
Treelet Prefetching For Ray Tracing
Yuan Hsi Chou
yuanhsi@ece.ubc.ca

University of British Columbia
Canada

Tyler Nowicki
tyler.bryce.nowicki@huawei.com

Huawei
Canada

Tor M. Aamodt
aamodt@ece.ubc.ca

University of British Columbia
Canada

ABSTRACT
Ray tracing is traditionally only used in offline rendering to produce
images of high fidelity because it is computationally expensive.
Recent Graphics Processing Units (GPUs) have included dedicated
accelerators to bring ray tracing to real-time rendering for video
games and other graphics applications. These accelerators focus on
finding the closest intersection between a ray and a scene using a
hierarchical tree data structure called a Bounding VolumeHierarchy
(BVH) tree. However, BVH tree traversal is still very costly due
to divergent rays accessing different parts of the tree, with each
ray following a unique pointer-chasing sequence that is difficult
to optimize with traditional methods. To address this, we propose
treelet prefetching to reduce the latency of ray traversal. Treelets
are smaller subtrees created by splitting the BVH tree. When a ray
visits a treelet root node, we prefetch the corresponding treelet,
enabling deeper levels of the tree to be fetched in advance. This
reduces the latency associated with pointer-chasing during tree
traversal. Our approach uses a hardware prefetcher with a two-
stack treelet based traversal algorithm, maximizing the benefits of
treelet prefetching. Our simulation results show treelet prefetching
on average improves performance of the baseline RT Unit in Vulkan-
Sim by 32.1% while maintaining the same power consumption.

CCS CONCEPTS
• Computing methodologies→ Ray tracing; • Computer sys-
tems organization→ Single instruction, multiple data.

KEYWORDS
ray tracing, graphics, prefetching, hardware accelerator, GPU
ACM Reference Format:
Yuan Hsi Chou, Tyler Nowicki, and Tor M. Aamodt. 2023. Treelet Prefetch-
ing For Ray Tracing. In 56th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’23), October 28–November 01, 2023, Toronto,
ON, Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3613424.3614288

1 INTRODUCTION
Ray tracing is a rendering technique that generates realistic images
by simulating the paths of light rays interacting with objects and
materials in a scene. It was traditionally used for offline rendering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00
https://doi.org/10.1145/3613424.3614288

(a) Average DRAM utilization.

(b) Average memory latency of demand loads.

Figure 1: Memory statistics for ray tracing comparing the
baseline RT unit to our approach.

such as in film production due to its high computational demands,
which made real-time ray tracing applications on consumer hard-
ware impractical. Modern GPUs, such as those made by NVIDIA,
AMD, and Intel, come with specialized ray tracing accelerators.
These accelerators allow for real-time ray tracing, which greatly
improves the visual quality of graphics-intensive applications like
video games. However, current hardware still struggles to fully
render ray traced effects before frame rates drop below the desired
real-time threshold of 60 frames per second [38].

The primary performance bottleneck in ray tracing is the cost
of determining the closest intersection between a ray and a scene.
While the scene is encoded as a tree data structure such as a Bound-
ing Volume Hierarchy (BVH) tree to reduce the cost of finding
intersections, traversing the BVH tree is still costly due to long
memory latencies. This is because rays are usually incoherent (or
lack locality), traveling from different locations and in various direc-
tions, and can traverse through different parts of the tree, causing
divergent memory accesses and frequent cache misses. Figure 1
shows the average DRAM utilization and BVH memory access la-
tency for ray tracing workloads on a baseline RT unit compared to
our treelet prefetching approach. Ray tracing is a latency-bound
application, meaning that threads are typically waiting on small
data blocks to be fetched frommemory, as seen from the low DRAM
utilization and high memory latency in the baseline RT unit. Our
approach reduces the memory latency of BVH accesses by 54% on
average, resulting in a 32.1% IPC improvement in our results.

https://doi.org/10.1145/3613424.3614288
https://doi.org/10.1145/3613424.3614288
https://doi.org/10.1145/3613424.3614288

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Chou, et al.

GPUs rely on massive thread-level parallelism to hide memory
latency. However, when there are significantly more memory re-
quests per thread compared to the amount of compute, there will
be insufficient warps for hiding memory latency. While increasing
thread count can alleviate this, this comes at the cost of area over-
head and increased register file usage. Prefetching techniques can
be used to improve memory latency tolerance in GPGPU applica-
tions [22, 24, 42]. These techniques utilize tables to capture memory
access locality and prefetch data into the cache. Unfortunately, they
are not well suited for highly erratic and divergent memory ac-
cesses, as in the case of ray tracing. Prefetching techniques for
graph applications have also been proposed [6, 17, 40, 45, 47], tak-
ing advantage of the predictable access offset patterns in graphs
represented by adjacency matrices in a compressed sparse row
(CSR) format. Although BVH trees are a type of graph, they contain
more structure than arbitrary graphs. An 𝑛-node BVH tree only
contains 𝑛 − 1 edges which if stored with an N-by-N adjacency ma-
trix in CSR format introduces unnecessary complexity. BVH trees
are also the industry standard for ray tracing as seen in NVIDIA
Ada and Ampere whitepapers [2, 4]. Feng et al. [13] partition data
structures to exploit parallelism, subdividing graphs and trees and
distributing each partition to different threads to improve paral-
lelism for CPUs. Recently, Liu et al. [27] worked on predicting ray
intersections. However, their approach is limited to certain ray trac-
ing effects such as ambient occlusion where any-hit intersections
suffice and does not work well when closest-hit intersections are
required for global illumination.

Aila et al. [5] proposed to use treelets, which are small subtrees of
the overall BVH tree to speed up ray traversal. They explored using
treelet queues to queue up rays that visit the same treelet and pro-
cess them together to increase memory reuse. While an interesting
idea, their simulated architecture is different from a programmable
GPU and they lacked an actual hardware implementation. Adopting
the queuing mechanism with current GPU threading models and
modern ray tracing APIs is non-trivial. In this work, we build off
the concept of treelets and propose prefetching for BVH trees at a
treelet granularity. Tree traversal is an intensive pointer-chasing
operation, requiring traversing to a node in the tree and finding the
child pointers, before being able to find the child node addresses
and issue loads. With treelet prefetching, as rays traverse the BVH
tree and visit the root node of treelets, corresponding treelets can be
prefetched to load deeper levels of the tree before they are needed.
We combine treelet prefetching with a treelet based traversal algo-
rithm in the ray tracing accelerator to further reduce ray traversal
latency. From the limited available public information disclosed by
GPU hardware manufacturers [2–4, 9, 11], it is unclear whether
any commercial designs implement treelets and if so how.

We make the following contributions in this paper:

• We propose a treelet prefetching technique for ray tracing
that can hide the memory latency of ray traversal.
• We propose a lightweight hardware implementation of a
treelet based prefetcher by organizing BVH memory in a
treelet based layout.
• We propose a treelet based traversal algorithm that is able
to take advantage of treelet prefetching.

2 BACKGROUND
This section describes the GPU architecture with a dedicated ray
tracing accelerator and GPU prefetching techniques.

2.1 Ray Tracing and BVH Traversal
2.1.1 Ray Tracing Overview. Ray tracing is a rendering technique
that simulates the path of light in a scene by tracing rays from the
camera through the scene [38]. Rays originate from the camera, pass
through the image plane, and trace through the scene to find the
closest intersection with a primitive. These rays, known as primary
rays, are used to find the color of the pixel by sampling the color of
the primitive at the intersection point. From the intersection point,
secondary rays can be shot in the direction of the light sources to
render shadows or towards nearby surfaces for global illumination.
Additionally depending on the material of the intersected surface,
if reflective or glossy, reflection rays can be traced to follow the
path of the light bounce to render reflections. More rays can be
cast per pixel and the results from each ray are accumulated and
averaged to obtain the final pixel value [20]. As the number of
rays traced per pixel is increased, more of the scene is sampled
to produce better image quality. However, tracing a large number
of rays is expensive and difficult to achieve under a constrained
time budget. To improve render performance, the scene is built into
an acceleration structure as a BVH tree to reduce the number of
triangles or primitives a ray needs to test intersections with.

2.1.2 BVH Traversal. Ray tracing is a memory intensive task of
traversing an acceleration structure in the form of a BVH tree to find
the closest intersection between a ray and a primitive. A BVH tree
is a hierarchical tree structure that organizes geometric primitives
into multiple layers of bounding boxes. A node in the upper layers
of the BVH tree contains a bounding box that encloses all bounding
boxes and primitives of its child nodes. A BVH tree consists of
two types of nodes: internal nodes and leaf nodes. Internal nodes
contain axis-aligned bounding boxes (AABBs) and pointers to child
nodes, and leaf nodes contain the actual primitives. BVH trees
usually contain millions of triangles and are too large to fit entirely
in cache.

The traversal process usually follows a depth-first (or breadth-
first) search of the BVH tree while tracking unvisited intersected
nodes in a traversal stack. We describe a depth-first traversal in the
following. The traversal stack is first initialized with the BVH root
node. Every loop iteration when the traversal stack is not empty, the
front of the stack is popped and the popped node is checked for a
ray intersection. If the intersected node is an internal node, its child
nodes are pushed to the traversal stack. Otherwise, the intersected
node is a leaf node, the primitive is tested for intersection with
the ray, and the hit distance is recorded to identify the closest-hit
primitive. This process repeats until there are no more nodes on the
traversal stack. Ray tracing accelerators are designed to perform
this traversal process as efficiently as possible.

2.2 GPU Architecture and RT Accelerators
GPUs are massively parallel processors containing tens of thou-
sands of threads. Figure 2 illustrates the baseline GPU architecture
with a dedicated ray tracing accelerator that we build on in this

Treelet Prefetching For Ray Tracing MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Figure 2: Baseline GPU architecture with RT Unit [41], with treelet components in red.

work. A GPU is composed of a collection of Streaming Multipro-
cessors (SMs) in NVIDIA’s terminology, which serve as the GPU’s
computational units. Within each SM, there are multiple execution
units responsible for executing shader programs. Threads in an
SM are organized into warps which are groups of 32 threads that
are executed in lockstep or a Single Instruction Multiple Thread
(SIMT) fashion. Each SM also has multiple warp schedulers, each
responsible for scheduling a group of warps in Greedy-then-Oldest
(GTO) fashion. Additionally, every SM contains its own L1 cache,
texture cache, and constant cache that is accessible to warps via a
crossbar. All SMs are connected to a shared L2 cache which is di-
vided into multiple memory partitions and communicates through
an interconnect.

Modern GPUs now integrate a ray tracing accelerator within
each SMwhich has dedicated hardware responsible for ray traversal
and intersection testing. In Vulkan-Sim [41], the simulator we use
for evaluation, the ray tracing accelerator is referred to as the RT
unit. When a warp issues a trace ray instruction, it enters the RT
unit during the pipeline’s execute stage and is queued in the warp
buffer, which holds ray metadata for all 32 threads of the warp.
During each cycle, the RT unit selects a warp in the warp buffer for
processing and issues memory requests to an L1 memory access
queue. The returned data is read from the response FIFO and is used
to perform ray-box and ray-primitive intersection tests with the
operation units. Traversal results are written back to the warp buffer
and the warp is cleared from the warp buffer when all the rays in the
warp have been processed. Major GPU companies such as NVIDIA,
AMD, Intel, and Imagination have published high level diagrams or
press releases of their ray tracing hardware accelerators [2–4, 9, 11],
however details of their microarchitecture are not publicly available.
Besides Vulkan-Sim [41], we are not aware of any other publicly
available GPU simulators that model the RT unit in detail.

We propose to add a treelet prefetcher to the RT unit to speed
up ray traversal along with a prefetch queue to hold the issued
prefetch addresses, both of which are highlighted in red in Figure 2.
We elaborate more on the prefetcher in Section 3.

2.3 Hardware Prefetching Techniques
Prefetching techniques have been extensively researched for CPUs.
There are also prior works on GPGPU application prefetchers with
specific optimizations for GPU architecture.

Stream Prefetchers. Stream prefetchers record the access direc-
tion in certain memory regions [19, 37]. When an access is detected
in the region, it prefetches subsequent memory locations following
the current access. The prefetched data is usually stored in a stream
buffer to avoid cache pollution.

Stride Prefetchers. Stride prefetchers record the local history of
memory accesses by the same PC in a table to capture the stride or
constant offset between memory addresses [12, 14]. When a stride
is detected, it prefetches the next memory location according to the
captured address delta. Stride prefetchers are well suited for arrays
or structured data where memory is accessed with a constant offset.

GHB Prefetchers. Global history buffer prefetchers store the
history of miss addresses in a global history buffer organized as
a FIFO table [34, 35]. Each GHB table entry stores a miss address
and a pointer to the next table entry, linking the miss addresses in
temporal order. Upon encountering amiss, the GHB prefetcher finds
the corresponding entry in the GHB table and uses the pointers
to prefetch the subsequent miss addresses, allowing it to capture
irregular access patterns.

GPGPU Specific Prefetchers. There is prior research on GPU
prefetchers optimized for GPGPU applications. Lee et al. [24] pro-
posed to use stride prefetching along with an inter-thread prefetch-
ing technique. Since GPGPU applications use a high number of
threads, the execution length of each thread is usually short so the
thread that issues a prefetch is unlikely to benefit from it. Inter-
thread prefetching prefetches data for a later thread so that data
will be ready when the thread is scheduled. To achieve this their
prefetcher detects stride and stream access patterns on a per-warp
basis. However, they still rely on stride and stream prefetching
which are unable to capture irregular accesses found in ray tracing.

Koo et al. [22] proposed a CTA-aware prefetcher that works
in conjunction with their scheduling scheme to address L1 cache
misses that occur in a bursty manner for memory intensive applica-
tions. This leads to memory contention and impacts performance as

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Chou, et al.

warps stall waiting for memory. They alleviate this by spreading out
the bursty accesses over time through their proposed CTA-aware
scheduler and prefetch data based on the leading warp of a CTA
as threads within a CTA typically have stride accesses. However
similar to the previous work, this technique does not apply to access
patterns without a predictable base address and offset.

Irregular Workload Prefetchers. Ainsworth et al. [6] propose
a prefetcher for graph applications to overcome the inability of tra-
ditional hardware prefetchers to capture irregular access patterns.
These seemingly randommemory accesses in graph workloads turn
out to be well defined and predictable in advance due to graphs
being stored in a standard format. Using data structure and appli-
cation specific knowledge, they can know the traversal order of
neighbor nodes ahead of time when a node is visited and prefetch
node data. While BVH trees are a type of graph, they are not stored
in a compressed sparse row format that is typically used in graph
applications. Rather, nodes in a BVH tree are organized as a tree
where nodes are connected through pointers. This makes subse-
quent node addresses difficult to predict with a base address and
index offset. Other graph prefetchers are discussed in Section 7.

2.4 Ray Traversal Prefetching Challenges
As mentioned previously, ray traversal involves following a long
sequence of pointer-chasing for each ray. Both stride and stream
prefetchers are ineffective for irregular access patterns found in
BVH traversal as the next node traversed by a ray is unlikely to
follow a constant offset. While GHB prefetchers are effective for
irregular access patterns, they are also not suitable for BVH tra-
versal as each miss address sequence is often specific to a single
ray. Guo et al. [17] evaluated a stride-based GHB prefetcher on a
GPU in GPGPU-Sim [8]. They conclude that GHB prefetchers are
ineffective for graph applications when using breadth-first search
due to low prefetcher coverage and irregular strides in memory
access patterns. Ray tracing workloads also exhibit irregular access
patterns during ray traversal because each ray is used to sample
different parts of the scene. As a consequence, rays are usually
dispatched from various locations and cast in different directions.
This characteristic is especially found in secondary and reflection
rays which traverse drastically different parts of the BVH tree due
to the different ray bounces. As a result, the memory access pattern
of BVH tree traversal is highly irregular and unpredictable, making
it difficult to predict the next memory access and prefetch the data
in advance. To address this, we propose a treelet based prefetcher in
Section 3 that is specifically designed for the divergent and irregular
memory accesses of BVH traversal.

3 TREELET PREFETCHING
This section describes our proposed treelet prefetching technique
for ray tracing. We first outline how treelets are formed from an ex-
isting BVH tree. Then we discuss how treelets are used to prefetch
memory for ray traversal. Finally, we propose a treelet based traver-
sal algorithm that improves ray tracing performance further when
combined with treelet prefetching. The hardware implementation
will be discussed in Section 4.

Figure 3: Example of a tree split into treelets with amaximum
of 4 nodes similar to Figure 2 in [5]. Each circle represents a
BVH node. Same colored nodes belong in the same treelet.

3.1 Treelet Based Formation
Inspired by Aila et al. [5] who proposed the concept of treelets, in
this work we also divide up the BVH tree into connected subtrees
called treelets to prefetch at a treelet granularity. Figure 3 shows
an example of a two-wide BVH tree partitioned into treelets with a
maximum size of 4 nodes each. In practice and in our evaluation,
BVH trees are much larger and not limited to binary trees. We form
treelets by grouping connected BVH nodes to maximize the size
of each treelet. It is a greedy algorithm that starts from the BVH
root node and greedily adds nodes to the current treelet until the
maximum treelet size is reached. Three queues are used to track the
formation progress. The completedTreelets queue contains the root
address of completed treelets. The pendingTreelets queue contains
the root address of treelets that have yet to be processed. Finally,
the stack contains BVH nodes that still need to be traversed, similar
to the traversal stack in the ray traversal algorithm.

Treelet formation initializes the remainingBytes to the maximum
treelet size and adds the BVH root address to the pendingTreelets
queue and traversal stack. The front of the pendingTreelets queue is
the treelet we are currently forming. In every iteration, we traverse
the tree and add the current node’s children to the traversal stack,
while calculating the remaining treelet space if the current node
were to be added to the treelet. If there is still space, the node is
added to the treelet and traversal continues. Once there is no more
space, the current treelet root is complete and its root address is
moved to the completedTreelets queue. If there are still nodes on
the traversal stack, they are pushed into the pendingTreelets queue
as new treelet root nodes that await formation. Treelet formation
continues with the next treelet root node at the front of the pend-
ingTreelets queue. The formation algorithm terminates when both
the pendingTreelets queue and traversal stack are empty, and the
completedTreelets queue contains the addresses of all treelet root
nodes.

With this algorithm, treelets at upper levels will often be closer
to the maximum desired size due to the greedy nature. This works
to our advantage as the upper levels of the BVH tree are accessed

Treelet Prefetching For Ray Tracing MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

more frequently than the lower levels. In the next sections, we pro-
pose a treelet based ray traversal algorithm with an accompanying
prefetcher.

3.2 Treelet Based Traversal
Ray traversal is typically done by traversing the BVH tree in a
depth-first or breadth-first manner [15, 18, 31]. This causes mem-
ory accesses between rays to be spread out and hard to predict. We
propose a treelet based traversal algorithm performed in the RT
unit that transforms the sequence of memory accesses performed
by each ray to be clustered within individual treelets. The high level
idea is to have rays traverse nodes within a treelet first before mov-
ing on to nodes that belong to a different treelet. This potentially
creates more node reuse opportunities between different rays and
enables prefetching of BVH nodes.

Algorithm 1 describes the proposed treelet based traversal algo-
rithm that will be executed by each ray. Different from a baseline
depth-first traversal algorithm that only maintains one traversal
stack, the treelet based traversal algorithm keeps track of two stacks:
a currentTreeletStack and a otherTreeletStack. The currentTreeletStack
is similar to the traversal stack in the baseline algorithm, record-
ing which nodes still need to be visited in the current treelet. The
additional otherTreeletStack keeps track of treelet root nodes that
need to be traversed by the ray after it finishes intersecting with
the nodes in the current treelet first. In contrast to our minimal
changes to the traversal algorithm, the approach by Aila et al. [5]
greatly alters how ray traversal is handled by using dynamically
allocated treelet queues to hold rays that visit the same treelet and
dedicated hardware for a ray launcher that dispatches rays in these
treelet queues.

To begin, the currentTreeletStack is initialized with the root node
of the BVH tree (Line 1). While there are still nodes in the cur-
rentTreeletStack, ray traversal will follow the baseline algorithm.
The main difference is when adding child nodes that intersect with
the ray, treelet based traversal checks if the child node belongs in
the current treelet or not (Line 13). If the child node belongs in
the current treelet, it is added to the currentTreeletStack (Line 14),
otherwise, it is added to the otherTreeletStack (Line 16). When the
currentTreeletStack is empty, the algorithm transfers the front of
the otherTreeletStack over to the currentTreeletStack (Line 5) and
resumes traversal as described above. Traversal ends when both
the currentTreeletStack and the otherTreeletStack are empty.

3.3 Treelet Prefetching Overview
Treelet prefetching prefetches BVH nodes in treelet granularity
to the GPU’s cache. Ray tracing is a pointer-chasing application
and memory accesses are divergent and hard to predict. With the
treelet based traversal algorithm introduced previously, memory
accesses are now clustered as individual treelets, making it possible
to prefetch easily. As a ray visits a treelet root node, its subse-
quent memory accesses will also be to the nodes in the treelet since
accesses to nodes from different treelets are deferred to the oth-
erTreeletStack. Thus, we can prefetch the entire treelet to the GPU’s
cache and reduce the latency of accessing nodes in the current
treelet. Ray traversal is a pointer-chasing operation where a ray
travels down a node’s child nodes repeatedly, creating a chain of

Algorithm 1 Treelet Based Traversal
Require: 𝑅𝑎𝑦, 𝐵𝑉𝐻𝑅𝑜𝑜𝑡

1: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑟𝑒𝑒𝑙𝑒𝑡𝑆𝑡𝑎𝑐𝑘 ← {𝐵𝑉𝐻𝑅𝑜𝑜𝑡}
2: 𝑜𝑡ℎ𝑒𝑟𝑇𝑟𝑒𝑒𝑙𝑒𝑡𝑆𝑡𝑎𝑐𝑘 ← {}
3: while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑟𝑒𝑒𝑙𝑒𝑡𝑆𝑡𝑎𝑐𝑘 ≠ ∅ || 𝑜𝑡ℎ𝑒𝑟𝑇𝑟𝑒𝑒𝑙𝑒𝑡𝑆𝑡𝑎𝑐𝑘 ≠ ∅ do
4: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑟𝑒𝑒𝑙𝑒𝑡𝑆𝑡𝑎𝑐𝑘 = ∅ then
5: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑟𝑒𝑒𝑙𝑒𝑡𝑆𝑡𝑎𝑐𝑘 .push(𝑜𝑡ℎ𝑒𝑟𝑇𝑟𝑒𝑒𝑙𝑒𝑡𝑆𝑡𝑎𝑐𝑘 .front())
6: 𝑜𝑡ℎ𝑒𝑟𝑇𝑟𝑒𝑒𝑙𝑒𝑡𝑆𝑡𝑎𝑐𝑘 .pop()
7: end if
8: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑟𝑒𝑒𝑙𝑒𝑡𝑆𝑡𝑎𝑐𝑘 .front()
9: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑟𝑒𝑒𝑙𝑒𝑡𝑆𝑡𝑎𝑐𝑘 .pop()
10: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 ≠ leaf node then
11: for child in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 do
12: if RayBoxTest(𝑅𝑎𝑦, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 .AABB) then
13: if child.treelet = currentNode.treelet then
14: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑟𝑒𝑒𝑙𝑒𝑡𝑆𝑡𝑎𝑐𝑘 .push(child)
15: else
16: 𝑜𝑡ℎ𝑒𝑟𝑇𝑟𝑒𝑒𝑙𝑒𝑡𝑆𝑡𝑎𝑐𝑘 .push(child)
17: end if
18: end if
19: end for
20: else
21: ℎ𝑖𝑡𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 ←

RayPrimitiveTest(𝑅𝑎𝑦, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 .primitive)
22: end if
23: end while

dependent memory accesses where the latency is serialized. With
treelet prefetching, while the pointer-chasing nature of ray traver-
sal is still present, subsequent node accesses are confined within
a treelet and can be fetched in advance without traversal. This re-
duces the node access latency during ray traversal as the nodes are
already prefetched to the GPU’s cache.

4 PROPOSED ARCHITECTURE
This section discusses the architecture for the proposed treelet
prefetcher and explores prefetch heuristics and scheduling policies.

4.1 Hardware For Treelet Prefetching
As mentioned in Section 2.2 when executing ray tracing shaders,
warps issue the traceRay instruction to the RT unit, which adds
rays in the warp to the RT unit’s warp buffer. We propose to add
a treelet prefetcher that prefetches treelets into the L1 cache of
the GPU based on the rays in the warp buffer. Figure 2 shows the
proposed architecture for treelet prefetching, which adds a treelet
prefetcher and prefetch queue to the RT unit. The treelet prefetcher
is connected to the warp buffer so it can identify treelets that will
be traversed next. Ideally, we would prefetch a treelet for every ray
in the RT unit given infinite memory bandwidth and cache capacity.
However due to bandwidth limitations, the prefetcher needs to
arbitrate between the different treelets in the warp buffer based on
prefetch heuristics and add the corresponding treelet nodes to the
prefetch queue. Often this is the most popular treelet that rays will
visit next, but we explore different schemes in Ssection 4.2.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Chou, et al.

Figure 4: Hardware implementation of treelet prefetcher
with treelet popularity threshold heuristic.

Figure 4 shows the high level block diagram of the proposed
treelet prefetcher. There are two main components to the treelet
prefetcher: the treelet address majority voter (1) and the treelet
popularity tracker (all red blocks). The treelet address majority
voter (1) identifies what treelet to prefetch next, usually the most
popular treelet amongst rays in the warp buffer. It takes in the
treelet address of each ray in the warp buffer and outputs the most
popular treelet address. The treelet popularity tracker calculates
the percentage of rays in the warp buffer that will traverse the
most popular treelet. The treelet popularity tracker is used for
various prefetch heuristics that we elaborate in the next section and
it is made up of 3 sub-components. The address comparator (2)
compares the treelet address found by the treelet address majority
voter to the treelet address of each ray in thewarp buffer. It produces
a bit string of size equal to the number of rays in the warp buffer
where a bit is set if the corresponding ray matches the treelet
address. Next, the ones counter counts the number of set bits in
the bit string and converts it to a binary number which we refer
to as treelet popularity (3). The threshold comparator generates
the prefetch enable signal if the treelet popularity is greater than
a manually set threshold which ranges from 0 to the maximum
number of rays in the warp buffer (4). The prefetch enable is
ANDed with the upper bits of the treelet root node address to
generate the treelet prefetch address and sent to the prefetch queue
to be processed (5). We only require the upper bits of the treelet
root node address because the treelets have a fixed maximum size
and nodes within a treelet are organized to be packed together in
memory. The treelet prefetcher also records the address of the last
treelet it prefetches to avoid pushing duplicate treelet addresses
to the prefetch queue and prefetching the same treelet multiple
times in a row. A prefetch entry is processed from the prefetch
queue every cycle when the RT unit’s memory scheduler is not
busy servicing demand loads.

Figure 5: Treelet Address Majority Voter Design.

4.1.1 Prefetcher Implementation. The treelet address majority
voter tracks the treelet occurrences of each thread in the warp
buffer and is the core component of the prefetcher. However, com-
pleting this task in a single cycle is unfeasible in terms of both
power and area costs since this requires a multi-ported 512-entry
table to record treelet counts or a huge combinational structure.
Instead, we propose a treelet address majority voter that tracks
treelet occurrences over multiple cycles which is implemented as a
two-level pseudo majority voter shown in Figure 5. The first-level
voter finds the most popular treelet amongst threads in a warp, and
the second-level voter finds the most popular treelet amongst the
different warps. As there are 32 threads in a warp, the first-level
majority voter requires a 32-entry table to record the treelet address
and the count of each treelet. In each cycle, the treelet address of a
thread is added to the table and the corresponding count is incre-
mented. While tallying, we keep a rolling count of the occurrence
of the most popular treelet and its address. Once every thread in
the warp has been counted, the most popular treelet in the warp
is found and the table is cleared to process the next warp. The
second-level voter is similar in design but with only 16 entries to
match the warp buffer size. This design requires 32 cycles to find
the most popular treelet in the warp buffer if we duplicate the first
level table for each warp. An alternative design is to reuse a single
first-level voter for all warps and use a round-robin scheme to count
the treelet occurrences of each warp to avoid having to make 16
copies of the first-level table. The address comparator is an optional
component for other prefetch heuristics and can be implemented
as a set of 32 comparators for each thread in the warp and reused
across the different warps. We report prefetcher overheads and
explore the impact of area optimizations in Section 6.5.

4.2 Prefetch Heuristics
The treelet prefetcher determines which treelet to prefetch while
prefetch heuristics control whether a prefetch should be issued
or not. We explore three heuristics for treelet prefetching: AL-
WAYS, POPULARITY, and PARTIAL. The ALWAYS heuristic al-
ways prefetches the most popular treelet by adding it to the prefetch
queue as long as the treelet address is different from the previously
prefetched treelet. The frequency of the prefetch decisions depends
on the latency of the treelet prefetcher which we further explore
in Section 6.5. While a simple approach, this heuristic may fetch
an entire treelet even if only a few rays benefit from it, resulting
in fetching excessive nodes for a small subset of rays instead of
just traversing without prefetching. This usually happens in lower

Treelet Prefetching For Ray Tracing MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

levels of BVH traversal where rays are spread across multiple dif-
ferent treelets and the most popular treelet represents just a small
majority of rays in the warp buffer.

The POPULARITY heuristic addresses the small majority issue
by prefetching the most popular treelet only if its popularity ratio
exceeds a manually set threshold between 0 and 1. The popularity
ratio is the percentage of rays in the warp buffer that will traverse
the most popular treelet, calculated by dividing the treelet pop-
ularity from the ones counter by the maximum number of rays.
A threshold of 1 ensures a treelet is only prefetched if all rays in
the warp buffer will traverse it, while a 0 is equivalent to the AL-
WAYS heuristic. This approach boosts the likelihood of reusing a
prefetched treelet and alleviates memory pressure.

The PARTIAL heuristic attempts to address treelet overfetching
by adaptively prefetching only a portion of the treelet based on
popularity. Intuitively, when the popularity of the most popular
treelet is high, there is a higher chance that more nodes in the treelet
will be accessed. The idea is to prefetch the same fraction of nodes
in the treelet as rays in this RT unit that access the treelet, starting
from the front of the treelet. Since treelets are formed in a breadth-
first manner, upper level nodes will come first in the treelet in the
treelet and should be accessed more often than lower level nodes.
For example, if all rays in the warp buffer are going to traverse the
most popular treelet, then the entire treelet is prefetched. If only
half of the rays traverse the most popular treelet, then only the first
half of the treelet is prefetched. This ensures treelets will still be
prefetched, and since nodes in the front of the treelet which are
the upper level nodes of the treelet are prioritized, it can provide
the benefit of reducing ray traversal latency while also preventing
overfetching lower level nodes that will unlikely see much reuse
between different rays.

4.3 Treelet Schedulers
The warp scheduler in the RT unit determines which warp in the
warp buffer should be processed by the memory scheduler each
cycle. The baseline scheduling policy schedules the oldest warp in
the warp buffer that is not stalled; stalled meaning that all rays in a
warp are either waiting for a memory response for a BVH node or
waiting for ray intersection tests to finish. This scheduler focuses
on reducing the warp latency of the oldest warp and attempts to
free up the warp buffer as soon as possible so more warps can issue
to the RT unit. With the introduction of treelet based traversal
and prefetching, we propose two different scheduling schemes that
optimize around treelets to improve performance. Since the RT unit
spends resources to prefetch treelets, it is beneficial to issue warps
that will traverse the prefetched treelet to maximize reuse.

The first proposed treelet scheduler (Oldest warp withMatching
Ray, OMR) issues the oldest warp in the warp buffer that has a
ray that matches the prefetched treelet. For rays in the warp that
do not access the prefetched treelet, they still issue their memory
requests to the RT unit’smemory access queue as normal but receive
no benefit from the prefetches. This scheduler aims to combine
the benefits of the baseline scheduler while getting more reuse
from the current prefetched treelet. The second proposed treelet
scheduler (Prioritize Most Rays, PMR) tries to maximize the reuse
of the prefetched treelet by prioritizing the warp with the most rays

Figure 6: BVHnode changes to support treelet based traversal,
highlighted in red.

that are going to traverse the prefetched treelet. While this policy
maximizes reuse, it may result in longer latency as the different
warps in the warp buffer all get scheduled more equally, since
when the warp with the most matching rays gradually finishes
traversing this treelet, another warp might take the ray majority
and be prioritized.

4.4 Node Layout For Treelet Prefetching
To support treelet prefetching, we need to identify what treelet a
BVH node belongs to during traversal. This is also required by the
prefetcher to determine what treelet node addresses to prefetch.
One way to accomplish this is to modify the BVH node layout
to store this information. Fortunately, this is a relatively simple
change that can be done without modifying the BVH construction
algorithm or increasing node sizes. Figure 6 shows the changes to
the BVH node layout highlighted in red. The original BVH node
layout is allocated to be 64 bytes and stores the bounding box,
pointers, and other metadata for the child nodes of a 6-wide BVH
tree. Since there are 2 unused bytes, we use 1 bit for each of the six
children to indicate whether the corresponding child node belongs
in the same treelet as its parent node, for a total of 6 bits. This
fits in the unused space and the node size remains unchanged.
While adding treelet child bits alone addresses treelet identification
during traversal, it does not help the prefetcher identify what node
addresses it should prefetch. One solution is that the BVH tree
needs to be repacked into a treelet layout where nodes belonging
to the same treelet are packed together in memory. This makes
identifying what treelet a node belongs to trivial by just comparing
the upper bits of the node address. An alternative is to store a
mapping table from node ID to treelet ID. While this method does
not require repacking the BVH tree and allows it to function with
existing BVH tree builders, it requires additional memory to store
the mapping table and mapping table loads. We evaluate these two
approaches in Section 6.4.

5 METHODOLOGY
We extend Vulkan-Sim [41] to simulate our proposed treelet based
prefetcher. The code is available at https://github.com/ubc-aamodt-
group/treelet-prefetching-for-rt. The treelet based traversal algo-
rithm is modeled in functional simulation to provide the RT unit
in the timing model with the sequence of memory addresses. The
treelet prefetcher and schedulers are modeled in the RT unit’s tim-
ing model to process memory requests and schedule prefetches.
We sweep prefetcher latencies to characterize timing impact in Sec-
tion 6.5. Table 1 shows our evaluated simulation configuration. For
power measurements, we used AccelWattch [21]. The prefetcher
consumes extra power primarily with extra prefetch loads which is
already captured by the power model. We synthesize our design
with FreePDK45 for area results.

https://github.com/ubc-aamodt-group/treelet-prefetching-for-rt
https://github.com/ubc-aamodt-group/treelet-prefetching-for-rt

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Chou, et al.

Table 1: Vulkan-Sim Configuration

Streaming Multiprocessors (SM) 8
Max Warps / SM 32

Warp Size 32
Warp Scheduler GTO
Registers / SM 32768
Instruction Cache 128KB, 16-way assoc., 20 cycles

L1 Data Cache + Shared Memory 64KB, Fully assoc. LRU, 20 cycles
L2 Unified Cache 3MB, 16-way assoc. LRU, 160 cycles

Core, Interconnect, L2 Clock 1365 MHz
Memory Clock 3500 MHz
RT Units / SM 1

RT Unit Warp Buffer Size 16

We simulated both the treelet basedmemory layout where treelet
nodes are repacked together and an unmodified BVH tree with a
node-to-treelet mapping table described in Section 4.4. With an
unmodified BVH tree, a load to the mapping table is required before
being able to identify the treelet a node belongs in. The design
space to schedule mapping table loads is large, thus we model only
two extreme cases. In the first case (Loose Wait), the mapping table
load is inserted in the prefetch queue before the prefetches and
simulated as an extra prefetch load. While unrealistic, it is the best
case scenario for the prefetcher as themapping table metadata could
be loaded in advance if the prefetcher can identify the next treelet
to prefetch early. The second (Strict Wait) is the worst case scenario
where prefetches are only allowed to be added to the prefetch queue
after mapping table loads return.

5.1 Evaluation Benchmarks
We evaluate our proposed approach on ray tracing scenes from
LumiBench [28] and the BVH tree statistics for each scene are
outlined in Table 2. The scene acceleration structures are BVH trees
built by Intel Embree 3.12.2 [46] which use a highly compressed
node format. Vulkan-Sim [41] describes the BVH node structures
in more detail. These benchmarks are rendered at 1 sample per
pixel (SPP) which is a common setting for real-time ray tracing,
which is also the default setting in Unreal Engine 5 [1]. Higher
SPP counts usually cost too much time to render in real-time and
are only used for offline rendering. To reduce simulation time we
simulate the benchmarks at a resolution of 32x32. However, we
have also tested some scenes at a higher resolution of 96x96 and the
speedups remain consistent. Principal Kernel Analysis by Baddouh
et al. [7] finds that the IPC of most GPU kernels stabilizes around
the final average, even in some irregular applications like graph
processing. Using a smaller kernel sample or resolution can still be
representative if metrics stabilize, as is the case for our benchmarks.

6 RESULTS
This section presents the results of our proposed treelet prefetcher.
Section 6.1 breaks down the performance of treelet based traversal
and treelet prefetching. Sections 6.2 and 6.3 evaluate the proposed
prefetch heuristics and treelet schedulers. Section 6.4 and 6.5 discuss
the results of BVH repacking and the hardware overhead of our

proposed prefetcher. Lastly, Sections 6.6 and 6.7 evaluate the impact
of treelet sizes and present prefetch effectiveness.

Figure 7 is the overall speedup and energy results of our proposed
treelet prefetcher using the ALWAYS heuristic, PMR scheduler, and
with a 512B maximum treelet size. Treelet traversal combined with
treelet prefetching achieves an average speedup of 32.1% over the
baseline RT Unit in Vulkan-Sim [41] while maintaining the same
power consumption. Two scenes, WKND and PARTY, do not benefit
from our approach. WKND is a simple scene with a small BVH tree
that already fits in cache. PARTY loses performance due to treelet
based traversal accessing more nodes than the baseline DFS traver-
sal (see Section 6.1), however treelet prefetching is still beneficial
and closes the performance gap. We also compare against Lee et
al. [24] in Figure 8. We optimistically implement their prefetcher
with infinite table structures, but results show their method is inef-
fective for ray tracing as it does not fetch many useful BVH nodes.

6.1 Treelet Based Traversal
Figure 9 shows the overall performance broken down into treelet
based traversal on the bottom and additional speedups gained from
treelet prefetching on the top. Treelet based traversal alone re-
sults in a 3.7% slowdown over the baseline DFS traversal due to
traversing extra nodes. However, treelet prefetching boosts the per-
formance of treelet based traversal by 35.8%, bringing the overall
speedup to 32.1%. From Figure 9 we can see that the treelet based
traversal algorithm does not always yield better traversal results
over the baseline DFS traversal order. Table 3 summarizes the av-
erage and maximum number of nodes traversed per ray for each
workload. On average treelet based traversal reduces the number
of nodes traversed per ray by 2.12% and 0.28% for the longest ray,
demonstrating its ability to have a positive impact on the traversal
performance while also reducing tail latency. However, there are
some cases where the treelet based traversal algorithm performs
worse than the baseline DFS traversal algorithm. This is because
with DFS traversal rays reach the primitives in leaf nodes faster
and can get a hit distance to identify closest-hit intersections. Once
found, rays can omit intersection tests with nodes further from the
current hit distance, known as early ray termination, and reduce
node accesses during ray traversal. Treelet traversal on the other
hand, prioritizes traversing nodes in a treelet first, which can lead
to extra node accesses that reduce performance.

6.2 Treelet Prefetch Heuristics
Figure 10 compares the prefetch heuristics to the baseline RT unit.
The ALWAYS heuristic is the most aggressive, always prefetching
the most popular treelet. The POPULARITY heuristic builds off the
ALWAYS heuristic but uses a popularity threshold for throttling. A
larger threshold requires a higher percentage of rays in the warp
buffer before the treelet is prefetched, reducing overfetching. The
PARTIAL heuristic is another variation of the ALWAYS heuristic
but attempts to prevent overfetching by only prefetching a portion
of a treelet. Overall, the ALWAYS heuristic performs the best with
a 31.9% average speedup, followed by POPULARITY with 27%, and
PARTIAL with 16%.

Figure 11 shows the normalized L2 BW relative to no prefetching.
The ALWAYS and POPULARITY heuristics successfully limit the

Treelet Prefetching For Ray Tracing MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Table 2: Summary of evaluation scenes from LumiBench [28]. The maximum treelet size is set as 512B.

Scenes WKND PARK CAR ROBOT SPRNG PARTY FOX FRST

Tree Size (MB) 0.2 501.9 1,233.6 1,721.3 164.3 143.8 597.8 348.6
Tree Depth 7 14 16 18 14 14 15 14
Total Treelets 519 3,946,335 10,186,555 13,532,923 1,286,479 1,137,508 4,638,757 2,764,433
Scenes LANDS BUNNY CRNVL SHIP SPNZA BATH REF CHSNT

Tree Size (MB) 279.2 12.2 37.3 0.5 22.0 104.2 37.1 25.5
Tree Depth 12 11 16 12 16 16 13 12
Total Treelets 2,293,559 71,424 299,373 4,323 176,804 821,975 305,404 204,634

Figure 7: Overall speedup and power consumption of treelet prefetching with the ALWAYS heuristic, PMR scheduler and a
512B max. treelet size.

Figure 8: Performance comparison to prior work.

Figure 9: Speedup breakdown of treelet prefetching using
the ALWAYS Heuristic with the baseline scheduler.

amount of prefetching, as seen from the L2 BW decrease. While
there was concern about overfetching when proposing these heuris-
tics, the performance results show that the benefits of bringingmore
nodes into the cache outweigh the downsides of the increased load

on the memory system from additional prefetches. To support this
claim, Figure 12 plots the breakdown of L1 cache statistics for the dif-
ferent prefetch heuristics. The bars starting from the bottom to the
top are the ratio of node cache hits brought in by prefetches, cache
hits brought in by demand loads, pending hits, and cache misses
respectively. We find that the ALWAYS heuristic has a much higher
ratio of node hits that were brought in by prefetches compared
to POPULARITY with various thresholds. For the POPULARITY
heuristic, the low performance is likely because the prefetches are
not timely enough to be useful. While upper level nodes are more
likely to be reused, they are also closer to the root of the treelet,
there may not be enough time for the prefetch to arrive before the
ray reaches the nodes.

6.3 RT Unit Treelet Schedulers
Figure 13 compares different treelet schedulers to the baseline RT
unit without prefetching. All three schedulers perform similarly,
with the PMR scheduler edging out slightly with a 32.1% speedup,
followed by the baseline scheduler with 31.9% and the OMR sched-
uler in last at 31.8%. However, the required modifications outweigh
the small performance benefits. There is a tradeoff between prioritiz-
ing the oldest warp to free up warp buffer space versus maximizing
treelet reuse. The OMR and PMR schedulers both result in slightly

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Chou, et al.

Table 3: Comparison of baseline DFS ray traversal to treelet
based traversal. Lower values are better.

Avg Nodes Per Ray Max Nodes Per Ray

Scenes DFS Treelet
Trav. Diff. DFS Treelet

Trav. Diff.

WKND 13.3 13.3 0.00% 61 61 0.00%
PARK 171.6 141.5 -17.50% 1389 1402 0.94%
CAR 47.2 47.9 1.47% 249 214 -14.06%

ROBOT 99.2 104.2 4.97% 1051 884 -15.89%
SPRNG 31.4 32.0 2.02% 216 139 -35.65%
PARTY 45.8 46.3 1.07% 422 466 10.43%
FOX 85.5 81.0 -5.30% 433 383 -11.55%
FRST 34.7 34.0 -2.12% 355 232 -34.65%
LANDS 30.4 29.7 -2.46% 223 344 54.26%
BUNNY 11.6 11.1 -4.15% 117 100 -14.53%
CRNVL 42.3 43.3 2.46% 489 495 1.23%
SHIP 42.3 43.1 1.94% 207 188 -9.18%
SPNZA 38.3 42.0 9.72% 112 218 94.64%
BATH 19.0 18.9 -0.55% 405 465 14.81%
REF 11.3 11.1 -2.19% 169 209 23.67%

CHSNT 52.8 42.8 -18.96% 212 202 -4.72%
GMean -2.12% -0.28%

Figure 10: Performance comparison of different prefetch
heuristics to the baseline RT unit.

Figure 11: L2 BW comparison of different prefetch heuristics
to the baseline RT unit.

longer thread latency in the RT unit due to the schedulers switching
warps to match the current prefetched treelet more often, but the
overall warp latency ends up shorter due to warps being scheduled
in a more balanced manner. We notice that some scenes are slower
with the proposed schedulers. However this is more so due to the
ALWAYS heuristic as it is more aggressive, overfetches too many
nodes and switches the prefetched treelet too often. This causes
cache thrashing and hurts performance.

Figure 12: L1 cache stats of prefetch heuristics. For eachwork-
load, bars from left to right are: Baseline, ALWAYS, POPU-
LARITY: 0.25, POPULARITY: 0.5, POPULARITY: 0.75, PAR-
TIAL.

Figure 13: Performance of different treelet schedulers.

Figure 14: Performance of different treelet BVH options.

6.4 Treelet BVH Repacking
In Section 4.4 we described different BVH options to enable treelet
prefetching, including repacking the BVH tree in a treelet based
memory layout or using a node-to-treelet mapping table. Figure 14
shows the performance of the different options detailed in Section 5
compared to the baseline RT unit. With 512B treelets, the treelet
based memory layout performs best with a 31.9% speedup over
the baseline. Loose and Strict Wait represent a rough upper and
lower bound performance when using an unmodified BVH tree that
requires mapping table loads, falling behind the repacked BVHwith
only a 29.7% speedup and 2.5% slowdown respectively. Strict Wait
results in a slowdown because it not only issues extra metadata
loads for the prefetcher, but the prefetches also arrive too late to be
useful. In both cases, the mapping table requires 4B of storage per
BVH node address. Since a full node is 64B on average, the table is
roughly 1/16th the size of the BVH tree. This significant overhead
is another reason why BVH repacking is the better option.

6.4.1 Load Balancing. Naively repacking the BVH tree into a
treelet based memory layout can result in unbalanced DRAM ac-
cesses across different DRAM chips. Figure 15 shows the perfor-
mance of two identical treelet memory layouts using 512B treelets,
with the only difference being that one adds a constant 256B stride
between different treelet roots, separating the treelet roots 768B

Treelet Prefetching For Ray Tracing MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Figure 15: DRAM Load balancing effects of a repacked BVH
using 512B treelets.

apart. The repacked BVH with a 256B stride performs 5.7% better
than when there is no stride. This is because our GPU configuration
has 4 DRAM chips (0-3) with a 256B DRAM partition stride. When
treelet root addresses are 512B apart, more traffic goes to DRAMs 0
and 2, especially since most treelets are not fully occupied. Adding
a 256B stride between treelet roots spreads out DRAM traffic and
yields better performance.

6.5 Prefetcher Design and Area Overhead
In Section 4.1, we suggested a more practical pseudo-two-level
design for the treelet address majority voter. For the first-level
voter, a 32-entry table tallies treelets of a warp and finds its most
popular treelet. In each cycle, a thread’s treelet is recorded in the
table. Two sequential elements track the current maximum treelet
and its current count. We synthesized the sequential part of the
majority voter with FreePDK45 (45nm) which requires 461 𝜇𝑚2

of area [44]. This table can be reused for each warp in the warp
buffer or can be duplicated at the cost of area to shorten prefetcher
latency. The per warp results are fed to a 16-entry table in the
second-level voter, similar to the first-level voter, and it records the
most popular treelet across all warps. One latency optimization is
once any treelet’s count exceeds half the table size, it is immediately
declared the most popular, thus the 32-entry table only requires 4
bits to count occurrences and 3 bits for the 16-entry table. Since
the treelet root address is aligned to 512B, only 23 bits are needed
for the address field. This totals to 108B per first-level table and
52B for the second-level table. One idea is that the majority voter
resembles the function of a GPU memory access coalescer [36],
which finds accesses to the same cache lines among threads of a
warp and we could repurpose it for the majority voter or reference
its design. As the base prefetch heuristic is already effective, we do
not suggest building the address comparators for the other proposed
heuristics (red blocks in Figure 4) as they will only increase the area
with minimal upsides. We acknowledge that design complexity is a
limitation of our prefetcher and is a topic for further exploration.

The two-level design requires latency for the prefetcher to iden-
tify the most popular warp. Figure 16 sweeps prefetcher latency
from 0 to 512 cycles and shows the performance impact. A 512-cycle
latency is when the address majority voter consists of only 1 first-
level table and counts 1 thread per cycle. On average, the two-level
majority voter performs 1% worse (30.9% speedup versus baseline)
when the prefetcher has a 32-cycle delay compared to having no de-
lay. When increasing the latency to 512 cycles, performance drops
to only 17% over the baseline, indicating that using only 1 table may
be insufficient. A 128-cycle latency simulates having 4 first-level
tables and only drops performance by 6.6% (25.3% speedup versus

Figure 16: Performance impact of prefetcher latency.

Figure 17: Decision accuracy of pseudo majority voter.

Figure 18: Performance of two-level-pseudo majority voter.

baseline) which seems like a feasible implementation. We also show
the accuracy of the pseudo-two-level majority voter compared to
a full majority voter in Figure 17 across different prefetcher de-
lays. We measure this in simulation by comparing how often the
pseudo-majority voter and full majority voter agree on the most
popular treelet. On average the pseudo voter agrees with the full
voter 91.2% of the time. We believe the accuracy loss mainly occurs
at lower levels of the tree where rays are spread across multiple
treelets and there is no obvious majority. However, Figure 18 shows
that the accuracy loss of the pseudo-majority voter does not impact
performance at all.

6.6 Treelet Sizes On Performance
Figure 19 shows the impact of treelet sizes on prefetch performance.
We sweep treelet sizes of 256, 512, 1024, and 2048, and compare
them to an unmodified RT unit. Using 512B treelets yields the best
performance with a 31.9% speedup over the baseline followed by
29.4% with 1024B treelets, 30.4% with 2048B treelets and 24.8% with
256B treelets. While smaller treelets can reduce overfetching as it is
more likely to prefetch nodes that are never used when prefetching
larger treelets, it also reduces the prefetching effectiveness of load-
ing deeper-level BVH nodes in advance. Larger treelets on the other
hand can cause more memory traffic leading to more stalls and
also reduced L1 hit rates. However, the performance decrease with
larger treelets may be attributed to their formation in a breadth-first
style, resulting in more nodes at the same depth and a minimal
increase in tree depth. A potential solution can use heuristics or
metadata to identify if a node should be prefetched.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Chou, et al.

Figure 19: Performance with different treelet sizes.

Figure 20: Prefetch effectiveness for 512B treelets, baseline
scheduler, ALWAYS heuristic.

6.7 Prefetch Effectiveness
Figure 20 shows the prefetch effectiveness of treelet prefetching. A
prefetch is Too Late if it hits in L1 but the data was fetched by a
previous demand load. A Late prefetch is when it returns a pending
hit. Timely prefetches are when a demand load hits in cache and
the data is brought in by a prefetch. An Early prefetch is when the
fetched data is evicted before being read by a demand load.Unused
prefetches are never accessed by demand loads. Timely prefetches
make up 47.8% of prefetches. However, 43.5% of prefetches are
unused which is definitely an area for improvement.

7 RELATEDWORK
7.1 GPGPU Prefetchers
Many-Thread Aware prefetching [24] uses threads to prefetch data
for other threads rather than for itself. They also use throttling
to prevent harmful prefetches from flooding the memory system.
While it does not address irregular accesses, throttling maywork for
treelet prefetching. APOGEE [42] uses adjacent threads to identify
access patterns and improve prefetch timeliness. This can work for
ray traversal in upper BVH levels but is less effective later as rays
diverge. Liu et al. [29] propose a self-tuning adaptive prefetcher
to dynamically adjust prefetch modes, which could be applied to
prefetch heuristics.

7.2 Graph Application Prefetching
GraphPulse [40] is an event-driven accelerator for graph processing
with a graph node prefetcher. A coalescing queue combines events
during graph processing and accurately prefetches data based on
it. Prodigy [45] exploits the compressed sparse format of graphs
to perform prefetching. A compiler pass first generates a data in-
direction graph (DIG) containing the layout and access patterns
of key data structures. Data is prefetched when Prodigy observes
loads to a data structure with a trigger edge on the DIG. Wang et
al. [47] proposed shared memory prefetching to tackle irregular ac-
cess patterns in graph applications. Threads are assigned to process
vertex data from a partition in shared memory that is prefetched in
advance.

7.3 Data Structure Partitioning
Feng et al. [13] take advantage of data structure partitioning to ex-
ploit parallelism. Within parallel regions during traversal identified
by the programmer with compiler pragmas, they subdivide graphs
and trees and distribute each partition to be processed by different
cores to improve parallelism for CPUs. Locality improves by hav-
ing the same cores process the same partitions repeatedly. While
potentially useful for ray tracing, it may leave multiple processors
idle as it is difficult to predict how often a partition is intersected
by rays.

7.4 Treelet Based Ray Tracing Techniques
Navratil et al. [33] tackled incoherent rays by collecting rays into
queue points to process together, reducing ray and scene data swap-
ping. Aila et al. [5] improved the previous idea and first proposed
the concept of treelets. They collect rays at treelet queues for pro-
cessing to maintain high cache hit rates and reduce memory traffic.
However it is unclear how one would implement treelets on a GPU,
as supporting the large treelet queues is crucial to their technique.
STRaTa [23] applied treelets to a multiple instruction multiple data
(MIMD) based ray accelerator. They introduce ray stream buffers
by configuring a part of L2 cache to have large amounts of rays on-
chip and keep treelet queues populated. Dual Streaming [43], built
upon STRaTa [23] by minimizing data transfers by reorganizing
ray tracing into two separate scene and ray data streams and modi-
fying the traversal algorithm to fit this paradigm. The ray stream
is a collection of all in-flight rays and the scene stream contains
the corresponding treelet data. However, as rays are duplicated
across different treelet queues, performing early ray termination is
not trivial. While an interesting solution it is difficult to compare
our proposed solution to their work as their implementation is
under the context of their custom MIMD accelerator. An equivalent
GPU implementation encounters additional challenges such as how
threads are spawned to process each ray queue. In their architecture,
each Thread Processor acts independently to fetch rays from a ray
staging buffer which might require non-trivial shader modifications
to realize on a GPU and are not discussed in their paper.

7.5 Ray Traversal Acceleration Techniques
Ray Sorting. Ray sorting improves ray coherency by grouping
rays that traverse similar parts of the AS. Pharr et al. [39] reordered
ray computation to improve ray coherency and cache utilization.
Garanzha and Loop [16] sorted rays based on ray origin and direc-
tion before processing in packets. Moon et al. [32] sorted rays with
their final hit points. Meister et al. [30] improved sorting heuristics
tominimize ray divergence. Ray sorting can be applied orthogonally
to our work. However modern ray tracing APIs such as Vulkan and
DXR generate rays dynamically in the ray generation shader, thus
rays are not readily available to sort before the ray tracing kernel.

Acceleration Structure Optimizations. Ylitie et al. [48] ex-
plored wide BVH trees to increase SIMD utilization. Lin et al. [26]
restructured BVH nodes with node splitting, reducing memory
footprint. Benthin et al. [10] and Liktor et al. [25] perform BVH
compression for memory bandwidth reduction. BVH optimizations
benefit our work as more nodes fit into the same memory footprint,
making prefetching more effective.

Treelet Prefetching For Ray Tracing MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Ray Prediction. Liu et al. [27] predict ray intersections with a
hash function. On correct predictions ray traversal is eliminated.
On an incorrect prediction, rays traverse the BVH tree normally.
However their method only works well for anyhit rays and is not
obvious how it extends to other ray types such as closest-hit rays
that are used for global illumination.

8 CONCLUSION
This work presents a treelet prefetching scheme to improve ray
traversal performance. Conventional prefetchers like stride and
stream prefetching are inadequate for ray tracing due to irregular
access patterns during BVH traversal. Ray accesses exhibit little
overlap and can be highly divergent, sampling independent scene
areas and traversing different parts of the tree. Our solution instead
prefetches at treelet granularity.

We use the concept of treelets which are connected subpartitions
of a BVH tree. By traversing all nodes a ray intersects with in
a treelet, BVH nodes gain more reuse between rays for effective
prefetching. To further reduce traversal latency, we propose a treelet
prefetcher, taking advantage of clustered memory accesses within
individual treelets. When a ray visits a treelet we prefetch the entire
treelet, reducing the latency of accessing lower level nodes. Treelet
prefetching also removes the need for rays to visit a node before
fetching its child nodes, minimizing pointer-chasing dependencies.
Our simulations show treelet based traversal reduces performance
slightly by 3.7% over a DFS baseline. However, when combined
with treelet prefetching, the overall speedup reaches 32.1% while
maintaining the same power consumption. Many directions for
future work include optimizing treelet formation with statistical
metrics, exploring effective treelet schedulers, and applying inter-
thread aware mechanisms from prior works. We believe this work
extends beyond ray tracing and has potential in other domains such
as graph applications since treelets can capture the locality between
nodes and allow for prefetching while skipping load dependencies.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their feedback.
We would also like to thank Jonathan Lew and Lufei Liu for their
feedback on earlier drafts of this paper. This research is funded in
part by grants from Huawei Technologies. Tor M. Aamodt recently
served as a consultant for Huawei Technologies Canada Co. Ltd
and Intel Corp.

REFERENCES
[1] 2020. Unreal Engine 4 Ray Tracing Features Settings. Retrieved April 22,

2023 from https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/
RayTracing/RayTracingSettings/#:~:text=Ray%20Tracing-,Samples%20Per%
20Pixel,sample%20per%20pixel%20by%20default.

[2] 2021. NVIDIA AMPERE GA102 GPU ARCHITECTURE. Retrieved April 27,
2023 from https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-
architecture-whitepaper-v2.pdf

[3] 2022. Real-Time Ray Tracing on Intel Arc Graphics. Retrieved April 27, 2023 from
https://game.intel.com/story/intel-arc-graphics-ray-tracing/

[4] 2023. NVIDIA ADA GPU ARCHITECTURE. Retrieved April 27,
2023 from https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-
ada-gpu-architecture.pdf

[5] Timo Aila and Tero Karras. 2010. Architecture considerations for tracing inco-
herent rays. In Proc. ACM Conf. on High Performance Graphics (HPG). 113–122.

[6] Sam Ainsworth and Timothy M. Jones. 2016. Graph Prefetching Using Data
Structure Knowledge. In Proc. ACM Conf. on Supercomputing (ICS).

[7] Cesar Avalos Baddouh, Mahmoud Khairy, Roland N Green, Mathias Payer, and
Timothy G Rogers. 2021. Principal kernel analysis: A tractable methodology to
simulate scaled GPUworkloads. In Proc. IEEE/ACM Symp. on Microarch. (MICRO).

[8] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. 2009.
Analyzing CUDA workloads using a detailed GPU simulator. In Proc. IEEE Symp.
on Perf. Analysis of Systems and Software (ISPASS). 163–174.

[9] Kristof Beets. 2021. Rays Your Game: Introduction to the PowerVR Photon
Architecture. https://imaginationtech.com/products/gpu/graphics-architecture/
powervr-photon/

[10] Carsten Benthin, Ingo Wald, Sven Woop, and Attila T. Áfra. 2018. Compressed-
Leaf Bounding Volume Hierarchies. In Proc. ACM Conf. on High Performance
Graphics (HPG).

[11] John Burgess. 2020. RTX on—the NVIDIA Turing GPU. IEEE Micro 40, 2 (2020),
36–44.

[12] Tien-Fu Chen and Jean-Loup Baer. 1995. Effective hardware-based data prefetch-
ing for high-performance processors. IEEE Transactions on Computers (TOC)
(1995).

[13] Min Feng, Changhui Lin, and Rajiv Gupta. 2012. PLDS: Partitioning Linked
Data Structures for Parallelism. ACM Transactions on Architecture and Code
Optimization (TACO) (2012).

[14] J.W.C. Fu, J.H. Patel, and B.L. Janssens. 1992. Stride Directed Prefetching In Scalar
Processors. In Proc. IEEE/ACM Symp. on Microarch. (MICRO).

[15] Kirill Garanzha and Charles Loop. 2010. Fast Ray Sorting and Breadth-First
Packet Traversal for GPU Ray Tracing. Computer Graphics Forum (2010).

[16] Kirill Garanzha and Charles Loop. 2010. Fast Ray Sorting and Breadth-First
Packet Traversal for GPU Ray Tracing. Computer Graphics Forum 29, 2 (2010),
289–298.

[17] Hui Guo, Libo Huang, Yashuai Yashuai Lü, Jianqiao Ma, Cheng Qian, Sheng Ma,
and Zhiying Wang. 2018. Accelerating BFS via Data Structure-Aware Prefetching
on GPU. IEEE Access (2018).

[18] Michael Guthe. 2014. Latency Considerations of Depth-first GPU Ray Tracing.
In Eurographics 2014 - Short Papers.

[19] N.P. Jouppi. 1990. Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers. In Proc. IEEE/ACM Int’l
Symp. on Computer Architecture (ISCA).

[20] James T. Kajiya. 1986. The Rendering Equation. In Proc. Int’l Conf. on Computer
Graphics and Interactive Techniques (SIGGRAPH). 143–150.

[21] Vijay Kandiah, Scott Peverelle, Mahmoud Khairy, Junrui Pan, Amogh Manjunath,
Timothy G Rogers, Tor M Aamodt, and Nikos Hardavellas. 2021. AccelWattch:
A Power Modeling Framework for Modern GPUs. In Proc. IEEE/ACM Symp. on
Microarch. (MICRO). 738–753.

[22] Gunjae Koo, Hyeran Jeon, Zhenhong Liu, Nam Sung Kim, and Murali Annavaram.
2018. CTA-Aware Prefetching and Scheduling for GPU. In Proc. IEEE Int’l Parallel
and Distributed Processing Symp. (IPDPS).

[23] Daniel Kopta, Konstantin Shkurko, Josef Spjut, Erik Brunvand, and Al Davis.
2015. Memory considerations for low energy ray tracing. In Computer Graphics
Forum, Vol. 34. 47–59.

[24] Jaekyu Lee, Nagesh B. Lakshminarayana, Hyesoon Kim, and Richard Vuduc. 2010.
Many-Thread Aware Prefetching Mechanisms for GPGPU Applications. In Proc.
IEEE/ACM Symp. on Microarch. (MICRO).

[25] Gabor Liktor and Karthik Vaidyanathan. 2016. Bandwidth-Efficient BVH Layout
for Incremental Hardware Traversal. In Proc. ACM Conf. on High Performance
Graphics (HPG).

[26] Daqi Lin, Konstantin Shkurko, Ian Mallett, and Cem Yuksel. 2019. Dual-Split
Trees. In Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games (I3D).
Article 3, 9 pages.

[27] Lufei Liu, Wesley Chang, Francois Demoullin, Yuan Hsi Chou, Mohammadreza
Saed, David Pankratz, Tyler Nowicki, and Tor M Aamodt. 2021. Intersection Pre-
diction for Accelerated GPU Ray Tracing. In Proc. IEEE/ACM Symp. on Microarch.
(MICRO). 709–723.

[28] Lufei Liu, Mohammadreza Saed, Yuan Hsi Chou, Davit Grigoryan, Tyler Nowicki,
and Tor M. Aamodt. 2023. LumiBench: A Benchmark Suite for Hardware Ray
Tracing. In Proc. IEEE Symp. on Workload Characterization (IISWC).

[29] Peng Liu, Jiyang Yu, and Michael C. Huang. 2016. Thread-Aware Adaptive
Prefetcher on Multicore Systems: Improving the Performance for Multithreaded
Workloads. In ACM Transactions on Architecture and Code Optimization (TACO).

[30] Daniel Meister, Jakub Boksansky, Michael Guthe, and Jiri Bittner. 2020. On Ray
Reordering Techniques for Faster GPU Ray Tracing. In Proc. ACM SIGGRAPH
Symp. on Interactive 3D Graphics and Games (I3D). 1–9.

[31] Daniel Meister, Shinji Ogaki, Carsten Benthin, Michael J. Doyle, Michael Guthe,
and Jirí Bittner. 2021. A Survey on Bounding Volume Hierarchies for Ray Tracing.
Computer Graphics Forum (2021).

[32] Bochang Moon, Yongyoung Byun, Tae-Joon Kim, Pio Claudio, Hye-Sun Kim,
Yun-Ji Ban, Seung Woo Nam, and Sung-Eui Yoon. 2010. Cache-Oblivious Ray
Reordering. ACM Transactions on Graphics (TOG) (2010).

[33] Paul Arthur Navratil, Donald S. Fussell, Calvin Lin, and William R. Mark. 2007.
Dynamic Ray Scheduling to Improve Ray Coherence and Bandwidth Utilization.

https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/RayTracing/RayTracingSettings/#:~:text=Ray%20Tracing-,Samples%20Per%20Pixel,sample%20per%20pixel%20by%20default.
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/RayTracing/RayTracingSettings/#:~:text=Ray%20Tracing-,Samples%20Per%20Pixel,sample%20per%20pixel%20by%20default.
https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/RayTracing/RayTracingSettings/#:~:text=Ray%20Tracing-,Samples%20Per%20Pixel,sample%20per%20pixel%20by%20default.
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://game.intel.com/story/intel-arc-graphics-ray-tracing/
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://imaginationtech.com/products/gpu/graphics-architecture/powervr-photon/
https://imaginationtech.com/products/gpu/graphics-architecture/powervr-photon/

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Chou, et al.

In IEEE Symposium on Interactive Ray Tracing. 95–104.
[34] K.J. Nesbit, A.S. Dhodapkar, and J.E. Smith. 2004. AC/DC: an adaptive data cache

prefetcher. In Proc. IEEE/ACM Conf. on Par. Arch. and Comp. Tech. (PACT).
[35] K.J. Nesbit and J.E. Smith. 2004. Data Cache Prefetching Using a Global History

Buffer. In Proc. IEEE Symp. on High-Perf. Computer Architecture (HPCA).
[36] Lars Nyland, John R. Nickolls, GentaroHirota, and TanmoyMandal. 2008. Systems

and methods for coalescing memory accesses of parallel threads. Patent No.
US20090240895A1, Filed Mar. 24th., 2008, Issued Dec. 27th., 2011.

[37] S. Palacharla and R.E. Kessler. 1994. Evaluating stream buffers as a secondary
cache replacement. In Proc. IEEE/ACM Int’l Symp. on Computer Architecture
(ISCA).

[38] Matt Pharr and Greg Humphreys. 2018. Physically Based Rendering, Third Edition:
From Theory To Implementation. Morgan Kaufmann Publishers Inc.

[39] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. 1997. Rendering
Complex Scenes with Memory-Coherent Ray Tracing. In Proc. Int’l Conf. on
Computer Graphics and Interactive Techniques (SIGGRAPH). 101–108.

[40] Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta. 2020. GraphPulse: An
Event-Driven Hardware Accelerator for Asynchronous Graph Processing. In
Proc. IEEE/ACM Symp. on Microarch. (MICRO).

[41] Mohammadreza Saed, Yuan Hsi Chou, Lufei Liu, Tyler Nowicki, and Tor M.
Aamodt. 2022. Vulkan-Sim: A GPU Architecture Simulator for Ray Tracing. In
Proc. IEEE/ACM Symp. on Microarch. (MICRO).

[42] Ankit Sethia, Ganesh Dasika, Mehrzad Samadi, and Scott Mahlke. 2013. APOGEE:
Adaptive prefetching on GPUs for energy efficiency. In Proc. IEEE/ACM Conf. on

Par. Arch. and Comp. Tech. (PACT).
[43] Konstantin Shkurko, Tim Grant, Daniel Kopta, Ian Mallett, Cem Yuksel, and Erik

Brunvand. 2017. Dual Streaming for Hardware-Accelerated Ray Tracing. In Proc.
ACM Conf. on High Performance Graphics (HPG).

[44] James E. Stine, Ivan Castellanos, Michael Wood, Jeff Henson, Fred Love, W. Rhett
Davis, Paul D. Franzon, Michael Bucher, Sunil Basavarajaiah, Julie Oh, and Ravi
Jenkal. 2007. FreePDK: An Open-Source Variation-Aware Design Kit. In IEEE
International Conference on Microelectronic Systems Education.

[45] Nishil Talati, Kyle May, Armand Behroozi, Yichen Yang, Kuba Kaszyk, Christos
Vasiladiotis, Tarunesh Verma, Lu Li, Brandon Nguyen, Jiawen Sun, John Magnus
Morton, Agreen Ahmadi, Todd Austin, Michael O’Boyle, Scott Mahlke, Trevor
Mudge, and Ronald Dreslinski. 2021. Prodigy: Improving the Memory Latency
of Data-Indirect Irregular Workloads Using Hardware-Software Co-Design. In
Proc. IEEE Symp. on High-Perf. Computer Architecture (HPCA).

[46] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and Manfred
Ernst. 2014. Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM
Transactions on Graphics (TOG) (2014).

[47] Pengyu Wang, Lu Zhang, Chao Li, and Minyi Guo. 2019. Excavating the Po-
tential of GPU for Accelerating Graph Traversal. In Proc. IEEE Int’l Parallel and
Distributed Processing Symp. (IPDPS).

[48] Henri Ylitie, Tero Karras, and Samuli Laine. 2017. Efficient Incoherent Ray
Traversal on GPUs through Compressed Wide BVHs. In Proc. ACM Conf. on High
Performance Graphics (HPG).

	Abstract
	1 Introduction
	2 Background
	2.1 Ray Tracing and BVH Traversal
	2.2 GPU Architecture and RT Accelerators
	2.3 Hardware Prefetching Techniques
	2.4 Ray Traversal Prefetching Challenges

	3 Treelet Prefetching
	3.1 Treelet Based Formation
	3.2 Treelet Based Traversal
	3.3 Treelet Prefetching Overview

	4 Proposed Architecture
	4.1 Hardware For Treelet Prefetching
	4.2 Prefetch Heuristics
	4.3 Treelet Schedulers
	4.4 Node Layout For Treelet Prefetching

	5 Methodology
	5.1 Evaluation Benchmarks

	6 Results
	6.1 Treelet Based Traversal
	6.2 Treelet Prefetch Heuristics
	6.3 RT Unit Treelet Schedulers
	6.4 Treelet BVH Repacking
	6.5 Prefetcher Design and Area Overhead
	6.6 Treelet Sizes On Performance
	6.7 Prefetch Effectiveness

	7 Related Work
	7.1 GPGPU Prefetchers
	7.2 Graph Application Prefetching
	7.3 Data Structure Partitioning
	7.4 Treelet Based Ray Tracing Techniques
	7.5 Ray Traversal Acceleration Techniques

	8 Conclusion
	Acknowledgments
	References

