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Abstract— Neural motion planners can increase motion plan-
ning quality and, by reducing collision detection computations,
improve runtime. However, when profiled on an accelerator-
rich hardware system, neural planning contributes to more
than 50% of the runtime, and 33% of the computation energy
consumption, motivating the design of compute- and energy-
efficient neural planners. In this work, we propose a neural
planner using Binary Encoded Labels (BEL), where a set
of binary classifiers are used instead of a typical regression
network. Compared to conventional regression-based neural
planners, the proposed BEL neural planner reduces neural
planning (inference) computation and collision detection checks
while maintaining equal or higher motion planning success rate
across various motion planning benchmarks. This computation
reduction can improve the computation energy efficiency of
neural planning by 1.4×−21.4×. Finally, we demonstrate the
trade-offs between collision detection and neural planning com-
putation to maximize energy efficiency for different hardware
configurations.

I. INTRODUCTION

Robotic motion planning is used to find a collision-free
and safe path for a robot to reach its goal position. Motion
planning is used for various applications, from navigation
in self-driving cars to full-body movement planning for
humanoid robots. Motion planning is a computationally
intensive task with strict realtime latency constraints. Several
works have focused on algorithm [17], [5], [54], [42], [16]
and/or hardware [53], [32], [36], [49], [2], [45], [27] opti-
mizations for realtime and energy-efficient motion planning.

More recently, several works have explored neural plan-
ners for motion planning to improve the motion planning
success rate achieved in fixed runtime budget [54], [42], [17],
[11]. These approaches often combine deep learning with
traditional motion planning algorithms. However, these ap-
proaches primarily focus on improving the motion planning
quality and not on improving the end-to-end computational
efficiency of the motion planning. Further, these works do
not consider the relationship between a neural planner and
the computing system, which can significantly affect the
total motion planning runtime and computational power
consumption.
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Fig. 1: (a) shows an example of a Kinova 6DOF motion
planning path, and (b) compares the average computation
requirement of neural planning for baseline regression-based
neural planning and the proposed BEL neural planning for
2D, 3D and 6DOF motion planning problems.

We first profile motion planning using MPNet [42], a
neural motion planning approach, on a CPU-GPU system,
where collision detection takes 23× more time than neural
planning. We then analyze MPNet running on an accelerator-
rich system using microarchitectural simulation to study the
efficiency of neural planning executed on an EdgeTPU [10]
and collision detection accelerated by specialized collision
detection unit (CDU) hardware [45]. Even on such a system
neural planning still consumes ∼ 50% of the runtime and
∼ 33% of total power consumption. Thus, designing energy-
efficient neural planners can lead to significant reductions
in runtime and power consumption.

This paper introduces a Binary-Encoded Label (BEL)-
based neural planner as an alternative to regression-based
neural planners. Prior works have explored regression by
binary classification using binary-encoded labels [30], [38],
[44] for deep regression networks and have demonstrated
improved accuracy due to ensemble diversity [47] and added
redundancy in label representation [12]. However, the ap-
plication of regression by binary classification to robotic
motion planning and its impact on key performance metrics
remain unexplored. In this work, we adapt BEL for neural
motion planning to enhance overall motion planning quality
and computation efficiency. We show that the proposed BEL
neural planner improves accuracy, increases motion planning
success rate, and reduces computation requirements. Addi-
tionally, we analyze its effectiveness across different motion
planning phases (Section III) and demonstrate that the BEL



neural planner achieves a higher success rate during the
initial planning phase compared to direct regression.

The BEL neural planner reduces computation by enabling
the use of a smaller and sparser neural network while
maintaining the motion planning success rate and quality.
Fig. 1 compares the neural planning inference computation of
a regression-based neural planner and the BEL neural planner
across different motion planning problems. The BEL neural
planner reduces neural planning computation by 1.3×−90×
(10.5× geometric mean) while achieving equivalent motion
planning success rates (not shown). Finally, we show that
various configurations of the BEL neural planner provide
different trade-offs between the computation requirements
of neural planning inference and collision detection. We
evaluate different hardware accelerator configurations for
neural planning and collision detection and show that the
energy efficiency of these underlying hardware accelerators
affects the choice of neural planning model.

II. BACKGROUND AND RELATED WORK

In this section, we briefly summarize existing works
on learning-based motion planning approaches and provide
relevant background on binary encoded labels for regression
neural network. Further, we summarize existing works on
hardware acceleration of motion planning, collision detec-
tion, and neural network inference.

A. Learning-based Motion Planning

Learning-based motion planning is an active area of re-
search in robotics. Different types of learning-based motion
planning approaches include end-to-end neural planners [21],
[42], [15], [29], [55], combinations of neural network and
conventional motion planners [34], [9], [41], [26], [42], [54],
[17], and reinforcement learning-based motion planners [3],
[25], [14]. These approaches have shown significant im-
provement in the motion planning capability and runtime for
various motion planning problems.

Motion Planning Network (MPNet): Qureshi et al. [42]
proposed a motion planning network to replace sampling
in motion planning. Fig. 2 illustrates their approach. Here,
pi ∈ Rd represents a sampled pose in the configuration
space of a robot with d degrees of freedom. The current step
p̂t, goal position pgoal, and encoded environment occupancy
information ENet(Eobs) are provided to the neural planner,
which predicts the next step p̂t+1 in the trajectory. The neural
planner is iteratively executed until a collision-free path
between the start and goal is found. A trajectory between the
start and goal positions of the robot consists of M milestones
{pstart, p̂2, ..., p̂t, p̂t+1, ..., p̂M−1, pgoal}. Collision detection
is then used to find the feasibility of the trajectory provided
by the neural planner (not shown). Prior works used a
regression network-based neural planners to predict real-
values (p̂t+1). These networks are trained by minimizing
the mean squared or absolute error between the target pt+1

and predicted values p̂t+1, where the target values can be
generated using an oracle planner. Increasing the accuracy

Fig. 2: Neural Planning Network for motion planning [42].
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Fig. 3: Training and inference workflow for a BEL-based
regression network

of the neural planning phase helps find a path that is more
likely to be collision-free, reducing computation costs.

B. Binary Encoded Labels

Shah et al. [44] proposed using Binary Encoded Labels
(BEL) to improve the regression error for a given task.
The architecture for BEL-based networks differs from a
typical regression network in the choice of regressor: An
N -bit binary code is predicted instead of a scalar, real-
valued output logit. Training and inference of a BEL-based
network is summarized in Fig. 3. During training (top), a
real-valued target yi is converted to an M -bit binary code
B using an encoding function. This code is used as a target
to train M binary classifiers fed by output xi of a backbone
network. During inference (bottom), the BEL-based neural
network predicts a code, which is then converted to a real-
valued prediction using a decoding function. Shah et al. [44],
proposed several suitable encoding and decoding functions
for regression. Prior works [30], [38], [44] have shown that
the use of multiple binary classifiers improves regression
accuracy due to added redundancy and error correction
capability. These works, however, have focused on improving
the regression Fzz for a range of regression tasks, while
the BEL network’s suitability for neural planning and its
impact on overall success rate computation has remained
unexplored.

C. Motion Planning Acceleration

Motion planning is a computationally intensive problem,
that must be executed in real-time to ensure the safety of
the robot and its surroundings. Further, the energy efficiency
of motion planning is important due to hardware constraints
(e.g., mobile robots). Several acceleration approaches have
been explored for motion planning, including on GPUs [4],
[19], Specialized Accelerators [35], [32], [53], [2], [27], [45],
and FPGAs [1], [46]. Collision detection is the most time and
energy-consuming part of sampling-based motion planning
algorithms [4], [39]. Hence, several specialized accelerators
have focused on the acceleration of collision detection [35],
[49], [2], [45], [53]. These specialized low-power collision
detection accelerators reduce the collision detection runtime



Fig. 4: Block diagram of an accelerator-rich learning-based
motion planning system

by orders of magnitude compared to CPUs. In this work,
we focus on learning-based motion planning approaches that
consist of neural sampling and collision detection. Fig. 4 rep-
resents the block diagram of an accelerator-rich system for
learning-based motion planning. Here, a Deep Neural Net-
work Accelerator (DNNAccel) is used for neural planning,
and Collision Detection Units (CDUs) are used to execute
collision detection for the robot. A controller (e.g., simple
Arm Cortex core) executes the motion planning algorithm,
and offloads neural planning 1 and collision detection 2
to the accelerators. These accelerators are connected through
high bandwidth communication links (e.g. PCIe [37]).

D. Neural Network Acceleration

Hardware acceleration of deep neural network inference
has been studied extensively. Several works focus on de-
signing dataflow and memory systems around an array of
multiply-accumulate units [13], [10], [40], [33], [8], [7].
Another approach for acceleration is to reduce the number
of parameters and computation of a neural network, which
includes quantization of parameters, sparsity, and designing
smaller networks [22], [20], [24]. Different types of sparse
neural network hardware accelerators are proposed by prior
works [23], [52], [51], [18], [31], [6], [48] to take advantage
of static sparsity introduced by pruning of the network during
training and/or dynamic sparsity introduced by dropout and
activation layers (e.g., ReLU).

Srivastava et al. [50] first proposed dropout as a regu-
larization technique in neural networks used during training
to prevent overfitting. Each node in the hidden layer of the
neural network is dropped with probability dp, determined
by the dropout rate. Recent works have leveraged dropout
during inference to introduce stochasticity to the network’s
output. Dropout-induced dynamic sparsity can be leveraged
by specialized hardware accelerators for reducing computa-
tion and power consumption [48], [31].

III. BEL NEURAL PLANNER

In this section, we provide details of the proposed Binary-
Encoded Label-based neural planner. We modify a learning-
based motion planning framework MPNet [42] in this work
(explained in Section II-A), which uses a traditional re-
gression network to predict real-valued motion planning
milestones. In this work, we aim to explore the use of Binary
Encoded Labels (explained in Section II-B) for neural plan-
ning and understand its impact on motion planning success
rate, trajectory quality, and computation requirements.

TABLE I: Example of Unary code used for Binary-Encoded
Labels for four quantization levels. pit+1 represents the real-
valued target label, and B represents the target binary code.

pit+1 Bi
t+1

pit+1 ∈ [0, 1) 000

pit+1 ∈ [1, 2) 001

pit+1 ∈ [2, 3) 011

pit+1 ∈ [3, 4) 111

(a) Regression Neural Planner (Baseline)

(b) BEL Neural Planner

Fig. 5: (a) and (b) represent the architecture of the baseline
regression-based and proposed BEL neural planners.

Fig. 5a represents baseline regression neural planner.
Given the current position, goal, and environment, the neural
planner predicts a d-dimensional next step p̂t+1 ∈ Rd for mo-
tion planning. Here d represents the number of DOFs of the
robot. This network is trained by minimizing ||p̂t+1−pt+1||2,
where pt+1 is the target next step provided by an oracle
planner. Fig. 5b represents proposed BEL neural planner.
The final layer of the baseline neural planner is modified to
predict d ×N (N dimensional code for each DOF) values.
Note that since the size (i.e., number of parameters) of the
last layer is a small fraction of total size of the network, the
increase in the output size results in less than 1% increase
in the neural planner’s size.

Algorithm 1 is used for training the BEL neural planner.
The target label pit+1 for ith DOF is converted to a binary
code Bi

t+1 (Line 2) using the Encoding function based on
Table I. The network predicts d codes B̂i

t+1, where each code
is of size N (Line 3). The BEL neural planner is trained by
minimizing the binary classification loss between B̂i

t+1 and
target binary code Bi

t+1 (Line 4). Algorithm 2 is used for
inference/planning using BEL neural planner. BEL neural
planner predicts d codes, where each code B̂i

t+1 is an N -
dimensional predicted code (Line 1). B̂i

t+1 is passed through
a decoding function to find real-valued p̂it+1 (Line 2).

Decoding Function: We use an expected correlation-
based decoding function proposed by [44]. In this method,
a code matrix C of size (N + 1) × N , where N is the
number of bits/classifiers used for the binary-encoded label,



Algorithm 1 Training BEL Neural Planner (one epoch)
Input: Untrained Neural Planner, Trained ENet, Training Set, Encoding Function
Output: Trained Neural Planner;
1: for (pt, pgoal, ENet(Eobs), pt+1 ∈ Training set do
2: Bt+1 = [Encoding(p1

t+1), Encoding(p2
t+1),..., Encoding(pd

t+1)]
3: B̂t+1 = [B̂1

t+1, B̂
2
t+1, ..., B̂

d
t+1] = Neu-

ral Planner((pt, pgoal, ENet(Eobs))
4: Loss = Binary classification (Bt+1,B̂t+1)
5: Neural Planner.optimize(Loss)
6: end for

Algorithm 2 Inference with BEL Neural Planner
Input: Trained Neural Planner, Decoding Function, (p̂t, pgoal, ENet(Eobs)
Output: p̂t+1;
1: B̂t+1 = Neural Planner((p̂t, pgoal, ENet(Eobs))
2: for i ∈ 1, 2, ..., d do p̂i

t+1 = [Decoding(B̂i
t+1) for iin[1, ..., d] ]

3: end for

and the target label is in the range [0, N + 1). Each row
Ck,: in this matrix represents the binary code for label
xt+1 ∈ [k, k + 1). For example, Table I represents a code
matrix for unary encoding function. The real values of the
output of the neural planner B̂t+1 represents the confidence
of binary classifiers. We can reduce the quantization error by
using the output confidence of binary classifiers and expected
correlation for decoding, as shown by prior works [44]. The
decoding function is defined as:

p̂it+1 =

N+1∑
k=1

k × eB̂
i
t+1.Ck,:∑N+1

j=1 eB̂
i
t+1.Cj,:

(1)

BEL Neural Planning The motion planning algorithm
used in this work, MPNet, consists of two phases: global
planning and iterative local planning. During phase-1 (global
planning phase), the neural planner finds a full trajectory
between the start and goal positions, which is checked for
collision. If one or more segments in this path are found to be
colliding, phase-2 neural planning (local replanning) is done
for each segment by using the start and end positions of this
segment. MPNet proposed to use dropout [50] for stochastic
inference to explore a different path during phase-2. Use of
dropout enables sampling next position from a distribution
instead of deterministic value for a given input.

We observe that BEL neural planner has significantly
higher success rate compared to regression neural planner
during the phase-1 (Section IV). The phase-2 of the MPNet
algorithm, however, relies on dropout for exploring different
paths between two positions. We found that BEL neural
planner does not explore many different paths during phase-
2 as it is more robust to sparsity introduced by dropout, even
at higher dropout rates (see Fig. 7). This is the most evident
when motion planning for a 6 DOF robotic arm, thus for that
benchmark only, we propose the use of a smaller regression
neural planner (< 1M parameters) to generate a more diverse
set of milestones during phase-2.

IV. EVALUATION

This section describes our experimental methodology and
a detailed evaluation of BEL neural planner in terms of its
impact on motion planning success rate and computation.

TABLE II: Neural planner architectures evaluated in this
work. Param is the number of weight parameters, and com-
pute is the number of FLOPs per inference.

Name
Num.

of
layers

Dropout Param
(×103)

Compute
(×103FLOPs)

2D and 3D
point

navigation

L-Baseline 12 50% 3754 1878
M-Baseline 9 50% 1550 776
S-Baseline 6 50% 264 133
L-BEL 12 90% 3755 379
M-BEL 9 90% 1552 158
S-BEL 6 80% 266 56

Kinova
robot arm

motion
planning

Baseline dp0p5 9 50% 2036 1018
BEL dp0p5 9 50% 2044 1022
BEL dp0p9 9 90% 2044 204
Replanner 5 50% 887 443

A. Methodology

Motion Planning Benchmarks: We evaluate three plan-
ning problems: 2D and 3D point navigation, and motion
planning for a 6 DOF Kinova Gen2 robot arm following
the same experimental methodology as MPNet [42]. For the
point path planning problems, the neural planner is trained on
4000 paths generated by RRT* [28] across 100 workspaces
and evaluated on 10 workspaces not seen during training,
with 2000 random pairs of start and goal positions in each
workspace. The 6DOF Kinova robot neural planner is trained
on 1000 paths generated by RRT* [28] in 10 simulated
environments and evaluated on 100 randomly generated start
and goal positions per environment. We also validate our
neural planner on a real Kinova robot using point clouds
collected by an Intel Realsense Depth Camera D435.

Neural Planner Model Architecture: Obstacle infor-
mation is collected as a point cloud and passed into an
encoder network, ENet, with three layers. For 2D and 3D
navigation, we use a pre-trained encoder network provided
by MPNet [42], and neural planners are trained for 400
epochs. For the neural planner for the 6DOF Kinova robot,
the encoder (ENet) and neural planner are trained end-to-
end for 200 epochs. All planners apply Dropout [50] during
inference in all layers except the last and genereate d-
dimensional trajectory milestones. The BEL neural planner
uses a unary code of size N = 40 (i.e., length of the binary
code). Table II summarizes model size, dropout rate, and
FLOPs per inference for each of the three different neural
planner architectures explored in this work. Here, L/M/S
prefix represents the size of the neural planner. The dropout
rate is selected based on empirical evaluation.

Hardware Accelerators: For the baseline configuration
of the collision detection unit and neural planning hardware,
we consider a collision detection unit (CDU) proposed
by [45] and neural network accelerator EdgeTPU [10]. We
use the microarchitectural CDU simulator provided by [45]
to estimate the number of cycles needed for a single col-
lision detection test between an oriented bounding box or
robotic arm and the environment and determine the ap-
proximate energy per collision detection from the reported
power consumption results. For neural planning, we use
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(a) Path planning benchmarks for 2D and 3D environments, with computation metrics (collision checks, inferences, and energy)
normalized to the L-Baseline.
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(b) Path planning for a 6DOF Kinova robot arm (normalized to the Baseline metrics). S.R. indicates the success rate. Phase 1 is the
global planning stage and Phase 2 is the replanning phase, as described in Section III.

Fig. 6: Comparison of motion planning quality and computation for the baseline and BEL neural planners across different
experimental setups.

inference FLOPs (including dynamic sparsity due to dropout)
to estimate power consumption. We assume a hardware
DNN accelerator capable of leveraging dynamic sparsity
introduced by dropout, with a performance of 1 TOPS/W.
Note that such hardware support may not yet be available on
any commercial platform. However, there is growing research
on enabling hardware support for dynamic sparsity [23], [52],
[51], [18], [31], [6], [48].

B. Experimental Results
This section provides a detailed evaluation of BEL neural

planner. We further evaluate the impact of dropout rate on
BEL neural planner for stochastic inference. Finally, we
discuss impact of hardware acceleration for neural planning
and collision detection on the choice of neural planner.

1) BEL Neural Planning: We evaluate the Binary En-
coded Labels neural planner described in Section III. Our
findings indicate that BEL-based networks perform fewer
collision detection checks and neural planning inferences
compared to the baseline regression-based neural planners
(MPNet [42]) with equivalent or higher motion planning
success rates.

Fig. 6a compares the proposed BEL neural planner’s
motion planning success rate and computation requirements
with the baseline for 2D and 3D path planning. In the 2D
environment, the best-performing BEL neural planner has
a 20× reduction in computation energy consumption while
having a 3.06% higher success rate than the best-performing
baseline. Similarly, the BEL neural planner has a 21.4×
reduction in energy consumption and 3.16% higher success

rate. Our findings show that a smaller BEL neural planner
can maintain competitive performance compared against its
larger counterpart: S-Baseline has a 5.71% lower success
rate, while S-BEL only degrades 2.9%. In the 2D and 3D
environments, BEL neural planners demonstrate robustness
to increased sparsity, achieving higher success rates and
lower computational costs even at a dropout rate of dp=0.9.

Fig. 6b evaluates the motion planning success rate and
computation requirements for the baseline and BEL neural
planners for a 6DOF Kinova Gen2 robotic arm across
different neural planner configurations. Phase 1 refers to
the planning success rate (S.R.) and Phase 2 refers to the
replanning success rate (S.R.), as defined in Section III.
Neural planners with higher success rates in Phase 1 require
fewer collision checks and inferences. BEL dp0p5 has the
lowest number of inferences and collision checks, however,
it obtains a success rate of 95.8%. We attribute the reduced
computation energy consumption to the higher Phase 1
success rate and reduced replanning inferences. BEL dp0p9
has a success rate of 97.3 but incurs higher collision checks
and inferences. We observe reduced energy consumption
due to the increased sparsity in the BEL dp0p9 network.
The baseline network at dp=0.9 is unable to produce a
trajectory. As noted in Section III, BEL is less effective
in Phase 2 due to dropout-induced sparsity in stochastic
inference (see Section IV-B.2), leading to lower success rates
for a pure BEL-based planner. To leverage the computational
benefits of the BEL neural planner, it is desirable to have
a high initial success rate and only introduce the required
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Fig. 8: Ablation study on the effect of dropout rate on the mo-
tion planning success rate and computational requirements.
Collision checks and inferences are normalized to the results
for dp=0.5.

stochasticity during Phase 2. Based on this insight, we
propose a hybrid BEL neural planner, using BEL in Phase
1 and small regression network (Replanner from Table II)
during Phase 2. Implementing the Replanner with the BEL
networks during the replanning phase improves the success
rate to 99.7% while reducing overall computation energy
consumption compared to the baseline. We attribute this to
the Replanner’s ability to generate more diverse milestones.
Compared to Baseline + Replanner, the implementation of
BEL dp0p5+Replanner and BEL dp0p9 results in 1.4× and
5.3× reduction in energy consumption respectively.

2) Stochasticity with Dropout in BEL Neural Plan-
ner: Prior works on learning-based motion planning [42]
proposed to use Dropout [50] to introduce stochasticity in
the sampled path. Thus, the neural planner can explore
multiple paths between two points until a feasible solution is
found. For a regression-based neural planner, dropout rate of
0.5 provides a balance between accuracy and stochasticity,
resulting in the highest motion planning success rate. BEL
neural planner predicts a binary code instead of a real-
value, which makes it more robust to sparsity introduced
by dropout. As illustrated in Fig. 8, the BEL neural planner
requires a higher dropout rate to attain the same or higher
success rate compared to baseline neural planner in the
point planning benchmarks. A high dropout rate reduces the
computation required for inference, which can be leveraged
by hardware platforms supporting dynamic sparsity.

Fig. 7 shows the variation in generated milestones at
different dropout rates for the baseline and BEL neural
planners. The BEL neural planner consistently produces

more similar milestones than the baseline regression network
and remains robust at high dropout rates. Thus BEL requires
a higher dropout rate for stochastic inference. While dropout
can introduce variety, an overly aggressive dropout rate neg-
atively affects the ability of the neural planner to represent
the embedded information. A dropout level exceeding 0.9
leads to a significant increase in number of inferences and
collision checks while yielding only a marginal improvement
in success rate (Fig. 8).

3) Hardware-aware Neural Planner Selection : We
observe that different BEL neural planners provides motion
planning success rate in ±1% range (Fig. 6). Intuitively,
the smallest neural planner is the best choice. However,
there exists a trade-off between the computation costs for
collision detection and neural network inferences. A smaller
neural planner saves the neural planning computation at
the expense of increased exploration, requiring higher costs
for collision detection. In contrast, a larger neural planner
decreases the number of collision detection runs needed for
motion planning, though it incurs higher neural planning
costs. Neural planner selection depends on the underlying
hardware accelerators and their energy consumption.

Different factors impact the energy consumption of a
robot-environment collision detection check, such as the en-
vironment, robot’s geometric representation and granularity
of collision detection for a path. The energy consumption for
neural planning inference depends upon several factors, such
as numeric representation and support for sparsity. Different
hardware accelerators provide varying performance in terms
of TOPS/W. For the hardware accelerator configuration used
in this work (explained in Section IV-A), M-BEL results
in the lowest computation power consumption for 2D path
planning. In contrast, if the power consumption of neural
network accelerator increases by 4×, S-BEL results in the
lowest total power consumption. Similarly, if the power
consumption of collision detection accelerator increases by
4×, L-BEL results in the lowest total power consumption.

V. CONCLUSION

This work focuses on designing accurate and compute-
efficient neural planners for various motion planning prob-
lems. We propose to use binary classification-based neural
planners using Binary-Encoded Labels (BEL) instead of tra-
ditional regression-based neural planners. The proposed BEL
neural planner improves the motion planning success rate and
results in a 1.4×−21.4× reduction in energy consumption
due to increased accuracy and higher introduced sparsity.
BEL neural planners are more robust and thus have less
dependence on replanning, suggesting that they may improve
the success rates of dynamic policy networks while retaining
its computational benefits. Furthermore, we examine how the
underlying hardware and its energy consumption for collision
detection and neural planning influence the selection of the
neural planner.
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and A. W. Moore, “Understanding pcie performance for end host
networking,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’18.
Association for Computing Machinery, 2018, p. 327341.

[38] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua, “Ordinal regression
with multiple output CNN for age estimation,” Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2016.

[39] J. Pan and D. Manocha, “Gpu-based parallel collision detection for
fast motion planning,” The International Journal of Robotics Research,
vol. 31, no. 2, pp. 187–200, 2012.

[40] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,”
vol. 45, no. 2, p. 2740, jun 2017.

[41] N. Prez-Higueras, F. Caballero, and L. Merino, “Learning human-
aware path planning with fully convolutional networks,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA), 2018,
pp. 5897–5902.

[42] A. Qureshi, Y. Miao, A. Simeonov, and M. Yip, “Motion planning
networks: Bridging the gap between learning-based and classical
motion planners,” IEEE Transactions on Robotics, vol. PP, pp. 1–19,
08 2020.

[43] D. Shah, “Energy-efficient acceleration for autonomous robotics,”
Ph.D. dissertation, The University of British Columbia, 2024.

[44] D. Shah, Z. Y. Xue, and T. M. Aamodt, “Label encoding for
regression networks,” in International Conference on Learning
Representations, April 2022. [Online]. Available: https://openreview.
net/pdf?id=8WawVDdKqlL

[45] D. Shah, N. Yang, and T. M. Aamodt, “Energy-efficient realtime
motion planning,” in Proceedings of the 50th Annual International
Symposium on Computer Architecture, ser. ISCA ’23. New York,
NY, USA: Association for Computing Machinery, 2023. [Online].
Available: https://doi.org/10.1145/3579371.3589092

[46] X. Shi, L. Cao, D. Wang, L. Liu, G. You, S. Liu, and C. Wang,
“HERO: Accelerating Autonomous Robotic Tasks with FPGA,” ser.
IROS, 2018, pp. 7766–7772.

[47] Y. Song, Q. Kang, and W. P. Tay, “Error-Correcting Output Codes
with Ensemble Diversity for Robust Learning in Neural Networks,”
AAAI, 2021.

[48] Z. Song, R. Wang, D. Ru, Z. Peng, H. Huang, H. Zhao, X. Liang, and
L. Jiang, “Approximate random dropout for dnn training acceleration
in gpgpu,” in 2019 Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2019, pp. 108–113.

[49] D. J. Sorin, G. Konidaris, W. Floyd-Jones, and S. Murray, “Motion
planning for aotonomous vehicles and reconfigurable motion planning
processor,” 2019, patent No. US20190163191A1, Filed June 9, 2017,
Issued May 30, 2019.

[50] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Research,
vol. 15, no. 56, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[51] F. Tu, Y. Wang, L. Liang, Y. Ding, L. Liu, S. Wei, S. Yin, and Y. Xie,
“Sdp: Co-designing algorithm, dataflow, and architecture for in-sram
sparse nn acceleration,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 42, no. 1, pp. 109–121, 2023.

[52] G. Xiao, C. Yin, T. Zhou, X. Li, Y. Chen, and K. Li,
“A survey of accelerating parallel sparse linear algebra,” ACM
Comput. Surv., vol. 56, no. 1, aug 2023. [Online]. Available:
https://doi.org/10.1145/3604606

[53] Y. Yang, X. Chen, and Y. Han, “Dadu-cd: Fast and efficient
processing-in-memory accelerator for collision detection,” in 2020
57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[54] C. Yu and S. Gao, “Reducing collision checking for sampling-based
motion planning using graph neural networks,” in Proceedings of
the 35rd International Conference on Neural Information Processing
Systems, 2021.

[55] W. Zeng, W. Luo, S. Suo, A. Sadat, B. Yang, S. Casas, and
R. Urtasun, “End-to-end interpretable neural motion planner,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer
Society, jun 2019, pp. 8652–8661. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/CVPR.2019.00886


