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ABSTRACT
Deep Neural Networks (DNNs) are the state of art in image, speech,

and text processing. To address long training times and high en-

ergy consumption, custom accelerators can exploit sparsity, that is

zero-valued weights, activations, and gradients. Proposed sparse

Convolution Neural Network (CNN) accelerators support training

with no more than one dynamic sparse convolution input. Among

existing accelerator classes, the only ones supporting two-sided

dynamic sparsity are outer-product-based accelerators. However,

when mapping a convolution onto an outer product, multiplications

occur that do not correspond to any valid output. These Redun-

dant Cartesian Products (RCPs) decrease energy efficiency and

performance. We observe that in sparse training, up to 90% of com-

putations are RCPs resulting from the convolution of large matrices

for weight updates during the backward pass of CNN training.

In this work, we design a mechanism, ANT, to anticipate and

eliminate RCPs, enabling more efficient sparse training when inte-

grated with an outer-product accelerator. By anticipating over 90%

of RCPs, ANT achieves a geometric mean of 3.71× speed up over an
SCNN-like accelerator [67] on 90% sparse training using DenseNet-

121 [38], ResNet18 [35], VGG16 [73], Wide ResNet (WRN) [85], and

ResNet-50 [35], with 4.40× decrease in energy consumption and

0.0017mm
2
of additional area. We extend ANT to sparse matrix

multiplication, so that the same accelerator can anticipate RCPs in

sparse fully-connected layers, transformers, and RNNs.

CCS CONCEPTS
• Computer systems organization→ Systolic arrays; • Com-
puting methodologies→Machine learning.
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Figure 1: On an SCNN-like sparse accelerator [67], the pro-
portion of useful computations during the 𝐺𝐴 ∗ 𝐴 phase of
CNN training (c) is vanishingly small. This is in contrast to
𝑊 ∗𝐴 inference (a) and𝑊 ∗𝐺𝐴 training phases, where useful
computation forms a large portion of the non-zero compu-
tation being performed.
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1 INTRODUCTION
Deep Neural Networks (DNNs) have rapidly become the state-

of-the-art implementation approach in many fields such as im-

age, speech, and text processing [4, 21, 77]. Typically, larger net-

works (wider, deeper, or more neurons) lead to improved accu-

racy [35, 39, 85]. However, accuracy improvements often demand

significantly increased computation resources for training. We fo-

cus on Convolutional Neural Networks (CNNs), which consume

24% of training time in Google datacenters [44]. CNNs are used in
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diverse applications such as self-driving cars, image processing, and

playing board games [6, 35, 72]. Training demands are further com-

pounded by network architecture search, which trains and searches

among thousands of similar models [77, 90].

While Graphics Processor Units (GPUs) currently dominate train-

ing hardware due to their flexibility, rapidly growing computa-

tional demands require new solutions to train DNNs efficiently.

Hardware acceleration and sparse training are two such solutions.

Training accelerators exchange flexibility for considerable improve-

ments in performance and energy efficiency [45]. Sparse acceler-

ators [10, 17, 57, 67] can improve performance by skipping zero

multiplications which occur during DNN inference and training.

Inference acceleration is a well-studied challenge, and both dense

and sparse computation accelerators have been proposed and devel-

oped in hardware [1, 8, 9, 54]. Taxonomies of dataflows for dense

computation have been investigated [8, 84]. Numerous proposals

for sparse inference acceleration have been studied including those

taking advantage of sparse weights [17, 86, 89], activations [3],

both weights and activations [31, 33, 67], and bit sparsity [2, 17].

Recent studies have also examined sparse recurrent networks [32].

Training has different constraints compared to inference. Signifi-

cant adaptation of inference accelerators is required for training

acceleration, e.g., Bit–Tactical [17] to TensorDash [57] required

handling dynamic sparsity, tensor reuse, and storage.

Dense training accelerator designs have been proposed [10, 47,

66] and are being implemented, sold and/or deployed by indus-

try including designs by Intel/Habana [60], Cerebras [26], and

Google [43–45, 65]. The existence of dense training accelerator prod-

ucts implies a significant demand for training acceleration. Despite

this, there are few accelerators supporting sparse training, notably

NVIDIA’s Ampere architecture, which supports a restricted 50%

structured sparsity [1], and Cerebras Wafer Scale Engine (CWSE),

which uses sparsity harvesting technology [24]. Recent work has

shown training algorithms where sparsity can be introduced in ac-

tivations and weights in the training process, resulting in up to 10×
reduction in total compute [69]. However, works that investigated

sparse training in hardware have focused on exploiting sparsity in

only one of the inputs to the convolution [57, 68, 83]. In this work,

we examine exploiting sparsity in both inputs to the convolution

and make further optimizations for training.

We focus our efforts on outer-product accelerators, as they are

currently the only option that already supports the two-sided dy-

namic sparsity encountered during training (Section 2.2). Our key

insight is that training using an outer-product accelerator with

sparse convolutions results in many unused computations, which

we refer to as Redundant Cartesian Products (RCPs). During sparse

convolution, the product of every non-zero kernel value with ev-

ery non-zero image value is computed (a cartesian product). RCPs

are cartesian products that do not correspond to any valid output

index. Figure 1 shows the partial product breakdown for ImageNet/

ResNet18 [19, 35] convolutions on an SCNN-like sparse accelera-

tor [67]. A partial product is any potential multiplication between a

weight (𝑊 ), activation (𝐴), or activation gradient (𝐺𝐴). As products

can involve both a zero activation (𝐴) and gradient (𝐺𝐴), there is

overlap between the products with zero activations and zero gra-

dients (shaded+hatched in c). The primary takeaway is that RCPs

represent a large portion of the non-zero computations (blue, Fig-

ures 1a-c), and that sparse training conditions drastically increase

the number of RCPs, up to 96% of useful computations in the𝐺𝐴 ∗𝐴
phase of training (Figures 1a-b vs. Figure 1c). We explore the causes

for this in Section 3. Most prior works examine inference, where

RCPs are fewer or non-existent [1, 8, 9, 17, 54, 67, 84]. Addressing

RCPs is a critical problem for efficient sparse training.

Our contributions are as follows:

• We describe and characterize Redundant Cartesian Prod-

ucts (RCPs) occurring in outer-product-based convolution

accelerators, including an algorithm to detect and eliminate

RCPs in outer-product accelerators (Section 3). Our work is

the first to analyze RCPs in a training context, where they

waste over 90% of multiplications during the weight gradient

calculation.

• We propose a dataflow- and memory-agnostic ANTicipa-

tor Accelerator (ANT) to identify and eliminate over 90%

of RCPs, resulting in a geometric mean of 3.71× speed up

over an SCNN-like accelerator on 90% sparse training us-

ing DenseNet-121 [38], ResNet18 [35], VGG16 [73], Wide

ResNet (WRN) [85], and ResNet-50 [35], with 4.40× decrease
in energy and 0.0017mm

2
of additional area (Sections 4, 7) .

• We extend ANT to a matrix multiplication implementation

of a text translation transformer [79] and a text classifica-

tion Recurrent Neural Network (RNN) [78], anticipating and

eliminating over 99% of the RCPs.

2 BACKGROUND
In this section we summarize CNN training and highlight ineffi-

ciency exposed by prior sparse acceleration approaches. In Section 5

we discuss applications of ANT to other network architectures.

2.1 Sparse Convolutional Network Training
Convolutional Neural Networks (CNNs) utilize convolution layers,

where a kernel is slid across an image (Figure 2a). We use this

terminology instead of the common weights and activations, as,
depending on the phase of training, different matrices take the role

of kernel and image. By contrast, during inference, the kernel and
image always correspond to the weight and activation matrices,

respectively. The convolution image can contain visual or non-

visual data, such as board game positions [72] or audio spectra [40].

Backprop [71] is the most widely used algorithm for obtaining

weight gradients during DNN training. For the 𝐿th convolution

layer, the three phases of Backprop produce three convolution

operations, expressed as:

𝐴𝐿+1 =𝑊 𝐿 ∗𝐴𝐿
(Forward Pass) (1)

𝐺𝐿
𝐴 = 𝑅(𝑊 𝐿) ∗𝐺𝐿+1

𝐴 (Backward Pass) (2)

𝐺𝐿
𝑊 = 𝐺𝐿+1

𝐴 ∗𝐴𝐿
(Update) (3)

where we use the "∗" symbol to represent convolution, i.e. kernel

∗ image.𝑊 and 𝐴 correspond to the weights and activations, and

𝐺𝑊 and 𝐺𝐴 correspond to the gradient of the loss with respect to

the weights and activations. 𝑅(𝑊 ) describes a generic rotation op-

eration, whereby the𝑊 matrix is transposed and reshaped to align

its dimensions to 𝐺𝐴 . The final step is to update the weights using
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Figure 2: Convolution accelerator classes, showing zero products and Redundant Cartesian Products (RCPs). a) An example
convolution of a 2 × 2 kernel and 3 × 3 image, b) Inner product/dot product, c) Intersection/streaming and, d) Outer-product.

Stochastic Gradient Descent (SGD). We refer to these convolutions

as𝑊 ∗𝐴,𝑊 ∗𝐺𝐴 , and 𝐺𝐴 ∗𝐴 henceforth.

Any of 𝑊 , 𝐴, or 𝐺𝐴 can be sparse during training. Weights

can be sparse either by pruning small values or regularization

to push values towards zero [20, 34, 52, 53, 55, 69, 87]. Sparse

weights also occur when training for many other pruning tech-

niques [20, 34, 52, 53, 55, 69, 87]. Activations are often sparse due to

the use of ReLU, and sparsity can be increased using regularizers or

pruning [27, 61, 64, 74]. ReLU also induces sparsity in the activation

gradients (𝐺𝐴). Recent work demonstrates sparsifying gradients

(𝐺𝐴) or activations and weights (𝐴,𝑊 ) during training significantly

increases (redundant) zero multiplications on dense accelerators

with little accuracy loss [28, 69].

2.2 Sparse Convolution Accelerators
The design space for accelerating sparse convolutions is vast as we

aim to find a way to decrease energy consumption and improve per-

formance. This section examines three broad classes of sparse con-

volution accelerators: inner-product, outer-product, and intersec-

tion. The best designs minimize memory traffic and multiplications

by exploiting sparsity patterns in the convolution kernel and image

matrices. However, when used for training, all classes have serious

drawbacks, which lead to poor performance, area, and/or utilization.

Figure 2a) illustrates a convolution operation: The kernel “shifts”

horizontally and veritically over an image and for each shift the

overlapping elements of kernel and image are multiplied together

to form products and the products are summed together to generate

an output element. For example, the output -8 in the green square in

the lower right is computed as (2×−1) + (−3× 2) + (0× 0) + (0× 3).

Inner-Product. Inner-product accelerators are classified by par-

allel multipliers followed by an accumulator tree, implementing

a dot-product operation. Figure 2b) shows how the convolution

in Figure 2a) is performed using an inner product. In the sparse

case, identification and packing of non-zero values is required to

sufficiently fill the multiplier array (Figure 2b). Packing is non-

trivial: TensorDash [57] achieves this for one input by restricting

to a finite number of packings and by decompressing the sparse

input to determine the location of non-zeros. Enforcing structured

sparsity [1, 89] simplifies packing but is incompatible with training,

which has a dynamic sparsity pattern. To the best of our knowl-

edge, no inner-product works take advantage of two-sided dynamic

sparsity during training due to difficulties packing.

Additionally, inner-product accelerators require transposing us-

ing im2col to convert the convolution image to a dot-product-

friendly format [81]. im2col creates duplicate multiplications, even

when performed implicitly (using address conversion). Activations

are larger during training vs. inference, which can further strain

the memory system and decrease performance when using im2col.

Intersection. Figure 2c illustrates how intersection accelerators

first identify matching non-zero dot-product elements before mul-

tiplying and accumulating them serially to remove unnecessary

multiplications. GoSpa [18] and SparTen [31] fall under this class.

The intersection operation (Figure 2c) involves identifying match-

ing non-zero pairs in the kernel and image streams. When both

kernel and image are compressed (e.g., using CSR), this operation be-

comes expensive. SparTen [31] creates a data dependency between

the intersection and multiplication, introducing stalls. GoSpa [18]

addresses this by pre-computing a larger portion of the intersection

operation, improving performance over SparTen by 1.17×-1.38×.
However, all current intersection accelerators are not suitable

for training due to the existence of dynamic sparsity. During infer-

ence, the weight matrix has a fixed sparsity pattern which allows

a portion of the intersection to be computed ahead of time. Both

kernel and image sparsity patterns change throughout training, and

recomputing the entire intersection operation for every weight, ac-

tivation, and gradient introduces large performance overheads. The

most obvious path for GoSPA to handle dual-sided dynamic sparsity

would be to re-compute the Static Sparsity Filter (SSF) every convo-

lution, which is effectively a bitmask of nonzero values. Unpacking

Compressed Sparse Row (CSR) indices and composing the bitmask

would require multiple cycles (due to SRAM accesses) and/or a

significant amount of area (to generate the bitmask). SparTen al-

ready dedicates over half of its area to sparsity-related logic [18]

and adding handling to dynamic sparsity would mean even less

area for computation to build a balanced system.

Outer-product. Figure 2d illustrates an outer-product accelera-

tor, where the product of all non-zero kernel and image values is

computed, followed by selecting and accumulating the required

products. SCNN [67] uses this scheme, implemented as a systolic
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multiplier array. This class is efficient in that no zero products are

created, and each product is only performed once. However, as

shown in Figure 2d, some products, such as -3×1, are redundant
as they do not map to any output. We label these computations as

Redundant Cartesian Products (RCPs), which waste computation

and data transfer.

While prior works have noted the existence of RCPs [18], it is

only during training that RCPs are a major problem. During infer-

ence, RCPs are a small portion of the cartesian products, because

the forward pass uses small𝑊 kernels, e.g., 3 × 3. In contrast, dur-

ing CNN training (Section 2.1), 𝐺𝐴 acts as a convolution kernel

during Backprop. We observe that since𝐺𝐴 matrices are large, e.g.,

224 × 224, the proportion of RCPs increases by 3.8× (Figure 1).

RCPs are a critical problem for existing outer-product accelerators,

separate from padding, stride, and sparsity. As we demonstrate in

this work, creating an efficient outer-product by removing RCPs is

non-trivial and results in considerable improvements in training

performance and energy efficiency.

The Dual-side Sparse Tensor Core [81] (DST) avoids RCPs by

modifying im2col for use with a sparse outer-product. As this

approach uses im2col, values must be duplicated for each product,

increasing energy consumption from data movement. We speculate

that performing im2col serially and scheduling issues result in DST

exploiting only 50%-60% of the speed up from sparsity during some

layers of convolution inference.

Table 1 summarizes prior works on accelerating sparsity. We are

not aware of any previous accelerator that can take advantage of all

training sparsity. Training sparsity is inherently dynamic: the spar-

sity patterns in𝑊 , 𝐴, and 𝐺𝐴 are constantly changing, whereas in

inference, the weights are fixed so the sparsity is static. Prior sparse

training accelerators at most take advantage of dynamic sparsity

in one input (D◦-, Table 1). Dynamic sparsity poses a problem for

accelerators that rely on pre-computation on a static weight ma-

trix (D◦S, Table 1). Few accelerators can utilize dynamic two-sided

sparsity, i.e., in both the kernel and image (D◦D, Table 1). Finally,
the memory requirements and dimensions for the additional two

training phases lead to unique constraints on training accelerators.

This results in the potential for improvement in training energy

and performance.

2.3 SCNN
SCNN, shown in Figure 3, spreads computations across an array

of processing elements (PEs) such that each PE can operate inde-

pendently. Since SCNN was designed for inference, its inputs are

activations and weights, which correspond to image and kernel

in the terminology for this work. Each𝑊 × 𝐻 activation plane is

partitioned into smaller𝑊𝑡 ×𝐻𝑡 planar tiles (PT) that are distributed

across the PEs. Thus, multiple PEs can run in parallel. Inside each

PE is a multiplier array; only non-zero weights and activations are

fetched from the input storage arrays and delivered to the multi-

plier array. The SCNN dataflow delivers weights and activations of

each vector to the multiplier array. The multiplier array performs

the Cartesian product of the two vectors, which is a matrix with

elements formed by pairwise multiplication of one individual ele-

ment selected from each of the vectors. A contribution of SCNN is

Table 1: Comparing sparse convolution acceleration ap-
proaches. DST: Dual-side Sparse Tensor Core. Accelerator
classes are inner-product (IP), outer-product (OP), and inter-
section (INT). Support for 1-sided sparsity (D◦-), two-sided
sparsity with one dynamic input (D◦S), or dynamic sparsity
in both inputs (D◦D).

Work(s) Accel. Train Sparsity Support
Class D◦- D◦S D◦D

TensorDash [57] IP ✓ ✓ ✗ ✗

Procrustes [83] IP ✓ ✓ ✗ ✗

SCNN [67] OP ✗ ✓ ✓ ✓

DST [81] OP ✗ ✓ ✓ ✓

GoSpa [18] INT ✗ ✓ ✓ ✗

SparTen [31] INT ✗ ✓ ✓ ✗

[3, 17, 33, 86, 89] Many ✗ ✓ ✓/✗ ✗

ANT (This Work) OP ✓ ✓ ✓ ✓

Figure 3: The SCNN PE microarchitecture adapted from
SCNN [67] to show pipeline stages (dotted lines are pipeline
registers). Each cycle, Image and Kernel Values are sent to
the multiplier and indices are sent to compute Output in-
dices. Following cycle, results of multiplier and output in-
dices calculation are sent to the output accumulator buffer.

showing that a convolution can be computed efficiently, by com-

puting the Cartesian product between non-zeros values of weight

and activation matrices using a systolic array of multipliers. A key

observation we make in this paper is that, despite being non-zero,

not all elements in such cartesian products are needed and this is

especially true in the backward pass used during training of CNNs.

These pairwise multiplications can proceed in parallel within

a PE. The PE fetches a set of 𝑛 non-zero weights from the weight

buffer and a set of𝑛 non-zero inputs from the input activation buffer.

These values are multiplied in an systolic array of 𝑛 × 𝑛 multipliers

that directly compute the Cartesian product of these two sets, which

is referred to as a partial-sum. (When treating these two sets as

two vectors, as in Figure 2d, the “Cartesian product” is referred

to as an “outer product”.) These partial-sums are accumulated by
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tracking the coordinates associated with them to route them to an

accumulator array. Partitioning input and output activations into

𝑊𝑡 ×𝐻𝑡 tiles introduces cross-tile dependencies (halos) at tile edges.

Resolving these dependencies requires PEs to communicate. No off-

chip memory accesses are necessary if a layer’s output activation

can serve as the next layer’s input activation. In this case, the

input and output buffer are logically swapped between the layers’

computation sequences.

To reduce off-chip memory accesses SCNN employs an input

stationary [8] dataflow; activations are kept within the PEs and

reused while different weight vectors are fetched.

3 REDUNDANT CARTESIAN PRODUCTS
In this section, we detail how RCPs occur (Section 3.1) and an al-

gorithm to detect and eliminate them in an outer-product sparse

training accelerator (Section 3.2). We leave the microarchitecture

design to realize this algorithm to Section 4. Outer-product acceler-

ators take advantage of the dynamic sparsity encountered during

training, but they introduce Redundant Cartesian Products (RCPs).

RCPs occur when mapping a convolution onto an outer-product

datapath. RCPs did not significantly impact prior works because

they avoid dynamic sparsity and/or focus on inference.

In the following descriptions, we examine a convolution of an

𝑅 × 𝑆 kernel with an 𝐻 ×𝑊 image to produce an 𝐻𝑜𝑢𝑡 ×𝑊𝑜𝑢𝑡

output. We follow the matrix index and dimension conventions

described by Sze et al. [76], except we use 𝑥 and 𝑦 to denote indices

in the respective𝑊 and 𝐻 dimensions of the image matrix and we

denote the output matrix dimensions as𝐻𝑜𝑢𝑡 ×𝑊𝑜𝑢𝑡 . Figure 2a has a

convolution with 𝑅, 𝑆 = 2, 2,𝐻,𝑊 = 3, 3, and𝐻𝑜𝑢𝑡 ,𝑊𝑜𝑢𝑡 = 2, 2. The

output dimensions 𝐻𝑜𝑢𝑡 and𝑊𝑜𝑢𝑡 are calculated from the stride,

padding, and input shape. When performing a dense outer-product,

all combinations of the 𝑅 × 𝑆 kernel values with 𝐻 ×𝑊 weights are

multiplied. For a sparse outer-product, this reduces to the non-zero

kernel values multiplied by the non-zero image values (Figure 2d).

Figure 4 illustrates the test conditions employed by ANT to

detect RCPs and how these tests are related to the convolution of a

kernel with an image. In this figure, blue and red squares represent

image and kernel matrices as the kernel “shifts” over the image

“during” the outer product (individual matrix elements not shown).

For each kernel shift, overlapped kernel and image elements are

multiplied and the resulting products summed to generate a single

output element. This output element has indices (𝑜𝑢𝑡𝑥 , 𝑜𝑢𝑡𝑦 ) that

are related to the indices of individual overlapping image (𝑥 ,𝑦) and

kernel (𝑠 ,𝑟 ) elements by:

𝑜𝑢𝑡𝑥 =
𝑥 − 𝑠
𝑠𝑡𝑟𝑖𝑑𝑒

(4)

𝑜𝑢𝑡𝑦 =
𝑦 − 𝑟
𝑠𝑡𝑟𝑖𝑑𝑒

(5)

Where 0 ≤ 𝑜𝑢𝑡𝑥 ≤ 𝐻𝑜𝑢𝑡 − 1 and 0 ≤ 𝑜𝑢𝑡𝑦 ≤ 𝑊𝑜𝑢𝑡 − 1. Convolu-
tions implemented by performing the outer product of all kernel

elements times all image elements produce RCPs due to redundant

combinations of kernel and image elements. These RCPs occur for

kernel shifts where the kernel exceeds the boundaries of the input

image, causing the output indices (𝑜𝑢𝑡𝑥 , 𝑜𝑢𝑡𝑦 ) to be outside the

dimensions of the output matrix, as shown by position the black

square relative to the green output matrix. Such kernel shifts have

Figure 4: Four cases (a-d) where invalid kernel shifts cause
RCPs and conditions to detect them for individual prod-
ucts. Indices used in comparison test to detect an RCP are
𝑥,𝑦 ∈ [0,𝑊 ), [0, 𝐻 ) (image input) and 𝑟, 𝑠 ∈ [0, 𝑅), [0, 𝑆) (ker-
nel input). All multiplications for a given kernel shift are
RCPs (hatch shaded) when that shift does not correspond to
a valid output. Invalid shifts have region where kernel el-
ements form no product (No prod.). The estimated output
index of a convolution using these products is represented
by the black square. In the case of RCPs, these indices are
outside of the output matrix, shown by the green square.

no valid output index: they are either negative (Figure 4a and b) or

exceed the dimensions of the output matrix (Figure 4c and d). Note

that additional “padding” of the image would introduce additional

RCPs rather than eliminate them since the indices of the associated

outputs are out of range. The conditions for multiple of cases a-d in

Figure 4 can occur simultaneously (e.g., when the kernel overlaps

a corner of the image). The RCPs in Figure 2d correspond to each

case in Figure 4 as follows: Case b) -3, Case c) 6 & -9, and Case d) 6

& 4. No Case a) RCPs occur in Figure 2d as all potential RCPs are

zero, and the RCP 6 is both Cases c) and d). While perhaps easy to

see visually with dense matrices, kernel-image element combina-

tions leading to RCPs are less apparent at runtime with compressed

sparse matrices. This leads to the need to develop tests based upon

input indices (Section 3.2).

3.1 Modelling Dense Outer-product RCPs
We examine the influence of training on RCPs by creating an analyt-

ical model for a dense outer-product. Consider a convolution with

no wasted multiplications. Every kernel position as it slides over

the image matrix results in one output value and accumulates 𝑅 ×𝑆
products. Thus, 𝑅 × 𝑆 × 𝐻𝑜𝑢𝑡 ×𝑊𝑜𝑢𝑡 multiplications are required

to compute the convolution.

Now, consider an outer-product with the same inputs. As there

are 𝐻 ×𝑊 image values and 𝑅 × 𝑆 kernel values, this results in

𝑅 × 𝑆 × 𝐻 ×𝑊 multiplications. As these include products between

any kernel element-image element pair, it is possible to find any

product required for convolution among them. Since we need 𝑅 ×
𝑆 × 𝐻𝑜𝑢𝑡 ×𝑊𝑜𝑢𝑡 products out of a total of 𝑅 × 𝑆 × 𝐻 ×𝑊 , the

outer-product’s efficiency at computing the convolution is given

by
𝑅×𝑆×𝐻𝑜𝑢𝑡×𝑊𝑜𝑢𝑡

𝑅×𝑆×𝐻×𝑊 , which simplifies to

Outer-product Efficiency =
𝐻𝑜𝑢𝑡 ×𝑊𝑜𝑢𝑡

𝐻 ×𝑊 (6)
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Figure 5: Relation among dimensions ofmatrices in forward
and backward pass (weight gradient) of CNN training. Note
activation gradient matrix of 𝐿 + 1st layer (𝐺𝐿+1

𝐴
) has same

dimensions as activation matrix of the 𝐿 + 1st layer (𝐴𝐿+1).

Table 2 shows some typical dimensions of training convolutions

on ImageNet/ResNet50 and/or CIFAR/ResNet18 [19, 35]. Notice that

every other consecutive pair of rows share the same image matrix

size with image and output matrix sizes swapped. Figure 5 provides

intuition about how matrix dimensions relate to each other, using

the dimensions from the first two rows of Table 2. The activation

and activation gradient matrices have identical dimensions, as do

the weight and weight gradient matrices. When weight matrix sizes

are small, e.g. 3 × 3, the 𝐿 + 1st layer’s activation and activation

gradient matrix dimensions are similar to that of the 𝐿th layer. Note

in Figure 4 as the size of the “kernel” (red square) approaches the size

of the“image” (blue square) the fraction of RCPs increases. Thus,

during weight gradient computation (Equation 3, lower part of

Figure 5) RCPs can dominate since the “kernel” (𝐺𝐿+1
𝐴

) and “image”

(𝐴𝐿
) matrices involved in the convolution have similar dimensions.

This explains why there is higher efficiency in the forward pass

and activation gradient calculation than in the weight gradient

calculation (shown in the rightmost column of Table 2).

Table 2: Typical dimensions and outer-product efficiency
for the forward (𝑊 ∗ 𝐴), backward (𝑊 ∗ 𝐺𝐴) and update
(𝐺𝐴 ∗ 𝐴) training phases on ImageNet/ResNet50 and/or CI-
FAR/ResNet18. The dimensions are for the kernel (𝑅×𝑆), the
image (𝐻 ×𝑊 ), and the output (𝐻𝑜𝑢𝑡 ×𝑊𝑜𝑢𝑡 ).

Training
Phase

𝑅 × 𝑆 𝐻 ×𝑊 𝐻𝑜𝑢𝑡 ×
𝑊𝑜𝑢𝑡

Outer-
product
Efficiency

𝑊 ∗𝐴,𝑊 ∗𝐺𝐴 3 × 3 114× 114 112× 112 96.52%

𝐺𝐴 ∗𝐴 112× 112 114× 114 3 × 3 0.07%

𝑊 ∗𝐴,𝑊 ∗𝐺𝐴 7 × 7 230× 230 112× 112 23.71%

𝐺𝐴 ∗𝐴 112× 112 230× 230 7 × 7 0.09%

𝑊 ∗𝐴,𝑊 ∗𝐺𝐴 1 × 1 56 × 56 56 × 56 100.00%

𝐺𝐴 ∗𝐴 56 × 56 56 × 56 1 × 1 0.03%

𝑊 ∗𝐴,𝑊 ∗𝐺𝐴 3 × 3 16 × 16 14 × 14 76.58%

𝐺𝐴 ∗𝐴 14 × 14 16 × 16 3 × 3 3.53%

Algorithm 1 Ideal anticipation of RCPs. We omit the outer loops

of the convolution to focus the RCP conditions

1: for 𝑥,𝑦 ∈ (0, 1, ...,𝑊 − 1) × (0, 1, ..., 𝐻 − 1) do
2: for 𝑟, 𝑠 ∈ (0, 1, ..., 𝑅 − 1) × (0, 1, ..., 𝑆 − 1) do
3: 𝑛𝑜_𝑟𝑐𝑝𝑠 = (𝑦 − 𝑠𝑡𝑟𝑖𝑑𝑒 × 𝐻𝑜𝑢𝑡 ) + 1 ≤ 𝑟 ≤ 𝑦

4: 𝑛𝑜_𝑟𝑐𝑝𝑟 = (𝑥 − 𝑠𝑡𝑟𝑖𝑑𝑒 ×𝑊𝑜𝑢𝑡 ) + 1 ≤ 𝑠 ≤ 𝑥

5: if 𝑛𝑜_𝑟𝑐𝑝𝑠 and 𝑛𝑜_𝑟𝑐𝑝𝑟 then
6: out[

𝑥−𝑠
𝑠𝑡𝑟𝑖𝑑𝑒

][
𝑦−𝑟

𝑠𝑡𝑟𝑖𝑑𝑒
] += image[𝑥][𝑦] * kernel[𝑠][𝑟 ]

7: end if
8: end for
9: end for

3.2 Detecting RCPs in Sparse Outer Products
RCPs can be detected based on the indices of a given image element

and kernel element. When computing the convolution output for

a given kernel shift, the difference 𝑥 − 𝑠 is constant since adjacent
elements of the image and kernel are multiplied before being accu-

mulated. If the difference 𝑥 −𝑠 is negative, the kernel has effectively
been shifted too far to the left, corresponding to case b) in Figure 4.

Similar reasoning applies to the difference𝑦−𝑟 , which also remains

constant across overlapping image and kernel elements for a given

kernel shift. Consideration of all four cases of a kernel shifted too

far up, left, down, or right leads to the conditions for cases a-d in

Figure 4. The end result, taking into account convolution stride, is

that a product between an image element with index (𝑥 , 𝑦) and a

kernel element with index (𝑠 , 𝑟 ) is valid (i.e., not an RCP) for use in

computing some convolution output when both of the following

conditions are true:

(𝑦 − 𝑠𝑡𝑟𝑖𝑑𝑒 × 𝐻𝑜𝑢𝑡 ) + 1 ≤ 𝑟 ≤ 𝑦 (7)

(𝑥 − 𝑠𝑡𝑟𝑖𝑑𝑒 ×𝑊𝑜𝑢𝑡 ) + 1 ≤ 𝑠 ≤ 𝑥 (8)

If the constraints of an outer product accelerator are ignored,

then an algorithm can be constructed which eliminates all RCPs
by skipping computation based solely on the image index and filter

index for each multiplication. Such an ideal algorithm is given by

Algorithm 1. We loop through every image element-kernel element

pair (lls. 1-2), check for RCPs using equations 7 and 8 (lls. 3-5), and

perform the multiplication and accumulate the results to output

matrix index as described in Equations 4 and 5 (ll. 6).

In an outer product accelerator, we cannot control each input

to individual multiplications. For an 𝑛 × 𝑛 multiplier, we send two

vectors of𝑛 factors to yield an outer product matrix of𝑛×𝑛 products.
Replacing a given factor from the inputs results in replacing a row

or a column of outer product matrix. This row/column granularity

limits the amount of RCPs that can be avoided by replacing a given

factor. That is, we can only replace a factor if all of the associated

column/row’s products are RCPs. Otherwise, replacing the factor

would mean that a useful product would be skipped.

Algorithm 2 shows how to skip input factors that result in a

row (in the output matrix) of RCPs, assuming that the row factors

are from the kernel matrix (indexed with 𝑠 and 𝑟 ) and the column

factors are from the image matrix (indexed with 𝑥 and 𝑦). While

we could equally skip input factors that results in columns of RCPs,

we choose a specific case to illustrate the idea. We start by loop-

ing through the image matrix indices 𝑛 at a time and compute the
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Algorithm 2Anticipation of RCPs in an outer product architecture.

1: for every n indices 𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑥 , 𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑦 ∈ (0, 1, ...,𝑊 − 1) ×
(0, 1, ..., 𝐻 − 1) do

2: 𝑦𝑚𝑖𝑛 =𝑚𝑖𝑛(𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑦)
3: 𝑥𝑚𝑖𝑛 =𝑚𝑖𝑛(𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑥 )
4: 𝑦𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑦)
5: 𝑥𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑥 )
6: for 𝑟 ∈ (0, 1, ..., 𝑅 − 1) do
7: for 𝑠 ∈ (0, 1, ..., 𝑆 − 1) do
8: 𝑣𝑎𝑙𝑖𝑑𝑠 = (𝑦𝑚𝑖𝑛 − 𝑠𝑡𝑟𝑖𝑑𝑒 × 𝐻𝑜𝑢𝑡 ) + 1 ≤ 𝑟 ≤ 𝑦𝑚𝑎𝑥

9: 𝑣𝑎𝑙𝑖𝑑𝑟 = (𝑥𝑚𝑖𝑛 − 𝑠𝑡𝑟𝑖𝑑𝑒 ×𝑊𝑜𝑢𝑡 ) + 1 ≤ 𝑠 ≤ 𝑥𝑚𝑎𝑥

10: if 𝑣𝑎𝑙𝑖𝑑𝑟 and 𝑣𝑎𝑙𝑖𝑑𝑠 then
11: for 𝑖 ∈ (0, 1, ..., 𝑛 − 1) do
12: 𝑥 = 𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑥 [𝑖]
13: 𝑦 = 𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑦 [𝑖]
14: out[

𝑥−𝑠
𝑠𝑡𝑟𝑖𝑑𝑒

][
𝑦−𝑟

𝑠𝑡𝑟𝑖𝑑𝑒
] += image[𝑥][𝑦] × kernel[𝑠][𝑟 ]

15: end for
16: end if
17: end for
18: end for
19: end for

minimum and maximum of these indices (lls. 1-5). Here, 𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑥
and 𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑦 are 𝑛 element vectors containing corresponding hori-

zontal and vertical indices of non-zero image elements. Note the

order image element indices are stored in 𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑥 does not matter

provided it matches the order in 𝑖𝑛𝑑𝑖𝑐𝑒𝑠𝑦 . With these minimum

and maximum indices, we loop through the kernel matrix (lls. 6-7).

By comparing the 𝑠 and 𝑟 indices of the kernel element with the

minimum and maximum 𝑥 and 𝑦 indices of the image elements,

we can determine if multiplying all the image elements with the

single kernel element would result in any valid output elements

(lls. 8-9). If multiplying the kernel element would result in useful

products, then we multiply and accumulate the kernel element with

the all the image elements (lls. 10-15). To perform an outer product

with several kernel elements and several image elements at once,

we pre-screen multiple kernel elements’ indices based on the mini-

mum and maximum 𝑥 and𝑦 indices. Compared to ideal anticipation

(Equations 7 and 8), the equations for determining if there are any
valid products are less restrictive, allowing some RCPs to occur:

(𝑦𝑚𝑖𝑛 − 𝑠𝑡𝑟𝑖𝑑𝑒 × 𝐻𝑜𝑢𝑡 ) + 1 ≤ 𝑟 ≤ 𝑦𝑚𝑎𝑥 (9)

(𝑥𝑚𝑖𝑛 − 𝑠𝑡𝑟𝑖𝑑𝑒 ×𝑊𝑜𝑢𝑡 ) + 1 ≤ 𝑠 ≤ 𝑥𝑚𝑎𝑥 (10)

4 ANTICIPATOR ACCELERATOR (ANT)
In this section, we present the ANTicipator Accelerator (ANT)

Processing Element (PE), which performs outer product sparse

CNN training convolutions while detecting and removing RCPs

using the ideas developed in the previous section. ANT builds on

SCNN, adding additional logic blocks to skip RCPs and also reduce

SRAM accesses for values that would lead to RCPs. We first review

the sparse matrix format underpinning ANT (Section 4.1). Then,

we describe the ANT PE in detail, especially the new and modified

hardware blocks to anticipate and eliminate RCPs (Section 4.2).

We show how the indirection of CSR allows us to avoid SRAM

accesses (Section 4.3), followed by the hardware block to exploit

this technique (Section 4.4). In Section 4.5, additional consideration

is given to supporting rotated matrices, which are necessary for

activation gradient calculation (Eqn. 2). ANT is described assuming

an Image-stationary dataflow, but ANT can equally support other

dataflows (Section 4.6).

4.1 Compressed Sparse Data Format
ANT exploits Compressed Sparse Row (CSR) representation of the

indices to more efficiently avoid RCPs. CSR represents a matrix as

three arrays: Values, Columns, and Row-pointers. The Values array
holds the non-zero elements of the matrix in row-major order, Row-
pointers array tracks the location of the start of each row within

the Values array, and the Columns array indicates the locations of

the nonzero values within each row. Compressed Sparse Column

(CSC) is the dual, with the role of the Columns and Row-pointers
swapped, becoming Rows and Column-pointers, and the Values ar-
ray listing values in column-major order. In other words, the CSC

representation of the transpose of a matrix is equivalent to the CSR

representation of the matrix. Thus, CSC would work equally well

with ANT.

4.2 Anticipator Processing Element
The ANT PE, shown in Figure 6, adds extra stages to the SCNN

pipeline to anticipate and avoid RCPs. Stages 5 and 6 are identical

to Stages 2 and 3 from SCNN (Figure 3). The PE has two parame-

ters: 𝑛 scales the 𝑛 × 𝑛 Multiplier Array, and 𝑘 is the number of

indices that the First 𝑛 + 1 Indices within Range (FNIR) block
(Section 4.4) can analyze at once. In the ANT PE, the Image and

Kernel matrix inputs are represented in CSR format, with the Val-
ues array in the Image Values Buffer andKernel Values Buffer,
and both the Row-pointers and Columns arrays in each of the Image
Indices Buffer and Kernel Indices Buffer. Below we describe

the behavior of individual hardware blocks in the ANT PE pipeline

along with their interactions (circled numbers used as list headings

below refer to Figure 6):

1 Using a control block (not shown) the ANT PE accesses

𝑛 entries stored sequentially in the Image Values Buffer
and Image Indices Buffer. These 𝑛 image entries will be

processed with all entries in the Kernel Values and Indices

Buffers, which may take several cycles. The image indices

go to 𝑠 range computation and 𝑟 range computation
blocks in the next cycle and to the Output indices compu-
tation block four cycles later. The image values pass through

pipeline registers so they arrive at multiplier at the same

time as the Output indices computation block provides

the output indices. The contents of the Image Values and

Indices Buffers are held constant until the PE has processed

the entire kernel matrix (Image stationary dataflow).

2 The 𝑠 range computation block computes the minimum

and maximum acceptable 𝑠 indices from Equation 10, i.e.

𝑠𝑚𝑖𝑛 = min(𝑥0, ..., 𝑥𝑛−1) − 𝑠𝑡𝑟𝑖𝑑𝑒 ×𝑊𝑜𝑢𝑡 + 1
𝑠𝑚𝑎𝑥 = max(𝑥0, ..., 𝑥𝑛−1)

(11)
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Figure 6: ANT PE Microarchitecture. Dotted lines indicate location of pipeline registers, green blocks are SRAM buffers, red
blocks are relatively simple arithmetic/combinational logic blocks, blue block is the novel hardware for filtering out RCPs,
and the purple block represents the multiplier.

3 Similarly, the 𝑟 range computation block computes the

minimum and maximum acceptable 𝑟 indices from Equa-

tion 9. Since image indices are stored in CSR format, the

magnitude of the 𝑦 index inputs increase monotonically.

Thus, 𝑦𝑚𝑖𝑛 simplifies to 𝑦0 and 𝑦𝑚𝑎𝑥 to 𝑦𝑛−1 yielding:

𝑟𝑚𝑖𝑛 = 𝑦0 − 𝑠𝑡𝑟𝑖𝑑𝑒 × 𝐻𝑜𝑢𝑡 + 1
𝑟𝑚𝑎𝑥 = 𝑦𝑛−1

(12)

The 𝑟 range is used when accessing the Kernel Indices
Buffer to avoid accessing indices that are not in the 𝑟 range.

In each cycle, the ANT PE reads 𝑘 sequential column indices

from the Kernel Indices Buffer starting from 𝑟𝑚𝑖𝑛 up to

and including 𝑟𝑚𝑎𝑥 . These 𝑘 indices are provided to the

FNIR block.

4 The purpose of the FNIR block is twofold: (1) to find first 𝑛

valid kernel indices so those kernel elements can be fetched

and sent to the Multiplier Array and (2) Find the 𝑛 + 1st
valid kernel index if it exists to provide feedback to the

Kernel Indices Buffer (see 5 ). Each output of the FNIR
block has an associated valid bit, in case the FNIR block

cannot find 𝑛 + 1 valid indices from its 𝑘 inputs. The Kernel
Values Buffer fetches the values for the first 𝑛 valid indices

and sends them to theMultiplier Array. If a kernel index is
invalid the associated multiplication is disabled. Since invalid

𝑟 indices have already been skipped by the Kernel Indices
Buffer control logic using the 𝑟𝑚𝑖𝑛 to 𝑟𝑚𝑎𝑥 range provided

by the 𝑟 range computation block, only 𝑠 indices need to

be checked by the FNIR block. The implementation of the

FNIR block is discussed in more detail in Section 4.4.

5 The FNIR block examines 𝑘 > 𝑛 indices and selects up to 𝑛

that pass the test defined by Equations 9 and 11 to send to

the multiplier array. It is possible that there are more than

𝑛 valid indices in the initial 𝑘 indices. To avoid “skipping”

valid factors, it is important to detect when this occurs. To

accomplish this, ANT employs the following approach: We

have the FNIR block attempt to find one additional valid

factor. This 𝑛 + 1st kernel index selected by the FNIR block

is sent back to theKernel Indices Buffer controller to help
determine the starting offset into the column indices array.

If the 𝑛 + 1st kernel index is valid, then the next cycle, the

Kernel Indices Buffer will send 𝑘 indices starting from

that index. On the other hand, if the 𝑛 + 1st kernel index is
invalid, then the Kernel Indices Buffer will send the next

𝑘 indices since there were no additional valid factors in the

last batch of 𝑘 indices. This feedback mechanism allows the

PE to skip past invalid kernel indices, improving the odds

that the FNIR block will find 𝑛 valid kernel indices and keep

theMultiplier Array occupied.

The PE parameters are available in Table 4. We limit the SRAM

buffer size to 8kB to enable single cycle SRAM access.

4.3 Exploiting CSR to Reduce SRAM Accesses
Figure 7 shows how CSR is exploited to reduce unnecessary SRAM

lookups. The figure shows a small kernel matrix in CSR format. An

image matrix (not shown) provides constraints on indices where

RCPs can be avoided: 𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥 , 𝑠𝑚𝑖𝑛 , and 𝑠𝑚𝑎𝑥 . From 𝑟𝑚𝑖𝑛 = 2

and 𝑟𝑚𝑎𝑥 = 3, only positions 2 and 3 of the Row-pointers array are

valid (i.e. would avoid RCPs), which point to positions 3 to 7 of

the Columns array. After checking each of those indices against

𝑠𝑚𝑖𝑛 = 1 and 𝑠𝑚𝑎𝑥 = 2, only positions 3, 6, 7 are valid, so values for

only those positions are looked up from the Values. In this simple

example, Columns array lookups are reduced by 4

9
≈ 44% and Values

lookups by
6

9
≈ 67%.

4.4 First 𝑛 + 1 within Range (FNIR) Block
The inputs to the FNIR block are the min and max values and 𝑠0
to 𝑠𝑘−1 that are 𝑠 indices that might be within range. The Positions
output contains 𝑛 + 1 binary-encoded positions (0 through 𝑘 − 1),
which indicate where the 𝑠 indices are within range. The Valid
output is an 𝑛 + 1-bit mask that indicates which of the Positions
outputs are valid. The PE has two parameters: 𝑛 affects number

of outputs and 𝑘 is the number of inputs, which follow from the
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Figure 7: Example of exploiting CSR to reduce SRAM ac-
cesses. The arrows show how the CSR format uses the Row-
pointers array to index into the Columns and Values arrays.
The green boxes show indices/values that are valid and the
blue boxes show locations that are accessed but are not valid.

Figure 8: The First 𝑛+1 Indices within Range (FNIR) block is
combinational logic that finds the first 𝑛 + 1 indices that are
in [min,max]. The grey comparator blockwith the callout is
repeated 𝑘 times and operates in parallel on 𝑠0 through 𝑠𝑘−1.
The Arbiter Select circuit in the First 𝑛 + 1 priority encoder
callout is repeated 𝑛 + 1 times.

ANT PE’s parameters (Section 4.2) The FNIR block is illustrated in

Figure 8:

1 𝑘 comparator blocks that produce a 𝑘-bit mask for whether

an 𝑠 index is at least min and at most max

2 The First 𝑛 + 1 priority encoder is an iterative circuit that

has 𝑛 + 1 Arbiter Select stages and finds the first 𝑛 + 1 posi-
tions where the bit mask is 1. Given a 𝑘-bit input, Arbiter
Select has three outputs: (1) a copy of the input bit string

except with the position of the first 1 set to 0, which can be

computed by bitwise complementing the one-hot encoded

grant vector (g) of a combinational logic fixed-priority ar-

biter [15] and bitwise AND-ing with the input request vector

(in); (2) the position of the first 1 it finds encoded in binary;

and (3) valid, which is set to 1 if Arbiter Select finds a 1.

4.5 Matrix Rotation
Kernel matrix rotation is required in the backward pass (𝑅(𝑊 ),

Eqn. 2), so we’ll explain how to do this in the CSR format. Since rota-

tion is not always required, we use a ROTATE boolean flag input. If

the flag is set, the ANT accelerator will remap the Row-pointers and
Columns arrays according to Algorithm 3, which results in rotated

indices. (The Values array does not change.) As the calculation is a

transformation of indices, not data, the added overhead (area and

latency) is negligible.

4.6 Dataflow
Two common alternative dataflows are kernel stationary and output

stationary, we show how they can be realized in the ANT PE and

enjoy the benefits of reduced RCPs.

Kernel stationary can be implemented by swapping the Image

Indices and Values buffers with their Kernel counterparts, and up-

dating the 𝑠 and 𝑟 range compuations to 𝑥 and𝑦 range compuations.

Equivalent conditions in equalities in Equations 9 and 10 can be de-

rived by solving inequalities in Equations 7 and 8 for the minimum

and maximum allowed 𝑥 and 𝑦 indices.

Output stationary can be implemented by changing how the PE

iterates over the buffers. Rather than processing the whole Kernel

matrix on every 𝑛 Image elements, output stationary would involve

fetching new Image elements as the PE processes more of the Kernel

matrix. Admittedly, output stationary dataflow on sparse matrices

is challenging since output indices are calculated on the fly, but

solving this issue is beyond the scope of this work.

5 EXTENSION TO MLP, RNN, AND
TRANSFORMERS

While the key motivation of this paper is exploiting the activation,

weight, and gradient sparsity at minimal accuracy loss afforded by

techniques such as SWAT [69] and ReSprop [28] for CNNs, 76% of

Google’s training workloads (as of April 2019) consist of MLP, RNN,

and transformer networks [44]. These networks are key to language

Algorithm 3 Kernel matrix rotation by 180°.

1: Inputs: Height (𝐻 ) and width (𝑊 ) of the matrix

2: Inputs: Row index (𝑦) and column index (𝑥) into the original

matrix

3: Outputs: Row index (𝑦𝑟𝑜𝑡𝑎𝑡𝑒𝑑 ) and column index (𝑥𝑟𝑜𝑡𝑎𝑡𝑒𝑑 )

into the rotated matrix

4: 𝑦𝑟𝑜𝑡𝑎𝑡𝑒𝑑 ← 𝐻 − 𝑦 − 1
5: 𝑥𝑟𝑜𝑡𝑎𝑡𝑒𝑑 ←𝑊 − 𝑥 − 1
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models [79]. A large part of these networks are fully-connected lay-

ers, in which multiple training samples can be batched into matrix

multiplications between weight and matrices containing multiple

activation vectors for inference and for the backward propagation,

the weight matrix with the gradient matrix and the gradient matrix

with the activation matrix. Additionally, certain transformer and

RNN layers can be implemented as matrix multiplication [5, 78].

This stands in contrast to the case with SCNN [67] which suffers

from the problem of aligning the input values in matrix-vector

multiplication so as to produce useful products. The matrix-vector

multplication results from how SCNN is used with a single input

in inference. This alignment issue degrades throughput of SCNN

on fully connected layers by at least 75% in a 4x4 multiplier array.

In contrast during training we encounter matrix-matrix multiplica-

tions even for fully connected layers. Given this, ANT can anticipate

RCPs and improve the efficiency of matrix multiplication on an

outer product accelerator.

We will use the convention of a matrix multiplication between

an 𝐻 ×𝑊 image matrix and an 𝑅 × 𝑆 kernel matrix, where𝑊 = 𝑅.

Taking the dot product between each of the 𝐻 rows of the image

matrix and each of the 𝑆 columns in the kernel matrix results in an

output matrix with dimensions of 𝐻 × 𝑆 . The output index for the
product of the image element at (𝑥,𝑦) and the kernel element at

(𝑠, 𝑟 ) is

𝑜𝑢𝑡𝑥 = 𝑠

𝑜𝑢𝑡𝑦 = 𝑦
(13)

In contrast to avoiding RCPs in convolutions, the output indices

are always within the dimensions of the output matrix. Instead,

we need to check that the image element’s column and the kernel

element’s row are the same:

𝑟 = 𝑥 (14)

An outer product between the matrices produces 𝐻 ×𝑊 × 𝑅 × 𝑆
products, while the matrix multiplication actually requires 𝐻 ×
𝑊 × 𝑆 products, so only

1

𝑅
of the products are valid. Table 3 shows

the outer product efficiencies for typical dimensions on a matrix

multiplication implementation of text translation transformer [5,

79] and a text classification RNN [78] trained on a large movie

review dataset [56].

Given sparse activation, weight, and gradient matrices in fully-

connected layers, a modified ANT accelerator can avoid these RCPs.

Using 𝑟 range computationwith theKernel Indices Buffer (Fig-
ure 6 3 ), the equivalent Equation 14 for RCPs is

𝑟𝑚𝑖𝑛 = 𝑥0

𝑟𝑚𝑎𝑥 = 𝑥𝑛−1
(15)

For matrix multiplication, ANT completely avoids any unnec-

essary memory accesses due to the above calculation. Since all

kernel and image index combinations are valid as long as 𝑟 = 𝑥 ,

ANT does not need to check the 𝑠 index at all and can skip the

FNIR block altogether. In summary, supporting matrix multiplica-

tion in ANT involves changing the Output indices computation
(Equation 13) and 𝑠 range computation (Equation 15), as well as

bypassing stages 3 and 4 of the ANT PE pipeline (Figure 6).

Table 3: Typical dimensions and outer-product efficiency for
the forward (𝐴 ×𝑊 ), backward (𝐺𝐴 ×𝑊 ) and update (𝐴 ×𝐺𝐴)
training phases on a text translation transformer and a text
classification RNN.

Training
Phase

𝐻 ×𝑊 𝑅 × 𝑆 Outer-
product
Efficiency

𝐴 ×𝑊 ,𝐺𝐴 ×𝑊 512 × 72 72 × 512 1.39%

𝐴 ×𝐺𝐴 72 × 512 512 × 512 0.20%

𝐴 ×𝑊 64 × 10 10 × 10 10.00%

𝐺𝐴 ×𝑊 10 × 10 10 × 64 10.00%

𝐴 ×𝐺𝐴 10 × 64 64 × 10 1.56%

𝐴 ×𝑊 300 × 3 3 × 1200 33.33%

𝐺𝐴 ×𝑊 1200 × 3 3 × 300 33.33%

𝐴 ×𝐺𝐴 3 × 300 300 × 1200 0.33%

𝐴 ×𝑊 300 × 8 8 × 1200 12.50%

𝐺𝐴 ×𝑊 1200 × 8 8 × 300 12.50%

𝐴 ×𝐺𝐴 8 × 300 300 × 1200 0.33%

6 METHODOLOGY
6.1 Simulation
Webuilt a cycle accurate functional simulator using theDNNsim [80]

framework to simulate the ANT accelerator. Since ANT is dataflow-

agnostic andDRAMaccess patterns heavily depend on the dataflow [8,

84], we assume that the SRAM is appropriately managed to provide

single-cycle memory accesses. We model a five-cycle start-up cost

whenever a PE is given new image and kernel matrices. Addition-

ally, we assume that the Output Accumulator Buffer is appropriately

designed to handle the throughput from the multiplier array and the

Output indices computation; other works explore how this can be

done more optimally [81]. Since load balance is dataflow dependent,

we also assume the existence of a perfect load balancing algorithm,

which we employ to show the potential of the ANT accelerator if

the workload were perfectly load balanced; other works investigate

how to do this [31, 33, 81, 83]. These assumptions allow us to focus

on exploring the design space of ANT PE parameters and abla-

tion studies on elements of the microarchitecture through various

workloads. We believe that there is an design space that requires

further exploration in DRAM access scheduling, load balance, and

appropriate dataflow choices, and we hope that our evaluation will

help motivate future work. Some of the goals would be to avoid

pipeline start up costs, reuse image or kernel values, and ensure that

PEs finish at similar times. Some ideas for achieving this include

estimating the sparsity of matrices so that PEs each have a similar

amount of computation to do and finding the best way to coalesce

smaller matrices together and split large matrices to avoid pipeline

start up costs, reuse image or kernel values, and ensure that PEs

finish at similar times.

We configure ANT training accelerator according to Table 4.

Since kernel matrices can be large during the Update phase of

CNNs (Equation 3), we modify the SCNN baseline to split up the

kernel matrix across the 8 × 8 PEs and call it SCNN+. We addition-

ally evaluate a dense inner product accelerator, DaDianNao [9], and
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TensorDash, a sparse inner product accelerator [57]. These acceler-

ators are configured with 16 floating-point multiplier PEs, and the

number of tiles is configured such that the total multipliers is equiv-

alent to ANT [9, 57, 80]. We evaluate the ANT training accelerator

using the CIFAR100 [46] dataset to train ResNet18 [35], VGG16 [73],

DenseNet-121 [38], and Wide ResNet (WRN) [85] networks.

6.2 Traces
We collect traces three ways: First, we train ResNet18 [35] on a

current generation commodity graphics processor unit (GPU) with

the ReSprop Sparse Training algorithm [28] for 100 iterations of

training and collect the traces for the three convolution training

phases mentioned in Section 2.1. ReSprop uses a delta-based al-

gorithm to sparsify the activation gradients (𝐺𝐴) during training.

Second, we collect traces after 100 iterations of training from Sparse

Weight Activation Training (SWAT) [69], which sparsifies activa-

tions in the backward pass, and weights in all phases of training.

Typically, after 100 iterations, these sparsity techniques are able to

bring the sparsity to near the target that we set. The traces are for

𝑊 ∗𝐴,𝑊 ∗𝐺𝐴 , and𝐺𝐴 ∗𝐴 convolutions. We omit the update of the

weights from Stochastic Gradient Descent (SGD), since they form a

relatively small portion of the computation and are not efficiently

computed by either ANT or SCNN+. Other methods could also be

used with the ANT accelerator, for instance weight pruning [62, 63].

Thirdly, we collected traces from ResNet50 [35] trained on the Ima-

genet dataset [19], which due to the training time constraints, we

synthetically sparsified the weights, activations, and gradients by

selecting the top-K values and setting the rest to 0. We performed

the same synthetic sparsification on a matrix multiplication imple-

mentation of a text translation transformer [5, 79], as well as a text

classification RNN [78] trained on a large movie review dataset [56].

CIFAR100/ResNet18 used in this work has a validation accuracy

of 74.84% with dense training. As ReSprop is a lossy sparsification

technique, accuracy decreases slightly at high sparsities. When

trained using ReSprop with sparse training, accuracy decreases by

up to 0.17% at 90% sparsity. This is similar to other sparsification

techniques, e.g. DropBack (-0.14% accuracy, 91% sparsity) [29, 83]

and SWAT (-1.6% accuracy, 80% sparsity) [69].

6.3 Energy Estimation
Energy consumption is measured using operation counters, and

multiplying by the energy-per-operation measured by Jouppi et

al. [43] for a tensor processor using 7nm technology. Index com-

parison operations are modeled as 32-bit integer additions. All mul-

tiplication and additions are performed using Bfloat 16. In sparse

format, each matrix element can be stored using 32 bits: 16 bits for

the values and 16 bits for the indices, so we assume 2 elements can

be fetched per 64-bit memory access.

7 EVALUATION
7.1 Results on CNN Training
Figure 9 shows the speed up and relative energy consumption rela-

tive to SCNN+ on DenseNet-121 [38], ResNet18 [35], VGG16 [73],

and WideResNet (WRN) [85], on the CIFAR10 dataset sparsified

using SWAT [69] and ResNet-50 [35] on ImageNet [19] sparsified

synthetically. ANT achieves an average (geo-mean) of 3.71× speed

Table 4: ANT Design Parameters

Values floating point format Bfloat16

Indices bit width 8 bits

Max Size of SRAM Buffers 8kB

Multiply array (𝑛 × 𝑛) 4x4 (default)

Number of Inputs to FNIR block (𝑘) 16 (default)

Number of PEs 64

up and 4.40× decrease in energy consumption. Table 5 explains the

variations in speed up between the networks. Generally, the higher

the proportion of RCPs that are avoided, the higher the speed up

and energy savings. On average, ANT eliminates 90.3% of the RCPs.

Overall, ANT is effective on both synthetic and realistic sparsity

patterns.

Figure 9: Speed up and energy consumption forANT relative
to SCNN+ for DenseNet-121 [38], ResNet18 [35], VGG16 [73],
and WideResNet (WRN) [85], on the CIFAR10 dataset spar-
sified using SWAT [69] and ResNet-50 [35] on ImageNet [19]
sparsified synthetically. All networks are trained to a target
sparsity of 90%.

Table 5: Proportion of RCPs avoided due to ANT for
DenseNet-121 [38], ResNet18 [35], VGG16 [73], and
WideResNet (WRN) [85], on the CIFAR10 dataset sparsified
using SWAT [69] and ResNet-50 [35] on ImageNet [19]
sparsified synthetically. All networks are trained to a target
sparsity of 90%.

Network RCPs avoided
Densenet-121 93.6%

ResNet18 98.0%

VGG16 74.9%

WRN-16-8 94.8%

ResNet50 91.9%

7.2 Sensitivity to Sparsity
When evaluating ResNet18 [35] with ReSprop [28], we found that

ReSprop activation gradient (𝐺𝐴) sparsity targeting was imprecise

and also impacted the sparsity of the activation (𝐴) matrices. Thus,

we show our measured sparsity for the gradient and activations
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to clarify the results. The sparsity of the weight matrix (𝑊 ) is

omitted since these matrices are typically much smaller and thus

less impactful than the 𝐺𝐴 and 𝐴 matrices.

Figure 10 shows how well ANT is able to exploit increased

sparsity to speed up computation and reduce energy consump-

tion against a dense SCNN+ baseline. We see that ANT is able to

achieve up to 28.1× speed up and 40× energy savings at 42%/85%

sparsities. Note that sparsity does not correlate directly with speed

up since sparsity distributions have some effect on the effectiveness

of ANT.

While SCNN+ indeed exploits the increased sparsity, at every

sparsity level, ANT is between 1.9× and 2.6× faster and uses be-

tween 2.6× and 4.4× less energy as shown in Figure 11. These

savings occur from making better use of the available sparsity by

avoiding RCPs and associated SRAM accesses. Although ANT does

not avoid all RCPs, it avoids enough that across all sparsities we

observe superior performance and energy consumption for ANT.

Figure 10: Speedup and relative energy consumption ofANT
when compared to the dense (i.e. zero sparsity) SCNN+ base-
line. The Network is CIFAR100/ResNet18 trained using Re-
Sprop. Sparsity is indicated as Activation Gradient / Activa-
tion sparsity as a percentage.

Figure 11: Speed up and energy consumption for ANT rel-
ative to SCNN+ at the same sparsity. The Network is CI-
FAR100/ResNet18 trained using ReSprop. Sparsity is indi-
cated as Activation Gradient / Activation sparsity as a per-
centage.

7.3 Sensitivity to Architecture Parameters
We perform sensitivity studies on the effect of changing the size of

the multiplier array and the number of inputs into the First 𝑛 + 1
Indices within Range (FNIR) block (Section 4.4). Figure 12 shows

that ANT outperforms SCNN+ when the multiplier array is 4 × 4,
6 × 6, and 8 × 8, and thus is useful over a wide range of multiplier

configurations. Figure 13 shows that ANT outperforms SCNN+ as

long as the FNIR block takes at least 8 inputs. We hypothesize that

with a small 𝑘 = 4 FNIR, there is no excess capability to run ahead

of a 4× 4 multiplier. When 𝑘 = 4 the FNIR throughput becomes the

bottleneck, causing the performance decrease in Figure 13.

Figure 12: A ResNet18 SWAT 90% [69] study showing the ef-
fect of larger multiplier arrays on speed up and energy con-
sumption ANT compared to SCNN+ with the same multi-
plier array size.

Figure 13: A ResNet18 SWAT 90% [35, 69] study showing the
effect of different number of inputs to the FNIR block (Sec-
tion 4.4) on speed up and energy consumption ANT com-
pared to SCNN+ with the same multiplier array size.

7.4 Ablation Study
Figure 14 shows that eliminating RCPs based on only the 𝑟 condition

(Eqn. 10) or only the 𝑠 condition (Eqn. 9) still yields speed up and

energy savings when compared to SCNN+. Note that the number

of RCPs that ANT eliminates is not the sum of the RCPs that the 𝑟

and 𝑠 conditions eliminate individually, since there is significant

overlap in the sets of individually eliminated RCPs. Despite this,

combining both conditions increases performance by 1.06× over 𝑟

only.
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Figure 14: Ablation study showing the effect of only han-
dling the 𝑟 condition (Eqn. 10) or the 𝑠 condition (Eqn. 9).
The study was performed on ResNet18 SWAT [35, 69] at 90%
sparsity.

7.5 Synthesis Results
The FNIR block (Section 4.4), the largest circuit in ANT, was im-

plemented in RTL, and synthesized using the Synopsis Design

Compiler. Note that this block is needed for efficient convolutions

but not matrix multiplication (Section 5). We used FreePDK45 (45

nm) techonlogy node to synthesize our design [75]. Then, we scaled

the results to the 15nm technology node, as the 15nm library is

no longer available, and added a 50% wire overhead in a similar

manner to prior works [59, 70]. The resulting area is 0.0017mm
2
.

SCNN [67] is implemented in 16nm so it is somewhat comparable

to our area numbers. The FNIR block represents 0.02% of the area

of the entire SCNN PE, or 21.25% of the 4 × 4 multiplier array.

7.6 Overhead and Scalability
The overhead of ANT is in the five cycle pipeline start up cost and

in the area for the FNIR block. In the smaller layers, we noticed that

ANT introduces a slowdown of up to 30%. Our hypothesis is that

because our dataflow is distributing very little work to each PEs

(10s-100s of multiplications) due to the sparsity of the matrices, the

pipeline start up costs become important. This overhead becomes

less important as matrices grow in size. Figure 12 shows that ANT

continues to outperform SCNN as the PE is scaled up to large

multiplier arrays. However, as the size of PE (number of multipliers)

increases, the depth of the serialArbiter Selects in the FNIR block

(Section 4.4) would increase, leading to increased area and delay.

Thus, as the size of PE increases, the trade-offs when scaling up

would tend to favour the alternative of increasing the number of

PEs per tile.

7.7 Performance Relative to Inner Product
We examine the relative performance of DaDianNao, TensorDash,

SCNN+, and ANT, on networks with 90% sparsity (Resnet18, WRN,

Densenet and VGGwith SWAT, and Resnet18 with ResProp). We ob-

serve TensorDash improves performance 2.25× over dense, similar

to the 1.95× reported by Mahmoud et al. [57]. However, as Ten-

sorDash only exploits one side of the approximately 90% sparsity,

ANT increases performance by 8.9× over TensorDash. This clearly

illustrates the advantage of using two-sided dynamic sparsity for

training.

7.8 Results on Transformers and RNNs
Evaluation on a text translation transformer [79] and a text clas-

sification RNN [78] trained on a large movie review dataset [56]

shows that ANT can anticipate and eliminate 99% of the RCPs at

0%, 50% and 90% sparsities.

8 RELATEDWORK
Acceleration of DNNs has been studied extensively for inference.

Dense DNN acceleration generally restructures dataflow and mem-

ory system around a series of multiply-accumulate units or systolic

arrays [1, 8, 9, 45, 54, 84]. Other works such as OuterSPACE [66]

have designed non-systolic array architectures to accelerate sparse

matrix multiplications, but do not address sparse convolutions. By

contrast, the techniques applied for inference acceleration vary

greatly [2, 3, 17, 17, 31–33, 67, 86, 89]. Sparse models for these

accelerators are obtained through the many pruning and sparsi-

fication techniques, [23, 25, 36, 48, 49, 58, 62] including channel

pruning [37, 55] and advanced compression [34]. Pruning in this

manner can be classified as train-for-sparsity, i.e., they have little

impact on training. Often, these techniques have a dense forward

pass that significantly increase training costs over non-sparse train-

ing.

Some works have examined dense training acceleration [10, 47],

as well as some completed products [26, 45, 60]. Although the

performance gain from sparse acceleration is much higher [67]

insights from dense accelerators, such as memory hierarchy [84]

can be used with ANT. Fewer works propose accelerators for sparse

training. TensorDash utilizes one-sided sparsity, which achieves

1.95x throughput versus dense [57]. As ANT can take advantage

of sparsity in weights, activations, and gradients simultaneously,

the compute reduction is much higher. Procrustes pairs a sparsi-

fication method and accelerator, resulting in a 4.0x speedup over

dense training [83]. ANT, by comparison, can utilize any of the

many sparsification methods. Finally, Sigma uses a flexible adder

network to extract sparsity in matrix multiplies for a 5.7x increase

in performance [68]. However, Sigma does not address RCPs, and

is targeted at matrix multiplies, hence ANT could potentially be

combined with this work.

The accelerator proposed by this and other sparse training works

is enabled by many techniques which reduce training computations.

Sparsifying activations can be accomplished easily with ReLU [64],

dropout [74], or by more advanced methods [27, 61]. ReLU and

dropout also result in activation gradient sparsity, which is why

many networks have some natural sparsity [35, 85]. By contrast,

weight sparsity needs to be induced over the course of training,

which has been shown to be feasible by many works [20, 34, 52,

53, 55, 69, 87]. Inducing gradient sparsity is relatively unstudied,

however, some works have shown that gradient sparsity can re-

duce training computation significantly [11, 28, 51]. ReSprop [28]

does mention a CNN training accelerator but does not describe

details of the accelerator nor mention RCPs. Finally, a few works

propose introducing sparsity at multiple locations during training

(e.g., weights and activations) [63, 69]. These works show that a

wide array of choices can be used to generate sparsity that can

improve the performance of the ANT accelerator.



ISCA ’22, June 18–22, 2022, New York, NY, USA Jonathan S. Lew, Yunpeng Liu, Wenyi Gong, Negar Goli, R. David Evans, and Tor M. Aamodt

There are other ways of improving training throughput besides

sparsity. Quantizing networks to binary [13, 14], ternary [50] or

another reduced precision [12, 16, 41, 82, 88] can greatly reduce

training compute requirements. This work uses 16-bit fixed point

but can be easily combined with these works by reducing the preci-

sion. Finally, works have increased training performance by other

means, such as reducing activation footprint [7, 22], or by creating

more efficient models [30, 42]. ANT can similarly be combined with

these methods, albeit with some effort.

9 CONCLUSION
We have observed and addressed an inefficiency in outer-product

sparse convolution training: Redundant Cartesian Products (RCPs)

are products that map to indices that are outside of the dimensions

of the output matrix. Over 90% of RCPs can be detected and elimi-

nated using our proposed ANTicipator Acclerator (ANT). We show

that detecting and eliminating such products from sparse indices

can be achieved using a pipelined architecture that can not only

eliminate redundant computation, but also skip SRAM accesses.

This architecture requires 0.0017mm
2
of additional area. We evalu-

ate our design on training for DenseNet-121 [38], ResNet18 [35],

VGG16 [73], Wide ResNet (WRN) [85], and ResNet-50 [35] and find

3.71× speed up over an SCNN-like accelerator and 4.40× decrease

in energy consumption. We show that ANT can be extended to

accelerate matrix multiplications, anticipating and eliminating 99%

of RCPs on a text translation transformer [79] and a text classifi-

cation RNN [78]. Finally, ANT is dataflow- and memory-agnostic,

so it can be combined with any other outer-product-based sparse

training hardware to eliminate RCPs and improve performance.
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