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Abstract—As larger System-on-Chip (SoC) designs are at-
tempted on Field Programmable Gate Arrays (FPGAs), the need
for a low cost and high performance Network-on-Chip (NoC)
grows. Virtual Channel (VC) routers provide desirable traits
for an NoC such as higher throughput and deadlock prevention
but at significant resource cost when implemented on an FPGA.
This paper presents an FPGA specific optimization to reduce
resource utilization. We propose sharing Block RAMs between
multiple router ports to store the high logic resource consuming
virtual channel buffers and present BRS (Block RAM Split), a
router architecture that implements the proposed optimization.
We evaluate the performance of the modifications using synthetic
traffic patterns on mesh and torus networks and synthesize the
NoCs to determine overall resource usage and maximum clock
frequency. We find that the additional logic to support sharing
Block RAMs has little impact on Adaptive Logic Module (ALM)
usage in designs that currently use Block RAMs while at the
same time decreasing Block RAM usage by as much as 40%.
In comparison to designs that do not use Block RAMs, a 71%
reduction in ALM usage is shown to be possible. This resource
reduction comes at the cost of a 15% reduction in the saturation
throughput for uniform random traffic and a 50% decrease in
the worst case neighbour traffic pattern on a mesh network. The
throughput penalty from the neighbour traffic pattern can be
reduced to 3% if a torus network is used. In all cases, there is
little change in network latency at low load. BRS is capable of
running at 161.71 MHz which is a decrease of only 4% from the
base virtual channel router design.

I. INTRODUCTION

As the size of Field Programmable Gate Arrays (FPGAs)

grow, so does the desire and ability to implement larger

FPGA based System-on-Chip (SoC) designs. This in turn

has resulted in an increasingly large number of cores that

need a low cost and high performance method of commu-

nicating among each other. Previously proposed methods of

connecting the various cores included using a shared bus

or directly connecting each component to every component

it communicates with. The desire for better scalability and

performance has led researchers to propose using a Network-

on-Chip (NoC) to provide the communication network [1].

An NoC provides a highly scalable structure that facilitates

simultaneous communication among network nodes [1]. In

this paper, we study NoCs composed of routers that are used

to pass messages between two nodes. NoC designers want

NoCs that use a minimal number of resources while providing
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Fig. 1. Contour plot of the difference in maximum node count between
BRS and CONNECT across different combinations of free M9Ks and ALMs.
Positive values mean more BRS nodes.

as much performance as possible where performance refers

to lower network latency and higher throughput. Previous

studies have examined using FPGAs to simulate Application-

Specific Integrated Circuit (ASIC) NoCs [2] or have attempted

to directly use an NoC designed for ASICs on an FPGA [3].

However, designing an NoC for use on FPGAs presents its

own unique issues and is a far less studied area compared

to ASIC NoCs. An NoC optimized for an ASIC system will

not necessarily be an efficient design on an FPGA and ASIC

optimizations will not necessarily improve an FPGA NoC [3].

One particular NoC component that is problematic to imple-

ment on an FPGA is a Virtual Channel (VC) router. A simple

router without VCs can suffer from head-of-line blocking

which harms the NoC’s throughput. Head-of-line blocking

is when the packet at the head of a queue stalls and the

packets behind it are also blocked as a result. VCs allow

for packets to go around other packets that have stalled [4].

Additionally, VCs are required to prevent deadlock in some

routing algorithms [5]. The class of routing algorithms that

require VCs to prevent deadlock include the well known

and popular torus network based dimension-ordered routing

[6]. While VCs are a common feature in routers for ASIC

NoCs, efficient implementation in an FPGA NoC has been978-1-4673-2845-6/12/$31.00 c© 2012 IEEE



a challenge. A VC router can end up using up to five times

as many resources as a router without VCs [7]. A significant

part of the resource usage problem with VCs comes from the

VC buffers [3]. VC buffers cannot use an FPGA’s Distributed

RAMs or Block RAMs in an efficient manner [3]. More details

regarding this problem are provided in Section III.

The inefficiency in Block RAM usage for VC buffers is

the key problem targeted by this work. We present the BRS

(Block RAM Split) router architecture which addresses this

problem by customizing the router design so the VC buffers

can be implemented using a minimal number of Block RAMs

while simultaneously freeing a large quantity of the Adaptive

Logic Modules (ALMs) for use on user logic. Primarily this

is achieved through a method of sharing a single Block

RAM between the VC buffers of two router ports. VC buffer

management is also modified to accommodate the additional

limitations resulting from sharing a Block RAM.

Fig. 1 shows how many more nodes can be synthesized

when using a router architecture that uses Block RAMs

compared to an architecture that does not. The graph was

produced by extrapolating the resource data from Table I and

Table III which will be discussed later in the paper. It shows

how the BRS router compares against CONNECT [3], a design

that does not use Block RAMs, under different combinations

of resources. The bounds of the graph are set to match the

number of M9Ks and ALMs on the FPGA board we were

targeting which are 1280 and 212480 respectively. CONNECT

does better when there are only a few Block RAMs available

for use in the NoC. However, the minimum number of Block

RAM required before a larger number of BRS routers can

be synthesized is low compared to the total number of Block

RAMs and beyond this point many more BRS routers can be

synthesized relative to CONNECT.

Our results show that compared to a router that uses Block

RAMs we achieve a 40% reduction in Block RAM usage for

a torus NoC. At the same time, performance is unaffected

at lower loads. When compared to a router that does not

implement VC buffers in Block RAMs, a 71% reduction in

ALM usage is shown. Also, our results show only a 4%

decrease in clock frequency relative to the base virtual channel

router design.

The remainder of the paper is structured as follows. Sec-

tion II covers previous work related to NoCs on FPGAs

and prior attempts at implementing a VC router. Section III

reviews the design of a traditional VC router and details

the problems with implementing the design on an FPGA.

Section IV contains the proposed architectural changes to

the VC router to optimize the design for FPGAs. Section V

evaluates the effects on resource usage, network latency and

clock speed of the proposed optimization before concluding

in Section VI.

II. RELATED WORK

Previous work has covered several topics related to our

study. They primarily cover alternate FPGA router optimiza-

tions and methods of predicting NoC performance.

CONNECT [3] is one of the few previous works that

attempts to present an FPGA optimized NoC that can use VC

routers. CONNECT is an NoC generator that produces NoCs

with highly parameterized single stage routers. CONNECT

identifies several differences between ASIC NoC and FPGA

NoC design such as the limitation in data storage. CONNECT

highlights Block RAMs as a scarce resource that is hard to use

efficiently and CONNECT avoids them completely in favour

of using Distributed RAMs to implement the VC buffers.

BRS takes a different path than CONNECT and explicitly

targets using Block RAMs to significantly reduce usage of

logic resources. RASoC [8] and LiPaR [9] also present routers

optimized for FPGAs but they do not support virtual channels.

Lu et al. [10] try to optimize a VC router through changes

to the VC buffer organization and allocator design. They use a

memory block per router port to hold the VC buffers associated

with the port. Normally the wide data lines to a memory block

need to run through a multiplexer and multiplexers do not

map to FPGA logic blocks very well. Instead they devise a

system where the narrower memory block address lines are

multiplexed. Our proposed optimizations differs in that we

combine the VC buffers from two ports into a single memory

block implemented using a single Block RAM. Lu et al.’s

parallel VC/switch allocator optimization is orthogonal to our

proposed optimizations and can be used to further reduce

resource usage.

Targeting specific communication patterns is another ap-

proach to optimizing a router. By targeting a master-slave

communication pattern, Leary et al. [11] are able to decrease

resource usage and network latency while improving through-

put. Singh et al. [12] generate multiple NoC configurations

that are loaded at runtime to match the application which takes

advantage of the reconfigurability of the FPGA.

There is also work looking at the performance of NoCs

implemented on an FPGA. Shannon et al. [13] look at creating

a model for predicting the performance of NoCs that have

been implemented on an FPGA over a variety of topologies

and FPGAs.

GCQ [14] proposes an FPGA based switch implementation

that uses an alternate method of sharing Block RAMs among

multiple data queues. Their work targets a Combined Input

and Crosspoint Queued switch architecture and shares Block

RAM among multiple crosspoint buffers in a large crossbar.

They run the Block RAM at a higher clock frequency than

the rest of the switch and time multiplex accesses to it. While

their work targets the crosspoint buffers, our work focuses on

reducing the size of the input buffers. Both optimizations can

potentially be used in the same design.

Saldana et al. [15] evaluate several different FPGA NoC

topologies in terms of resource usage and speed. They con-

clude that for networks with as few as 16 nodes, network

topology usually has little effect on resource usage and for

a resource and speed penalty a fully connected network is

possible. However, their work shows that as the number of

nodes increase and the NoC approaches the limits of the



In

VC

Allocator

Crossbar
SW

Allocator

Route

Computation

VC

Buffers

VC

Buffers

Out

Data

Control

Route Computation

VC Allocation

Switch Allocation Switch Traversal

Fig. 2. Three stage VC router pipeline.

routing capacity of the FPGA, mesh and hypercube topologies

perform best. Our proposed modifications do not affect the

wiring between routers and can be used to reduce Block RAM

usage for larger mesh networks.

Francis et al. [16] propose using an FPGA architecture with

Time Division Multiplexed wiring and hard routers to reduce

the size and improve performance of the NoC. BRS does not

require either of these resources to function. Kapre et al. [17]

study a time multiplexed FPGA NoC while our work targets

improving a packet-switched NoC.

III. TRADITIONAL VC ROUTER ARCHITECTURE

VC routers were introduced to improve the throughput of

an NoC [4] and allow a greater variety of routing algorithms

to run deadlock-free [5]. However, the large amount of FPGA

resources consumed by the traditional VC router architecture

[7] is a barrier to more widespread adoption of VC routers on

FPGA.

The traditional VC routing process is broken into four

pipelined stages [6]. These stages include Routing Compu-

tation, Virtual Channel Allocation, Switch Allocation and

Switch Traversal. Each input port of the router has an associ-

ated input unit that contains the input port’s VC buffers and

VC state information. The router also contains a VC allocator

and switch allocator to manage access to the output VCs and

reserve cycles on the switch. To reduce the number of clock

cycles to traverse the router, the number of pipeline stages is

reduced to three through lookahead routing computation [18].

Lookahead routing computation means performing the desti-

nation port calculation one router hop in advance. Destination

port calculation for the next router and VC Allocation for

the current router are independent from each other and can

be performed in parallel. An example of the resulting three

stage pipeline can be seen in Fig. 2. While other well known

speculation based optimizations exist that allow for other

stages to be performed in parallel [19], our router architecture

only uses lookahead routing computation.

The router architecture is similar to the one shown in Fig. 3.

A flit is sent by an upstream router or a node attached to the

local input port. At the input port, the flit is stored for one

cycle while the router determines which VC buffer it needs to

be steered towards. Once this is determined, the flit is passed

to the correct VC buffer. At the same time, the incoming

flit is checked to see if it is the first flit in a packet which
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is known as the head flit. The head flit contains additional

information such as the address of the final destination for the

flit. This information is passed on to the Route Computation

block. The Route Computation block performs the lookahead

routing computation [18] to calculate the flit’s desired output

port at the next downstream router. This is done so the route

computation can be done in parallel with VC allocation which

depends on the information from route computation. The VC

allocation stage attempts to allocate an output VC to each

head flit received by the downstream router. Upon success, the

allocation result is recorded and used to direct the remaining

flits in the packet to the same output VC. When the Route

Computation block processes a head flit, the flit is tagged with

the output port the next router should use to send the flit. At

the next router, this information tag is read and a request for a

VC associated with that output port is sent to the VC allocator.

When possible, the VC allocator returns a grant signal to the

head flit’s VC which records the successful allocation. Each

VC buffer on each input port that is holding a head flit that

won VC allocation or a non-head flit that follows a head flit

that won VC allocation, sends a request to reserve cycles on

the switch to the switch allocator. Each output port can only

accept a flit from one VC across all input VCs per cycle.

Also only one VC from each input port can send a flit to

an output port per cycle. The switch allocator enforces this



constraint by only giving a grant to one VC per input port

and granting access to at most one input port to an output

port. There are multiple ways to implement the VC and switch

allocators. The different methods vary in size, performance and

maximum clock speed. We choose to use separable input first

allocators that are comprised of multiple round robin arbiters.

Their benefit is small size and high clock speed. When a VC

buffer is given a grant by the Switch Allocator, during the next

cycle the flit at the front of the buffer is removed and sent into

the switch to be moved to the output port. Once received by

the output port, during the next cycle the flit is sent across the

link towards the next downstream router. To track the amount

of free buffer space at a downstream router, a credit system is

used. An output port starts with a full set of credits which is

decremented as it sends out flits. When the output port runs

out of credits, it knows the downstream router can no longer

accept new flits. As buffer space opens up on the downstream

router, credits are sent back upstream to inform it of the new

free space. This tracking is done on a per input VC basis so

each buffer has its own credit count.

The VC buffers are problematic to implement on an FPGA

due to inefficient mapping to the storage resources [3]. On

an FPGA, storage comes from using logic resources or Block

RAMs. Xilinx’s Distributed RAM uses Lookup Tables (LUTs)

as storage instead of for logic while Altera uses register bits

inside of ALMs. Block RAMs are larger storage units that

cannot be subdivided and are far less abundant than LUTs or

ALMs on an FPGA. Implementing the VC buffers by using

logic resources will use up a significant amount of LUTs or

ALMs with the problem getting worse at larger VC counts or

buffer depth. On the other hand, VC buffers are small relative

to the storage capacity of a Block RAM. Using Block RAMs to

store the VC buffers will use up a highly limited resource and

a large part of the reserved Block RAM will remain unused

due to the inability to subdivide them.

IV. BRS ARCHITECTURE

Our work presents a new and simple method of implement-

ing and managing the VC buffers to reduce the amount of

resources consumed while limiting the impact on performance.

The key to our work is a method of sharing the space inside

a Block RAM between the flit data portion of the VC buffers

associated with two of the router input ports. This change

can be seen in Fig. 4 where the VC buffers for two input

ports are now held within a single Block RAM as opposed

to Fig. 3 where they are separate memory blocks that could

be implemented in either Block RAMs or logic resources. Flit

header information is small and is required to be accessed

more often than the flit data so it is still stored in logic

resources.

We designed the BRS architecture to target an FPGA that

uses Altera M9K Block RAMs but the idea can be extended

to other Block RAMs that support true dual port access. The

M9K memory block comes with several limitations that must

be addressed before they can be used to store the desired VC

buffers. The primary issue is the number of ports on the Block

RAMs. The M9K Block RAMs have two read/write ports. On

any given cycle, a port can be used to either read or write to

a memory location in the Block RAM. A single port can also

be used to read and write to the same memory location during

the same cycle. In our work we configure the Block RAM

such that a read and write during the same clock cycle will

return the new data if the same Block RAM port is used and

the old data if different Block RAM ports are used. For Block

RAMs that do not support this configuration, additional logic

will be required to read the new data during a simultaneous

read and write. In the baseline design, a VC buffer can both

be written to and read from during the same cycle if a flit

arrives at the input port at the same time the VC is sending a

flit through the switch to an output port. Since two ports will

be sharing a single Block RAM, this can result in accesses to

as many as four different memory locations during the same

cycle. This behaviour is not compatible with Block RAMs

which can access at most two different locations at the same

time. The second issue with the Block RAMs is the limitation

on the data width and VC count and depth. While operating

as a true dual port memory, the M9K Block RAMs have a

maximum data width of 18 bits and can hold 512 entries of

data of this size.

To address the issue of a limited number of Block RAM

ports, modifications to the VC buffer management were re-

quired. Situations where more than two locations in a Block

RAM were accessed needed to be avoided. This required

implementing a form of stalling when a write or read to the

Block RAM could not be performed during the current cycle

and ensuring that the write or read is performed in the future.

The router only writes to a Block RAM when a new valid

flit arrives at an input port. Reads from a Block RAM only

occur when a VC on one of the router ports sharing the Block

RAM is able to win switch allocation. The lookahead route

information is read and recorded when a head flit initially

enters the VC buffer and does not need to be read out of a

Block RAM. This reduces resource usage but comes at the

expense of preventing VC reassignment until an entire packet

has been sent.

To stall writes to a Block RAM, information would need to

be passed to the upstream router to indicate a flit was received

but dropped and needs to be resent or to block the flit from

being sent in the first place. In the interest of keeping the credit

logic simple, we opted to give priority to Block RAM write

attempts so they are never stalled. The potential downside of

this is an increase in network latency from congestion. A router

with several flits backed up in its VC buffers may have to hold

a normally sendable flit for an extra cycle to receive a flit

from an upstream router that currently has nearly empty VC

buffers. At most two new flits can arrive on the two input ports

sharing a Block RAM during a single cycle. The router ports

can use the two ports on the Block RAM to write both flits

into their respective VC buffer. This way if an upstream router

has credits available, it is able to send a flit with a guarantee

that the downstream router has buffer space and will accept

the flit.



Since Block RAM writes are given priority, the VC buffer

management logic needs to stall VC buffer reads when both

Block RAM ports are used for writes. This stalling is per-

formed by canceling requests to the Switch Allocator. This

is done to prevent a VC from reserving time on the switch

that it cannot use and consequently resulting in unnecessarily

preventing another VC from using the switch during the next

cycle. There are several different combinations of potential

read and write requests to a Block RAM that need to be

handled in different ways. The straightforward cases are when

either both or neither of the ports sharing a Block RAM receive

a new flit. When both router input ports receive a new flit,

two memory locations need to be accessed inside the Block

RAM. This automatically ties up both ports on the Block

RAM so all switch requests from any of the VCs from either

router port need to be squashed. The case where neither port

receives a new flit leaves both Block RAM ports free. This

allows the VCs for both router ports to send their requests to

the switch allocator. The case where only one of the router

input ports receives a new flit is a bit more complex. The

incoming flit will tie up one of the Block RAM’s ports which

means only one of the two router ports can read their flit data

from the Block RAM. Priority for sending their requests to

the switch allocator is given to the port that is not receiving

a new flit. The switch requests of the router port receiving a

new flit are masked off unless the other port sharing the Block

RAM does not have any switch requests to make. This port

selection can sometimes lead to unnecessary stalling when the

port selected loses switch allocation and the port that has its

requests canceled would have won. However, this avoids the

need for additional Switch Allocators that would be required

to redo switch allocation for the other port during the same

cycle.

The limited data width on the Block RAMs creates a

limitation on channel width of the VC router. The data width of

flits passing through the network is limited to the maximum

data width of a Block RAM which is 18 bits for the M9K

Block RAM. Increasing the data width beyond this would

force the need for multiple Block RAMs to hold the VC

buffers of two router ports. The limited capacity of a single

Block RAM also creates a limitation on the number of VCs

and the depth of their buffers. If the number of VCs multiplied

by the depth of the buffer and doubled to account for sharing

between two ports exceeds 512, additional Block RAMs are

once again required to hold the VC buffers.

The ports are chosen to share a Block RAM for their VC

buffers through a configurable parameter. Different pairings

can lead to different effects on the performance of the router.

Ports that frequently receive or send flits together should be

separated into different pairs.

V. EXPERIMENTAL RESULTS

Our work was builds on top of the Booksim Open Source

Network-on-Chip Router RTL [20]. We generate mesh and

torus networks with BRS routers to demonstrate the effect on

performance and synthesize the designs to determine the effect

Fig. 5. ALM Usage as router port count increases.

TABLE I
4X4 MESH RESOURCE UTILIZATION.

Booksim BRS % Diff

Centre Rtr (ALM) 1042 1121 7.59

Total NoC (ALM) 12877 13237 2.80

Centre Rtr (M9K) 5 3 -40.00

Total NoC (M9K) 64 48 -25.00

on resource usage. Synthesis is done using the commercial

tool Quartus II and targets an Altera DE4 FPGA board

(EP4SGX530KH40C2). Simulation of the design is performed

using ModelSim-Altera. Synthetic traffic patterns that inject 4

flit long packets is used. The routers are set to have 2 VCs per

port with VC buffer depth of 16. For the routing algorithm, XY

dimension ordered routing is used. In our router design, the

East and West ports on the router share a single Block RAM

and the North and South ports share a Block RAM. There is

only one local port per router and it is attached to a packet

generator. The local port has its own non-shared Block RAM

for its VC buffers. In the interest of reducing synthesis and

simulation runtime length, our experiments are performed on

4x4 networks. However, our modifications can also be applied

to routers in larger networks and we expect our results to hold

for larger networks as well unless indicated otherwise.

A. Resource Utilization

Higher degree topologies are possible on FPGA and can

result in lower NoC diameter and less routing delay [15].

However, this benefit needs to be weighed against the cost

of the higher radix routers it requires. Fig. 5 shows how the

components of the Booksim router we base our work off grow

in size as the number of ports increase. The VC and switch

allocator components of the router grow quadratically. In the

rest of this study we focus on mesh and torus topologies which

have lower area cost at the potential expense of higher network

latency.

The synthesis results from Quartus II in Table I show the

average resource usage of the four routers in the center of

the 4x4 mesh NoC and the total resources used by the entire

NoC. This data indicates that the additional logic to support

sharing a Block RAM between two ports has low impact on the

number of ALMs used to generate the NoC. The NoC with our



TABLE II
4X4 TORUS RESOURCE UTILIZATION.

4x4 Torus Booksim BRS % Diff

ALM Usage (Avg) 1050 1105 5.29

ALM Usage (Total) 16504 17383 5.33

M9K Usage (Avg) 5 3 -40

M9K Usage (Total) 80 48 -40

modified routers only uses 2.80% more ALMs than the NoC

without modifications. The difference in M9K Block RAM

usage is much more significant with usage decreases of up to

40%. In the original Booksim router, edge and corner routers

use fewer Block RAMs due to unused ports being optimized

out. As a result, these routers do not benefit as much from our

router modification. However, edge and corner routers become

a smaller factor relative to the centre routers as the mesh NoC

is scaled up to higher core counts. The net result on the 4x4

mesh NoC is a 25% reduction in Block RAM usage with low

change in ALM usage. When these results are extrapolated

they show an estimated 30% reduction in Block RAM usage

in mesh NoC as small as 6x6.

We synthesize a 4x4 torus NoC with the same parameters as

the 4x4 mesh NoC. The synthesis results from the torus NoC

are shown in Table II. The results show strong similarities to

the synthesis results of the centre routers in the 4x4 mesh. As

a torus network has no edges or corners, every router hits the

40% decrease in M9K usage that only the centre routers in

the mesh NoC achieved. Although this comes along with the

same ALM increase the centre router in the mesh NoC had, it

is ultimately only a slightly larger than 5% increase in ALM

usage.

Table III displays a comparison between BRS and an FPGA

optimized NoC generated by CONNECT [3]. Unlike BRS

which uses Block RAMs, CONNECT generates an NoC that

avoids using Block RAMs in the interest of leaving them for

the user logic. To follow our implemented 4x4 mesh design

as closely as possible, the CONNECT NoC generated is also

a 4x4 mesh. The CONNECT NoC is set to have 2 VCs per

input port and each VC has a VC buffer with a depth of 16.

For the allocator, a separable input-first round-robin allocator

is used and the flit data width is set to 18.

The data in Table III is taken from synthesizing the

CONNECT NoC in Quartus II. The CONNECT VC Queue

column displays the number of ALMs allocated for use in

implementing the VC buffer storage for routers at the centre

of the mesh NoC. By comparing this against the total number

of ALMs used to implement the complete router, it shows

that a huge percentage of the ALMs used by CONNECT are

being allocated for use as VC buffer storage. At the cost of

the additional Block RAMs to implement the design and any

effects on performance, our router has ALM usage that is

lower by 71%. The ALM usage decrease in the centre routers

is almost exactly in line with the overall decrease in ALM

usage which shows that larger networks, that have a larger

percentage of centre routers, will maintain the 71% decrease

Fig. 6. ALM usage of BRS with varying VC buffer sizes. All shown
configurations also use 3 M9K Block RAM.

TABLE IV
MAXIMUM FREQUENCY FOR 4X4 NETWORKS.

Max freq (MHz) 4x4 Mesh 4x4 Torus

CONNECT 72.37 65.58

BRS 161.71 149.43

Booksim 167.31 154.20

in ALM usage.

The number of bits used in a Block RAM can be calculated

by multiplying together the number of ports sharing the Block

RAM, VCs per port, depth of the VC buffers and width of

the VC buffers. Using our presented configuration, at most

1152 out of 9216 bits in a M9K Block RAM are occupied

at the same time and the rest of the space is unused. The

percentage of the Block RAM that is used can be increased if

the desired NoC can take advantage of deeper VC buffers or a

larger number of VCs. Fig. 6 shows how VC buffer sizes affect

ALM usage in BRS. Due to using Block RAMs to store the VC

Queue, significantly larger VC queues can be used in exchange

for a small increase in ALM usage and no increase in Block

RAM usage. However, in the cases where larger VC buffers

are not useful it would be beneficial for an NoC to have access

to smaller Block RAMs on the FPGA. This would increase the

ratio of I/O bandwidth to memory capacity to better match the

demands of the VC buffers.

B. Timing

We used Altera’s TimeQuest Timing Analyzer to find the

maximum clock frequency for BRS and compared it against

Booksim and CONNECT. The results are shown in Table IV.

CONNECT trades off a higher clock speed for fewer router

pipeline stages so it has the lowest clock frequency. Booksim

can run at 2.3 times the clock frequency of the CONNECT

NoC. BRS has a maximum clock frequency of only 4% less

than Booksim and remains 2.2 times higher than CONNECT.

C. Performance Analysis

The graphs in Fig. 7 show how our router modifications

affect network latency under different synthetic traffic patterns.

Synthetic traffic patterns are used to show how a network



TABLE III
BRS VS CONNECT. A 4X4 MESH ALM UTILIZATION COMPARISON.

ALM Usage CONNECT [3] CONNECT VC Queues [3] % VC Queue [3] BRS % Difference

Centre Router 3965 2665 67.22 1121 -71.74

Total NoC 46091 33761 73.25 13237 -71.28

responds to different packet injection patterns. Many of these

synthetic patterns represent communication patterns found in

real applications. After a 10000 cycle warmup period, packets

entering the network for the next 10000 cycles were tagged

as a measurement packet and marked with the cycle number

the head flit entered the source queue. For these packets,

network latency is measured as the difference between the

cycle count tagged on the head flit and the cycle count the

tail flit leaves the network. The simulation is run until all

marked packets have left the network and the average latency

of all marked packages is recorded. To account for the different

cycle length of the different designs, the data is normalized to

a nanosecond scale instead of cycles. The clock frequency

data can be seen in Table IV. We sweep across a range of

offered traffic to compare the latency of each network and

their saturation throughput.

From Fig. 7(a) it can be seen that the proposed modifications

result in a 15% decrease in the saturation throughput for a 4x4

mesh NoC running uniform random traffic. The difference in

performance comes from the new stalling conditions intro-

duced by the limited port count on the shared Block RAMs.

At lower injection rates, the effect on packet latency is nearly

non existent. Lower injection rates lead to lower traffic on

the network which in turn reduces the likelihood of two ports

sharing a Block RAM both receiving a flit during the same

cycle which would stall reading flit data to be sent out of the

VC buffers. Despite the decrease in saturation throughput, the

network with our routers still beats the network generated by

CONNECT by 10%. On a 4x4 torus network, BRS performs

even better against the Booksim router and CONNECT. As

shown in Fig. 7(b) the modified routers now only reduce

saturation throughput by 10% relative to Booksim and does

40% better than CONNECT. Using a torus network instead

of a mesh network reduces the average number of hops from

source to destination and increases the number of links in the

network the traffic is spread over. These factors reduce link

utilization for equal levels of offered traffic which in turns

reduces the likelihood of the new stalling conditions being

triggered.

Traffic patterns other than uniform random can result in

different effects on performance. In particular the neighbour

traffic pattern can lead to two different extremes depending on

whether the network is a mesh network or a torus network.

This effect can be seen in Fig. 7(c) which shows the mesh

network case and Fig. 7(d) which shows the torus network

case. Neighbour traffic on a mesh network is a worst case

scenario for our routers while neighbour traffic on a torus

network is one of the best cases. Under the neighbour traffic

pattern each node sends a message to the node one hop to

the right and one hop up. On both mesh and torus topologies,

the input ports on a router never compete for the same output

port. This is a highly favourable traffic pattern for the Booksim

router and the routers generated by CONNECT and allows

these routers to consistently receive and send flits on every

port each cycle. Even at a 100% injection rate, represented

by the far right point on CONNECT’s lines in the graphs, the

CONNECT NoC’s latency remains constant. In the case of

the Booksim router, constant latency all the way to 100% is

not quite achievable due to having to wait for a VC buffer

to be empty before reusing it. While our routers also benefit

from the neighbour traffic pattern relative to uniform random

traffic, sharing a Block RAM between the VCs of two ports

means our router cannot consistently send and receive flits on

all ports. This prevents our routers from improving as much

as the other two designs. However, at lower levels of offered

traffic, BRS has similar latency to the other two designs and

near 100% injection rate is an extreme situation that is unlikely

to occur.

In contrast to when it is run on a mesh, when neighbour

traffic in run on a torus network, it turns out to be highly

beneficial to BRS. When neighbour traffic is run on a torus,

only West, South and Local input ports, which use three

different Block RAMs, receive flits each cycle. The result is

the new stalling conditions are never triggered. Cycle for cycle,

our modified router matches the Booksim design but when

normalized to nanoseconds the performance is around 3%

worse due to a lower clock frequency. For the neighbour traffic

pattern on a torus, the CONNECT NoC is able to achieve a

100% offered traffic rate. However, due to the difference in

clock frequency it has a saturation throughput around 40%

worse than our modified routers.

Fig. 7(e) and Fig. 7(f) show how the different networks

respond to a bit complement traffic pattern while Fig. 7(g)

and Fig. 7(h) show the response to a transpose traffic pattern.

On a mesh running bit complement traffic, our routers have

a 30% lower saturation throughput compared to Booksim but

is nearly 15% better than CONNECT. On a torus running bit

complement traffic, the different networks perform similarly

to neighbour traffic. In the case of transpose traffic, our router

nearly matches Booksim in terms of performance. In the

transpose traffic pattern, no router receives data from more

than 2 input ports. In only 2 of the 16 routers in the 4x4

mesh do the 2 input ports share a single Block RAM. The

result of this is the new stalling conditions are rarely triggered.

The saturation throughput of our router network in this traffic

pattern is only 3% worse than the Booksim router network

and 30% higher than the CONNECT network.
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(a) 4x4 mesh, uniform random traffic
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(b) 4x4 torus, uniform random traffic
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(c) 4x4 mesh, neighbour traffic
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(d) 4x4 torus, neighbour traffic
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(e) 4x4 mesh, bit complement traffic
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(f) 4x4 torus, bit complement traffic
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(g) 4x4 mesh, transpose traffic
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(h) 4x4 torus, transpose traffic

Booksim BRS CONNECT

Fig. 7. Network Latency vs Offered Traffic for multiple topologies and traffic patterns. Lower latency means better performance.

VI. CONCLUSION

This paper presented a novel approach to improving the

efficiency of using Block RAMs to reduce the size of a

VC Router implementation on FPGAs and the BRS router

architecture that uses the proposed optimization. We discussed

the problem of VC buffer implementation and how they have

a large impact on the ALM usage of a router and how a Block

RAM implementation can be used to reduce this impact. We

present a method of modifying the router to share Block RAMs

between the VC buffers of two ports to minimize the Block

RAM usage of BRS. The BRS routers were both synthesized

and simulated using 4x4 mesh and 4x4 torus NoCs. The

resource usage results displayed a 25% decrease in Block

RAM usage and comparable ALM usage to a base router

design that implements their VC buffers in Block RAMs. In

comparison to a router that did not use Block RAMs, a 71%

reduction in ALM usage was shown. In terms of performance,

there was only a 15% decrease in saturation throughput when

running uniform random traffic and 50% for neighbour traffic

on a mesh which can be reduced to 3% if run on a torus. The

effect on maximum clock frequency was a minor 4% decrease



relative to the original design.
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