in cluttered and highly
dynamic environments as it is a challenging problem [19],
[21], [30], [44]. We observe that the potential reduction in
computation and runtime using collision prediction increases
as the difficulty level of a motion planning query increases.

B. Collision Prediction in Robot’s Configuration Space

We first explore the possibility of applying a hashing
function directly to the C-space representation of a robot’s
pose. As mentioned in Section II-C, robot motion planning is
performed in a robot’s C-space, and C-space representations
of robot poses are converted to physical space representations
(e.g., a set of geometric primitives bounding the space oc-
cupied by a pose or motion) for collision prediction using
forward kinematics. Collision prediction using the C-space
representation of a robot pose does not require C-space to
physical space representation transformation before collision
prediction, thus saving computation.

The C-space representation of an n-DOF robot’s pose is an
n-dimensional real-valued vector, where each value represents
a DOF. Thus, the collision history of poses is very sparse due
to the large space of the number of possible poses. We find
that the spatial locality of the robot’s poses can be exploited
to use a pose’s collision output to predict the collision output
for other poses. Figure 8a represents four poses of a robot
in an environmental scenario with three obstacles. Here, the
obstacles’ position for the next time frame is represented using
faded objects. Here, two physically nearby poses (P1-P2 and
P3-P4) are likely to have the same collision outputs. Thus,
collision output for pose P1 can be used to predict the collision
outcome for pose P2. These examples demonstrate that a
collision history table can be used for collision prediction

(a) Spatial-Temporal
physical locality

(b) (c)

Fig. 8: (a) shows the impact of temporal-spatial locality of obstacles
on collision outputs for nearby poses to demonstrate the use of
collision history. Here, faded objects represent their location in the
next time frame. (b) and (c) compare the effect of change in a DOF
on the space occupied by the robot. A DOF closer to the robotic
arm’s base has a higher impact on the space occupied by the robot,
as shown in example (c).

by grouping physically nearby robot poses using a hashing
function. This strategy results in a small and dense collision
history table. Further, depending upon the speed of obstacles
and the time between two motion planning queries, temporal-
spatial locality exists in the space occupied by obstacles. Thus,
the collision history of a time frame can be used for the next
time frame. Next, we discuss different hashing strategies for
C-space representations. These hashing functions are designed
with the aim of grouping physically nearby positions of a
robot.

POSE: For POSE, each value of the C-space representation
of a pose is quantized and converted to k bits, giving a
hash code of bit-width kn for an n-DOF robot. Hash code
generation can be done by taking k MSBs from the fixed-
point representation of each DOF.

POSE-part: In Figure 8c, a small change (e.g., rotation)
in a DOF closer to the robot’s base significantly changes
the space occupied by the robot. In contrast, a larger change
in the DOF far from the robot’s base still preserves partial
physical space overlap between two poses (Figure 8b). These
examples demonstrate that for a robotic arm, DOFs closer to
the base have a higher impact on the physical spatial locality
between two poses. In the POSE-part hashing function, we
only consider the first two DOFs, and each DOF is quantized
to k bits. This reduces the size of the hash table.

POSE+fold: POSE results in long hash codes (kn), which
results in a large and sparse collision history table. We further
explore the use of folding of the POSE hash code to reduce
the size of the collision history table. In POSE+fold, a part of
the POSE hash code is XORed with the other part.

12 18 6 6 9 8 12 10 12 9 120

20

40

60

C
ol

lis
io

n
Pr

ed
ic

tio
n

 P
re

ci
si

on
/R

ec
al

l (
%

)

POSE POSE
part

POSE+fold ENPOSE ENCOORD COORD

Precision
Recall

(a) Low obstacle density environments

12 18 6 6 9 8 12 10 12 9 120

20

40

60

80

C
ol

lis
io

n
Pr

ed
ic

tio
n

 P
re

ci
si

on
/R

ec
al

l (
%

)

POSE POSE
part

POSE+fold ENPOSE ENCOORD COORD

Precision
Recall

(b) High obstacle density environments
Fig. 9: (a) and (b) compare the collision prediction precision and recall of different hash functions for low- and high-clutter environments,
respectively. Here, numbers on the x-axis represent the bit-width of hash codes. Random baseline precision is 2.6% for low-density and
26% for high-density environments. POSE: Hash function applied to the pose of the robot in configuration space, POSE+fold: Hash function
applied to the pose with hash folding using XOR, ENPOSE: Hash function applied to the encoded pose, COORD: Hash function applied to
Cartesian coordinates of the centers of individual links of the robot.

ENPOSE: One approach to reducing the size of the hash
code is to use a fixed-size latent space representation of the
robot’s pose. We train a small encoder-decoder network on
32, 768 random poses using the loss between input poses and
decoded poses. One-layer MLPs are used as the encoder and
decoder to keep encoding overhead low. We explore 2 and
4-dimensional latent space representation and quantize latent
space representation to generate hash code.

Figure 9 compares the precision and recall of different
hashing functions for low and high-clutter environments. The
collision prediction strategy is described in Section III-D.
Here, collision prediction precision represents the fraction of
poses in collision from poses predicted for collision. Collision
prediction recall is the ratio of the number of colliding poses
predicted to be in a collision and total colliding poses. We
observe that even though the precision of POSE is high, its
recall is very low due to a large and sparse collision history
table. POSE+fold reduces the hash code size and increases the
recall at the cost of precision. This is due to the folding process
not preserving physical spatial similarity between two poses.
In contrast, POSE+part increases the precision and recall
as it preserves the physical spatial locality for links closer
to the robot’s base. ENPOSE results in very low precision
(close to baseline using random prediction). We believe latent
space representation does not preserve physical spatial locality,
resulting in low precision. In summary, C-space representation
hashing does not provide sufficient precision and recall, as
simple hashing strategies do not capture physical spatial
locality in hash codes.

C. Collision Prediction in Physical Space

In this section, we explore the potential of using physical
space representations of a robot and environmental obstacles
for collision prediction. We propose to apply a hashing func-
tion to the space represented by a robot and provide details of
the proposed approach in this section. We also discuss hashing
function’s application to the space occupied by environmental
obstacles for collision prediction in Section VII-2.

The C-space representation of the robot’s pose is used
to find a transformation matrix for each rigid link of the
robot [43], [47]. This transformation matrix can be used to
calculate geometries for each link (e.g., OBBs, spheres). This
transformation matrix is a 4× 4 matrix, which represents the
rotation and translation of each link for a given pose [12].
Thus, this transformation process provides the Cartesian co-
ordinates of the center of different rigid parts of the robot,
which can be used to generate hash code. For example, a
2-DOF robot in Figure 8b consists of 3 rigid parts. In the
proposed approach COORD, the hashing function is applied
to the Cartesian coordinates of the center of each link. These
hash codes are used to make collision predictions for each
link, which can be used to prioritize execution CDQs (e.g.,
OBB-environment or sphere-environment collision check) cor-
responding to a link if a collision is predicted. We consider
OBB-based [3], [43] and spheres-based [47] representation
of a link in evaluation. The center of a link is represented
using three 16-bit fixed point representations of its Cartesian
coordinates. Figure 10 represents hash code generation from
a link’s center coordinates.

We further explore the application of a hashing function to
the latent-space representation of the Cartesian coordinates of
the center of a link. We use simple one-layer MLP to generate
2 or 4-dimensional latent space representation and quantize
the latent space representation to generate a hash code. This
approach is referred to as ENCOORD.

Figure 9 compares the precision and recall of the EN-
COORD and COORD hash functions. ENCOORD achieves
comparable precision and recall for low-clutter environments.
However, precision and recall decrease in high-clutter envi-
ronments. We believe that latent-space representation does
not completely preserve the physical spatial locality. For
high-clutter environments, this results in frequent inaccurate
collision history updates, leading to lower precision and recall.
The figure shows that COORD results in the highest colli-

sion prediction precision and recall. COORD provides 77%
precision with 47% recall even for low-clutter environments.

Fig. 10: Hash code generation for a robot link using the COORD
hash function on its center link.c. In this example, four MSBs of
each coordinate are used for hash code generation, and the rest of
the bits are discarded.

D. Collision History Table Update and Prediction Strategy

For the proposed collision prediction approach, a Collision
History Table (CHT) is maintained and updated with the
collision outputs as CDQs are performed. The hash code
generated for a CDQ using the proposed COORD function
is used as the address for accessing the CHT. Each entry in
the CHT maintains saturating counters for colliding (COLL)
and collision-free (NONCOLL) queries observed in the past. We
observe that updating the history table for all colliding CDQs
is important for prediction precision and recall. However, we
can reduce the frequency of updates for collision-free CDQs.
We use a parameter U (0 ≤ U ≤ 1) to define the update
frequency for collision-free CDQs. For every N collision-free
CDQs executed, N ×U CDQs are chosen randomly to update
the CHT. A lower value of U results in lower traffic and
updates of the CHT.

The collision prediction strategy determines when a colli-
sion is predicted for a CDQ given the CHT entry with counter
values COLL and NONCOLL for its hash code. The proposed
collision prediction strategy predicts a query to be colliding
if COLL > S × NONCOLL. Thus, the value of parameter S
(0 ≤ S ≤ 1) sets the weight of NONCOLL for prediction
and determines the aggressiveness of the collision predictor.
A lower value of S means a more aggressive predictor. Note
that for S = 0, the CHT does not need to maintain NONCOLL
counters, and requires only one bit per entry. Section VI-A1-
VI-A2 compare the effect of different values of S and U on
precision and recall.

E. Collision Prediction and Detection on CPU and GPU

Our goal is to use collision prediction to reduce the
computation required for motion planning collision detection,
which can be exploited to reduce runtime and improve energy
efficiency by reducing dynamic power consumption. We first
evaluate the impact of collision prediction for collision detec-
tion using CPU and GPU (methodology given in Section V).
Algorithm 1 represents a pseudo code for motion-environment
collision detection with collision prediction. A motion plan-
ning benchmark consists of several motions to be checked
for collision. For the CPU-based implementation with four
threads and GPU-based implementation with 64 threads, each
thread executes Algorithm 1 for a group of motion. For GPU-
based implementation for more than 512 threads (i.e., higher
parallelism), each thread executes Algorithm 1 for a subset

64 512 2048 4096
Threads

0

2

4

#C
ol

lis
io

n
Q

ue
rie

s
(N

or
m

al
iz

ed
)

w/o collision prediction
collision prediction

(a)

64 512 2048 4096
Threads

10−2

10−1

100

R
un

tim
e

(N
or

m
al

iz
ed

)

w/o collision prediction
collision prediction

(b)
Fig. 11: Impact of collision prediction on numbers of CDQs executed
(a) and execution runtime (b) for GPU-based collision detection.

of poses in a motion. The hash table is shared between all
threads.

For CPU-based implementation, we observe 25.3% re-
duction in the number of collision detection queries (i.e.,
computation) and 13.8% reduction in the collision detection
runtime. Our profiling suggests that the CHT accesses and
updates increase cache misses, which might explain the gap
between computation and runtime reduction. Further, this
speedup might not be sufficient to enable real-time motion
planning execution on a CPU.

Algorithm 1 Motion collision detection with collision prediction
Input: Motion info = [pose1, pose2,..., poseN], Hash table, S ;
Output: Collision output;
1: Queue=[];
2: for pose ∈ Motion info do
3: OBBs = robot kinematics(pose)
4: for OBB ∈ OBBs do
5: hashentry=hashcode(OBB.c)
6: if hashentry.COLL > (hashentry.NONCOLL × S) then
7: CollTemp = Collision check(OBB)
8: Hash table.update(hashcode(OBB.c),CollTemp)
9: if CollTemp then return True

10: end if
11: else
12: Queue.append(OBB)
13: end if
14: end for
15: end for
16: for OBB ∈ Queue do
17: CollTemp = Collision check(OBB)
18: Hash table.update(hashcode(OBB.c),CollTemp)
19: if CollTemp then return True
20: end if
21: end for
22: return False

We further evaluate the impact of collision prediction on the
number of CDQs executed and runtime for different levels of
parallelism in GPU. Figure 11 represents the number of CDQs
executed and collision detection runtime for MPNet motion
planning with and without collision prediction. Number of
CDQs and runtime are normalized with respect to 64 threads
configuration without collision prediction. As the degree of
parallelization increases, baseline collision detection results in
higher CDQs as redundant work increases due to the paral-
lel execution of CDQs within a motion. However, collision
prediction helps with reducing redundant work by prioritizing
the execution of CDQs that are likely to result in positive col-
lision output. Further, we find that collision prediction-based
execution results in 30% (2048 threads) to 70% (4096 threads)
increase in the execution time. Our profiling results suggest

Fig. 12: Architecture of the proposed Collision Prediction Unit (COPU) and its integration with motion planning collision detection accelerator.
Here, gray-colored blocks represent the baseline architecture [43], and yellow-colored blocks represent additions for collision prediction.

that software collision prediction increases warp divergence
due to skipped computation and memory stalls due to hash
table accesses.

The use of application-specific accelerators is desirable to
meet the runtime and energy constraints of robot motion
planning, especially for high-DOF robots working in dynamic
environments [3], [17], [34], [43]. We find that software-
collision prediction (CPU controller) is ∼ 2× slower than col-
lision detection using a specialized accelerator [3], [43], which
results in an overall ∼ 2.1× collision detection slowdown.
This motivates the need for a collision prediction accelerator
that can be integrated with existing collision detection hard-
ware accelerators. In the next section, we propose a hardware
collision prediction unit and discuss its microarchitecture.

IV. COLLISION PREDICTION UNIT ARCHITECTURE

This section describes the microarchitecture of the collision
detection acceleration system used for evaluation. It provides
details of the proposed Collision Prediction Unit (COPU)
and its integration with a specialized accelerator for collision
detection in motion planning.

Figure 12 represents the overall architecture of a motion
planning collision detection accelerator (left) with collision
prediction. The right side of Figure 12 represents a detailed
architecture of collision prediction’s integration with a Colli-
sion Detection Unit (CDU). The gray-colored blocks represent
the baseline architecture [43] (explained in Section II-C), and
yellow-colored blocks represent additions for collision predic-
tion. Note that the proposed COPU can be integrated with any
collision detection accelerator. The collision prediction unit
and OBB-generation unit is shared by multiple CDUs. Each
CDU performs an intersection test between environmental
obstacles and a part of the robot (e.g., OBB or Spheres). We
use OBB-environment CDU proposed by Shah et al. [43] in
our implementation.

The OBB Generation Unit receives a pose from the sched-
uler and generates OBBs bounding each link 1 . The output

OBB’s center (a proxy for the link’s center) is used to generate
the hash code 2 and read the corresponding entry from
the Collision History Table (CHT) 3 . The COPU sends
the OBB to corresponding queues 4 , depending upon the
collision prediction output. There are two queues QCOLL and
QNONCOLL for storing OBBs with collision predicted and
not predicted, respectively. Priority must be given to CDQs
for OBBs stored in the QCOLL queue as these CDQs are
more likely to return True for collision check. The Query
Dispatcher sends a query from non-empty QCOLL queue to
a free CDU 5 . However, if QCOLL is empty, the Query
Dispatcher sends a query from QNONCOLL queue only if
QNONCOLL is full or the OBB Generation Unit has received
all poses from the scheduler 6 . In the latter case, queries are
dispatched from QNONCOLL as no new entries will be added
in QCOLL and QNONCOLL for this pose/motion. Thus, the
Query Dispatcher prioritizes the QCOLL queue for collision
detection and dispatches from QNONCOLL only if necessary.
CDUs send the collision output to the Query Update Unit to
update the hash table 7 . The Result Collector receives the
output of all CDUs and sends the output to the scheduler 8 .

The CHT is implemented using an SRAM. Each entry of
CHT consists of two 4-bit saturating counters, COLL and
NONCOLL. The Collision Predictor uses OBB’s center to
generate CHT address using COORD and reads correspond-
ing entry {COLL,NONCOLL}. The predictor uses compari-
son (COLL> (NONCOLL>>x)) to determine collision output,
where x is determined using parameter S used in collision
prediction strategy (Section III-D). The Query Update Unit
receives the hash code and collision output for an executed
CDQ. It reads the corresponding entry from CHT and up-
dates COLL or NONCOLL (based on collision result) using a
saturating adder. For collision-free CDQs, the Query Update
Unit uses a random number generator and parameter U to
determine whether the CHT is updated for this query. All
entries (COLL and NONCOLL counters) in the CHG are reset
to zero after each motion planning query, as obstacle positions

might change for the following motion planning query. Thus,
the most recent environment obstacle positions are considered
for collision prediction.

V. METHODOLOGY

We study different hashing functions and design aspects for
collision prediction using random environmental scenarios and
robot poses (Section III-B, Section III-C, and Section VI-A).
A 7-DOF robotic arm Kinova Jaco2 [23] is used for these
benchmarks. We generate an environmental scenario for each
benchmark with random placement of 5 − 9 cuboid-shaped
obstacle. The size of the environment is limited to the reach
of the Jaco2 robot. These benchmarks are consistent with
previous works on motion planning [31], [34]. 1000 random
robot poses are sampled in an environment for collision
prediction evaluation. For low, medium, and high obstacle
density benchmarks, the size and number of obstacles are
limited such that, on average, ∼ 2.5%, ∼ 10%, and ∼ 25%
robot poses are in collision.

We explore three motion planning algorithms to evaluate
collision prediction (Section VI-B). MPNet [41] is a leaning-
based motion planning algorithm and uses a neural network
for trajectory sampling. We evaluate this algorithm for a 7-
DOF robotic arm Baxter and 2D path planning. GNNMP [50]
uses a graph neural network for sampling the C-space and path
smoothing. Batch Informed Trees (BIT*) [14] is an informed-
sampling-based motion planning algorithm. The above two
algorithms are evaluated for a 7-DOF robotic arm KUKA [1]
and 2D path planning. We use the environment scenarios and
motion planning queries used in the original work [41], [50].
Each environment scenario typically consists of a work table
with several objects randomly placed on the table and in the
surroundings.

We evaluate the proposed collision prediction using a
detailed microarchitectural simulator. For area and energy
estimate, we use OpenRAM Memory Compiler [16] and 45nm
technology using FreePDK design library [46]. Klampt [18]
and PyBullet [11] robotic simulators are used to simu-
late robot motions and poses. The size of CHT is set to 1024
entries and 4096 entries for 2D path planning and robotic
arm motion planning, respectively. We also evaluate collision
prediction for CPU (Cortex A57 4-core) and GPU (NVIDIA
Titan V) based collision detection systems. MPNet-Baxter
benchmarks are used for this evaluation. We use C++ (with
OpenMP) and CUDA programming language for implemen-
tation, and Valgrind [36] and nvprof [37] for profiling.

VI. EVALUATION

In this section, we present an evaluation of the proposed
COORD collision predictor and study different design aspects’
impact on prediction and computation. Next, we evaluate
the motion planning runtime, computation, and performance
achieved by integrating the proposed COPU with an existing
motion planning collision detection accelerator.

Random S=2 S=1 S=1/2 S=1/8 S=1/32 S=00%

50%

100%

Baseline COORD Collision prediction

Precision (%)
Recall (%)

Compute (%)

(a) Low obstacle density environments

Random S=2 S=1 S=1/2 S=1/8 S=1/32 S=00%

50%

100%

Baseline COORD Collision prediction

(b) Medium obstacle density environments

Random S=2 S=1 S=1/2 S=1/8 S=1/32 S=00%

50%

100%

Baseline COORD Collision prediction

(c) High obstacle density environments
Fig. 13: (a)-(c) compare the collision prediction precision, recall, and
the resultant decrease in the computation compared to a random
baseline for different collision prediction strategies (parameter S
introduced in Section III-D).

Random S=0
U=0

S=1/2
U=1

S=1
U=1/2

S=2
U=1/4

S=4
U=1/8

0%

50%

100%

Baseline COORD Collision prediction

Precision (%)
Recall (%)

Compute (%)

Fig. 14: Effect of the update frequency of the Collision History Table
on collision prediction (parameter U introduced in Section III-D).

A. Collision Prediction Design Aspects

This section presents an evaluation of the COORD collision
predictor for different environmental scenarios and design
aspects.

1) Collision Prediction Strategies: First, we compare col-
lision prediction strategies for three levels of clutterness in
the environment. As described in Section III-D, the proposed
predictor predicts collision if COLL > S × NONCOLL, where
COLL and NONCOLL represent the counts of colliding and
collision-free CDQs observed in the past for the same hash
code (i.e., CHT entries). The collision predictor becomes more
aggressive with lower values of S. Here, S = 0 results in
the most aggressive prediction strategy. Figure 13 compares
the precision and recall for different values of S across dif-
ferent environments. We also report approximate computation
reductions achieved by collision prediction using a statistical
model. This statistical model considers the baseline collision
probability, precision, and recall and provides the potential

decrease in the number of CDQs executed for collision check
of a motion consisting of 80 CDQs. As shown in Figure 13,
as the value of S decreases, the predictor becomes more
aggressive, resulting in higher recall and lower precision.

We observe interesting trends in computation reduction
across different types of environments. For low-clutter en-
vironments, the number of colliding poses is very low, and
an aggressive predictor with higher recall is needed to find
these colliding poses using prediction. Hence, for low-clutter
environments (Figure 13a), the recall is more important than
precision, as the computation reduction is the highest for
S = 0. Meanwhile, in highly cluttered environments, several
poses are in a collision. Hence, even though recall is low, the
probability that the predictor will find a colliding pose in the
motion is high. Here, precision is more important to reduce
redundant computation. Hence, we observe that for highly
cluttered environments, the computation is the least for the
highest precision (S = 2). For medium-clutter environments,
a balance between precision and recall results in the least
computation (S = 1/2). We observe that the computation
reduction is less sensitive to S compared to precision and
recall. In this work, we use a constant value of S across
all environmental scenarios. However, there is scope to tune
the value of S by using a heuristic to estimate environmental
obstacle density (e.g., the number of voxels or the number of
nodes in octree); we leave this to future work.

2) Collision History Table Updates: We find that more
than 90% of the CDQs are collision-free for low or medium-
cluttered environments. Here, we explore the effect of reduced
update frequency (U) for collision-free CDQs. Figure 14 com-
pares precision, recall, and computation for different combina-
tions of S and U . Here, for all combinations, the computation
decrease does not vary significantly (±1%), which suggests
that the value of S can be adjusted to reduce the update
frequency.

B. Collision Prediction for Motion Planning Acceleration

We integrate the proposed COPU with a collision detection
unit as described in Section IV to accelerate motion planning
execution. For the evaluation setup, seven CDUs, a COPU, and
a Collision History Table of size 4096× 8 bits (robotic arms)
or 1024 × 8 bits (2D path planning) are used. The values of
S and U are set to 1 and 0.125, respectively. We evaluate the
reduction in the number of CDQs performed during motion
planning for this setup. Figure 15 compares the number
of CDQs executed for MPNet-Baxter, MPNet-2D planning,
GNNMP-KUKA, GNNMP-2D planning, BIT*-KUKA, and
BIT*-2D planning. For each motion planning algorithm-robot
combination, benchmarks are grouped (G1-G5) according to
the difficulty level. We use the number of CDQs performed
during a motion planning query to approximate its difficulty
level and divide the benchmarks into five equal-size groups,
G1-G5, where the difficulty level increases from G1 to G5.
Here, all numbers in a plot are normalized to #CDQs for G1
benchmarks and CSP scheduling [43].

The proposed COPU provides 22.5%, 32.06%, 17.4%,
23.1%, 25.5%, and 21.6% reduction in the number of CDQs
executed on average compared to CSP-based ordering across
different benchmarks (Figure 15a-15f). For a more difficult
problem in a cluttered scenario or narrow passage, the motion
planner needs to perform more tests to find a collision-free
motion. We observe that the proposed collision prediction
unit provides higher benefits for such challenging scenarios.
COPU provides 26.2%, 42.9%, 25.4%, 28.7%, 37.3%, and
23.4% reduction in the number of CDQs executed for group
G5 across different benchmarks (Figure 15a-15f).

1) Area and Energy overhead: A Collision History Table
(CHT) is added for collision prediction. Further, two queues
are added per a group of CDUs (Figure 12). We estimate
the energy and area overhead of these added components
to a motion planning collision detection accelerator MPAc-
cel [43] using the OpenRAM Memory compiler. For an
MPAccel [43] configuration with 24 CDUs with one COPU,
QCOLL, QNONCOLL, and OBB Generation Unit per 6 CDUs, a
CHT of size 4096×8 bits results in 1.96% and 1.01% area and
energy overheads. This overhead changes to 0.55% and 0.28%
for a CHT of size 4096×1 bits. QCOLL and QNONCOLL results
in 2.6% and 1.4% area and energy overheads, respectively.

2) Performance Evaluation: We analyze the impact of
collision prediction on the overall runtime, energy consump-
tion, performance/watt, and performance/mm2 of the proposed
hardware accelerator. MPNet motion planning for the Baxter
robotic arm is used for evaluation. We consider three con-
figurations (COPU.1, COPU.4, and COPU.6) of the collision
detection accelerator shown in Figure 12, where the suffix
represents the number of OBB-environment CDUs. A CHT of
size 4096× 1 (S = 0, U = 0) is used for these experiments.
The lengths of QNONCOLL and QCOLL are set to 56 and
8, respectively. For COPU.1, COORD collision prediction
results in 23.4% reduction in the collision detection energy
consumption with 1.29× speedup (collision detection time per
motion) compared to baseline (without collision prediction).
For COPU.6, COORD collision prediction results in 22.4%
reduction in the energy consumption with 1.10× speedup
compared to baseline. As described in Section IV, the Query
Dispatcher proposed in this work prioritizes CDQs that are
predicted to be in colliding. This dispatcher schedules a CDQ
from QNONCOLL only if the queue is full or QCOLL is empty
and the predictor has received all CDQs for a given motion.
This results in a waiting period before executing any CDQs.
In COPU.1, only one CDQ can be executed at a time. In this
case, the overhead of the Query Dispatcher’s waiting period is
less. However, COPU.6 has significant parallelism available,
and the waiting time overhead becomes prominent. This is
expected as the Query Dispatcher prioritizes energy efficiency.
However, the Query Dispatcher’s policy can be designed
to find a trade-off between runtime and energy efficiency.
Note that collision prediction increases the launch-to-execute
latency of a CDQ due to collision prediction latency and
queuing. However, the end-to-end latency of motion collision
detection reduces with collision prediction.

G1 G2 G3 G4 G5
Groups of motion planning queries

0

5

10
#C

ol
lis

io
n

Q
ue

rie
s

(N
or

m
al

iz
ed

) CSP
CSP+CP

Oracle

(a) MPNet [41]-Baxter

G1 G2 G3 G4 G5
Groups of motion planning queries

0

10

20

#C
ol

lis
io

n
Q

ue
rie

s
(N

or
m

al
iz

ed
) CSP

CSP+CP
Oracle

(b) MPNet [41]-2D Path planning

G1 G2 G3 G4 G5
Groups of motion planning queries

0

2

#C
ol

lis
io

n
Q

ue
rie

s
(N

or
m

al
iz

ed
) CSP

CSP+CP
Oracle

(c) GNNMP [50]-KUKA

G1 G2 G3 G4 G5
Groups of motion planning queries

0.0

2.5

5.0

#C
ol

lis
io

n
Q

ue
rie

s
(N

or
m

al
iz

ed
) CSP

CSP+CP
Oracle

(d) GNNMP [50]-2D Path planning

G1 G2 G3 G4 G5
Groups of motion planning queries

0

5

#C
ol

lis
io

n
Q

ue
rie

s
(N

or
m

al
iz

ed
) CSP

CSP+CP
Oracle

(e) BIT* [14]-KUKA

G1 G2 G3 G4 G5
Groups of motion planning queries

0.0

2.5

5.0

#C
ol

lis
io

n
Q

ue
rie

s
(N

or
m

al
iz

ed
) CSP

CSP+CP
Oracle

(f) BIT* [14]-2D Path planning
Fig. 15: Collision prediction for different robots and motion planning algorithms.

Baseline.1
COPU.1

Baseline.4
COPU.4

Baseline.6
COPU.6

Configurations

0.0

0.5

1.0

1.5

2.0

2.5

Pe
rf

/W
 o

r P
er

f/m
m

2
 o

r R
un

tim
e

(N
or

m
al

iz
ed

) Perf/W Perf/mm2 Runtime

Fig. 16: Performance/mm2, performance/watt, and latency compari-
son for different CDU configurations. The baseline represents a CDU
without COPU. The suffix number represents the number of OBB-
Environment CDUs in Figure 12.

We further compare the runtime (average end-to-end latency
for motion-environment collision check) and performance with
and without collision prediction. Figure 16 compares the
performance/mm2, performance/watt, and runtime for different
configurations with and without collision prediction. Here,
the suffix in the configuration name represents the number
of CDUs per COPU (Figure 12). For all configurations,
collision prediction (COPU.x) provides lower latency and
higher performance/area and performance/watt compared to
the baseline (baseline.x). For example, COPU.4 increases
performance/watt and performance/mm2 by 1.23× and 1.15×,
respectively, while providing 1.18× speedup.

C. Sensitivity Studies

In this section, we study the impact of COPU architectural
aspects on reducing executed CDQs.

Queue Size: Two queues QCOLL and QNONCOLL are
added to store the OBBs generated by the OBB Generation
Unit (Figure 12). These queues are added so that the Query

0.65KB 1.3KB 2.6KB 5.2KB 10.5KB
Size of the queues (QCOLL+QNONCOLL)

15

20

25

#C
D

Q
s r

ed
uc

tio
n

(%
)

MPNet
GNNMP

BIT*

(a) 7-DOF robots

0.18KB 0.37KB 0.75KB 1.5KB 3KB
Size of the queues (QCOLL+QNONCOLL)

0

20

#C
D

Q
s R

ed
uc

tio
n

(%
)

MPNet
GNNMP

BIT*

(b) 2D motion planning
Fig. 17: CDQs reduction versus QNONCOLL queue size.

Dispatcher can prioritize CDQs for OBBs predicted to be
colliding before performing collision detection for CDQs from
the QNONCOLL queue. Thus, the size of QNONCOLL queue
is crucial and should be set such that it can hold enough
entries before the predictor finds a colliding OBB. Figure 17
compares the computation reduction achieved by the predictor
for different QNONCOLL queue sizes. For all benchmarks, the
runtime/energy improvement decreases significantly for a very
small queue size. The improvement also saturates for larger
queue sizes as the queue is not fully utilized during execution.

Collision Prediction Strategy: Figure 18a compares the
improvement achieved by the proposed predictor for different
collision prediction strategies determined by the values of S
(Section III-D). As shown in the figure, the improvement is
not highly sensitive to the prediction strategy. In several cases,
S = 0 results in improvement within 2% of the best choice.
Using S = 0 simplifies the design and reduces area/energy
of the Collision History Table, as only one bit is needed per
entry.

Collision History Table Updates: Figure 18b shows the
impact of the history table update frequency for collision-free
CDQs on the CDQs execution reduction. For collision-free
queries, we scale the update frequency by U < 1 (described

1 0.5 0.25 0.125 0
Value of S parameter for collision prediction strategy

15

20

25
#C

D
Q

s R
ed

uc
tio

n
(%

)

MPNet
GNNMP

BIT*

(a)

1 0.5 0.25 0.125 0.03125
Update frequency for collision-free outputs

15

20

25

#C
D

Q
s R

ed
uc

tio
n

(%
)

MPNet
GNNMP

BIT*

(b)
Fig. 18: (a) CDQs reduction achieved for different collision prediction
strategies. (b)CDQs reduction achieved for different Collision History
Table update frequency for collision-free CDQs.

in Section III-D). As shown in Figure18b, the reduction in the
number of executed CDQs is not highly sensitive to the update
frequency; this suggests that hash table update frequency can
be reduced for reduced traffic.

VII. SCOPE OF COLLISION PREDICTION

Motion planning and collision detection are widely stud-
ied problems with a wide range of algorithms available.
Section II-B provides a brief background on different types
of collision detection algorithms. For collision prediction to
be useful for providing computation and runtime reduction,
the underlying collision detection algorithm must have cer-
tain characteristics. As mentioned in Section II, each pose-
environment and motion-environment collision check consists
of several CDQs, where each CDQ corresponds to an intersec-
tion test between two geometries (part of space occupied by
robot and environment). Two necessary conditions for using
collision prediction are: 1) There exists parallelism without
data dependence between all CDQs for a pose and/or motion,
and 2) Collision detection can be terminated early if a CDQ
returns True, without affecting the correctness. Prior works
have proposed continuous collision detection algorithms [8],
[47], where a motion is not uniformly discretized, and the next
discrete pose to be checked for collision depends upon the
collision outcome of the current pose. In such cases, collision
prediction can only be used to schedule CDQs from a pose.
The second condition might not be true for motion planning
algorithms, where collision detection is needed to provide
more information, such as the separation or penetration dis-
tance between the robot and environmental obstacles. Our
proposed collision prediction can be integrated with existing
collision hardware accelerators that use suitable underlying
motion planning and collision detection algorithms. We further
explore the potential of collision prediction for different CDUs
and motion planning algorithms.

1) Sphere-based Representation of Robot: Prior works have
proposed the use of spheres [47] to represent the space
occupied by the robot (Figure 4b). The CDUs used in this
acceleration system perform collision checks between a sphere
and the environment. We evaluate the potential reduction in
sphere-environment CDQs using a microarchitectural simula-
tor. In this approach, the transformation matrix for each link is
first calculated, and the center of this link is used to generate
hash code and perform prediction. Links are stored in QCOLL
or QNONCOLL. The query dispatcher reads the transformation
matrix for a link from a queue, calculates the centers and

radii of spheres corresponding to this link, and sends CDQs
to available CDUs. Our evaluation using the Jaco2 Robot and
MPNet algorithm shows that collision prediction reduces the
number of CDQs by 23.4%. Note that since we are storing link
transformation matrices in the queue, buffer sizes are similar
to the prior implementation (Section IV).

2) Hashing Environmental Obstacle’s Physical Space: In
this section, we discuss the potential of using collision pre-
diction by applying a hashing function to the space occupied
by environmental obstacles. Here, we focus on Probabilistic
Roadmaps based motion planning and corresponding hardware
accelerator (Dadu-P) proposed by Lian et al. [31]. In this
approach, a fixed set of short motions is used for motion plan-
ning. The space occupied by each short motion is converted
to an optimized octree-based representation offline and stored
in memory. At runtime, each short motion (i.e., octree) is
checked for collision with environmental obstacles represented
using a set of voxels. Collision-free short motions are then
used to construct a trajectory between start and end goals.
Here, a CDQ corresponds to motion octree-voxel collision
detection. In this case, a hashing function can be applied
to the voxel coordinates to maintain a collision history of
environmental voxels for each motion. We integrate spatially-
aware scheduling policy (CSP) [43] and queue-based COPU
with Dadu-P accelerator. Our evaluation shows that CSP and
CSP+COPU reduce the number of CDQs by 74.3% and 81.2%
for colliding motions, respectively. Our limit study shows
that collision prediction can reduce the number of CDQs
for colliding motions by 99% compared to naive sequential
scheduling of voxels, as only one voxel needs to be checked
for colliding motion. We observe that limited queue size results
in lower benefits from COPU. Our evaluation demonstrates the
potential of using collision prediction for this accelerator, and
collision prediction integration can be re-designed to achieve
computation reduction closer to the limit study.

VIII. RELATED WORK

Prior works have focused on CPU or GPU-based accelera-
tion of motion planning algorithms and collision detection [2],
[5], [9], [28], [39], [40], [47]. Dadu-P and Dadu-CD [31], [48]
proposed to use a precomputed octree representation of the
space occupied by different motions of the robot. Murray et
al. [33], [35] proposed using precomputed sets of axis-aligned
bounding boxes to store the space occupied by robot motions.
These accelerators focus on computing the space occupied by
different motions offline for faster runtime collision detection.
However, these accelerators are only suitable for a class
of motion planning algorithms that use only a fixed set of
motions for motion planning [29]. Bakhshalipour et al. [3]
proposed a hardware collision detection unit based on vox-
elized OBB-environment collision detection. They proposed a
memory access coalescing strategy. Shah et al. [43] proposed
a Cascaded Early-Exit Collision Detection Unit for OBB-
environment collision detection. However, prior works have
not focused on collision prediction to reduce computation in
motion planning. Yeh et al. [49] explored the use of branch

prediction for accelerating physics simulation on a CPU using
the collision history of object-object pairs. However, their main
goal is to improve the branch predictor’s accuracy. In contrast,
this work focuses on collision prediction to skip computation
in robot motion planning.

IX. CONCLUSION

In this work, we explore the potential of collision prediction
for autonomous robots. We study different motion planning
algorithms and robots and demonstrate that collision prediction
can reduce the number of collision detection queries by
24%−40% for all benchmarks and 33%−53% for demanding
benchmarks, significantly reducing energy consumption and
runtime. Our proposed collision prediction approach, COORD,
leverages physical spatial locality and provides 69% − 83%
precision with 55%−75% recall for environments of different
levels of obstacle density. We further study different design as-
pects that can be adjusted to find a trade-off between precision
and recall. We integrate the COORD collision predictor with
CPU and GPU-based collision detection, evaluate the impact
of prediction on runtime and computation, and profile over-
heads in software collision prediction. Finally, we integrate the
proposed Collision Prediction Unit with an existing Collision
Detection Unit and evaluate it across different motion planning
algorithms, robots, and environments. The proposed predictor
reduces the number of collision detection queries executed
for motion planning by 17.2% − 32.1% on average and by
23.4% − 42.9% for more demanding benchmarks. COPU
increases performance/watt and performance/mm2 by 1.23×
and 1.15×, respectively, while providing 1.18× speedup for
MPNet [41] motion planning.

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers and artifact
evaluators for their feedback. This research has been funded
in part by the National Sciences and Engineering Research
Council of Canada (NSERC) through the NSERC strategic
network on Computing Hardware for Emerging Intelligent
Sensory Applications (COHESA) and through an NSERC
Strategic Project Grant.

REFERENCES

[1] K. AG, “Industrial robots from kuka,” 2023. [Online]. Available: https:
//www.kuka.com/en-ca/products/robotics-systems/industrial-robots

[2] N. Amato and L. Dale, “Probabilistic roadmap methods are embarrass-
ingly parallel,” in Proceedings 1999 IEEE International Conference on
Robotics and Automation, 1999, pp. 688–694.

[3] M. Bakhshalipour, S. B. Ehsani, M. Qadri, D. Guri, M. Likhachev,
and P. B. Gibbons, “Racod: Algorithm/hardware co-design for mobile
robot path planning,” in Proceedings of the 49th Annual International
Symposium on Computer Architecture. Association for Computing
Machinery, 2022.

[4] M. Bakhshalipour and P. B. Gibbons, “Agents of autonomy: A
systematic study of robotics on modern hardware,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 7, no. 3, dec 2023. [Online]. Available:
https://doi.org/10.1145/3626774

[5] J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively parallelizing the
RRT and the RRT,” in International Conference on Intelligent Robots
and Systems, 2011, pp. 3513–3518.

[6] R. Bohlin and L. Kavraki, “Path planning using lazy prm,” in IEEE
International Conference on Robotics and Automation, 2000, pp. 521–
528.

[7] R. A. Brooks and T. Lozano-Perez, “A subdivision algorithm in config-
uration space for findpath with rotation,” IEEE Transactions on Systems,
Man, and Cybernetics, no. 2, pp. 224–233, 1985.

[8] J. Canny, “Collision detection for moving polyhedra,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, no. 2, pp. 200–209, 1986.

[9] D. Challou, M. Gini, and V. Kumar, “Parallel search algorithms for
robot motion planning,” in Proceedings IEEE International Conference
on Robotics and Automation, May 1993, pp. 46–51 vol.2.

[10] J.-W. Chang, W. Wang, and M.-S. Kim, “Efficient collision detection
using a dual obb-sphere bounding volume hierarchy,” Computer-Aided
Design, vol. 42, pp. 50–57, 2010.

[11] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

[12] J. Denavit and R. S. Hartenberg, “A Kinematic Notation for Lower-Pair
Mechanisms Based on Matrices,” Journal of Applied Mechanics, vol. 22,
no. 2, pp. 215–221, 2021.

[13] C. Ericson, Real-Time Collision Detection. CRC Press, Inc., 2004.
[14] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Batch informed

trees (bit*): Informed asymptotically optimal anytime search,” The
International Journal of Robotics Research, vol. 39, no. 5, pp. 543–
567, 2020.

[15] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014, pp. 2997–3004.

[16] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar,
“OpenRAM: An open-source memory compiler,” in 2016 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Nov.
2016, pp. 1–6, iSSN: 1558-2434.

[17] Y. Han, Y. Yang, X. Chen, and S. Lian, “Dadu series - fast and efficient
robot accelerators,” in 2020 IEEE/ACM International Conference On
Computer Aided Design (ICCAD), 2020, pp. 1–8.

[18] K. Hauser, Robust Contact Generation for Robot Simulation with
Unstructured Meshes. Springer, Cham, 2016, pp. 357–373.

[19] C.-M. Huang and S.-H. Hsu, “Efficient path planning for a microrobot
passing through environments with narrow passages,” Micromachines,
vol. 13, p. 1935, 11 2022.

[20] T. Jia, E.-Y. Yang, Y.-S. Hsiao, J. Cruz, D. Brooks, G.-Y. Wei, and V. J.
Reddi, “Omu: A probabilistic 3d occupancy mapping accelerator for
real-time octomap at the edge,” in Proceedings of the 2022 Conference
Exhibition on Design Automation Test in Europe, 2022, p. 909–914.

[21] H. T. K., A. Balachandran, and S. Shah, “Optimal whole-body motion
planning of humanoids in cluttered environments,” Robotics and
Autonomous Systems, vol. 118, pp. 263–277, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0921889017307108

[22] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, 1996.

[23] KINOVA, “Kinova jaco assistive robot,” https://www.kinovarobotics.
com/sites/default/files/KINO-2018-Bro-Assistive-ZH YUL-06-R-
Web.pdf, 2018.

[24] J. Klosowski, M. Held, J. Mitchell, H. Sowizral, and K. Zikan, “Efficient
collision detection using bounding volume hierarchies of k-dops,” IEEE
Transactions on Visualization and Computer Graphics, 1998.

[25] A. Korchut, S. Szklener, C. Abdelnour, N. Tantinya, J. Hernandez-
Farigola, J. Ribes, U. Skrobas, K. Grabowska-Aleksandrowicz,
D. Szczesniak-Stanczyk, and K. Rejdak, “Challenges for service
robots—requirements of elderly adults with cognitive impairments,”
Frontiers in Neurology, vol. 8, 06 2017.

[26] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” in
Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C), 1999, pp. 473–479 vol.1.

[27] S. M. LaValle, Planning Algorithms, 2006. [Online]. Available:
http://lavalle.pl/planning/

[28] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg, “Real-time
robot motion planning using rasterizing computer graphics hardware,”
SIGGRAPH Comput. Graph., vol. 24, no. 4, p. 327–335, 1990.

[29] P. Leven and S. A. Hutchinson, “A framework for real-time path
planning in changing environments,” The International Journal of

https://www.kuka.com/en-ca/products/robotics-systems/industrial-robots
https://www.kuka.com/en-ca/products/robotics-systems/industrial-robots
https://doi.org/10.1145/3626774
http://pybullet.org
https://www.sciencedirect.com/science/article/pii/S0921889017307108
https://www.kinovarobotics.com/sites/default/files/KINO-2018-Bro-Assistive-ZH_YUL-06-R-Web.pdf
https://www.kinovarobotics.com/sites/default/files/KINO-2018-Bro-Assistive-ZH_YUL-06-R-Web.pdf
https://www.kinovarobotics.com/sites/default/files/KINO-2018-Bro-Assistive-ZH_YUL-06-R-Web.pdf
http://lavalle.pl/planning/

Robotics Research, vol. 21, pp. 1030 – 999, 2002. [Online]. Available:
https://api.semanticscholar.org/CorpusID:11169688

[30] S. Li and N. T. Dantam, “Sample-driven connectivity learning for motion
planning in narrow passages,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA), 2023, pp. 5681–5687.

[31] S. Lian, Y. Han, X. Chen, Y. Wang, and H. Xiao, “Dadu-p: A scalable
accelerator for robot motion planning in a dynamic environment,” in
Proceedings of the Annual Design Automation Conference, ser. DAC.
Association for Computing Machinery, 2018.

[32] T. Mitzner, T. Chen, C. Kemp, and W. Rogers, “Identifying the potential
for robotics to assist older adults in different living environments,”
International journal of social robotics, vol. 6, pp. 213–227, 04 2014.

[33] S. Murray, W. Floyd-jones, G. Konidaris, and D. J. Sorin, “A Pro-
grammable Architecture for Robot Motion Planning Acceleration,” in
International Conference on Application-specific Systems, Architectures
and Processors, ser. ASAP. IEEE, 2019, pp. 185–188.

[34] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. Konidaris, “Robot
motion planning on a chip,” in Robotics: Science and Systems, 2016.

[35] S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, and D. J. Sorin, “The
microarchitecture of a real-time robot motion planning accelerator,” in
Proceedings of the ACM/IEEE International Symposium on Microarchi-
tecture, ser. MICRO. IEEE Press, 2016.

[36] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” SIGPLAN Not., vol. 42, no. 6, p.
89–100, jun 2007. [Online]. Available: https://doi.org/10.1145/1273442.
1250746

[37] Nvprof, “command line profiling tool,” http://docs.nvidia.com/cuda/
profiler-users-guide/, 2023.

[38] T. Pachidis, C. Sgouros, V. G. Kaburlasos, E. Vrochidou, T. Kalampokas,
K. Tziridis, A. Nikolaou, and G. A. Papakostas, “Forward kinematic
analysis of jaco2 robotic arm towards implementing a grapes harvesting
robot,” in 2020 International Conference on Software, Telecommunica-
tions and Computer Networks (SoftCOM), 2020.

[39] J. Pan and D. Manocha, “Gpu-based parallel collision detection for
fast motion planning,” The International Journal of Robotics Research,
vol. 31, no. 2, pp. 187–200, 2012.

[40] E. Plaku and L. Kavraki, “Distributed sampling-based roadmap of trees
for large-scale motion planning,” in Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, April 2005, pp.
3868–3873.

[41] A. Qureshi, Y. Miao, A. Simeonov, and M. Yip, “Motion planning
networks: Bridging the gap between learning-based and classical motion
planners,” IEEE Transactions on Robotics, vol. PP, pp. 1–19, 08 2020.

[42] Rethink Robotics, “Baxter,” 2013. [Online]. Available: https://robots.
ieee.org/robots/baxter/

[43] D. Shah, N. Yang, and T. M. Aamodt, “Energy-efficient realtime
motion planning,” in Proceedings of the 50th Annual International
Symposium on Computer Architecture, ser. ISCA ’23. New York, NY,
USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589092

[44] Z. Shiller and S. Sharma, “High speed on-line motion planning in
cluttered environments,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 596–601.

[45] D. J. Sorin, G. Konidaris, W. Floyd-Jones, and S. Murray, “Motion
planning for aotonomous vehicles and reconfigurable motion planning
processor,” 2019, patent No. US20190163191A1, Filed June 9, 2017,
Issued May 30, 2019.

[46] J. E. Stine, I. D. Castellanos, M. H. Wood, J. Henson, F. Love,
W. R. Davis, P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and
R. Jenkal, “FreePDK: An open-source variation-aware design kit,” in
IEEE International Conference on Microelectronic Systems Education
(MSE), 2007, pp. 173–174.

[47] B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett, K. V. Wyk,
V. Blukis, A. Millane, H. Oleynikova, A. Handa, F. Ramos, N. Ratliff,
and D. Fox, “curobo: Parallelized collision-free minimum-jerk robot
motion generation,” 2023.

[48] Y. Yang, X. Chen, and Y. Han, “Dadu-cd: Fast and efficient processing-
in-memory accelerator for collision detection,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC), 2020, pp. 1–6.

[49] T. Y. Yeh, P. Faloutsos, and G. D. Reinman, “Accelerating real-time
physics simulation by leveraging high-level information.” [Online].
Available: https://api.semanticscholar.org/CorpusID:802899

[50] C. Yu and S. Gao, “Reducing collision checking for sampling-based
motion planning using graph neural networks,” in Proceedings of

the 35rd International Conference on Neural Information Processing
Systems, 2021.

https://api.semanticscholar.org/CorpusID:11169688
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1145/1273442.1250746
http://docs.nvidia.com/cuda/profiler-users-guide/
http://docs.nvidia.com/cuda/profiler-users-guide/
https://robots.ieee.org/robots/baxter/
https://robots.ieee.org/robots/baxter/
https://doi.org/10.1145/3579371.3589092
https://api.semanticscholar.org/CorpusID:802899

APPENDIX

This paper proposes a collision prediction approach and
collision prediction unit (COPU). We further integrate the
proposed COPU with an existing collision detection unit
(CDU). This artifact provides the complete implementation for
the COPU+CDU simulator and the traces used for evaluation
reported in Section VI. Section A provides basic information
about the artifact. We describe the artifact description and
installation procedure in Section B. Section C describes the
experiment workflow for evaluation using the provided trace
files.

A. Artifact Check-List (Meta-Information)
• Program: We provide an implementation of different colli-

sion prediction approaches and microarchitecture simulators for
COPU+CDU accelerators.

• Run-time environment: All scripts are tested on Linux
(Ubuntu 16.04) and macOS (12). It does not require root access.

• Hardware: All evaluation experiments require only CPU (no
specific requirement).

• Metrics: Precision and Recall are reported to compare col-
lision prediction approaches. Computation reduction, perfor-
mance/watt, performance/mm2, and throughputs are reported
using microarchitectural simulators.

• Output: Numerical results and graphs are reported in Sec-
tion III and Section VI.

• Experiments: README provided with instructions. Provided
bash scripts to run all experiments.

• How much disk space required (approximately)?: 2GB.
• How much time is needed to prepare workflow (approxi-

mately)?: Less than 1 hour.
• How much time is needed to complete experiments (ap-

proximately)?: 2 hours for main evaluation using a single
machine.

• Publicly available?: Yes.
• Licenses (if publicly available)?: The simulator code is avail-

able under Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

• Archived (provide DOI)?: 10.5281/zenodo.10982914

B. Description and Installation

1) How to access it: Our implementation is avail-
able on Zenodo: https://doi.org/10.5281/zenodo.10982914 and
Github: https://github.com/ubc-aamodt-group/coll prediction
artifact. This repository consists of the microarchitectural
simulators and traces used for evaluation.

2) Hardware dependencies: There are no specific hardware
requirements, a CPU system should be sufficient.

3) Software dependencies : Our artifact has been tested on
Ubuntu 16.04 and macOS 12. It does not require root ac-
cess. The execution requires Python 3.6.12 additional Python
packages. Conda can be optionally installed to create a virtual
environment.

4) Installation: Create a virtual environment and activate
with python==3.6.12 (**optional to use virtual environment).

git clone https://github.com/ubc-aamodt-group/
coll_prediction_artifact

cd coll_prediction_artifact
conda create -n pred_env python==3.6.12
conda activate pred_env
python -m pip install -r requirements.txt

#Download required traces
bash download.sh

C. Evaluation
1) Comparison of collision prediction approaches: The

experiments required for Figure 9, Figure 13, and Figure 14
can be executed using the following set of scripts. All scripts
should take less than 20 minutes.

cd coll_prediction_artifact/prediction_approaches
Run all experiments for Figure 9
bash fig9.sh
Run all experiments for Figure 13
bash fig13.sh
Run all experiments for Figure 14
bash fig14.sh

2) Collision prediction for motion planning
(COPU+CDU): The experiments required for Figure 15,
Figure 16, and results reported in Section VI-B2 can be run
using the following commands.
cd coll_prediction_artifact/motion_planning_prediction
Run all experiments for Figure 15
bash fig15.sh
Run all experiments for Figure 16
bash fig16.sh

D. Trace Generation
We have provided required trace files for Section C1 and

Section C2 in the “coll prediction artifact/trace files” folder.
In this section, we provide scripts to generate these traces for
different robot poses, environmental scenarios, and motion
planning algorithms as examples of the trace generation
process.
1) Pose and Coordinate information for comparing prediction
approaches: Comparison of different prediction approaches
(Section C1) uses different robot poses in a given
environmental scenario (i.e., placement of obstacles).
The scripts provided below generate 400 environmental
scenarios with 1000 robot poses sampled per environmental
scenario. These scripts will store generated traces in
“coll prediction artifact/trace generation/scene benchmarks”
folder, which can be used for evalua-
tion outlined in Section C1 instead of
“coll prediction artifact/trace files/scene benchmarks”.
cd coll_prediction_artifact/trace_generation
conda deactivate
conda create -n newenv python==3.7.0
conda activate newenv
python -m pip install -r requirements.txt
bash launch_pred.sh

2) Motion trace generation for COPU+CDU: We provide an
example of trace generation for a motion planning algorithm
for the evaluation of COPU+CDU using a microarchitectural
simulator. We give implementation for BIT*-KUKA motion
planning, and a similar approach can be used for other motion
planning algorithms. Note that the scripts below were tested
on Ubuntu 18.04 and macOS 12.0.

https://doi.org/10.5281/zenodo.10982914
https://github.com/ubc-aamodt-group/coll_prediction_artifact
https://github.com/ubc-aamodt-group/coll_prediction_artifact

cd coll_prediction_artifact/trace_generation/
bit_planning

conda deactivate
For Ubuntu 18.04
conda env create -f environment.yml -v
For macOS (version 12.0)
conda env create -f environment_macos.yml -v
conda activate myenv
bash launch_bit_trace.sh

The above scripts will generate trace files required
for collision prediction simulation using the BIT*
motion planning algorithm for the KUKA robot.
The above scripts will store generated traces in
“trace generation/bit planning/logfiles BIT link” folder,
which can be used for evaluation outlined in Section C2 for
BIT*-KUKA combination instead of using provided traces in
“trace files/motion traces/logfiles BIT link”.

	Introduction
	Background and Motivation
	Motion Planning
	Collision Detection
	Motion Planning and Collision Detection Acceleration

	Collision Prediction
	Collision Prediction Limit Study
	Collision Prediction in Robot's Configuration Space
	Collision Prediction in Physical Space
	Collision History Table Update and Prediction Strategy
	Collision Prediction and Detection on CPU and GPU

	Collision Prediction Unit Architecture
	Methodology
	Evaluation
	Collision Prediction Design Aspects
	Collision Prediction Strategies
	Collision History Table Updates

	Collision Prediction for Motion Planning Acceleration
	Area and Energy overhead
	Performance Evaluation

	Sensitivity Studies

	Scope of Collision Prediction
	Sphere-based Representation of Robot
	Hashing Environmental Obstacle's Physical Space

	Related Work
	Conclusion
	References
	Appendix
	Artifact Check-List (Meta-Information)
	Description and Installation
	How to access it
	Hardware dependencies
	Software dependencies
	Installation

	Evaluation
	Comparison of collision prediction approaches
	Collision prediction for motion planning (COPU+CDU)

	Trace Generation

