
Vulkan-Sim: A GPU Architecture Simulator for Ray Tracing

Mohammadreza Saed∗, Yuan Hsi Chou∗, Lufei Liu∗, Tyler Nowicki†, and Tor M. Aamodt∗

∗University of British Columbia, Canada,
†Huawei Technologies, Canada,

mrsaed@ece.ubc.ca, yuanhsi@ece.ubc.ca, liulufei@student.ubc.ca, tyler.bryce.nowicki@huawei.com, aamodt@ece.ubc.ca

Abstract—Ray tracing can generate photorealistic images
with more convincing visual effects compared to rasterization.
Recent hardware advances have enabled ray tracing to be
applied in real-time. Current GPUs feature a dedicated ray
tracing acceleration unit, and game developers have started to
make use of ray tracing APIs to bring more realistic graphics
to their players. Industry cooperatively contributed to Vulkan,
which recently introduced an open-standard API for ray
tracing. However, little has been disclosed about the mapping
of this API to hardware. In this paper, we introduce Vulkan-
Sim, a detailed cycle-level simulator for enabling architecture
research for ray tracing. We extend GPGPU-Sim, integrating
it with Mesa, an open-source graphics library to support the
Vulkan API, and add dedicated ray traversal and intersection
units. We also demonstrate an explicit mapping of the Vulkan
ray tracing pipeline to a modern GPU using a technique we
call delayed intersection and any-hit execution. Additionally
we evaluate several ray tracing workloads with Vulkan-Sim,
identifying bottlenecks and inefficiencies of the ray tracing
hardware we model. To demonstrate the utility of Vulkan-Sim
we conduct two case studies evaluating techniques recently
proposed or deployed by industry targeting enhanced ray
tracing performance.

Keywords-GPU; Ray Tracing; Computer Graphics; Modeling
and Simulation;

I. INTRODUCTION

Ray tracing has become more prevalent in recent graphics
workloads. It is capable of creating more photorealistic
renderings, including many visual effects that are difficult or
impossible to create through rasterization. Consequently, ray
tracing dominates in high-end graphical applications such as
movies [20] and computer-aided design (CAD) renderings [4].
Moreover, as hardware advances ray traced effects are now
being incorporated into a growing number of real-time
workloads such as video games. However, computation
requirements for ray tracing are still very high, even on a high
end GPU. While games can benefit greatly from ray traced
visuals, current graphics hardware only allow developers
to implement a limited amount of ray tracing effects, such
as soft shadows, reflections, or ambient occlusion, before
frame rates dip below the realtime threshold of 60 frames
per second [46].

Figure 1 shows the results of profiling existing GPU ray
tracing accelerator enabled video games listed on NVIDIA’s
website [1]. The figure shows that ray tracing takes up

Figure 1: Game Frame Time Distribution on RTX 2080Ti

Figure 2: Sponza rendered with NVIDIA GPU and Vulkan-
Sim. Right: Magnified comparison of green rectangle.

28% of the rendering time on average. While research
on hardware accelerated ray tracing has been ongoing for
decades [24], the recent adoption into consumer devices will
likely increase demand for improved solutions in this area.
By exploring ray tracing acceleration techniques architects
can improve hardware to enable more complex scenes in real-
time, thus further increasing demand for and prevalence of
ray tracing. Architecture research is enabled by simulators,
and for graphical workloads, hardware simulators model
system behaviour better than software rendering tools [23].
However, industry simulation tools are generally proprietary
and unavailable to academic researchers. Moreover, popular
graphics applications tend to use cross-vendor APIs such
as Vulkan [6] and OpenGL [2] which are more abstract
than vendor-specific programming languages such as CUDA.
Vulkan defines an abstract computation pipeline a developer
can leverage to simplify the task of writing software while

Table I: Comparison of existing graphics / GPGPU simulators.

Simulator Ray Tracing Timing Model GPU Model Vulkan Support Multi-Threaded Execution Model
PBRT [46] Yes No No No No N/A
Emerald [27] No Yes Yes No No Execution Driven
TEAPOT [15] No Yes Yes No No Execution Driven
SimTRaX [50] Yes Yes No No Yes Execution Driven
Ray Predictor [37] Yes Yes Yes No No Execution Driven
GPGPU-Sim 3.x [16] No Yes Yes No No Execution Driven
Accel-Sim [33] No Yes Yes No No Trace Driven
GPUTejas [38] No Yes Yes No Yes Trace Driven
MGPUSim [53] No Yes Yes No Yes Execution Driven
Vulkan-Sim Yes Yes Yes Yes No Execution Driven

obtaining good performance across platforms. This pipeline
requires the application to provide multiple programs, called
shaders. These shaders are provided by the software developer
and each shader performs a specific task.

To facilitate hardware research on ray tracing acceleration,
this paper introduces Vulkan-Sim. Vulkan-Sim builds on
top of GPGPU-Sim 4.0 [33] and provides the first publicly
available Vulkan ray tracing hardware simulator. Vulkan-Sim
models GPU accelerated ray tracing at cycle level and enables
ray tracing research by providing a simulation infrastructure
that supports the Vulkan API. Vulkan is a modern, industry
standard, open-source graphics API similar to OpenGL, while
providing lower level control over hardware to programmers.
Enabling Vulkan support allows Vulkan-Sim to have access
to a broad range of ray tracing workloads that are publicly
available with little to no modifications at all.

Vulkan-Sim maps the execution of the Vulkan ray tracing
pipeline to a GPU and integrates AccelWattch [32] to provide
power and energy estimates. Figure 2 compares Sponza, a
scene frequently studied in graphics research, rendered with
Vulkan-Sim and with an NVIDIA GPU. The figure shows
very few differences (only 0.3% of pixels differ) and serves
to illustrate that Vulkan-Sim’s Mesa based runtime and PTX
based functional simulation engine together render images
with high fidelity versus an industry validated implementation
of Vulkan. Most prior graphics hardware research evaluates
proposals using specially created simulators that are often
not publicly available [13], [36], [41]. Others build FPGA
prototypes [40], [56] that are less flexible for early stage
exploration. Vulkan-Sim extends our prior work [37], which
used a custom CUDA-based ray tracer, enabling the hardware
accelerator model developed there to be used with a wider
range of closer to industry standard ray tracing workloads.
Table I compares existing graphics and GPGPU simulators
and highlights the gap in Vulkan and ray tracing support.

We make the following contributions in this paper:
• We efficiently map the Vulkan ray tracing pipeline

to a modern GPU using a technique we call delayed
intersection and any-hit execution.

• We introduce Vulkan-Sim, an extension of GPGPU-Sim
to support Vulkan ray tracing, with a performance model

for a generalized ray tracing acceleration unit and show
a correlation of 95.7% with NVIDIA RTX 2080 SUPER
GPU. Vulkan-Sim renders Vulkan ray tracing workloads
with high pixel color accuracy when compared against
an NVIDIA GPU.

• We illustrate the use of Vulkan-Sim by conducting two
case studies, evaluating a potential hardware optimiza-
tion for warp divergence reduction and independent
thread scheduling for ray tracing.

II. BACKGROUND

This section gives an overview of ray tracing accelerators
and an introduction to ray tracing with the Vulkan API.

A. Baseline GPU Architecture

Figure 3 illustrates the GPU architecture modeled in
Vulkan-Sim. The GPU consists of multiple compute units
called SMs in NVIDIA’s terminology. The SMs are connected
to memory partitions through an on-chip interconnect. The
memory partitions include memory access scheduling logic
to interface with off-chip DRAM (not shown). Inside each
SM there are multiple execution units. Scalar threads in
the application are organized into warps, a collection of 32
threads, which run together using Single-Instruction Multiple
Thread (SIMT) execution. Threads in a warp execute the
same instruction on different data. In the event of differing
branch outcomes (known as branch divergence), the SM uses
immediate post-dominator reconvergence [26] to serialize
threads executing different paths. Warps within a SM are
scheduled in Greedy-then-Oldest (GTO) fashion, which
schedules from a single warp until it stalls. Each SM has its
own L1 data, texture and constant caches which are connected
to execution units through a crossbar.

While this architecture is tailored for compute applications
and raster based graphics, manufacturers have recently added
ray tracing accelerators to handle ray tracing graphics more
efficiently by offloading computations from the SMs. To
model such hardware Vulkan-Sim models a ray tracing
accelerator in each SM, called the RT Unit. The RT Unit
in Vulkan-Sim builds upon that introduced in Lu et al. [37]
and will be further described in Section III-C. More details

Figure 3: GPU performance model architecture

about general-purpose GPU architectures can be found in
Aamodt et al. [12] and details specific to the GPGPU-Sim 4.0
baseline that Vulkan-Sim builds upon can be found in Khairy
et al. [33].

B. Ray Tracing Accelerators

Modern GPUs, such as the NVIDIA RTX [18] and
the Imagination PowerVR C-Series [17], feature hardware
acceleration units for ray tracing. These ray tracing units
collaborate with the GPU and perform two key roles. First,
the RT Unit accelerates pointer chasing through a key data
structure used in ray tracing, the bounding volume hierarchy
(described in Section II-C). Second, the RT Unit computes
intersections between rays and geometry in the scene using
Box Intersection Evaluators and Triangle Intersection Evalu-
ators. In Vulkan-Sim Vulkan vkCmdTraceRaysKHR calls
within a shader initiate activity on the RT Unit. There are
currently very few details publicly available of industry GPU
implementations of ray tracing accelerators. Details lacking
include how warps co-exist and how memory requests are
scheduled. Thus, Vulkan-Sim employs a generic ray tracing
accelerator performance model described in Section III-C.
The RT Unit modeled in Vulkan-Sim employs techniques
describe for the T&I Engine by Nah et al. [41] and SGRT by
Lee et al. [36]. These designs follow a similar scheme that
employ dedicated pipelined hardware units for acceleration
structure traversal and ray intersection. We modify these
designs to enable them to be combined with a GPU and
integrate them in our RT Unit.

C. Ray Tracing With Vulkan

In this section we give an introduction to ray tracing
and how it is performed in Vulkan. Ray tracing is a
rendering technique for generating realistic lighting effects by
simulating light rays as they propagate through and around
objects in a scene [46]. Figure 4 shows a simple ray tracing
example with a primary and a secondary ray. Primary rays
originate from the camera, passing through the image plane
and into the scene to calculate the color of that pixel (1). If
the primary ray hits an object, we can cast a secondary ray
towards the light source to determine whether the point is

shadowed (2). If the ray’s path is unoccluded, the pixel will
be the cylinder’s color, otherwise a shadow is rendered. By
increasing the amount of rays cast per pixel, more parts of
the scene are sampled, and light contribution from each ray is
averaged to render a more accurate color for that pixel [31].
Each of these rays cast per pixel is called a sample in ray
tracing. Having a high amount of samples per pixel comes at
the cost of increased rendering time. To achieve better image
quality under a constrained time budget, the scene which
consists of many triangles and custom geometry is built into
an acceleration structure (AS) as a bounding volume hierarchy
(BVH) tree [39]. The AS reduces the amount of objects that
a ray needs to test for intersections by partitioning the scene
with axis-aligned bounding boxes (AABB) to reduce primitive
search complexity.

Ray acceleration hardware has been incorporated into
GPUs in recent years and graphics APIs such as Vulkan
and DXR are starting to better support hardware accelerated
ray tracing. This work focuses on Vulkan which unlike other
popular graphics APIs, DirectX and OpenGL, is an open
standard, low-level graphics API, targeting high performance
real-time rendering by exposing hardware to developers
and can be adopted by any vendor. Vulkan version 1.2.162
officially introduces extensions to the core API to support
hardware accelerated ray tracing [7]. The VK_KHR_accel-
eration_structure extension handles AS building and
management while VK_KHR_ray_tracing_pipeline
is responsible for ray tracing shader stages and pipeline in
Figure 5 which we explain later in this section.

A Vulkan ray tracing application consists of a CPU portion
in C++ used to specify the rendering pipeline and GLSL
shaders for the GPU to execute, similar to OpenGL. The C++
part of a Vulkan application performs multiple API calls for
setting up the ray tracing pipeline. This includes request-
ing the VK_KHR_ray_tracing_pipeline extension to
specify different ray tracing shader stages and allocating
memory on the GPU used for the shader input and output [10].
The VK_KHR_acceleration_structure extension is
used to build the AS, which is a tree data structure used to
organize scene geometry into bounding volumes and reduces

Figure 4: Ray Tracing Overview

ray traversal complexity logarithmically [9]. The Vulkan
AS is defined in two levels as shown in Figure 6: one
bottom-level AS (BLAS) for each unique object’s geometry
and a single top-level AS (TLAS) to position the objects
within the scene with BLAS instances and its corresponding
transformation matrix. Finally, once the CPU has finished
setting up, the vkCmdTraceRaysKHR call is invoked to
launch a ray tracing kernel on the GPU.

The ray tracing kernel follows the ray tracing pipeline
defined by the Vulkan specification in Figure 5 and it
describes the execution order of different types of ray tracing
programmable shaders. There are multiple ways to implement
the Vulkan ray tracing pipeline on a GPU which can vary
between different GPU vendors. We expand on this further
in Section III-A. In Vulkan-Sim, each GPU thread maps to a
ray and begins at the ray generation shader where each thread
uses its location on the screen to calculate the origin and
direction of the ray it will trace and calls the traceRayEXT
function to begin ray tracing. To determine what geometry
the ray will intersect, a hardware traversal and intersection
(T&I) unit, indicated by the green shapes in the pipeline,
performs AS traversal and computes ray intersections with
axis-aligned bounding boxes (AABB) in the AS and with
triangles in the scene geometry [11]. Ray-triangle hits are
validated by the any-hit shader and ray intersections with
custom geometry are validated by the intersection shader.
Intersection shaders are often used to implement user-defined
or procedural geometry such as cylinders and determine if
the ray hits the geometry or not. If the ray misses all objects
in the scene, then a miss shader and otherwise a closest hit
shader is executed. These shaders can be used to return the
color of the intersected object or the color of the background.
Details on how Vulkan-Sim simulates the Vulkan ray tracing
pipeline is in Section III-B.

III. SIMULATING VULKAN RAY TRACING

In this section, we describe challenges of simulating
Vulkan ray tracing kernels and how we address them
in Vulkan-Sim’s functional simulation and timing model.
Vulkan-Sim is integrated with Mesa, an open-source imple-
mentation of graphics APIs such as OpenGL and Vulkan
which is used for software emulation and hardware acceler-
ation on GPUs. We briefly summarize how Mesa’s Vulkan

Figure 5: Vulkan Ray Tracing Pipeline

Figure 6: Vulkan Acceleration Structure

frontend is employed to enable Vulkan-Sim to support the
Vulkan ray tracing API.

The rest of this section is organized as follows. Sec-
tion III-A discusses the challenges of simulating Vulkan ray
tracing workloads. Section III-B and III-C describes Vulkan-
Sim’s functional and timing model respectively. Section III-D
gives an overview of Vulkan-Sim’s software architecture.

A. Challenges of Simulating Vulkan

A challenge we tackle in this paper is finding a way to
map the high-level ray tracing pipeline in Figure 5 onto a pro-
grammable GPU. To date, GPU manufacturers have released
few details regarding their ray tracing implementations and
open-source drivers, which may eventually provide greater
insight into industry designs remain unavailable. Below are
multiple methods for implementing the pipeline. In the first
list we discuss how a GPU thread can map to a ray tracing
workload, and the second list covers when the different shader
stages in the Vulkan ray tracing pipeline should be executed.
• One thread per raygen shader: In this method, each

thread executes a raygen shader and continues to traverse

the BVH tree and call other shaders sequentially when
a traceRayEXT function is encountered. Shader calls
are treated as function calls. Thus, any thread divergence
in the raygen shader continues in other shaders.

• One thread per shader: In this method each shader is
executed on a separate thread. When a shader call is
needed, the calling thread writes to a work queue. One
kernel is launched for each shader type which starts
consuming from the work queue. This removes the flow
of thread divergence from the raygen shader to other
shaders as they will be grouped together in the working
queues. However, it adds synchronization overhead.

During BVH traversal, intersection and any-hit shaders
need to be executed to determine ray intersection with
primitives. Rays in a warp can intersect multiple different
leaf nodes, and each ray can execute a different set of shaders.
We list various shader execution options below.
• Immediate execution: In this method, when a thread

reaches an any-hit or intersection shader during traver-
sal, it calls the shader immediately. This causes high
divergence when threads in a warp call different shaders.

• Thread spawning for intersection and any-hit: Unlike
miss and closest-hit shaders, any-hit and intersection
shaders can be executed more than once per ray. We
can use work queues similar to the one thread per
shader method only for these shaders. This reduces
thread divergence for scenes with multiple instances of
these shaders by adding synchronization overhead.

• Delayed intersection and any-hit execution: This
method executes intersection and any-hit shaders after
the traversal of all threads in the warp is completed.
Afterwards, each thread executes all any-hit and inter-
section shaders for the ray sequentially. Delaying shader
calls is allowed as Vulkan does not assume any order for
intersection and any-hit shader execution. This method
adds memory overhead as a list of intersection and any-
hit shaders need to be stored during traversal for later
execution.

In this work, we implement One thread per raygen
shader for thread mapping as enough rays are launched
to utilize all GPU cores due to the large pixel counts of high
resolution images. For shader execution, We choose Delayed
intersection and any-hit execution for its potential to reduce
divergence. While other shader execution options may reduce
divergence further due to executing the same shaders from
different warps, they come at the cost of synchronization
overhead.

B. Functional Simulation

The functional simulation is Vulkan-Sim’s implementation
of the Vulkan ray tracing pipeline in Figure 5. In the following
we elaborate our solution to mapping Vulkan RT applications
employing multiple distinct RT shaders onto a SIMT pipeline

supporting accelerated BVH tree traversal. The timing model,
described in Section III-C, uses the functional simulation for
accurate simulation on a GPU.

We break down the discussion of the function model
into five parts organized to follow the flow of a Vulkan
program: Acceleration Structure, Shader Translation, Shader
Binding Table, Traversal and Intersection Implementation,
and Kernel Invocation. The acceleration structure is a data
structure created to represent the ray tracing scene and is
traversed by the GPU during runtime. Shader Translation
covers how Vulkan-Sim converts high level GLSL ray tracing
shaders to low level instructions that are executable on a
GPU. The translated shaders are stored in a Shader Binding
Table specified by the Vulkan specification. Traversal and
Intersection Implementation introduces how Vulkan-Sim
traverses the acceleration structure and handles execution of
shaders. Finally, Kernel Invocation describes how ray tracing
is launched on a GPU.

1) Acceleration Structure: As mentioned in Section II-C,
the acceleration structure is used to reduce the number of ray
intersection tests logarithmically and is split into TLAS and
BLAS instances. The acceleration structure implementation
in Vulkan-Sim is a 6-wide BVH tree adopted from Mesa. The
TLAS is made up of internal nodes and leaf nodes. Figure 7a
shows the structure of internal nodes. Each internal node is
64 bytes and contains pointers to its children along with the
AABB of each child node. Since child nodes of an internal
node are stored consecutively in memory, we can reduce
the memory footprint by only storing the pointer of the first
child instead of storing all six child node pointers. Figure 7b
shows the top level leaf nodes which are at the bottom levels
of the TLAS and are 128 bytes each. They point to the
root address of BLAS instances and also hold the object-
to-world and world-to-object transformation matrices of the
BLAS instance. Additionally, they hold user-defined instance
indices that specify which closest-hit and intersection shaders
should be executed if geometry in the corresponding BLAS
is intersected.

Traversal of the BLAS is started if a leaf node in the
TLAS is intersected. The BLAS consists of internal nodes,
triangle leaves, and procedural leaves. The BLAS internal
nodes are structured like the TLAS internal nodes, except
they point to triangle leaves or procedural leaf primitives
instead of BLAS root nodes. Figure 7c shows the structure
of the triangle leaves which are 64 bytes each and store the
leaf descriptor, primitive index, and triangle vertices. Leaf
descriptor contains metadata such as the type of the node.
Procedural leaves are used for rendering procedural geometry,
which are 3D meshes generated by code. Each procedural
leaf consists of a leaf descriptor and a primitive index that
is addressed during geometry generation.

2) Shader Translation: A Vulkan application submits
a ray tracing pipeline with a call to vkCmdTraceR-
aysKHR. This sends all the shaders in Figure 5 to Mesa for

(a) BVH Internal Node Structure

(b) BVH Top Leaf Node Structure

(c) BVH Triangle Leaf Node Structure

Figure 7: BVH Node Structures

compilation. Graphics shaders are written in the OpenGL
Shading Language (GLSL), precompiled to SPIR-V, an
intermediate representation used by Vulkan, and read in
by the Vulkan application. These shaders are then compiled
to an intermediate representation used exclusively by Mesa
called NIR. NIR is designed to be backend-agnostic and
used as an initial translation pass for optimization. NIR can
then be translated to a hardware specific ISA by a Mesa
backend module. As Mesa lacks such a backend module
for ray tracing, in order to execute ray tracing shaders
on Vulkan-Sim, we created a NIR to PTX translator to
convert NIR shaders to PTX, a virtual GPU ISA created
by NVIDIA that is compatible with GPGPU-Sim. We
also extended the PTX ISA to include several instructions
to accommodate the Vulkan API (Table II). Most NIR
instructions are low-level instructions that easily map to
one or a sequence of PTX instructions such as ALU or
control flow instructions. However, NIR includes 15 high-
level ray tracing specific instructions such as traceR-
ayEXT, loadRayWorldOrigin, loadRayLaunchId,
etc. that need to be translated to lower-level instructions.
The most notable traceRayEXT instruction translates to
PTX shown in Algorithm 1, described later in this section.
Some instructions such as loadRayWorldOrigin can be
translated to existing PTX instructions while others such
as loadRayLaunchId are translated to a custom PTX
instruction. Table II lists the new PTX instructions added for
ray tracing. We verify the translation by comparing instruction
results in GLSL shaders with an NVIDIA GPU.

One issue encountered during shader translation is how
different shader stages in the Vulkan ray tracing pipeline
should be executed by a GPU, as mentioned in Section III-A.
RT shader stages need to be executed in a particular fashion
defined by the Vulkan ray tracing pipeline in Figure 5. While
all threads execute the raygen shader, some shader stages such
as the miss, any-hit, or closest hit shader only conditionally
execute when rays miss or intersect objects, and cannot
simply be executed serially. Our solution handles this during
shader translation by starting with tree traversal, collecting
geometry hits, and then calling other shaders conditionally.

traceRayEXT is an important GLSL function in RT
shaders, that starts AS traversal and executes other shaders
as shown in Figure 5. This function can be be implemented as
a software subroutine or offloaded to an RT accelerator and in
Vulkan-Sim, we offload to a dedicated accelerator called the
RT unit. Section III-C gives more details on how we model
the RT unit to perform AS traversal. Algorithm 1 shows the
PTX pseudocode that the traceRayEXT GLSL function
translates to in the translated PTX shaders. traverseAS()
is the instruction that calls a software subroutine or a
hardware accelerator to perform AS traversal. The additional
code after traverseAS() handles the correct conditions
for executing the various shader stages of the ray tracing
pipeline. During AS traversal (Line 1), traversal data of all
intersected procedural leaf nodes are stored in a table. After
traversal is completed, intersection shaders are called in a
loop (Lines 2-11) as we employ the Delayed intersection and
any-hit execution method, discussed in Section III-A. The
intersectionExit instruction determines if the thread is done
with all intersection shaders, after which the intersection
shader is called in an if-else-if fashion. Next, if geometry is
intersected by the ray, a closest-hit shader is called (Lines 12-
18). Otherwise, a miss shader is executed (Line 20). Closest-
hit shaders are called in an if-else-if fashion, based on the
shader ID of the target shader. Algorithm 1 shows code for
only two intersection and two closest-hit shaders, but can be
extended beyond this. Mesa receives a list of shaders and their
type as input when the ray tracing pipeline is created. Based
on this information, the NIR to PTX translator generates the
correct amount of intersection and closest-hit shader calls at
runtime by recording the shader IDs of those shaders and
inserting if statements to match the number of each shader
type in the translation. While the pseudocode doesn’t show
execution of any-hit shaders, they should be executed in a
loop similar to intersection shaders.

Traversal information, such as the closest hit geometry, is
stored in a structure in main memory that can be accessed by
specific shader instructions. Since the GLSL traceRayEXT
function can be called in other shaders recursively, results
of traversal are stored in a stack. The endTraceRay
instruction pops the stack and clears the intersection shader
(Line 22). Table II showcases the more important custom
PTX instructions added in Vulkan-Sim to support Vulkan
ray tracing.

3) Shader Binding Table: Vulkan uses a shader binding
table to record all shaders in a ray tracing pipeline. While
only one ray generation shader is required for a Vulkan
ray tracing kernel, multiple closest-hit, miss, any-hit, and
intersection shaders can be specified. Vulkan-Sim assigns an
ID to each shader when it is registered, which is returned to
the user program and used as shader handles. These handles
are stored in the shader binding table and specify which
shaders should be executed.

Algorithm 1 traceRayEXT PTX Shader Implementation

1: traverseAS()
2: intersectionIdx← 0
3: while intersectionExit(intersectionIdx) do
4: shaderID← getIntersectionShaderID()
5: if shaderID == intersectionID0 then
6: callIntersectionShader(shaderID)
7: else if shaderID == intersectionID1 then
8: callIntersectionShader(shaderID)
9: end if

10: intersectionIdx++
11: end while
12: if HitGeometry() then
13: shaderID←getClosestHitShaderID()
14: if shaderID == closestHitID0 then
15: callClosestHitShader(shaderID)
16: else if shaderID == closestHitID1 then
17: callClosestHitShader(shaderID)
18: end if
19: else
20: callMissShader()
21: end if
22: endTraceRay()

Table II: Notable Vulkan-Sim Custom PTX Instructions

PTX Instruction Instruction Description
traverseAS Traverse the acceleration structure
endTraceRay Pop traversal results stack and clear

intersection table
rt alloc mem Allocate memory and load address

for variables shared among different
shaders

load ray launch id Load a unique ray ID for each thread

4) Traversal and Intersection Implementation: Another
core component of Vulkan-Sim’s functional model is the im-
plementation of the traverseAS function in our translated
shader in Algorithm 1. Based on the acceleration structure
organization introduced in Section III-B1, rays will encounter
internal nodes and leaf nodes when traversing the TLAS, and
intersect internal nodes, triangle leaves, and procedural leaves
when in the BLAS. A ray begins traversal at the root node of
the TLAS and enters the while loop in Line 1 of Algorithm 2.
Since the root node is also an internal node, the ray enters
the while loop on Line 2 and traverses through internal nodes
until it encounters a top level leaf node. This signals that it
is entering the BLAS, so we apply the worldToObjectMatrix
to the ray to transform it to the BLAS’s coordinate system
on Line 6. Similar to the TLAS, the ray traverses through
internal nodes of the BLAS until it reaches a leaf node
which can be either a triangle leaf or a procedural leaf. For
triangle leaves, we perform ray-primitive intersection tests
and update the closest-hit geometry if it intersects on Line 12.

Algorithm 2 Acceleration Structure Traversal

Require: Ray,AccelerationStructure
1: while Ray Not Terminated do
2: while Node.Type == TopInternalNode do
3: Traverse to the next node
4: end while
5: while Node.Type == TopLea f Node do
6: Apply worldToOb jectMatrix to Ray
7: while Node.Level == BottomLevel do
8: while Node.Type == BottomInternalNode do
9: Traverse to the next node

10: end while
11: while Node.Type == BottomLea f Node do
12: if Node.Lea f Type == Triangle then
13: Perform primitive intersection test
14: Update closest-hit geometry
15: else
16: /* Node.Lea f Type == Procedural */
17: add intersection to intersectionBu f f er
18: end if
19: end while
20: end while
21: end while
22: end while

For procedural leaves, we add the primitive index and the
intersection shader ID to the intersection buffer on Line 17.
Every time a ray accesses a node or intersection buffer, we
record memory addresses that are accessed with its size and
data type to a transactions buffer, which is then sent to the
timing model to simulate memory access latencies.

5) Kernel Invocation: The Vulkan binary launches ray
tracing kernels by calling vkCmdTraceRaysKHR which
invokes Vulkan-Sim through the Mesa frontend with
shader binding tables and kernel dimensions being the
inputs. Vulkan-Sim starts a kernel with block size of
(32,1,1) and grid size of (launch width / 32, launch height,
launch depth). Each thread executes a raygen shader, and
in our case launch width and launch height correspond to
image width and length, where each warp handles 32 pixels
horizontally across the image starting from the top left pixel.
This can be freely configured to explore different mappings.
Afterwards, each thread executes the ray generation shader
and follows the ray tracing pipeline. Shader input and output
are handled through special Vulkan buffers called descriptor
sets, which are sent to Vulkan-Sim through the Mesa frontend
and accessed during shader execution.

C. Timing Model

As mentioned in Section II-A, we extend the existing
GPGPU-Sim performance model illustrated in Figure 3 to
include a ray tracing accelerator (RT unit) in a similar manner
to the baseline GPU described by Liu et al. [37]. Although

conceptually alike, we model the full Vulkan ray tracing
pipeline, including shader execution, instanced acceleration
structures with varying data sizes, and storing of ray hits
that were previously ignored. The original GPU model
consists of a collection of streaming multiprocessors (SMs)
connected through an interconnection network to various
memory partitions. Within each SM, there are several cores
that feature a warp scheduler, a dedicated register file (RF),
and its own functional execution units. We treat the RT unit as
an execution unit, except only one exists per SM rather than
per core, and add this to the SIMT compute pipeline. When a
trace ray instruction is decoded and ready to execute, the warp
is routed to the RT unit, which requires a variable latency to
complete, similar to the existing load/store units. Vulkan-Sim
enables detailed evaluation for each modeled component and
offers opportunities to explore different scheduling orders
and other potential RT unit optimizations. Figure 3 shows
the GPU architecture and zooms in on the RT unit in more
detail.

1) RT Unit Overview: The performance model of the RT
unit focuses on two sources of latency: BVH operations
and memory accesses. Warps enter the RT unit during
the execution stage in the SIMT compute pipeline and
are tracked in the Warp Buffer. In each cycle, a warp is
selected, and memory requests from the threads in the warp
are scheduled to be issued to the L1 cache. The returning
ray tracing data is directed into the Response FIFO to be
processed, modeling the latency of memory accesses. Then,
the Operation Scheduler determines the requesting thread
and forwards its ray properties along with the returned
geometry data to the Operation Units, modeling the latency
of BVH operations such as ray-box intersections, ray-triangle
intersections, and coordinate transformations. Finally, once
the BVH operation is complete, the controller updates the
appropriate threads with the results and proceeds down the
BVH tree accordingly.

2) Warp Management: Up to eight warps can co-exist
within the RT unit in our baseline configuration as a sweet
spot for area overhead and performance. Each warp maintains
a Ray Buffer, which tracks ray information such as its
properties, current status, and traversal stack, similar to
the Ray Store in the Imagination Ray Acceleration Cluster
(RAC) [17]. Ray properties include the origin, direction, and
t-parameters, which are required to perform intersection tests.
The traversal stack is maintained as a short stack [29] with
eight entries and spills into per-thread memory as described
by Aila et al. [14]. For each new cycle, the Warp Scheduler
selects a single warp following a greedy then oldest approach
by prioritizing a single warp until it stalls waiting for memory
requests. This approach is generally preferable over round
robin, where warps are more likely to arrive at stalling
memory accesses around the same time [42]. The number of
active threads for each warp is tracked in Warp Status, which
signals completion when there are no remaining threads

traversing the BVH tree.
3) Memory Scheduling: Once a warp has been scheduled,

the memory scheduler evaluates the Ray Status and the
Traversal Stack in the Ray Buffer for each thread in the
warp. The Ray Status indicates if the thread is ready to
issue a memory request, and the next memory address is
read from the Traversal Stack. Otherwise, the thread could
be awaiting a previous request, performing an intersection
test, or completed with its traversal. The Memory Scheduler
collects each of these addresses from all the threads in the
warp, merging any identical requests, and pushes the final
unique set to the Memory Access Queue. By the end of the
cycle, all threads should have pushed their respective requests
into the Memory Access Queue, or remain in a ready state if
the queue is full. The first request in the queue is also sent
to the L1 data cache, or potentially, a dedicated RT cache.
Larger data requests are broken into several 32B chunks to be
processed over multiple cycles. On a cache miss, the memory
request continues into the memory hierarchy and eventually
returns to the Response FIFO, following the performance
model of the latest GPGPU-Sim [33].

4) BVH Operations: At the beginning of each cycle, the
RT unit pops from the Response FIFO if there is data and
forwards it to the Operation Units. The Operation Scheduler
evaluates the Ray Status and the top of the Traversal Stack
to identify threads awaiting the current memory response
and forwards the Ray Properties. There are three possible
BVH operations: ray-box and ray-triangle intersection test,
and coordinate transformations explained in Section III-B.
A flag in the returned data determines which of the three
pipelined hardware units should be used. We model our
intersection units as described by Liu et al. [37], which is
based on ray-box and ray-triangle intersection units in the
T&I Engine [41], and our transformation units as a simple
matrix multiplier. We include sufficient instances of these
units to avoid the need for an additional queue and assume
a fixed latency. Alternative configurations of operation units
can easily be explored with Vulkan-Sim.

Once the BVH operation is complete, the controller updates
the Ray Status and pops the top entry from the Traversal
Stack, setting up the thread for the next node on the following
cycle. On a primitive hit, the results are stored in memory
and read back during the closest hit shader execution.

D. Software Architecture

Vulkan-Sim builds upon the Mesa graphics library with
partial Vulkan ray tracing support. Figure 8 shows the soft-
ware architecture of Vulkan-Sim. After launching a Vulkan
ray tracing binary, the application communicates with Mesa
to execute Vulkan API calls (1). When the Vulkan binary
registers SPIR-V shaders to the ray tracing pipeline with the
API call vkCreateRayTracingPipelinesKHR, Mesa
first compiles them to an intermediate representation called
NIR that is used for optimization and translation for various

Figure 8: Vulkan-Sim Software Architecture

backend drivers. The NIR-to-PTX Translator in Vulkan-
Sim translates the NIR shaders to PTX shaders that are
compatible with GPGPU-Sim and stores them for later use
(2). When the Vulkan binary makes the ray tracing API
call vkCmdTraceRaysKHR, Mesa invokes Vulkan-Sim to
begin simulation of the translated ray tracing PTX shaders
that were generated in 2 . In addition to the translated
shaders, we also send Vulkan-Sim all the arguments of
vkCmdTraceRaysKHR and the descriptor sets that are
used for shader input and output (3). Once Vulkan-Sim is
invoked, the functional model (4) executes the ray tracing
PTX shaders and communicates with the timing model (5)
to perform cycle level simulation. We explained this in more
detail in Sections III-B and III-C respectively. Once the
simulation is complete, it stores any results back to the
corresponding image buffers or memory locations, and the
vkCmdTraceRaysKHR API call is complete (6).

IV. CASE STUDIES

Using Vulkan-Sim, we present two case studies targeting
scheduling in the RT units to improve ray tracing performance.
First, we introduce function call coalescing, which attempts
to optimize shader calls in the ray tracing pipeline. Then, we
evaluate how independent thread scheduling can support ray
tracing workloads.

A. Function Call Coalescing

A multitude of user-defined shaders can be specified in the
Vulkan ray tracing pipeline, where a set of shaders can be
specified for each BLAS instance in the AS. Although this
gives the application flexibility, it may result in redundant
function calls leading to poor SIMT efficiency. Considering
that Vulkan does not define an order for ray hits (such
as closest-first), the T&I unit can be optimized to process
geometry in an any-order. Thus, at each intersection call-site
of Algorithm 1 the threads of a warp are not guaranteed to
invoke the same shader. Invoking a non-uniform function
call on a SIMT architecture requires looping over the shader
IDs. Redundant shader execution occurs when different
threads invoke the same shader on different iterations of the
outer loop of Algorithm 1. The thread divergence when the
intersection shaders are called is unnecessary as reordering
the shader execution can resolve the divergence. This also

Figure 9: Function Call Coalescing, getNextCoalesced-
Call operation

leads to lower than necessary SIMT efficiency and may
explain the same issue observed by instrumented any-hit and
intersection shaders for workloads with several non-opaque
or procedurally defined objects [45].

We evaluate Function Call Coalescing (FCC), a method for
eliminating shader call divergence and mitigating redundant
shader invocations, proposed by Nowicki [43]. Function call
coalescing includes a coalescing buffer that is conceptually
a table in GPU memory where each row stores a shader ID
and a flag for each SIMT thread that invokes the function.
Additionally, each thread stores intersection data such as
primitive index and instance index. FCC differs from baseline
when (1) procedural intersections are inserted into the table
in Algorithm 2 and (2) execution of the shaders.

The intersectionBuffer is replaced with coa-
lescing buffer in Algorithm 2. When a new procedural
intersection is found, the shader ID is inserted in the table
by matching with an existing shader ID. This results in a
set of shader IDs and a thread mask for their corresponding
SIMT threads. The table could have multiple entries with the
same shader ID if a thread hits the same procedural geometry
multiple times. The operation is repeated until all hits are
processed.

The details of the code generation for the trace ray function
are shown in Algorithm 3. Each row in the buffer is read once
by the getNextCoalescedCall command, producing a
vector register for the function call as shown in Figure 9.
Each thread in the warp will always invoke the same function,
eliminating the function call divergence. We evaluate FCC
on RTV6 scene using Vulkan-Sim in Section VI-E

B. Independent Thread Scheduling

GPUs follow a single instruction multiple threads (SIMT)
paradigm that performs poorly during branch divergence
when the warp is split and execution proceeds serially
between the two warp splits. Using a default SIMT stack
model to handle control flow divergence allows only one warp
split to be scheduled even for long latency operations that
leave the pipeline idle. As part of the Volta microarchitecture,
NVIDIA introduced independent thread scheduling (ITS) to
enable greater flexibility in their GPUs, allowing threads
to diverge and execute in an interleaved fashion [19], [22].
This alternative approach is implemented in Vulkan-Sim as

Algorithm 3 traceRayEXT PTX Shader With FCC

1: traverseAS()
2: intersectionIdx← 0
3: while intersectionExit(intersectionIdx) do
4: shaderID← getNextCoalescedCall(intersectionIdx)
5: if shaderID then
6: callIntersectionShader(shaderID)
7: end if
8: intersectionIdx++
9: end while

10: if HitGeometry() then
11: shaderID← getClosestHitShaderID()
12: if shaderID == closestHitID0 then
13: callClosestHitShader(shaderID)
14: else if shaderID == closestHitID1 then
15: callClosestHitShader(shaderID)
16: end if
17: else
18: callMissShader()
19: end if
20: endTraceRay()

Figure 10: Example branch divergence in ray tracing.

a multi-path architecture by tracking reconvergence in tables
rather than a stack to schedule warp splits independently [25].

Control flow divergence is very common in the ray tracing
algorithm during BVH traversal, but it is mitigated by
hardware RT units. However, there is also divergence in
shader execution, specifically when a warp splits between
the closest-hit and the miss shader for rays that hit or miss the
scene, shown in Figure 10 (left). The raygen shader can also
include branches around traceRayEXT to trace different
variations of rays depending on some condition as shown in
Figure 10 (right), which we observe in the Quake II RTX
game [44]. In these cases, stack-based reconvergence executes
the green block then the yellow block serially whereas
ITS attempts to schedule the green and yellow blocks in
parallel. Since traceRayEXT is a long latency instruction
and independent between branches, the first green block
can be scheduled and once it has entered the RT unit, the
next yellow block can be scheduled without waiting for ray
tracing to complete. Executing these blocks simultaneously
should improve RT unit efficiency. We evaluate ITS with

Figure 11: Correlation between Vulkan-Sim and NVIDIA
RTX 2080 SUPER GPU.

Vulkan-Sim in Section VI-F.

V. METHODOLOGY

Vulkan-Sim is constructed from two components: the
Vulkan frontend and the execution engine. For the Vulkan
frontend, we extended Mesa 21.1.0-devel with preliminary
ray tracing support and completed its ray tracing functionality
through Vulkan-Sim’s functional simulation. The MESA
Vulkan frontend provides acceleration structure building,
shader compiling, and Vulkan API interface, which we
intercept in the frontend and send to GPGPU-Sim to invoke
execution of shaders. For the execution engine, we extended
GPGPU-Sim 4.0.0 [33] to model the RT unit mentioned
in Section III-C and to support custom Vulkan specific
instructions from translating NIR shaders to PTX.

Although sharing the same base timing model, Vulkan-Sim
is not a trace-based simulator like Accel-Sim [33], which
relies on NVIDIA’s native GPU ISA (SASS). Extending
AccelSim traces to simulate ray tracing is challenging because
NVBit, the instrumentation tool used to generate execution
traces, does not expose sufficient details of the ray tracing
SASS instruction. Instead, Vulkan-Sim employs functional
emulation. Vulkan-Sim is able to extract detailed memory
level information and workload characteristics as demon-
strated in our results (Table IV), including the bounding
volume hierarchy (BVH) tree depth and node count. PTX
level simulation provides important flexibility when studying
ISA modifications like those we study in Section IV-A.

Table III shows the evaluated configurations. We allocate
one RT unit per SM, similar to NVIDIA. The max number
of warps allowed concurrently in the RT unit affects the area
overhead of ray and warp buffers. The more concurrent warps,
the higher the area overhead. The number of intersection units
have less of an impact since memory is the main bottleneck
for ray tracing. We choose 32 of each operation unit in the
RT unit so it fully handles all 32 threads in a warp.

A. Evaluation Benchmarks

We select five workloads to evaluate, outlined in Table IV,
with three official Vulkan samples released by KhronosGroup,
one popular Vulkan ray tracing renderer, and a microbench-
mark. TRI is a simple ray traced triangle consisting of only
primary rays and REF has mirror reflections and shadows,
which are rendered by secondary rays. EXT is the Sponza

Table III: GPGPU-Sim Configurations

Baseline Mobile
Streaming Multiprocessors (SM) 30 8

Max Warps / SM 32
Warp Size 32

Warp Scheduler GTO
Registers / SM 65536 32768
Instruction Cache 128KB, 16-way assoc., 20 cycles

L1 Data Cache + Shared Memory 64KB, Fully assoc. LRU, 20 cycles
L2 Unified Cache 3MB, 16-way assoc. LRU, 160 cycles

Compute Core Clock 1365 MHz
Interconnect Clock 1365 MHz

L2 Clock 1365 MHz
Memory Clock 3500 MHz

RT Units / SM 1
RT Unit Max Warps 4
RT Unit MSHR Size 64

scene, a commonly used model in the graphics community,
which features more complex geometry, textures, and uses
more types of rays such as secondary, shadow, and ambient
occlusion (AO). RTV5 is from the RayTracingInVulkan
workload [3], where we can load OBJ files such as the statue
and create effects such as refractions, depth of field, and
global illumination. We add the RTV6 scene to this workload
for evaluating FCC, which also demonstrates the capability of
Vulkan-Sim to handle multiple types of procedural geometry.
Only one frame is rendered for RTV5 and RTV6 and the
rendered images are noisy as low sample path tracing tends
to be [28], [30]. While Vulkan-Sim currently lacks some
extension support to run more complex workloads such as
games like Quake II RTX [44], extensions can be added
for better Vulkan compatibility. Additionally, RTV6 supports
loading custom geometry and shaders to render more detailed
scenes such as those found in modern games.

B. Simulator Validation

We validate Vulkan-Sim’s functional simulation by com-
paring function results in ray tracing shaders against NVIDIA.
Only 0.3% of pixels rendered in Figure 2’s sponza scene differ
from an NVIDIA GPU. We have attempted to validate Vulkan-
Sim’s timing model with RT accelerators in existing GPUs,
but some issues stand in the way. The first challenge is the
limited amount of provided documentation from companies.
NVIDIA, AMD, and Imagination have provided high level di-
agrams or press releases about their RT acceleration, however
the inner details of their architectures are unknown. Secondly,
the trace ray instruction is a CISC-like instruction with an
unknown amount of memory references and the underlying
BVH structure that it operates off is not documented. While it
may be possible to microbenchmark, it is not in the scope of
this work. Despite these challenges, since they both support
Vulkan’s ray tracing API, in Figure 11 we compare execution
cycles between Vulkan-Sim and an NVIDIA RTX 2080
SUPER GPU which should provide some sense of how
the implementations relate. The datapoints in this figure
corresponds to a correlation of 95.7% on our evaluation

Figure 12: Roofline plot for the RT unit.

benchmarks. We note that the slope between hardware and
simulator is about 2.58 (rather than 1.0) which we suspect is
due to differences in RT unit design, such as having lower
numbers of operation units or fewer warps per RT unit to
save area. We also conduct a separate correlation study in
Section VI-G which better matches simulation parameters to a
RTX 2080 SUPER and provide some insights. Another reason
is we captured execution times on a real GPU and multiplied
by the GPU clock to get cycles, which could be inaccurate
due to variable clock frequency of GPUs. Additionally, other
companies may end up with very different solutions for RT
acceleration so exactly matching NVIDIA’s hardware is not a
goal for us. Vulkan-Sim merely provides a Vulkan simulation
framework and baseline RT unit for researchers to improve
upon.

VI. RESULTS

In this section, we evaluate the RT unit design in Section III
and IV on five different Vulkan ray tracing workloads shown
in Table IV, with images rendered using Vulkan-Sim without
denoising. In these workloads, ALU operations account for
60% of the measured instruction type breakdown, followed
by memory operations with 25%, and only around 1% trace
ray instructions. While the workloads only execute a small
number of trace ray operations, each of those operations
contributes to a high percentage of memory accesses. EXT
is the most realistic workload that we evaluate, where trace
ray instructions make up around 60% of memory accesses,
with the RT units active for 92% of total cycles on average.

A. Roofline Plot

To evaluate the performance bottlenecks in ray tracing, we
adapt the Roofline Model [55] which relates performance to
memory traffic using the configurations in Table III. In our
ray tracing context, we consider intersection tests and ray
transformations as operations, and we define Operational
Intensity to be the total operations performed per cache block
fetched. With this definition, Performance can be measured
as operations per cycle (or the total number of pipeline stages
occupied in the intersection and transformation units) with a
maximum value defined as the # units×# stages per unit.
We plot the memory bound as one cache block per cycle.

Table IV: Summary of workloads (images rendered by Vulkan-Sim).

Scene TRI [8] REF [8] EXT [8] RTV5 [3] RTV6

BVH Tree Depth 3 4 13 12 8
Average Nodes per Ray 1.5 4.3 73 7.3 19
Primitive Count 1 50 283265 448893 4080

Figure 12 illustrates where each workload fits on the
roofline plot. All workloads fall under the memory bound but
are far from both the memory and compute bound, implying
that ray tracing performance is generally limited by memory
accesses, but these workloads are underutilizing the available
resources. EXT and RTV, which are more realistic workloads,
are closer to the memory bound, almost fully utilizing the
RT unit hardware. In a mobile GPU context, EXT and RTV5
are even more clearly memory bound. Since none of the
points lie on the bounding lines, this plot highlights the
need to either make workloads more efficient in software
or improve the way workloads are executed in the RT units.
Techniques such as warp scheduling, warp repacking, and
cache replacement policies can be explored with Vulkan-Sim
to bring workloads closer to the bounds and fully utilize
GPU resources.

B. SIMT Efficiency

SIMT efficiency measures the proportion of active threads
in a warp each cycle, which is a good measure of how well
a workload executes on a GPU. TRI and REF workloads
have nearly full SIMT efficiency, only rarely diverging at
geometry boundaries where part of warp may hit while the
remainder misses. EXT, RTV5, and RTV6 show more warp
divergence, with more than 50% of warps executing only 1-4
threads out of the possible 32, as a result of the larger scene
and more secondary rays. For example, primary rays only
make up 15% of the workload in EXT. Secondary rays are
generally incoherent with different ray origins and directions,
which cause them to traverse different parts of the BVH tree
and execute different paths in the shaders. This is especially
prominent in RTV5 and RTV6 where secondary rays are
generated by scattering randomly throughout the scene.

Similarly, SIMT efficiency in the RT unit measures the
proportion of active rays in each cycle. Low SIMT efficiency
in the RT units results from early terminating rays mixed with
long tail effects, compounded with any low SIMT efficiency
from the GPU. When a thread completes traversal, it idles
until all threads from the same warp are also complete,
then the instruction is committed and another warp can be
scheduled to the RT unit. On average, SIMT efficiency is only
35% in the RT units, with RTV5 as low as 7%. Threads are
idle for 59% of cycles on average, waiting for tailing threads
to complete traversal. The low SIMT efficiency contributes

Figure 13: Per warp latency in RT units.

Figure 14: L1D and L2 cache accesses breakdown.

to the inefficient use of GPU resources highlighted in the
roofline plot. Several prior works have proposed solutions
to mitigate this issue, but without a detailed simulator like
Vulkan-Sim, we cannot confirm their effectiveness.

At a higher level, these long tail effects also result in low
warp occupancy and influence the execution time of the entire
workload. Figure 13 shows a distribution of warp latency in
the RT units for the EXT workload. Some warps complete
very quickly by benefitting from cache hits or missing the
geometry in the scene entirely. The remainder of warps follow
what resembles a log-normal distribution, with 95% of warps
completing in 50000 cycles but a few trailing warps requiring
around 4× more cycles. These trailing warps are indicated
with arrows in Figure 13, totaling just 35 warps out of more
than 50000. Vulkan-Sim shows that ray tracing performance
cannot be improved unless tail effects are mitigated.

C. Memory

Figure 14 shows the breakdown of the L1D and L2
cache. Cache misses primarily result from shader loads with
only a small portion coming from RT unit accesses, which
aligns with the origin of the memory requests. Interestingly,
shader loads show proportionally more misses than RT unit
loads despite the random nature of BVH memory accesses.
However, most of these are compulsory (cold) misses, which
signify that the data is not reused and perhaps should not
be cached. For RT unit loads, there is evidence of cache

Figure 15: Execution times of memory configurations.

thrashing from the amount of capacity or conflict misses.
Figure 15 shows that using a dedicated RT cache can improve
performance.

Figure 15 also shows two limit studies for zero latency
BVH node accesses (Perfect BVH) and zero latency DRAM
accesses (Perfect Mem). Perfect BVH only targets memory
accesses originating from the RT unit, so it has lower gains
for TRI and REF where shader loads dominate. In EXT, RT
unit loads dominate and Perfect BVH shows greater speedups,
demonstrating the workloads are mainly memory bound.

Figure 16 evaluates the DRAM efficiency and utilization
for these workloads across a range of maximum warp limits
per RT unit from 1-20. These values are measured as the
percentage of cycles where data was transferred out of the
total execution cycles for DRAM utilization, and specifically
out of cycles where there were DRAM requests at the
memory access scheduler for DRAM efficiency. Our default
configuration allows a maximum of eight warps to execute
in each RT unit simultaneously, labeled as ‘8’ in Figure 14.
Raising this limit from a single warp provides more rays to
schedule between and hide the memory latency but flattens at
around eight warps when additional warps start to compete
for available bandwidth. All the workloads we evaluate do not
show high DRAM efficiency, averaging at 46%, likely from
coherent memory accesses at the beginning of traversal. For
example, memory requests for the BVH root node are merged
together across all warps in an RT unit and represented by
a single request to the DRAM. These merged requests are
sequential in time as part of the BVH traversal process and
potentially random in address depending on how the BVH
tree is stored in memory, which produces both a low bank
level parallelism and low row buffer locality in the DRAM.
In a mobile GPU configuration with less DRAM bandwidth,
the efficiency and utilization are higher at 77% and 75%,
respectively. The DRAM behaviour in all configurations
shows very similar efficiency and utilization, implying that
there are almost constant memory requests to DRAM. This
insight from Vulkan-Sim motivates future research for in-
memory computing for ray tracing or solutions to reduce
cache misses.

D. Energy

We use AccelWattch [32] to measure GPU power for our
RT workloads and estimate power from RT units as described

Figure 16: Comparison of DRAM for varying maximum
number of warps per RT unit.

by Liu et al. [37]. The RT units average less than 1% of
total GPU power since the most power intensive portion
of ray tracing is accessing DRAM, accounting for 10%.
The majority of power is dissipated as constant and static
GPU power. Although not directly originating from RT units,
energy can be reduced if RT unit performance improves
because shorter execution times reduce energy from constant
and static power.

E. Function Call Coalescing

Having more than one intersection shader in a workload
can cause low SIMT efficiency in the GPU [45]. The trac-
eRayEXT instruction calls different intersection shaders in
line 6 and 9 of Algorithm 1 which causes thread divergence.
FCC aims to increase SIMT efficiency by grouping the same
intersection shaders together. To evaluate FCC, we added
procedural cubes to RayTracingInVulkan and created a new
scene RTV6, which contains both procedural spheres and
cubes, with each shape having a different intersection shader.
We tested FCC on a mobile GPU configuration in RTV6.

FCC improves average SIMT efficiency by 9% but de-
creases performance compared to baseline intersection table
by 6%, shown in Figure 17. As described in Section VI-B,
RTV6 has low SIMT efficiency. The low number of active
threads are likely to hit the same procedural geometry. So
the same intersection shader ID is added to the table and
they don’t cause extra thread divergence in Algorithm 1.

FCC has extra memory overhead compared to the baseline
intersection table. Each thread with a new procedural inter-
section has to load the existing shader IDs in the coalescing
table to check for a match. Upon a match, the corresponding
thread mask is loaded. A new intersection is only added if
the thread mask is not set. Consequently, FCC results in
11% more memory loads in the RT unit, which outweighs
improvements in SIMT efficiency as the workload is memory
bound. In RTV6, each warp requires 52 coalescing buffer
entries, which is 13.4KB. In comparison, the baseline table
needs 42 entries per warp, which is 10.9KB.

Even though RTV6 only has two intersection shaders,
realistic workloads can have more intersection shaders and
have any-hit shaders which will also be added to the
coalescing table with intersection shaders. We expect the
improvement of FCC to be larger in these cases as the thread
divergence would be larger when shaders are executed in

Figure 17: Speedup and SIMT utilization for FCC and ITS.

Algorithm 1.

F. Independent Thread Scheduling

Compared to stack-based convergence, ITS only improves
performance by up to 1% for our workloads because warps
do not split on the lengthy traceRayEXT instruction. ITS
performs best when warp splits are similar in length and both
execute long latency instructions that create stalls, allowing
ITS to schedule both splits to execute in parallel. However,
unlike FCC, ITS aims to improve RT unit efficiency rather
than SIMT efficiency in the GPU. Our workloads use simple
closest-hit and miss shaders with more than 60% ALU
instructions that do not benefit from ITS. Realistic workloads
often feature more complex code where rays diverge based
on their results and generate different traceRayEXT calls,
such as in Quake II RTX [44]. We model this behaviour in
a microbenchmark by injecting arbitrary warp divergence
to AO rays in the EXT workload and find a 6% speedup
with ITS, indicated in Figure 17 (right). We choose AO rays
because they make up 59% of the rays in the workload. Also,
they are incoherent, unlike primary rays which perform nearly
equally well when executed serially due to better cache hits.

Ideally, ITS should halve execution time by perfectly
scheduling two warp splits simultaneously instead of serially.
Realistically, we find that RT unit resources are saturated
and cannot always accommodate the second warp split,
resulting in serial execution despite ITS. This effect appears
in Figure 18 where ITS does not significantly increase the
number of rays in the RT units because it is already executing
the max number of warps. Increasing the max number of
warps in each RT unit to fit these warp splits will negatively
impact performance due to bottlenecks in the memory system.

The benefit we do observe in ITS is actually a result of
better cache hits in the L1D and L2 caches. Even though
warps may not necessarily be executed in parallel, ITS does
alter the scheduling order by allowing warp splits to be
scheduled simultaneously. This altered warp scheduling order
results in slightly better warp occupancy in the RT units,
which also creates better coalescing of memory requests
between rays in each RT unit. Interestingly, because of the
increased cache hits, there are fewer memory requests to the
DRAM, causing lowered row buffer locality and bank level
parallelism. In this microbenchmark, the average memory
request latency reduces by around 7%, but the longest

Figure 18: Comparison of combined RT unit occupancy for
stack-based reconvergence and ITS.

memory request latency increases, lengthening tail effects as
observed in Figure 18.

G. Correlation Study

To see if Vulkan-Sim’s RT units can model the performance
of ray accelerators found in real hardware, we tune our
simulation configuration to match an NVIDIA RTX 2080
SUPER GPU in terms of cycle count on the benchmarks
shown in Table IV. We start with the baseline configuration
in Table III and match the clock and memory frequencies,
SM count, cache size and number of RT cores from publicly
available data online [5]. However Figure 19a shows this
configuration is 1.5 times faster than the NVIDIA GPU
in cycle count, indicated by the slope of the trendline.
In Figure 19b we increased cache and dram latencies by
referencing values from Khairy et al. [33] and Dalmia et
al. [21] and also decreased the number of concurrent warps
in the RT unit from 4 to 2, but the slope still remained
at 1.5. Finally in Figure 19c, by decreasing the number of
concurrent warps in the RT unit from 2 to 1, we manage
to obtain a correlation graph with a slope of 0.88 and a
correlation coefficient of 90% as our closest result.

From the correlation plots, this may imply that NVIDIA’s
hardware only supports one warp in each RT Core. In Vulkan-
Sim, to support multiple warps in the RT unit, the memory
overhead per additional concurrent warp per RT unit is almost
2.4KB. This is mainly the memory needed for the ray buffer
that consists of 32 rays per warp with each ray requiring
(4B Ray ID + 32B Ray properties + 3 bit Ray status + 40B
five entry short stack [54]), which is not an insignificant
amount. Reducing this overhead may not be trivial and is be
a potential research area to explore as increasing the number
of concurrent warps in the RT unit can greatly increase ray
tracing performance.

VII. RELATED WORK

GPU / Graphics Simulators A recent simulator, Emer-
ald [27], is a cycle level graphics simulator based on GPGPU-
Sim and Mesa to support the OpenGL API. Emerald provides
models for rasterization-based graphics hardware at a cycle
level but only supports OpenGL and uses an older version
of Mesa. Consequently, it does not support the Vulkan API
or include models for ray tracing specific hardware. Liu et
al. describe a simulator that models a generalized ray tracing

(a) Baseline config with matched parameters (4 warps in RT unit)

(b) Two warps in RT unit, Increased cache and DRAM latencies

(c) One warp in RT unit, Increased cache and DRAM latencies

Figure 19: Cycle Count Correlation verses RTX 2080 SUPER

accelerator [37], which we use as the foundation for our
improved timing model. Their simulator does not support
any existing ray tracing API like Vulkan and overlooks
several components such as transforming rays between the
TLAS and BLAS and storing hit points. GLTraceSim [48]
is an OpenGL GPU simulator that replays traces to analyze
memory accesses but does not model a particular GPU
architecture. QSilver [49] is an older graphics simulator
with an outdated simulation infrastructure. PBRT [46], is a
popular graphics simulator for rendering ray traced images.
While it can implement different software-based ray tracing
algorithms, it lacks graphics hardware modeling used for
hardware design.

Another category of GPU simulators focus on GPGPU
applications. GPGPU-Sim [16], [33] is a cycle level GPGPU
simulator that executes NVIDIA’s virtual ISA, PTX, which
Vulkan-Sim extends to include ray tracing specific hardware.
GPUTejas parallelizes simulation at the threadblock level
which can improve simulation speed.

Ray Tracing Accelerators Specialized accelerators for ray
tracing have been explored in various works, each featuring
hardware components targeting AS traversal and intersection
test computation, which we model in Vulkan-Sim. Earlier
works include SaarCOR [47] and RPU [56], both of which use
Kd-tree acceleration structures in their implementation. More
recently, Nah et al. proposed T&I engine [41], which we use
to guide our timing model. RayCore [40] and SGRT [36] then
build upon this, employing T&I cores to enable ray tracing

on mobile devices. Other works such as Trax [52] and MIMD
threaded multiprocessors (TM) [34] are MIMD processors
capable of traversing incoherent rays. These accelerators
all operate independently from the GPU. However, since
rasterization is still crucial in real-time rendering, there is a
disadvantage to decouple ray tracing from the existing GPU.
RT Cores [18] from NVIDIA accelerate ray tracing from
within the GPU, just as we model in Vulkan-Sim. Another
field of hardware accelerated ray tracing focuses on different
improvements. Kopta et al. [35] reduces energy usage and
Shkurko et al. [51] reduces random memory accesses. Deng et
al. [24] survey these works and acknowledge the importance
of hardware accelerated ray tracing.

VIII. CONCLUSION AND FUTURE WORK

This work presents Vulkan-Sim, a Vulkan ray tracing
simulator. Vulkan-Sim integrates Mesa’s Vulkan frontend
with GPGPU-Sim to bring the first ray tracing architectural
simulator driven by a state-of-the-art ray tracing API. Our
functional simulation provides insight on how modern ray
tracing APIs can be implemented in hardware, while the
timing model provides cycle level simulation of a baseline
ray tracing accelerator. This enables Vulkan-Sim to study ray
tracing workloads in detail and explore accelerator design.

We also present two hardware optimization case stud-
ies that we evaluate in Vulkan-Sim: independent thread
scheduling and function call coalescing. Independent thread
scheduling improves RT unit efficiency by scheduling threads
independently during control flow divergence, however it only
provides up to 2% speedup for ray tracing. Our simulations
show that while ITS provides the benefit of better cache hit
rates, it does not significantly increase RT unit occupancy, and
due to the increased cache hits, DRAM row buffer locality
and bank level parallelism both decrease, canceling out the
benefits that ITS provides. With many different shader stages
in the Vulkan ray tracing API, executing different shaders
on demand causes inefficiency due to warp divergence. By
deferring shader execution, grouping up similar shader calls
from different SIMT threads, and executing them together,
functional call coalescing increases SIMT efficiency by 2%,
however the memory overhead from accessing the shader
IDs in the coalescing table causes a 6% slowdown instead.

For future work, we plan to support more Vulkan exten-
sions for better compatibility and create a suite of ray tracing
benchmarks that represent modern graphics applications.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their
feedback. We would also like to thank Jonathan Lew and
Ningfeng Yang for their feedback on earlier drafts of this
paper and Mabel Wang for help testing our artifact evaluation
instructions. This research was funded in part by grants from
Huawei Technologies. Tor M. Aamodt serves as a consultant
for Huawei Technologies Canada Co. Ltd. and Intel Corp.

REFERENCES

[1] NVIDIA RTX: List Of All Games, Engines And Applications
Featuring GeForce RTX-Powered Technology. [Online].
Available: https://www.nvidia.com/en-us/geforce/news/nvidia-
rtx-games-engines-apps/

[2] OpenGL Overview. [Online]. Available: https://www.khronos.
org/opengl/

[3] Ray Tracing In Vulkan. [Online]. Available: https://github.
com/GPSnoopy/RayTracingInVulkan

[4] Ray Tracing Rendering Software. [Online]. Available:
https://www.autodesk.com/solutions/ray-tracing

[5] TechPowerUp - NVIDIA GeForce RTX 2080 SUPER.
[Online]. Available: https://www.techpowerup.com/gpu-specs/
geforce-rtx-2080-super.c3439

[6] Vulkan. [Online]. Available: https://www.vulkan.org/

[7] Vulkan 1.2.162 Released With Ray-Tracing Support Promoted.
[Online]. Available: https://www.phoronix.com/news/Vulkan-
Ray-Tracing-Promoted

[8] Vulkan-Samples. [Online]. Available: https://github.com/
KhronosGroup/Vulkan-Samples

[9] Vulkan Specification - Acceleration Structure. [Online].
Available: https://registry.khronos.org/vulkan/specs/1.3-khr-
extensions/html/vkspec.html#acceleration-structure

[10] Vulkan Specification - Ray Tracing. [Online].
Available: https://registry.khronos.org/vulkan/specs/1.3-khr-
extensions/html/vkspec.html#ray-tracing

[11] Vulkan Specification - Ray Traversal. [Online].
Available: https://registry.khronos.org/vulkan/specs/1.3-khr-
extensions/html/vkspec.html#ray-traversal

[12] T. Aamodt, W. Fung, M. Martonosi, and T. Rogers, General-
Purpose Graphics Processor Architectures. Morgan &
Claypool Publishers, 2018.

[13] T. Aila and T. Karras, “Architecture considerations for tracing
incoherent rays,” in Proc. ACM Conf. on High Performance
Graphics (HPG), 2010, pp. 113–122.

[14] T. Aila and S. Laine, “Understanding the efficiency of ray
traversal on GPUs,” in Proc. ACM Conf. on High Performance
Graphics (HPG), 2009, pp. 145–149.

[15] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Teapot:
A toolset for evaluating performance, power and image
quality on mobile graphics systems,” in Proc. ACM Conf.
on Supercomputing (ICS), 2013, pp. 37–46.

[16] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA workloads using a detailed GPU
simulator,” in Proc. IEEE Symp. on Perf. Analysis of Systems
and Software (ISPASS), 2009, pp. 163–174.

[17] K. Beets, “Rays Your Game: Introduction to
the PowerVR Photon Architecture,” 2021. [Online].
Available: https://imaginationtech.com/products/gpu/graphics-
architecture/powervr-photon/

[18] J. Burgess, “RTX on—the NVIDIA Turing GPU,” IEEE Micro,
vol. 40, no. 2, pp. 36–44, 2020.

[19] J. Choquette, O. Giroux, and D. Foley, “Volta: Performance
and programmability,” IEEE Micro, vol. 38, no. 2, pp. 42–52,
2018.

[20] P. H. Christensen, J. Fong, D. M. Laur, and D. Batali,
“Ray tracing for the movie ‘cars’,” in IEEE Symposium on
Interactive Ray Tracing, 2006, pp. 1–6.

[21] P. Dalmia, R. Mahapatra, and M. D. Sinclair, “Only buffer
when you need to: Reducing on-chip gpu traffic with reconfig-
urable local atomic buffers,” in Proc. IEEE Symp. on High-Perf.
Computer Architecture (HPCA), 2022, pp. 676–691.

[22] S. Damani, M. Stephenson, R. Rangan, D. Johnson,
R. Kulkami, and S. W. Keckler, “Gpu subwarp interleaving,”
in Proc. IEEE Symp. on High-Perf. Computer Architecture
(HPCA), 2022.

[23] R. De Jong and A. Sandberg, “NoMali: Simulating a realistic
graphics driver stack using a stub GPU,” in Proc. IEEE Symp.
on Perf. Analysis of Systems and Software (ISPASS), 2016, pp.
255–262.

[24] Y. Deng, Y. Ni, Z. Li, S. Mu, and W. Zhang, “Toward
real-time ray tracing: A survey on hardware acceleration
and microarchitecture techniques,” ACM Computing Surveys
(CSUR), vol. 50, no. 4, pp. 1–41, 2017.

[25] A. ElTantawy, J. W. Ma, M. O’Connor, and T. M. Aamodt,
“A scalable multi-path microarchitecture for efficient GPU
control flow,” in Proc. IEEE Symp. on High-Perf. Computer
Architecture (HPCA), 2014, pp. 248–259.

[26] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic
warp formation and scheduling for efficient gpu control flow,”
in Proc. IEEE/ACM Symp. on Microarch. (MICRO), 2007.

[27] A. A. Gubran and T. M. Aamodt, “Emerald: Graphics
modeling for SoC systems,” in Proc. IEEE/ACM Int’l Symp.
on Computer Architecture (ISCA), 2019, pp. 169–182.

[28] J. Hasselgren, J. Munkberg, M. Salvi, A. Patney, and
A. Lefohn, “Neural temporal adaptive sampling and denoising,”
Computer Graphics Forum, vol. 39, no. 2, 2020.

[29] D. R. Horn, J. Sugerman, M. Houston, and P. Hanrahan, “In-
teractive k-d tree GPU raytracing,” in Proc. ACM SIGGRAPH
Symp. on Interactive 3D Graphics and Games (I3D), 2007,
pp. 167–174.

[30] M. Işık, K. Mullia, M. Fisher, J. Eisenmann, and M. Gharbi,
“Interactive monte carlo denoising using affinity of neural
features,” ACM Transactions on Graphics (TOG), vol. 40,
2021.

[31] J. T. Kajiya, “The Rendering Equation,” in Proc. Int’l Conf. on
Computer Graphics and Interactive Techniques (SIGGRAPH),
1986, p. 143–150.

[32] V. Kandiah, S. Peverelle, M. Khairy, J. Pan, A. Manjunath,
T. G. Rogers, T. M. Aamodt, and N. Hardavellas, “AccelWattch:
A power modeling framework for modern GPUs,” in Proc.
IEEE/ACM Symp. on Microarch. (MICRO), 2021, pp. 738–753.

https://www.nvidia.com/en-us/geforce/news/nvidia-rtx-games-engines-apps/
https://www.nvidia.com/en-us/geforce/news/nvidia-rtx-games-engines-apps/
https://www.khronos.org/opengl/
https://www.khronos.org/opengl/
https://github.com/GPSnoopy/RayTracingInVulkan
https://github.com/GPSnoopy/RayTracingInVulkan
https://www.autodesk.com/solutions/ray-tracing
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080-super.c3439
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080-super.c3439
https://www.vulkan.org/
https://www.phoronix.com/news/Vulkan-Ray-Tracing-Promoted
https://www.phoronix.com/news/Vulkan-Ray-Tracing-Promoted
https://github.com/KhronosGroup/Vulkan-Samples
https://github.com/KhronosGroup/Vulkan-Samples
https://registry.khronos.org/vulkan/specs/1.3-khr-extensions/html/vkspec.html#acceleration-structure
https://registry.khronos.org/vulkan/specs/1.3-khr-extensions/html/vkspec.html#acceleration-structure
https://registry.khronos.org/vulkan/specs/1.3-khr-extensions/html/vkspec.html#ray-tracing
https://registry.khronos.org/vulkan/specs/1.3-khr-extensions/html/vkspec.html#ray-tracing
https://registry.khronos.org/vulkan/specs/1.3-khr-extensions/html/vkspec.html#ray-traversal
https://registry.khronos.org/vulkan/specs/1.3-khr-extensions/html/vkspec.html#ray-traversal
https://imaginationtech.com/products/gpu/graphics-architecture/powervr-photon/
https://imaginationtech.com/products/gpu/graphics-architecture/powervr-photon/

[33] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-
sim: An extensible simulation framework for validated GPU
modeling,” in Proc. IEEE/ACM Int’l Symp. on Computer
Architecture (ISCA), 2020, pp. 473–486.

[34] D. Kopta, J. Spjut, E. Brunvand, and A. Davis, “Efficient
MIMD architectures for high-performance ray tracing,” in
Proc. IEEE Conf. on Computer Design (ICCD), 2010, pp.
9–16.

[35] D. Kopta, K. Shkurko, J. Spjut, E. Brunvand, and A. Davis,
“Memory considerations for low energy ray tracing,” in
Computer Graphics Forum, vol. 34, no. 1, 2015, pp. 47–59.

[36] W.-J. Lee, Y. Shin, J. Lee, J.-W. Kim, J.-H. Nah, S. Jung,
S. Lee, H.-S. Park, and T.-D. Han, “SGRT: A mobile GPU
architecture for real-time ray tracing,” in Proc. ACM Conf. on
High Performance Graphics (HPG), 2013, pp. 109–119.

[37] L. Liu, W. Chang, F. Demoullin, Y. H. Chou, M. Saed,
D. Pankratz, T. Nowicki, and T. M. Aamodt, “Intersection pre-
diction for accelerated GPU ray tracing,” in Proc. IEEE/ACM
Symp. on Microarch. (MICRO), 2021, pp. 709–723.

[38] G. Malhotra, S. Goel, and S. R. Sarangi, “Gputejas: A
parallel simulator for gpu architectures,” in Int’l Conf. on
High Performance Computing (HiPC), 2014, pp. 1–10.

[39] A. Marrs, P. Shirley, and I. Wald, Eds., Ray Tracing Gems II.
Apress, 2021.

[40] J.-H. Nah, H.-J. Kwon, D.-S. Kim, C.-H. Jeong, J. Park, T.-D.
Han, D. Manocha, and W.-C. Park, “RayCore: A ray-tracing
hardware architecture for mobile devices,” ACM Transactions
on Graphics (TOG), vol. 33, no. 5, pp. 1–15, 2014.

[41] J.-H. Nah, J.-S. Park, C. Park, J.-W. Kim, Y.-H. Jung, W.-C.
Park, and T.-D. Han, “T&I engine: Traversal and intersection
engine for hardware accelerated ray tracing,” in Proc. Int’l
Conf. on Computer Graphics and Interactive Techniques in
Asia (SIGGRAPH Asia), 2011, pp. 1–10.

[42] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov,
O. Mutlu, and Y. N. Patt, “Improving GPU performance
via large warps and two-level warp scheduling,” in Proc.
IEEE/ACM Symp. on Microarch. (MICRO), 2011, pp. 308–317.

[43] T. B. Nowicki and A. M. E. M. Eltantawy, “Methods and
apparatuses for coalescing function calls for ray-tracing,”
patentus 17 008 437.

[44] NVIDIA, “Quake II RTX.” [Online]. Available: https:
//github.com/NVIDIA/Q2RTX

[45] D. Pankratz, T. Nowicki, A. Eltantawy, and J. N. Amaral,
“Vulkan Vision: Ray tracing workload characterization using
automatic graphics instrumentation,” in Proc. IEEE/ACM Symp.
on Code Generation and Optimization (CGO), 2021, pp. 137–
149.

[46] M. Pharr and G. Humphreys, Physically Based Rendering,
Third Edition: From Theory To Implementation. Morgan
Kaufmann Publishers Inc., 2018.

[47] J. Schmittler, I. Wald, and P. Slusallek, “SaarCOR: a hardware
architecture for ray tracing,” in Proc. ACM SIGGRAPH/EU-
ROGRAPHICS Conf. on Graphics hardware (HWWS), 2002,
pp. 27–36.

[48] A. Sembrant, T. E. Carlson, E. Hagersten, and D. Black-
Schaffer, “A graphics tracing framework for exploring
CPU+GPU memory systems,” in Proc. IEEE Symp. on
Workload Characterization (IISWC), 2017, pp. 54–65.

[49] J. W. Sheaffer, D. Luebke, and K. Skadron, “A flexible simu-
lation framework for graphics architectures,” in Proc. ACM
SIGGRAPH/EUROGRAPHICS Conf. on Graphics hardware
(HWWS), 2004, pp. 85–94.

[50] K. Shkurko, T. Grant, E. Brunvand, D. Kopta, J. Spjut,
E. Vasiou, I. Mallett, and C. Yuksel, “SimTRaX: Simulation
infrastructure for exploring thousands of cores,” in Proc. Great
Lakes Symp. on VLSI, 2018, pp. 503–506.

[51] K. Shkurko, T. Grant, D. Kopta, I. Mallett, C. Yuksel, and
E. Brunvand, “Dual streaming for hardware-accelerated ray
tracing,” in Proc. ACM Conf. on High Performance Graphics
(HPG), 2017.

[52] J. Spjut, A. Kensler, D. Kopta, and E. Brunvand, “TRaX:
A multicore hardware architecture for real-time ray tracing,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), vol. 28, no. 12, pp. 1802–1815, 2009.

[53] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong,
S. Treadway, Y. Bao, S. Hance, C. McCardwell, V. Zhao,
H. Barclay, A. K. Ziabari, Z. Chen, R. Ubal, J. L. Abellán,
J. Kim, A. Joshi, and D. Kaeli, “Mgpusim: Enabling multi-gpu
performance modeling and optimization,” in Proc. IEEE/ACM
Int’l Symp. on Computer Architecture (ISCA), 2019, p.
197–209.

[54] K. Vaidyanathan, S. Woop, and C. Benthin, “Wide BVH
Traversal with a Short Stack,” in Proc. ACM Conf. on High
Performance Graphics (HPG), 2019.

[55] S. Williams, A. Waterman, and D. Patterson, “Roofline: an in-
sightful visual performance model for multicore architectures,”
Communications of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[56] S. Woop, J. Schmittler, and P. Slusallek, “RPU: a pro-
grammable ray processing unit for realtime ray tracing,” ACM
Transactions on Graphics (TOG), vol. 24, no. 3, pp. 434–444,
2005.

https://github.com/NVIDIA/Q2RTX
https://github.com/NVIDIA/Q2RTX

APPENDIX

A. Abstract

This artifact provides the complete source code to Vulkan-
Sim along with the Vulkan binary traces used for evaluation in
Table IV. We describe the installation procedure and workflow
for the simulator to reproduce our results in Section VI.
We also provide additional instructions on how to generate
additional Vulkan binary traces to use with Vulkan-Sim.

B. Artifact check-list (meta-information)
• Program: Two programs provided: Vulkan-Sim, Trace

Runner
• Compilation: gcc/g++, ninja, meson, cmake, cuda
• Run-time environment: Ubuntu 20.04
• Hardware: Intel CPU with integrated graphics required only

if generating Vulkan binary traces. No CPU restrictions if
only executing traces. Additionally the system may require a
decent amount of memory. Some runs use over 5GB each.

• Metrics: Execution time, cache access breakdown and roofline
plot

• Output: Simulation statistics
• Experiments: Provided scripts and some manual steps
• How much disk space required (approximately)?:

Docker Image: 9.5 GB, Simulator tar: 5 GB
• How much time is needed to prepare workflow?: 1 to 2

hours
• How much time is needed to complete experiments

(approximately)?: 2-3 days (in parallel), about a month
(sequentially)

• Publicly available?: Yes
• Code licenses (if publicly available)?: BSD-3
• Archived (provide DOI)?:

Docker Image: https://doi.org/10.5281/zenodo.6941618
Simulator tar: https://doi.org/10.5281/zenodo.6929547

C. Description

1) How to access: Vulkan-Sim is available on Github,
organized into three repos: Vulkan-Sim, Mesa, and Trace
runner.
https://github.com/ubc-aamodt-group/vulkan-sim
https://github.com/ubc-aamodt-group/mesa-vulkan-sim
https://github.com/ubc-aamodt-group/trace-runner-vulkan-
sim

We provide a docker image of our simulator along with
benchmark traces used in this paper on Docker Hub or
Zenodo: https://doi.org/10.5281/zenodo.6941618.

We also provide a tar of the simulator for those that want
to generate their own traces to use with the simulator on
Zenodo: https://zenodo.org/record/6941190

2) Hardware dependencies: There are no specific hard-
ware requirements if only executing benchmark traces with
Vulkan-Sim’s trace runner. However, running a Vulkan
application natively with Mesa or generating traces with
the simulator requires an Intel CPU with integrated graphics.
So far we have tested this on an Intel i7-7700HQ laptop
CPU.

3) Software dependencies: We run our simulator on
Ubuntu 20.04 and have not tested it on other platforms.
Our application requires several dependencies to be installed:
• gcc/g++-9
• CUDA Toolkit 10 or 11
• Embree v3.12.0 or above (Artifact includes 3.13.4)
• VulkanSDK 1.2.162 or preferably newer

Install the remaining dependencies with the following:
sudo apt install -y build-essential git ninja-build meson libboost-all-dev

xutils-dev bison zlib1g-dev flex libglu1-mesa-dev libxi-dev libxmu-
dev libdrm-dev llvm libelf-dev libwayland-dev wayland-protocols
libwayland-egl-backend-dev libxcb-glx0-dev libxcb-shm0-dev
libx11-xcb-dev libxcb-dri2-0-dev libxcb-dri3-dev libxcb-present-dev
libxshmfence-dev libxxf86vm-dev libxrandr-dev libglm-dev

We also require Docker to be installed to run the Docker
container. These dependencies are all already installed in our
Docker image.

4) Models: We include benchmark traces of the evaluated
Vulkan workloads in this paper. These can be executed with
the provided Vulkan trace runner using the docker image.
We also provide access to the RayTracingInVulkan repo
corresponding to RTV5 and RTV6 in the paper.

D. Installation

We provide two sets of experiments / artifacts described
in separate sections here. The first one is a docker image
containing Vulkan-Sim and benchmark traces used in this
paper. The second artifact is a tar of the simulator to guide
the user through trace generation with a sample workload.
Instructions are also provided in each artifact.

1) Docker Image With Traces: Install docker, then pull
the image using the command below from docker hub.

docker pull mohammadrezasaed/vulkan-sim

Alternatively, the docker image is uploaded to Zenodo. Use
the following commands to unzip and load the image.

unzip vulkan-sim.zip
docker load -i vulkan-sim.tar

2) Trace Generation: Instructions here are also provided
in the artifact along with additional troubleshooting tips.

1) Extract vulkan-sim-artifact.tar.gz and navigate to the
extracted vulkan-sim-artifact/ folder.

2) Set environment variables with the following.
Change to your own CUDA installation path
export CUDA INSTALL PATH=/usr/local/cuda
source embree-3.13.4.x86 64.linux/embree-vars.sh

3) Build vulkan-sim + mesa.
cd vulkan-sim/
source setup environment debug
cd ../mesa/
meson --prefix=”${PWD}/lib” build/
meson configure build/ -Dbuildtype=debug -D b lundef=false
Please ignore the build error about -lcudart and proceed on
ninja -C build/ install
export VK ICD FILENAMES=${PWD}/lib/share/vulkan/icd.d/

intel icd.x86 64.json

cd ../vulkan-sim/
make -j
cd ../mesa/
ninja -C build/ install

4) Build the Vulkan RT trace runner.

cd ../vulkan rt trace runner/
make

E. Experiment workflow

Similar to installation, this section covers the workflow
for the Docker image first, followed by trace generation.The
docker can be used to reproduce the results in the paper.

1) Docker Image With Traces: The scripts for running
the workloads and ploting the results are on Zenodo:
https://doi.org/10.5281/zenodo.6941618.

The folder runs includes subfolders for each config
which in turn include subfolders for each workload. These
folders include two files, gpgpusim.config which is the GPU
configuration and run.sh which is a single command to run the
docker container for the current configuration and workload.
The file run all.sh is a simple python script that goes inside
each folder and executes run.sh in the background, so it runs
all configs and workloads in parallel. Change this script to
account for the resources in your system or execute each
run.sh file manually. run.sh files need to be executed from
the directory they exist in. After all the executions have
finished, run the python script plot all.py. This script reads
the output from each folder and plots Figures 11, 13, and
14 of this paper.

2) Trace Generation: We provide RTV6 for this trace
dumping example.
First, modify Vulkan-Sim’s dumping functions to match the
application. These changes are already present in the artifact.

1) In vulkan-sim/src/cuda-sim/vulkan ray tracing.cc:106,
change bool use_external_launcher to false.

2) Since RTV6 does not skip any descriptor sets, please
comment out the continue; in both lines 2108-2114
and 2193-2199 of vulkan-sim/src/cuda-sim/vulkan -
ray tracing.cc

3) Compile vulkan-sim in vulkan-sim/ with make -j

Next, compile and run RTV6 to dump its trace.
1) Download RTV6 from our repo to a local folder

git clone https://github.com/ubc-aamodt-group/
RayTracingInVulkan.git

2) Compile RTV6

cd RayTracingInVulkan/
sudo apt-get -y install cmake curl unzip tar libxi-dev libxinerama-

dev libxcursor-dev xorg-dev
./vcpkg linux.sh
./build linux.sh

3) Copy gpgpusim.config to the binary directory

cp <vulkan-sim-root>/vulkan rt trace runner/gpgpusim.config
build/linux/bin/.

4) Run RTV6
cd build/linux/bin/
./RayTracer --scene 6 --height 320 --width 448

5) Wait for ”Trace dumped” to show up in
the terminal. Traces are in <vulkan-sim-
root>/mesa/gpgpusimShaders/. You can terminate the
program afterwards.

6) Copy the traces to another folder
Change <vulkan-sim-root> to your own path
mkdir <vulkan-sim-root>/vulkan rt trace runner/RTV6-trace
cd <vulkan-sim-root>/mesa/gpgpusimShaders/
cp * <vulkan-sim-root>/vulkan rt trace runner/RTV6-trace

To replay the generated traces that are dumped from RTV6,
use Vulkan-Sim’s trace runner.

1) In vulkan-sim/src/cuda-sim/vulkan ray tracing.cc:106,
change bool use external launcher to true.

2) Compile vulkan-sim with make -j
3) Move to vulkan rt trace runner/ and make
4) Run the trace with the following command:

./vulkan rt runner RTV6-trace/ RTV6
General Usage
./vulkan rt runner <path to trace folder> <workload>

The workload argument is used to communicate with Vulkan-
Sim about application specific settings for replaying the trace.
There are none for RTV6.

F. Evaluation and expected results

1) Docker Image With Traces: Running the provided
scripts in the Docker image will collect data to generate
plots that closely match the figures in Section VI.

2) Trace Generation: Completing trace generation for
RTV6 will yield application specific traces that can be re-
simulated on any system using the Vulkan-Sim trace runner
and bypass the need for Intel integrated graphics.

G. Experiment customization

The experiment can be customized by changing the param-
eters found in the gpgpusim.config file. Vulkan-Sim
supports simulation of native Vulkan binaries by executing
them on a native system with Intel integrated graphics.
The simulator also supports generating traces of a Vulkan
application and then replaying them with the provided trace
runner.

	Introduction
	Background
	Baseline GPU Architecture
	Ray Tracing Accelerators
	Ray Tracing With Vulkan

	Simulating Vulkan Ray Tracing
	Challenges of Simulating Vulkan
	Functional Simulation
	Acceleration Structure
	Shader Translation
	Shader Binding Table
	Traversal and Intersection Implementation
	Kernel Invocation

	Timing Model
	RT Unit Overview
	Warp Management
	Memory Scheduling
	BVH Operations

	Software Architecture

	Case Studies
	Function Call Coalescing
	Independent Thread Scheduling

	Methodology
	Evaluation Benchmarks
	Simulator Validation

	Results
	Roofline Plot
	SIMT Efficiency
	Memory
	Energy
	Function Call Coalescing
	Independent Thread Scheduling
	Correlation Study

	Related Work
	Conclusion and Future Work
	References
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Models

	Installation
	Docker Image With Traces
	Trace Generation

	Experiment workflow
	Docker Image With Traces
	Trace Generation

	Evaluation and expected results
	Docker Image With Traces
	Trace Generation

	Experiment customization

