
Prescient Instruction Prefetch

Tor Aamodt1,2, Pedro Marcuello3, Paul Chow2, Per Hammarlund4, Hong Wang1

1Microprocessor Research, Intel Labs
2Department of Electrical and Computer Engineering, University of Toronto

3Departament d´Arquitectura de Computadors, UPC, Barcelona
Intel Barcelona Research Center, Intel Labs

4Desktop Products Group, Intel Corp.

ABSTRACT
This paper introduces prescient instruction prefetch, a technique that
uses helper threads to improve single-threaded application
performance by performing judicious and timely instruction prefetch.
A helper thread is initiated when the main thread encounters a spawn
point. The execution of the helper thread prefetches instructions
starting at a distant target point that identifies a code region that the
main thread is likely to execute soon and tends to incur I-cache
misses. This paper formulates the identification of appropriate spawn
and target points for the associated helper threads as an optimization
problem by modeling runtime program behavior as a Markov chain
with statistics derived from profile data. This formulation enables the
accurate estimation of important statistical quantities related to
helper thread execution via a simple and efficient computational
strategy based upon Tarjan’s fast path expression algorithm. Using
this formulation we propose a spawn-target pair selection algorithm.
This algorithm has been implemented for the Itanium Processor
Family (IPF) architecture. As an initial limit study we present
simulation results indicating that helper threads given perfectly
predicted register and memory live-in values at the target can
achieve speedups in the range of 6% to 63% on an in-order SMT
machine with four hardware thread contexts for a select set of
benchmarks that have high I-cache miss rates. With increasing levels
of realism, we find speedups ranging from 0.5% to 54% are feasible
when taking into account the overhead of live-in precomputation. The
approach presented in this paper is potentially applicable to other
thread speculation techniques.

Keywords: instruction prefetch, path expression algorithm, analytical
modeling, optimization, multithreading.

1. Introduction
As the gap between processor and memory speed continues to widen,
performance is increasingly determined by the effectiveness of the
cache hierarchy. Prefetching is a well-known technique for
improving the effectiveness of the cache hierarchy. This paper
focuses on workloads that incur significant I-cache misses. We
investigate the use of spare simultaneous multithreading (SMT) [20]
thread resources for prefetching instructions. SMT has been shown
to be an effective way to boost throughput performance with limited
impact on processor die area [9]. However, many single-threaded
applications do not benefit from SMT. Recently, a number of
proposals have been put forth to exploit SMT resources and helper
threads to improve the latency of single-threaded applications. In
particular, several studies have investigated using helper threads in
the form of program-slice based precomputation for reducing the
latency of delinquent loads, and branch mispredictions. However, to
our knowledge, there has been little if any published work that is
focused specifically on improving I-cache performance by exploiting
helper threads.

Song and Dubois proposed assisted execution as a generic way
to use multithreading resources to improve single-threaded

application performance [18]. Chappel et al. proposed Simultaneous
Subordinate Multithreading (SSMT), a general framework for
leveraging otherwise spare execution resources to benefit a single-
threaded application. They first evaluated using SSMT to provide a
very large local pattern history based branch predictor [3] and later
proposed hardware mechanisms for dynamically constructing and
spawning subordinate microthreads to predict difficult-path branches
[4]. Zilles and Sohi analyzed the dynamic backward slices of
performance degrading instructions, and suggested the feasibility of
using program slices to pre-execute them [22]. They subsequently
implemented hand crafted speculative slices to precompute branch
outcomes and data prefetch addresses [1]. Roth and Sohi [17]
proposed using data driven multithreading (DDMT) to dynamically
prioritize sequences of operations leading to branches that mispredict
or loads that miss. Moshovos et al. proposed Slice Processors, a
hardware mechanism for dynamically constructing and executing
slice computations for generating data prefetches [1]. Annavaram et
al. proposed Dependence Graph Precomputation [1]. Luk proposed
software controlled preexecution [12]. Collins et al. proposed
speculative precomputation [7], and later dynamic speculative
precomputation [6] as techniques to leverage spare SMT resources
for generating long range data prefetches. They showed the
importance of chaining to achieve effective data prefetching. Liao et
al. extended this work by implementing a post-pass compilation tool
to augment a program with automatically generated precomputation
threads for data prefetching [11].

One task common to these techniques is the selection of a
trigger point where a helper thread should be spawned off for
precomputation preceding a target branch or load. As a matter of
convenience, throughout this paper, we call this trigger the spawn
point1. For instruction prefetch, the target identifies not just a single
instruction, but rather the beginning of an entire region of code. A
similar notion can be found in speculative multithreading. For
instance, Marcuello and Gonzalez recently proposed using a notion of
reaching probability to define control-quasi-independent points [13],
which essentially serve as spawn-target pairs.

This paper makes three key contributions: One, we propose
using spare SMT thread contexts to perform prescient instruction
prefetch for single-threaded applications. Two, we present a formal
mathematical framework for effective selection of spawn-target pairs
that generalizes, in a rigorous way, the probabilistic framework
introduced by Marcuello and Gonzalez [13]. Three, it proposes and
quantitatively evaluates a specific optimization algorithm for spawn-
target pair selection within this framework.

By using a spare thread context to speculatively execute a
probabilistically control-independent future region of the same
program but far ahead of the main thread, prescient instruction

1
The spawn point is associated with a point in the execution of the main thread. In the

case of chaining triggers [7][6][11], the association with the main thread is implicit via a
sequence of helper threads. In this paper we focus on spawn points for instruction
prefetch that are embedded directly in the main thread.

prefetch can fetch most instructions that the main thread is likely to
encounter soon, while accurately executing those instructions
pertaining to the control flow.

In this paper we present an algorithm for combining control-
flow edge profile information with instruction cache miss profile
information to judiciously select spawn-target pairs for instruction
prefetch. The basic idea behind the algorithm is to estimate the
average amount of useful prefetching generated when triggering a
helper thread based upon the profile information. We evaluate the
potential of the overall technique via detailed performance simulation
assuming varying levels of realism starting with a model in which
live-in register and memory values at the target are assumed to be
predicted perfectly at no cost as soon as the helper thread spawns.
We then investigate the feasibility of the technique under the more
realistic assumption of using program slicing to precompute the
subset of live-ins required to correctly execute the branches following
the target.

The rest of this paper is organized as follows: In Section 2 we
introduce the prescient instruction prefetch paradigm. Section 3
describes the mathematical framework we use to characterize
program behavior, formulates key statistical quantities related to
helper thread execution, and describes our novel use of path
expressions to compute these statistical quantities. In Section 4 we
present an algorithm that uses the analytical framework to select the
spawn-target pairs that define instruction prefetch helper threads.
Section 5 discusses our simulation results, and Section 6 concludes.

2. Prescient Instruction Prefetch
Prescient instruction prefetch involves the use of helper threads to
perform instruction prefetch to reduce I-cache misses for single-
threaded applications. Here the term prescient carries two
connotations: One, that the helpers are initiated in a timely and
judicious manner based upon a global analysis of program behavior,
and two, that the instructions prefetched are useful as the helper
thread follows the same path through the program that the main
thread will follow when it reaches the code the helper thread
prefetches.

Profile information is used to identify code regions that incur
significant I-cache misses; we then further identify target points as
instructions closely preceding the basic blocks that incur the I-cache
misses. For each target point identified in the single-threaded
application, a set of corresponding spawn points are identified that
can serve as trigger points for initiating the execution of a helper
thread for prefetching instructions after the target point. Once a
spawn-target pair is identified, a helper thread is generated and
attached to the original program binary (i.e., the main thread). At run
time when a spawn point is encountered in the main thread, a helper
thread can be spawned to begin execution in an idle thread context.
The execution of the helper thread effectively prefetches for
anticipated I-cache misses along a control flow path subsequent to the
target.

Figure 1 illustrates these concepts by highlighting a program
fragment containing three distinct control-flow regions. In particular,
the region following the target is called the postfix region and is
assumed to suffer significant instruction cache misses. The region
before the spawn is called the prefix region, and the region between
the spawn and target the infix region.

In general, the helper thread may need to precompute some live-
in values before starting to execute the program code in the postfix
region, since effective instruction prefetch requires accurate
resolution of branches in the postfix region. The precomputation
consists of the backward slice of these branches. As shown in Figure
1(b), helper thread execution consists of two phases: The first phase,
target live-in precomputation, reproduces the effect of the code

skipped over in the infix that relates to the resolution of branches in
the postfix. In the second phase, the helper thread executes the same
code in the postfix region that the main thread will when the main
thread reaches the target. The computation in the second phase both
resolves control flow for the helper thread in the postfix region, and
effectively prefetches instructions for the main thread. The helper
thread is terminated after it finishes executing the postfix region or
when the main thread catches up with it.

The prescient instruction prefetch mechanism distinguishes itself
from traditional branch predictor based instruction prefetch
mechanisms, such as that proposed by Reinman et al. [16], in that it
uses a global view of control-flow to aid in anticipating potential
performance degrading regions of code from a long-range. The key
challenges are: One, identification of an appropriate set of distant yet
strongly control-flow correlated pairs of spawn-target points; and
two, accurate resolution of branches after the target.

We tackle these challenges in the following subsections by
introducing a rigorous Markov model based formulation of global
control-flow and instruction memory behavior, and showing how to
analyze this model to optimize the selection of spawn-target pairs for
helper threads. Before going into detail we consider a brief example.

Example: Spawn-Target Pair Selection Tradeoffs
Consider the control-flow graph fragment in Figure 2. In this figure
squares represent basic blocks, and edges represent potential control
flow due to branches. The shaded block labeled X is known from
cache profiling to suffer many instruction cache misses. Each edge is
labeled with the probability the main program will take the given
path. The two questions of interest are: (1) which locations are the
best places to spawn a helper thread to prefetch X, and (2) what
should the target be?

Note that, starting from any location, the program is very likely
to reach X because the probability of exiting the loop each iteration
(i.e., from block d) is much smaller than the probability of
transitioning to X. Even though each choice of spawn is roughly as
“good” as any other in this sense, as we show next, not all spawn
points are necessary as effective as each other.

For instance, consider the impact of the size of subroutine
foo() on spawn-target pair selection. If foo() together with
blocks b, d, and e fit inside the instruction cache, then initiating a
prefetch of block X starting at block a is good because the loop will
likely iterate several times before the branch at the end of b
transitions to X. On the other hand, if foo()together with its callees

prefix

infix

postfix

(a) program structure (b) thread view

Figure 1: Precient Instruction Prefetching. (a) Control-flow graph with spawn
and target points highlighted. From profiling, the region labeled postfix is
known to encounter heavy instruction cache misses. (b) Two phases of helper
thread execution: Phase #1 target live-in precomputation; Phase #2 postfix
precomputation and instruction prefetch.

spawn

target

Main
Thread

Phase #2

Phase #1

I-cache
misses

Spawning
helper
thread

require more space than the cache capacity, there is no point in
spawning a prefetch thread directly targeting X from any block
because the instructions it will fetch will almost certainly be evicted
from the cache by a call to foo() before the main thread reaches X
again due to the low probability of branch b transitioning to X. A
better solution in this case would be to target block b because
evaluating the branch at the end of block b will determine whether to
prefetch X. A good set of spawn points for b in this case might be
the beginning of blocks a and d, particularly if these blocks contain a
significant amount of code unrelated to the branch at the end of block
b. If we can only choose one spawn locations among a and d due to
resource limitations, the more profitable choice is d because a would
only cover misses in the event that control goes directly from a to b
to X, while d would cover the cache misses in all other cases. In
Section 3 we formulate a mathematical framework for quantifying
the tradeoffs highlighted in this example.

3. Analytical Framework
Effective spawn-target pairs should meet the following necessary
conditions: One, the helper thread must run ahead, but not so far
ahead as to evict instructions soon to be used by the main thread.
Two, the spawn point and the target point should be highly correlated
during the main execution, in other words when the main thread
reaches the spawn point, the target is highly likely to be seen. Three,
the helper thread must follow the same path the main thread will
execute when it reaches the target.

In this section a set of key statistical quantities characterizing
these necessary conditions, and thus essential to effective spawn-
target pair selection, are introduced. Furthermore, a general yet
efficient technique for computing these techniques is also described.
The resulting analytical framework serves as a foundation for the
algorithm to be described in Section 4.

3.1. Prefetch Slack
Analytically, we model the prefetch slack of a particular instance of
instruction i, targeted by a helper thread spawned at s with target t,
using the following expression:

()),(),(
h

CPI),(
m

CPI),(
m

CPI)(slack tsod(t,i)itd(t,i)itd(s,t)tsi,s,t −⋅−⋅+⋅=
�� ��� �������� ������� ��

BA

(1)

here d(x,y) denotes the distance between instructions x and y,
measured in number of instructions executed; o(s,t) represents the

overhead in cycles incurred by the helper thread of spawning at s and
performing precomputation for live-ins at t; CPIm(s,t) represents the
average cycles per fetched instruction of the main thread in going
between the particular instance of s and t; CPIm(t,i) represents the
average cycles per fetched instruction of the main thread in going
between the particular instance of t and i in postfix; and CPIh(t,i)
represents the average number of cycles per fetched instruction for
the helper thread in going between the particular instance of t and i in
postfix.

A given instance of a helper thread can reduce the fetch latency
of the target instruction in the main thread if it has positive prefetch
slack. Effective prefetching will increase the average IPC of the main
thread but not necessarily that of the helper thread so that while
CPIh(t,i) stays relatively constant, CPIm(t,i) decreases leading to an
upper bound on how far ahead a helper thread the performs useful
prefetching can run before the main thread will catch up to it2. In
particular, the main thread will catch the helper thread if slack(i,s,t) is
zero. From Equation 1 this is equivalent to:

()),(),(
max

),(
),(),(

),(
tsotsditd

itmCPIithCPI

tsmCPI
−⋅

−
= (2)

Figure 3 portrays a graphical representation of these concepts by
plotting instructions executed versus time along some portion of an
execution trace. The solid line indicates the progress of the main
thread, the dotted line indicates the progress of the helper thread after
overhead o(s,t) due to thread invocation and live-in precomputation.
The slack of one particular instruction i is shown. The helper thread
ceases to provide useful prefetch slack when the main thread catches
it. This point is where the dotted line intersects the solid line. The
distance computed in Equation 2 corresponds to the height of the
shaded box.

Note that the infix slice, corresponding to the first of the two
phases of helper thread execution (as shown in Figure 1), depends
strongly upon the distance between spawn and target. This is because
increasing the amount of program executed between spawn and target
increases the number of operations that can potentially affect the
outcome of branches in the postfix. To model this effect requires
dataflow analysis. For practical purposes, in this paper we assume
this overhead increases proportional to spawn-target distance.

3.2. A Statistical Model of Program Execution
In this section we describe a statistical model of program execution.
This model captures the effects of salient events such as control flow

2 On an SMT processor, as studied in this paper, helper thread IPC may also
be diminished by resource contention with the main thread. On a CMP
processor, where helper threads run on different cores from the main thread,
such constraints can be relaxed.

Figure 3: Graphical Illustration of Equations 1 and 2

Figure 2: Control flow graph fragment with edge profile information. Block e calls
subroutine foo(). Each edge is labeled with a transition probability (prob.) unless the
value is exactly one.

Time (cycles)

In
st

ru
ct

io
ns

s

t

i

slack(i,s,t)o(s,t)

A

B

d(t,i)maxb

X e

d

a

foo()

A prob. = 0.98

prob. = 0.10 B

C

D prob. = 0.90

E

Fprob. = 0.999

transitions and instruction cache accesses. It does not accurately
model the effects of branch mispredictions and data cache misses,
which are instead approximated using an average CPI assuming
instructions hit in the cache. This model is the basis for the spawn-
target selection algorithm.

Two points in a control-flow graph are strongly control-flow
correlated if the execution of one implies the high probability of the
execution of the other. Control-flow correlation consists of two
factors: the probability of reaching the target from the spawn given
that the current state is the spawn; and the posteriori probability that
the spawn precedes the target given that the current state is the target.
A high reaching probability increases the likelihood that the
speculative execution of the helper thread will be helpful. A high
posteriori probability means the associated spawn point usually
precedes a given target whereas a low posteriori probability means
the target has alternative predecessors that do not include the spawn
point.

3.2.1. Modeling Control Flow
For a control flow graph, where nodes represent basic blocks, and
edges represent transitions between basic blocks, we model the intra-
procedural program execution as a discrete Markov chain [8]. A
Markov chain is defined by a set of states and a set of transitions. The
basic blocks in a procedure represent the states of the Markov chain,
and transitions are defined by the probabilities of branch outcomes in
the control flow graph. These probabilities can be readily gleaned
from the traditional edge profile [2] that measures the probability that
one block flows to another assuming independent branch outcomes.

For inter-procedural control flow we model the effect of
procedure calls with a restriction on transitions into and out of
procedures such that a callee must return to its caller. In particular,
we model a transition from the current procedure’s Markov model to
a subroutine’s when the basic block representing the current state
ends in a procedure call. When the state associated with the exit
block of a callee is entered, control returns to its caller.

This model ignores correlation between branch outcomes,
however it can be generalized to exploit higher order branch
correlation by defining states to be path segments. Mehofer and
Scholz have applied such an approach to probabilistic dataflow
analysis by using two-edge profile information [14].

3.2.2. Modeling Instruction Cache Accesses
To model the effects of instruction cache access, we assume a two
level memory hierarchy composed of a finite-sized fully associative
instruction cache with LRU replacement, and an infinite sized main
memory so that all misses are either cold misses or capacity misses.
Note that the control-flow path of the program entirely determines the
contents of this cache independent of the program’s static code
layout. By considering the probability of taking each possible path
through the program it is possible to determine the probability with
which a given instruction resides in the cache at any given point in
the program.

3.3. Computing Statistics using Path Expressions
In this section we describe important statistical quantities related to
spawn-target point selection. These include the reaching probability,
posteriori probability, expected path length, and expected path
footprint. We show how to map the evaluation of these quantities
onto the classic path expression problem [19], which can be
efficiently solved using Tarjan’s fast path algorithm [20].

3.3.1. Path Expressions
A path expression is simply a regular expression summarizing all
paths between two points in a graph. For instance, in Figure the set
of all paths from block a to block X, start by following edge A, then
going around the loop any number of iterations along either control

path inside the loop, before finally taking edge B. This is summarized
by the path expression P(a,X):

() ()()() BFEDCBAXaP ⋅⋅⋅∪⋅⋅=
*

),(

Here “∪ ”, “⋅”, and “*” denote the regular expression operators union,
concatenation, and closure, respectively, and parenthesis are used to
enforce order of evaluation. These operators have the following
interpretation: The union operator is used to combine two distinct
paths that start and end at the same point, the concatenation operator
joins one path ending at a particular point with another one that starts
there, and the closure operator represents zero or more complete
iterations around a loop. For reasons that will become more apparent
in Section 3.3.2 it is important that the path expressions we use are
unambiguous in the sense that no path can be enumerated two ways.
For example, “A∪ A” enumerates A twice so this path expression is
ambiguous.

We apply path expressions by interpreting each edge as having
some type of value, and the regular expression operators (union,
concatenation, and closure) as functions that combine and transform
these values. We give an example of this process in the next section.
Tarjan’s fast path algorithm produces unambiguous path expressions
very efficiently, and the algorithm we describe has overall time
complexity of O(p⋅n⋅m⋅log n), where p is the number of procedures in
the program and n and m are the number of basic blocks and control-
flow edges, respectively, in the largest function.

3.3.2. Reaching Probability
The reaching probability, RP(x,y), between two basic blocks x and y
is defined as the probability that y will be encountered at some time
in the future given the processor is at x. In prior work [13], the point
y is said to be control quasi-independent of the point x if the reaching
probability from x to y is above a given threshold (for example 95%).
The intra-procedural reaching probability can be determined as
follows. Ignoring procedure calls, label all transitions in the Markov
model with their respective transition probability. We evaluate
RP(x,y), for x≠y, by first setting the probability of edges leaving y to
zero so that paths through y are effectively not included, then
“evaluating” the path expression which summarizes all paths from x
to y. Given path expressions R1 and R2, with probabilities p and q,
respectively, the regular expression operators are evaluated
recursively following the operator precedence: parenthesis, closure,
concatenation, and then union. For each operator we apply the
“mapping” defined in Figure 4, where the path expression on the left
side evaluates to the value computed by the formula on the right hand
side.

p

R

qpR

pqRR

−
=

+=∪

=⋅

1

1

1

21

21

]
*

[

][R

][

closure

union

ionconcatenat

Figure 4: Reaching probability mapping

The mapping in Figure 4 is not arbitrary and we note that it also
arises in other applications such as the solution of systems of linear
equations [19]. The validity of using this mapping for computing
reaching probabilities arises from several facts: First, probability
theory states that the probability of one event occurring out of a set of
disjoint events is the sum of the individual probabilities of each
event. Thus the union of two path expressions works out to the sum
because the path expressions formed by Tarjan’s algorithm are
unambiguous. Second, the assumption of independent branch
outcomes implies that the probability of taking a particular path is the
product of the probabilities of each outcome along the path in the
same way that the probability of tossing a coin twice in a row and
getting two heads is one-half squared. This, combined with the fact

that multiplication distributes over addition allows us to evaluate the
concatenation of two path expressions simply by multiplying their
individual values, because it implies this is the same as adding the
probabilities of each individual path enumerated by the combined
path expression.

The mapping for closure arises when considering loops. A
detailed explanation is beyond the scope of this paper, however we
note that the number computed by the closure mapping is always
between one and infinity. This number, which is the sum of the
probabilities of taking 0,1,2,… iterations around the loop does not
represent a probability because the events added are not independent.
This quantity is actually the expected number of times the associated
loop will iterate before exiting given it is entered at least once. Note
that the path expression based analysis is valid as long as the profile
data represents a program run to completion so that in particular there
are no loops with loop probability of one.

Example: Reaching Probability Calculation.
Let us determine the reaching probability from a to X in Figure 2:
Each path from a to X must start with edge A and end with edge B,
however, in between there can be any number of iterations around the
loop taking the path segment composed of edges DEF. The result of
applying the procedure outlined above is:

() ()()()

97.0

10.0
)999.0())0.1(90.0)0.0(1.0(0.1

1
98.0)],([

*
),(

≅

⋅
⋅+−

⋅=

⋅⋅⋅∪⋅⋅=

�
�
��

�
�

XaP

BFEDCBAXaP

The value underlined in the denominator represents edge C and, as
explained earlier must be set to zero to ensure paths going through X
are not implicitly enumerated.

This example illustrates an important point: The probability of
reaching a block can only be determined by examining global
behavior. The probability of taking the direct path from a to X is only
0.098, yet the probability of reaching X at least once before control
flow exits the region along the edges marked x or y in , is 0.97, which
much higher than 0.098. An alternative perspective on this result is
that the probability of exiting the loop per iteration, 0.001, is 100
times lower than the probability of reaching X each iteration, 0.1
which means that there are many chances to reach X and it is unlikely
for the loop to execute to completion without making at least one
transition to X.

3.3.3. Posteriori Probability
Another important quantity in our analysis framework is the
probability of having previously visited state X since the last
occurrence of Y (if any), given the current state is Y, which we call
the posteriori probability of X given Y. For a specific target, choosing
a spawn point with low posterior probability is inefficient because it
will only trigger prefetch threads for a small fraction of the
occurrences of the target.

The intra-procedural posteriori probability from x to y, x≠y, is
found by applying the mapping in Figure 4 on the Markov chain
obtained by reversing control flow edges and labeling them with the
frequency a predecessor precedes the successor rather than the
frequency with which the successor follows the predecessor, after
setting the probability of edges from x to successors of x, as well as
the edges from predecessors of y to y to zero (in both cases, referring
to the new edge orientation).

3.3.4. Expected Path Length
Given a sequence of branch outcomes, the path length is the number
of instructions executed along the associated path through the
program. We are interested in estimating the expected path length
given that execution is currently in block x and the program

subsequently reaches block y. To compute this, with each edge we
associate a tuple. The first element represents the probability of
branching from the predecessor to the successor, and the second
element represents the length of the predecessor basic block.
Similarly, for path expressions R1 and R2 we associate tuples <p,X>
and <q,Y> where the first element represents the sum of the
probabilities over all the associated paths and the second element
represents the expected number of instructions executed. The rules
for combining these tuples to evaluate path expressions are listed in
Figure 5.

>
−−

<=

>
+

+
+<=∪

>+<=⋅

p

pX

p
R

qp

qYpX
qpRR

YXpqRR

1
,

1

1
]

*
[

,][

,][

1

21

21

closure

union

ionconcatenat

Figure 5: Expected path length mapping

This mapping results from analyzing the expected value of the path
length given the probabilities of following any particular paths
determined by the edge profile data. For brevity the derivation is
omitted.

3.3.5. Expected Path Footprint
To avoid selecting spawn points that never perform useful instruction
prefetching because the instructions they prefetch are either evicted
before they are needed, or are likely to reside in the cache already,
the concept of a path’s instruction cache footprint is useful. The
instruction cache footprint is defined as the capacity required to store
all the instructions along a given path assuming full associativity. The
expected path footprint between two points is determined by
computing the average instruction cache footprint between two points
in the program. Assuming x and y are in the same procedure, and
ignoring storage requirements of subroutine calls, the expected path
footprint between x and y, denoted F(x, y), can be computed using the
formula:

� ⋅⋅⋅=
v

yvRPyvxRPv
yxRP

yxF),(),,()(size
),(

1
),(

βα
(3)

where the summation runs over all blocks v on any path from x to y
for which y only appears as an endpoint (this set can be determined
while evaluating the reaching probability from x to y), size(v) is the
number of instructions in basic block v, and RPα(x,v,y) is defined as,

��

�
�
�

=

=≠

≠≠

=

vx

vyvxyxRP

vyvxyvx

yvxRP

,1

and,),(

and,ghpath throuno,toyprobabilitreaching

),,(
α

and RPβ(x,y) is defined as,

�
�
�

=

≠
=

yx

yxyxRP
yxRP

,0

,),(
),(

β

Equation 3 is significant because it allows us to evaluate the expected
path footprint in terms of values we know how to compute
efficiently. To take into account the code footprint used by subroutine
calls we weight the size of each block by the probability it is reached
at least once.

3.3.6. Eliminating Spawn-Point Redundancy
A spawn-point s1 implies another spawn-point s2 for a given target t if
any path from s1 to t passes through s2. In other words, if s2 is reached
along the path from s1 and t, spawning when the main thread reaches
s2 is redundant. Two spawn-points are said to be independent with
respect to a common target if neither spawn-point implies the other.

By selecting a set of mutually independent spawn-points we are
assured that only one will execute for a given dynamic instance of t.
Furthermore, the reduction in execution time due to independent
spawn-points is additive. Path expressions provide a convenient way
to determine spawn-point independence: given s1, s2 and t, we can
determine whether s1 implies s2 by checking whether any edge in the
path expression from s1 to t starts or ends with s2 after eliminating
edges emanating from t. The latter operation can be performed
efficiently while evaluating the reaching probability.

4. Spawn-Pair Selection Algorithm
In this section we describe the spawn-target selection algorithm. We
have implemented this algorithm for the Itanium® architecture and
collected performance data is presented in Section 5 supporting its
effectiveness. A high-level block diagram of the algorithm is shown
in Figure 6 and described throughout the rest of this section.

The inputs to the algorithm are edge and instruction cache miss
profiles (first box in Figure 6) and the output is a set of mutually
independent spawn-target pairs. The edge profile data is supplied in
the form of the program’s procedure control flow graph annotated
with basic-block and branch frequencies, and an instruction cache
profile indicating the frequency of instruction cache misses in each
block. The control flow graphs include information about the
procedure calls and returns such as the target of procedure calls and
the frequency a given subroutine is called from a given call site. For
our purposes we consider a call site to be a basic block boundary, and
augment the graph with a symbolic edge from the call instruction to
the next instruction. This symbolic edge has edge probability equal to
one and path length initially undefined until all subroutines called by
the enclosing function have been summarized.

The algorithm begins by splitting control flow graph nodes that
represent basic blocks with more instructions than the maximum
number of postfix instructions a helper is permitted to execute into a
sequence of nodes, each representing only a portion of the basic
block. The motivation for this is that spawn and target locations are
constrained to the beginning of basic blocks to reduce complexity and
without performing this step some instructions could not be
prefetched because no potential target point would be close enough
that a helper thread could start there and reach the instruction. Next,
the algorithm computes procedure summary information. In
particular, the expected path length from entry to exit, and reaching
probabilities from the entry to each block are computed. The latter
are used for computing the expected path footprint taking into
account procedure calls.

Once summary information is computed we rank the basic
blocks by the absolute frequency of cache misses they generate. We
only target basic blocks that account for the top 90% of all instruction
cache misses. In each procedure visited, the reaching probability,
expected path length, posteriori probability, and expected posteriori
path length are computed between each pair of basic blocks
according to the method described in Section 3.3.

We maintain an estimated number of cache misses occurring in
each block initialized to the value determined via instruction cache
profiling. For each block within the procedure, in descending order of
absolute cache miss frequency, we select a target and a set of
independent spawn points for that target then update the estimated
remaining cache misses in all blocks. The target is an earlier block
with high posteriori probability of having been seen before the
selected block. The selection process for target and spawn are
coupled in the following way: A set of potential targets with
posteriori expected distance (computed using the mapping in Figure 5
on the reverse graph) less than the maximum prefetch distance is
generated and ranked in descending order by distance from the
selected block. By selecting the target to be an earlier block in this

manner we are simply trying to avoid selecting spawn-target pairs
with overlapping postfix regions. For each potential target in turn, a
set of independent spawn points is found using the process described
in the next paragraph.

For a given target t, a set of mutually independent spawn points
are selected among all blocks in the procedure with reaching
probability to t greater than 0.95, by computing a heuristic indicating
their effectiveness as spawn points for that target. In particular, the
merit of a given spawn-point s is computed as the product of several
factors. The first factor is the posteriori probability that the spawn
precedes the target. Together with the restriction on reaching
probability they ensure the spawn and target are highly control flow
correlated. The second factor uses the expected path footprint to
penalize spawn points with small average target-to-spawn footprints
because this condition imply a greater likelihood that the target will is
still in the cache since it was last visited. Similarly, this term
penalizes spawn points with expected spawn-to-target path footprint
larger than the instruction cache capacity. The next factor takes into
account the expected slack of prefetches issued by the helper thread
by using the expected path length from spawn to target. As slack
increases, this term becomes better point that most instructions run in
the helper thread would be prefetched before the main thread reaches
them.

To keep track of the effect of previously selected spawn target
pairs we keep a running estimate of the remaining expected cache
misses for each block. We update the expected remaining cache
misses for a given block reachable by a helper thread by estimating
the amount of miss coverage that block receives using the posteriori
probability and a factor quantifying normalized slack to account for
the fact that not all prefetches need be timely to contribute to
performance.

5. Simulation Results
This section presents a performance evaluation of the prescient
instruction prefetch approach based upon cycle accurate simulation.
We examine the performance impact of prescient instruction prefetch
threads defined by the spawn-target selection algorithm described in

Figure 6: Spawn-Target Selection Algorithm

I-cache & edge profiling

summarize procedures

partition large basic blocks

select next block

update estimated I-cache
miss coverage &

basic block ranking

select earliest target within
max prefetch distance

select set of spawn-points
(compute spawn-target,

target-spawn I-cache
footprint on-demand)

no suitable
points

no suitable
points

next procedure in bottom-up
traversal of call graph

coverage of
all basic
blocks
acceptable

use fast path algorithm to
get path expressions.
compute all RP, PP, &
expected path lengths.

set of spawn
points
found

Section 3 under varying assumptions about the spawn overhead and
microarchitecture.

5.1. Hardware Model
Our baseline is a research in-order SMT processor model for the
Itanium® architecture [10]. The microarchitectural details are
summarized in Table 1. By default we assume the processor is
equipped with a hardware instruction prefetch mechanism that
supports the Itanium® instruction prefetch hints (br.many).

We evaluate the potential of prescient instruction assuming
varying levels of realism starting with a model in which live-in
register and memory values at the target are assumed to be predicted
perfectly at no cost as soon as the helper thread spawns. We then
investigate the feasibility of the technique under the more realistic
assumption of using program slicing to precompute the subset of live-
ins required to correctly execute the branches following the target.
We assume a hardware mechanism capable of perfect memory
disambiguation [5] and supporting store-to-load forwarding.
Furthermore we assume stores executed by helper threads do not
commit to memory.

In all cases we assume that stores in the helper thread do no
commit to the memory hierarchy but forward their values to
subsequent loads in the helper thread assuming perfect memory
disambiguation.

5.1.1. Perfect Live-in Prediction (PLP)
Ideally, the helper thread would begin executing at the target as soon
as the spawn is encountered by the main thread and would initially
see the same architectural state that the main thread will be in when it
reaches the target. We model this case by triggering a helper thread
when the main thread commits a spawn-point. If no free thread
contexts are available the spawn-point is ignored. The helper thread
begins fetching from the target the following cycle and runs ahead
the maximum prefetch distance before exiting. If the main thread
catches up with it before that point, the helper thread stops fetching
instructions. Once the helper thread instructions drain from the
pipeline the thread context is available to run other helper threads.

Threading SMT processor with 4 hardware thread contexts.

Pipelining In-order: 12-stage pipeline.
Fetch per cycle 2 bundles from 1 thread or 1 bundle each from 2 threads

Inst. Prefetch
instruction stream prefetcher triggered by compiler hints
maximum 4 outstanding prefetches per thread context

Branch predict. 2k-entry GSHARE. 256-entry 4-way associative BTB.

Issue per cycle
2 bundles from 1 thread or 1 bundle each from 2 threads
main thread has priority, helper threads round robin.

Function units 4 int. units, 2 FP units, 3 branch units, 2 memory port
Register files
per thread

128 integer registers, 128 FP registers, 64 predicate
registers, 8 branch registers, 128 control registers.

Cache structure

L1 (separate I & D): 16KB each. 4-way. 2-cycle latency.
L2 (shared cache): 256KB. 4-way. 14-cycle latency.
L3 (shared cache): 3072KB. 12-way. 30-cycle latency.
Fill buffer: 16 entries. All caches have 64-byte lines.

Memory 230-cycle latency. TLB Miss Penalty: 30 cycles.

Table 1: Processor Resources

5.1.2. Variable Slice (VS)
Next we model the effect of having to precompute the subset of live-
ins required to properly resolve the control flow in the postfix region.
As a bounding box analysis, we assume the processor has access to
the dynamic value and address backward slices [22] needed to
accurately resolve the control flow of the postfix region for each
dynamic spawn-target pair instance. In the present setting the value
slice refers to those operations that compute values directly used to
determine branch outcomes, while the address slice are those

operations required to compute load and store addresses to facility
dataflow via store-to-load dependencies in the value slice [22].
Because the helper thread will execute the code following the target,
the live-in precomputation should not include those slice instructions
whose original version was from the postfix region.

While we model the value and address slice, for this paper we
do not model the control slice. In addition the slices we model could
also be made smaller by applying slice optimizations that have been
shown to be highly effective in prior studies [17][22][6][4][11].

We model two configurations: In the first we assume single-
cycle access to slice instructions. In the second configuration the
slices experience normal cache hierarchy latencies and contend with
regular application code for space in the instruction cache. In the later
case we do not model the potential effect of hardware instruction
prefetching on the slice instructions themselves.

benchmark static # pairs dyn. #pairs avg. dist. #slc inst.

145.fpppp 50 18311 528 68
177.mesa 28 14750 766 321
186.crafty 119 31949 472 57
252.eon 73 19168 732 175
255.vortex 1436 21371 930 51

Table 2: Spawn-target characteristics: static #pairs = number of spawn target pairs
selected by our algorithm, dyn. #pairs = the number of spawn-target instances seen
during simulation, avg. dist. = average spawn-target distance during simulation,
#slc inst. = average number of (infix) slice instructions per spawn-target pair.

5.2. Methodology
We selected 4 benchmarks from Spec2000, and 1 from Spec95 that
incur significant instruction cache misses on the baseline processor
model. We profiled the branch frequencies and profile behavior by
running the programs to completion. Our spawn-target generation
algorithm selected between 28 and 1436 spawn-target pairs per
benchmark as shown in Table 2, which also quantifies several
characteristics of the slices executed for the VS configurations.

To evaluate the performance we collect data for 5 million
instructions starting after warming up cache hierarchy while fast-
forwarding past the first billion instructions (100 million for
145.fpppp) assuming no prescient instruction prefetch. In our initial
investigations we examined data for up to 100 million instructions,
but found very little variation in performance over this range.

We examine prescient instruction prefetch assuming a maximum
postfix length of 300 instructions.

5.3. Results
Figure 7 illustrates the speedup of the various prescient instruction
prefetch configurations against the baseline model running without
hardware instruction stream prefetching enabled.

For reference purposes the first bar from the left in Figure 7
shows the speedup if all instruction accesses are assumed to hit in the
first level cache and shows speedups ranging from 1.18 to 2.5 with a
geometric average of 1.58. This indicates the performance of the
benchmarks we study does indeed suffer significantly from
instruction cache misses. The next bar represents the speedup of the
hardware instruction stream prefetch mechanism and shows speedups
ranging from 1.05 to 1.53 with geometric average speedup of 1.21.
The next two bars measure performance for the idealized PLP model.
In the first case the hardware stream prefetch mechanism is disabled
and we see that average performance improvement of 1.27, which is
better than that of the hardware mechanism alone. When we combine
the two mechanisms we obtain an overall speedup of 1.38 on
average.

The remaining bars show the speedup in the case that the
minimum dynamic backward value and address slice are executed
prior to the helper thread beginning to fetch instructions from the
postfix region. Assuming slice operations require no latency to fetch
and do not displace instructions from the main thread we obtain

speedups varying from 0.5% for 177.mesa up to 54% for 145.fpppp
with an average speedup of 15% without the hardware instruction
prefetch mechanism, and between 3% and 87% when combined with
the hardware instruction prefetch mechanism. In the later case, the
average additional benefit beyond that of the hardware stream
prefetch mechanism is 5.7%.

Performance Impact of Prescient Instruction Prefetch

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

145.fpppp 177.mesa 186.crafty 252.eon 255.vortex average

S
pe

ed
up

perfect I$
istream
PLP
PLP w/ istream
VS
VS w/ istream
VS-I$
VS-I$ w/ istream

Figure 7: Performance Impact of Prescient Instruction Prefetch after selecting spawn
pairs with the algorithm described in Section 4. From left to right the bars represent:
instructions always hit in first level cache (perfect I$), hardware instruction prefetch
mechanism (istream), perfect live-in prediction with (PLP) and without hardware
prefetch (PLP w/ istream), and variable slices assuming: no hardware prefetch and single
cycle access (VS), hardware prefetch and single cycle access (VS w/istream), no
hardware prefetch an slice instructions contend for memory (VS-I$) and hardware
prefetch with instructions contending for memory (VS-I$ w/ istream).

If slice operations contend for space in the memory hierarchy we
still obtain an average speedup of 4.7% for the case without the
hardware stream prefetch hardware, however in this case both
177.mesa and 186.crafty suffered a net decrease in performance. If
we combine the stream prefetch hardware the overall speedup is still
higher, but when compared against the hardware prefetch mechanism
alone the benefit is on average quite negligible, and in some cases the
mechanism reduces performance. The reason for the lower speedups
when executing slice instructions is two-fold: On the one hand for
benchmarks like 177.mesa the number of slice instructions required is
on average half of the dynamic instruction stream up to the target
which means that little if any instruction prefetching gets done. On
the other hand these slices must be stored somewhere regardless of
whether the work they do ends up being useful hence they cause a
rise in capacity misses for the main thread. For instance for 177.mesa
the number of capacity misses for the main thread doubles when
modeling storage of slices in the standard memory hierarchy.

6. Conclusion
In this paper we propose prescient instruction prefetch a technique
for speeding up single-threaded applications suffering from heavy
instruction cache misses. We describe an analytical framework and
propose, implement and evaluate an optimization algorithm for
selecting prefetch helper thread spawn-target pairs. This study shows
potential speedups of up to 63% assuming live-in generation is free.
More realistic models highlight the need to include analysis to make
tradeoffs between the spawn-target distance and the size of the
required precomputation slice. In particular, the analysis
methodology developed in this paper is complementary to and would
benefit from integration with a compiler based slice analysis such as
that studied by Liao et al. [11]. The quantitative evaluation based on
an Itanium® implementation of the algorithm demonstrates its
effectiveness and areas of further improvement through further
algorithm tuning as well as microarchitectural optimization.

7. Acknowledgements
We would like to thank Antonio Gonzalez, Murali Annavaram,
James Psota, Edward Grochowski, Shih-wei Liao, Perry Wang, and
John Shen for their valuable comments on this work. We appreciate
the helpful suggestions from the referees.

8. REFERENCES
[1] M. Annavaram, J. Patel, E. Davidson. Data Prefetching by

Dependence Graph Precomputation. In ISCA 28, July 2001.
[2] P. Chang, S. Mahlke, W. Hwu, Using Profile Information to

Assist Classic Code Optimizations, Software Practice and
Experience, vol. 21, no.12, pp. 1301-1321, 1991.

[3] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt.
Simultaneous subordinate microthreading (SSMT). In ISCA 26,
May 1999.

[4] R. Chappell, F. Tseng, A. Yoaz, Y. Patt, Difficult-Path Branch
Prediction Using Subordinate Microthreads, In ISCA 29, June
2002.

[5] G. Chrysos, J. Emer, Memory Dependence Prediction Using
Store Sets. ISCA 25, 1998.

[6] J. Collins, D. Tullsen, H. Wang, J. Shen, Dynamic Speculative
Precomputation. In Micro 34, December 2001.

[7] J. Collins, H. Wang, D. Tullsen, C, Hughes, Y. Lee, D. Lavery,
J. Shen. Speculative Precomputation: Long-range Prefetching of
Delinquent Loads. In ISCA 28, July 2001.

[8] D. Hammerstrom and E. Davidson, Information content of CPU
memory referencing behavior, ISCA 4, 1977.

[9] G. Hinton and J. Shen. Intel’s multi-threading technology.
Microprocessor Forum, October 2001.

[10] J. Huck, D. Morris, J. Ross, A. Knies, H. Mulder, R. Zahir,
Introducing the IA-64 Architecture. IEEE Micro, Sept-Oct
2000.

[11] S. Liao, P. Wang, H. Wang, G. Hoflehner, D. Lavery, J. Shen,
Post-Pass Binary Adaptation for Software-Based Speculative
Precomputation, In PLDI, June 2002.

[12] C. K. Luk, Tolerating Memory Latency through Software-
Controlled Pre-Execution in Simultaneous Multithreading
Processors, In ISCA 28, June 2001.

[13] Pedro Marcuello and Antonio Gonzalez, Thread-Spawning
Schemes for Speculative Multithreading, HPCA 8, Jan 2002.

[14] E. Mehofer and B. Scholz, Probabilistic Data Flow Systems with
Two-Edge Profiling, In Dynamo, 2000.

[15] A. Moshovos, D. Pnevmatikatos, A. Baniasadi. Slice procesors:
an implementation of operation-based prediction. In ICS, June
2001.

[16] G. Reinman, T. Austin, B. Calder, A Scalable Front-End
Architecture for Fast Instruction Delivery, In ISCA 26, May
1999.

[17] A. Roth and G. Sohi. Speculative Data-Driven Multithreading.
In HPCA-7, Jan., 2001.

[18] Y. Song and M. Dubois. Assisted execution. Technical Report
CENG-98-25, Department of EE-Systems, University of
Southern California, Oct. 1998.

[19] R.E. Tarjan, A Unified Approach to Path Problems, Journal of
the ACM, 3(28):577-593, July 1981.

[20] R.E. Tarjan, Fast algorithms for solving Path problems. Journal
of the ACM, 3(28):591-642, July 1981.

[21] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
Multithreading: Maximizing On-Chip Parallelism. In ISCA 22,
June 1995.

[22] C. Zilles and G. Sohi. Understanding the backward slices of
performance degrading instructions. In ISCA 27, May 2000.

[23] C. Zilles and G. Sohi. Execution-based prediction using
speculative slices. In ISCA 28, July 2001.

