
On-Chip Network Design Considerations for Compute
Accelerators

Ali Bakhoda
University of British Columbia
Department of Electrical and

Computer Engineering
Vancouver, BC, Canada

bakhoda@ece.ubc.ca

John Kim
KAIST

Department of Computer
Science

Daejeon, Korea
jjk12@kaist.edu

Tor M. Aamodt
University of British Columbia
Department of Electrical and

Computer Engineering
Vancouver, BC, Canada
aamodt@ece.ubc.ca

ABSTRACT
There has been little work investigating the overall perfor-
mance impact of on-chip communication in manycore com-
pute accelerators. In this paper we evaluate performance
of a GPU-like compute accelerator running CUDA work-
loads and consisting of compute nodes, interconnection net-
work and the graphics DRAM memory system using de-
tailed cycle-level simulation. First, we study performance of
a baseline architecture employing a scalable mesh network.
We then propose several microarchitectural techniques to
exploit the communication characteristics of these applica-
tions while providing a cost-effective (i.e., low area) on-chip
network. Instead of increasing costly bisection bandwidth,
we increase the the number of injection ports at the mem-
ory controller router nodes to increase terminal bandwidth
at the few nodes. In addition, we propose a novel “checker-
board” on-chip network which alternates between conven-
tional, full-routers and half -routers with limited connectiv-
ity. This network is enabled by limited communication of the
many-to-few traffic pattern. We describe a minimal routing
algorithm for the checkerboard network that does not in-
crease the hop count.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Multiproces-
sors – Interconnection architectures

General Terms
Design, Performance

1. INTRODUCTION
Manycore compute accelerators present interconnect traf-

fic that is different from that seen in conventional multi-core
architectures. In this work, we explore the on-chip inter-
connection network design space for compute accelerators
with the goal of finding cost-effective on-chip network de-
signs for future manycore accelerator architectures (which
may be GPUs, or otherwise).

An important aspect of this work is the use of real ap-
plications and detailed simulation of the overall compute
accelerator including on-chip network, compute cores, and
DRAM memory system. Relying on fixed synthetic traffic

Copyright is held by the author/owner(s).
PACT’10, September 11–15, 2010, Vienna, Austria.
ACM 978-1-4503-0178-7/10/09.

patterns or trace-driven evaluations results in open-loop sim-
ulations as the network does not impact the network traffic
injected [1]. We evaluate the closed-loop system behavior
of on-chip networks on 24 CUDA applications and evaluate
the impact of on-chip network design on overall system per-
formance – and not just on the network-only performance
metrics such as network latency.

2. NETWORK CHARACTERISTICS
We analyze networks characteristics of compute accelera-

tors using GPGPU-Sim [2] combined with Booksim 2.0 [1].
Our baseline is a 6×6 2D mesh with a 5-cycle per hop delay
(a 4-cycle router pipeline and a 1-cycle channel delay) and a
16-byte channel bandwidth. The mesh connects 28 compute
cores and 8 memory controllers (MC).

Router Latency and Bisection Bandwidth: An ag-
gressive 1-cycle router does decrease NoC latency compared
to the baseline 4-cycle router but this reduced latency results
in modest speedups. On the other hand, doubling the bisec-
tion bandwidth results in substantial performance improve-
ments. Unfortunately doubling the channel width results
in a quadratic increase in router area which makes it very
costly to build. Therefore, we should aim for cost-effective
techniques that improve network throughput instead of in-
vesting chip resources in aggressive router architectures to
reduce network latency.

Many-to-few Traffic Pattern: The compute accelera-
tor architectures we study present the network with a many-
to-few traffic – with many compute nodes communicating
with a few memory controllers. Additionally, the traffic sent
from compute cores to MCs consists of either read requests
(small packets) or, less frequently, write requests (large pack-
ets) while the traffic from MCs to compute cores only con-
sists of read-replies (large packets). This creates an imbal-
ance in injection rates at the compute cores compared to
the MCs. Higher injection rates of memory response data
returning from the MCs creates hot-spots in the reply net-
work which can stall the MC.

Network Coupling: Memory access latency is composed
of three dependant components – NoC traversal to reach the
MC (request network), memory access, and another NoC
traversal to reach the compute core (reply network). One
component can impact others and create a coupling effect.
For example, if the reply network cannot fully absorb the
traffic injected by an MC due to a hot-spot, the MC will stop
accepting requests from the request network as its buffers
fill up and this in turn affects the request network. We find



Ejection

Injection

North

South

EastWest

(a) Connectivity of a half-
router (normal routers have
complete connectivity)

(b) Routing. Dashed
lines are examples of XY
routes prevented by half-
routers(hatched); alternate
feasible routes are solid.

Figure 1: Checkerboard mesh On-chip Network

that bottlenecks in the reply network can impact the request
network and decrease DRAM efficiency.

3. DESIGNING COST EFFECTIVE NOCS
In this section we leverage the insights from Section 2

to design more cost-effective NoCs for compute accelerator
applications.

Memory Controller Placement: The high injection
rate of MCs can create hot-spots in the baseline network in
which the MCs are placed in neighbouring locations on top
and bottom of the chip similar to Tilera and Intel’s 80-core
chip. A staggered memory placement like the one used in [2]
enables higher injection (and network utilization) from the
MC to improve overall performance. This MC placement is
specially helpful when the MC injection rates are high.

Channel Slicing: Taking advantage of the quadratic
area dependency on channel bandwidth, the NoC area can
be reduced using channel slicing [1] and creating a double
network, each with half the channel bandwidth of the orig-
inal single network. Simulations show that a double mesh
exceeds performance of a single mesh with the same bisec-
tion bandwidth while significantly reducing the total router
area.

Multiple Injection ports for MC Routers: To help
reduce the bottleneck at the few nodes with many-to-few
traffic patterns, we propose a simple change to the routers
attached to the few MC nodes which consists of adding addi-
tional injection ports from the MC and creating a multi-port
router microarchitecture. This additional port does not in-
crease any network channel bandwidth but instead, increases
the terminal bandwidth by providing more injection band-
width from the MC nodes. Speedup is possible due to the
many-to-few traffic pattern inherent in our workloads. By
increasing the terminal bandwidth through additional injec-
tion ports, speedups of up to 25% can be achieved while
creating a very small area overhead, approximately 1% in-
crease in network area. Increasing the number of injection
ports beyond 2 results in minimal additional performance
increase.

Checkerboard Mesh: The limited communication pat-
tern of the many-to-few traffic pattern (no all-to-all commu-
nication) provides opportunity for optimization. We pro-
pose a checkerboard NoC that exploits this traffic pattern to
reduce the network area. Figure 1(b) shows a 6×6 configu-
ration of the checkerboard network where each router in the
network alternates between a full-router shown with a solid

shaded square and a half -router drawn with hatching. The
full-router provides full connectivity between all five ports
while a half-router limits connectivity as packets can not
change dimension within a router (see Figure 1(a)). Half-
routers significantly reduce the router area, i.e., a full-router
requires a 5×5 crossbar while the half-router only requires
four 2×1 crossbars (two for each dimension) and one 4×1
crossbar for the ejection port.

However, the checkerboard presents a communication lim-
itation, i.e., it is impossible to route from a full-router to
another full-router which is an odd number of columns or
rows away. By constraining the location of the MC nodes
to half-routers, this limitation does not become a problem
since compute cores do not communicate with each other
directly. The half-routers can communicate with all other
nodes in the system, but simple DOR routing cannot be
used.

Routing Algorithm: Assuming a baseline XY dimension-
ordered routing, XY routing cannot deliver the packet in
the proposed checkerboard network for the following two
traffic patterns: (1) routing from a full-router to a half-
router which is an odd number of columns away and not in
the same row and (2) routing from a half-router to a router
which is an even number of columns away and not in the
same row. If YX routing is used as the baseline routing
algorithm, similar routing restrictions exist as well.

For case (1), since a packet cannot “turn” at a half-router,
YX routing is used instead of XY routing (e.g. see the packet
starting in the upper left corner in Figure 1(b)). For case
(2) a packet needs to “turn” using YX routing followed by
XY routing as shown by the packet starting in the top right
router in Figure 1(b). A random, intermediate full-router is
selected within the minimum quadrant containing the source
and destination that is not on the same row as the source
and is not an odd number of columns away from source. The
packet is routed minimally using YX to this intermediate
router and then, routed using XY to its destination.

Flow Control: Two virtual channels are needed to avoid
circular dependencies and routing deadlock: one for the YX
routing and another for XY routing. While the checker-
board network performs minimal routing and routes with
minimal hop count, it results in a significant reduction in
area. Detailed area estimations show half-routers only oc-
cupy roughly half the area of a full-router.

4. SUMMARY
We make three observations regarding GPU-like compute

accelerators: network bandwidth is more important than la-
tency, many-to-few traffic introduces imbalances in resource
utilization and the coupling between request and reply net-
works can reduce performance. Based on these observations
several cost-effective solutions can be employed to improve
performance: staggered MC placement, channel slicing, mul-
tiple injection ports at MC routers and checkerboard mesh.

5. REFERENCES
[1] W. J. Dally and B. Towles. Principles and Practices of

Interconnection Networks. Morgan Kaufmann, 2004.

[2] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung,
Henry Wong, and Tor M. Aamodt. Analyzing CUDA
workloads using a detailed GPU simulator. In
ISPASS-2009, pages 163–174, April 2009.


