
Extending the Scalability of Single Chip Stream Processors with On-chip Caches

Ali Bakhoda and Tor M. Aamodt
University of British Columbia,

Vancouver, BC, Canada
{bakhoda,aamodt}@ece.ubc.ca

Abstract

As semiconductor scaling continues, more transistors
can be put onto the same chip despite growing challenges
in clock frequency scaling. Stream processor architectures
can make effective use of these additional resources for ap-
propriate applications. However, it is important that pro-
grammer effort be amortized across future generations of
stream processor architectures. Current industry projec-
tions suggest a single chip may be able to integrate several
thousand 64-bit floating-point ALUs within the next decade.
Future designs will require significantly larger, scalableon-
chip interconnection networks, which will likely increase
memory access latency. While the capacity of the explicitly
managed local store of current stream processor architec-
tures could be enlarged to tolerate the added latency, exist-
ing stream processing software may require significant pro-
grammer effort to leverage such modifications. In this paper
we propose a scalable stream processing architecture that
addresses this issue. In our design, each stream processor
has an explicitly managed local store model backed by an
on-chip cache hierarchy. We evaluate our design using sev-
eral parallel benchmarks to show the trade-offs of various
cache and DRAM configurations. We show that addition
of a 256KB L2 cache per memory controller increases the
performance of our 16, 64 and 121 node stream proces-
sors designs (containing 128, 896, and 1760 ALUs, respec-
tively) by 14.5%, 54.9% and 82.3% on average respectively.
We find that even those applications that utilize the local-
store in our study benefit significantly from the addition of
L2 caches.

1 Introduction

Despite challenges to clock frequency scaling, contin-
ued reductions in process technology feature sizes are en-
abling manufacturers to put ever more transistors on a sin-
gle chip. This combination has led the semiconductor in-
dustry towards architectures that expose greater amounts
of parallelism to software. Stream processor architec-
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zero latency memory system compared to
naı̈ve scaling of cores

tures [18, 4, 1, 12] dedicate more chip area to ALUs than
superscalar processors and are very effective for workloads
that contain large amounts of data-level parallelism. As-
suming that current scaling trends continue, in less than ten
years, it will be possible to put thousands of 64-bit float-
ing point ALUs on a single chip. Even for applications with
abundant parallelism, keeping thousands of ALUs busy will
be a challenging task as we show in this paper. Figure 1
shows that, as process technology scales and therefore num-
ber of ALUs per chip increases, the gap betweenpoten-
tial IPC and the IPC achieved via “naı̈ve scaling” widens.
The potential IPC presented in the figure was measured as-
suming a perfect memory system incurring zero penalty cy-
cles to access memory (along with the hardware configura-
tion shown in Table 1). The “naı̈ve scaling” numbers were
measured assuming scaling is achieved by simply replicat-
ing stream processor cores similar to those employed in
contemporary hardware [12]1 and connecting them using
a mesh interconnection network without any L2 caches for
non local-store memory accesses.

Although stream processors utilize silicon more effec-
tively, they will only outperform traditional superscalarpro-

1We consider stream processor cores of the granularity of a Streaming
Multiprocessor (SM) in the GeForce 8 Series [12].



cessors if the application contains plentiful data-level paral-
lelism and is rewritten in a streaming model language. The
significant effort this entails implies that maintaining back-
ward compatibility among future generations of stream pro-
cessors is essential to amortize programmer effort.

Recentgraphics processing units(GPUs) are among
the most successful and widely available stream proces-
sors. NVIDIA’s Compute Unified Device Architecture
(CUDA) and ATI’s Close To the Metal(CTM) are two
programming models that enable users to run data par-
allel kernels on recent generations of GPUs without the
need to employ graphics programming interfaces as was
typical for early approaches toGeneral-Purpose computa-
tion on GPUs(GPGPU). Although GPUs are primarily de-
signed for graphic applications, their shader cores resemble
streaming processors. Both NVIDIA and ATI allow users
to run compute kernels on the GPU’s shader cores. Writ-
ing a functionally correct application is relatively easy in
these environments. The challenging part is optimizing the
application to take advantage of all the potential comput-
ing power the GPU has to offer. Even beyond the well
known challenge of finding parallelism, there are others.
For example, on the NVIDIA GeForce 8 Series, the pro-
grammer must manually change the application to avoid
bank conflicts when accessing the local store since conflict-
ing accesses can degrade performance. Achieving this can
require significant programmer effort (the CUDA develop-
ment environment helps by providing tools for identifying
such conflicting accesses [15]).

In this paper we will study the scalability issues of a
SIMD stream architecture. We use a mesh network as the
interconnection fabric and then use an on chip cache hierar-
chy to improve the performance. The contributions of this
paper are:

• We propose a multi-level cache design specially suited
for stream processors.

• We quantify the effects of cache size, DRAM band-
width and other parameters on stream processor per-
formance.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss background information about intercon-
nection network design and memory controller limitations
in stream processors. In Section 3 we discuss our proposed
memory hierarchy and scalable stream processor architec-
ture. Our experimental methodology is described in Sec-
tion 4 and Section 5 presents and analyzes results. Section 6
reviews related work and Section 7 concludes the paper.

2 Background

Single chip stream processors typically contain several
stream processing coresas well as several memory con-

trollers integrated on a single chip. In this paper we call
the stream processing coresshader cores—named after
GPU shader cores (e.g., an SM on GeForce 8 Series hard-
ware [12]) which are SIMD stream processors. Shader
cores and memory controllers are connected using an in-
terconnection network that is a critical component since all
memory accesses go through it.

In this section, we first discuss several trade-offs for de-
signing on-chip interconnection networks. Then we discuss
the limitations of on-chip memory controllers and naı̈ve
SIMD pipeline width scaling.

2.1 On-chip interconnection networks

There are various options to design the interconnection
network of a stream processor. Here we briefly discuss full
crossbar, ring and mesh networks. A full crossbar provides
high bandwidth, low latency and minimum latency varia-
tion. Crossbar’s cost and area increase quadratically as a
function of the number of nodes connected by the cross-
bar. Although a crossbar’s cost and area are reasonably
economical in small configurations, they quickly become
prohibitive as the number of nodes increases [6].

A ring interconnect is used in the Cell processor [17] and
ATI R600 [13]. Although a ring interconnect is not as area
demanding as a crossbar, its throughput and latency become
degraded as the number of nodes increases. The simulations
in [2] also confirm that a 2D mesh provides higher through-
put and lower latency than a ring when a network has mul-
tiple hot spot nodes (nodes with higher traffic demands).
Memory controllers are the hot spots [24] in a stream pro-
cessor chip with integrated memory controllers. Mesh net-
works are inherently scalable, but they result in variable and
long latencies compared to crossbars. Since our primary
goal in this paper is scalability, we opt for a mesh network.
To cope with the side effects of the mesh network such as
increased latency, we consider applying microarchitecture
techniques to keep all the processing units busy by trying
to ensure they are not starved for data. As we will show,
addition of caches helps by reducing the load on the inter-
connect. We leave a more detailed comparison with other
network topologies for future work.

2.2 Available memory controllers

Another restriction for all future processors is the num-
ber of available memory controllers per chip. According to
ITRS projections [9] the number of pins per chip will not in-
crease at the same rate as the number of transistors per chip
(pin count is projected to increase at a rate of roughly 10%
per year). Additionally, the number of memory controllers
(total off-chip memory bandwidth) has a direct and non-
negligible effect on total system cost. Inevitably, the ratio of



processing units to memory controllers is going to decrease
in future stream processors. Consequently, pressure on the
memory system will increase, necessitating techniques to
both increase off-chip bandwidth per pin and to reduce the
average number of off-chip accesses per ALU operation.

2.3 SIMD Width

One way to scale the total number of ALUs in future
process technologies is to increase the number of process-
ing elements in each shader core’s SIMD pipeline (in other
words designing “fatter” shader cores). This approach has
drawbacks. SIMD Stream processors, such as NVIDIA’s
GeForce 8 series, group threads into warps for scheduling
purposes [15]. Awarp is a collection of threads that execute
together in SIMD fashion on the hardware. The number of
threads in a warp is equal to a multiple of the number of pro-
cessing elements in the SIMD pipeline in the shader core. A
warp is formed when a compute kernel is dispatched to the
stream processor and afterwards all the threads in a warp
execute together. The advantage of grouping scalar threads
into warps is the reduction in area associated with SIMD
hardware.

Increasing the number of threads grouped together, or
“warp size”, exposes a major performance limitations of
current graphics hardware, which is branch divergence [7].
As shown by Fung et al., increasing warp size from 8 to
16 using contemporary approaches decreases throughput by
roughly 30% [7] on set of non-graphics applications (simi-
lar to those we study in this paper). Furthermore, although
it is possible to write applications that are aware of the
warp size of the hardware they are executing upon (which
is necessary on current hardware when synchronization op-
erations are employed [15]), backward compatibility could
be maintained trivially in future designs by increasing the
number of shader cores instead of increasing the warp size.
However, this option increases the number of nodes in the
interconnection network, thus requiring a scalable intercon-
nect such as a mesh.

3 Design and Implementation

In this section we first describe our baseline architecture,
which scales to future process technologies by simply in-
creasing the number of shader cores and using a scalable
mesh interconnection network. Then we describe our mod-
ified architecture which incorporates second level caches at
the memory controllers to enhance scalability. Figure 2 de-
picts a high level view of the stream processor architecture
we consider. The portions labeled “L2 $” correspond to the
proposed hardware changes.
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Figure 2. Streaming processor architecture
overview

3.1 Baseline Architecture

The stream processor is treated as a co-processor that a
CPU can offload highly data-parallel compute kernels on
to. The stream processor consists of several compute nodes
(labeled “Shader Core” in Figure 2) and memory nodes (la-
beled “Memory Controller”). Each shader core has a warp
size and SIMD width of 16, and uses a seven-stage, in-order
pipeline. The processing elements in a shader core share a
low latency 16KB local store that is explicitly managed by
the programmer. Each shader core also has a private L1
cache to back up the local store. This cache is implicitly
managed by hardware similar to a traditional L1 cache.

Each on-chip memory controller interfaces a single
GDDR3 DRAM chip2 module with 4 banks.

The on-chip interconnection network can be designed in
various ways. As discussed in Section 2 we use a mesh
network to achieve scalability. We show that it performs
reasonably well for the massively parallel benchmarks that
we study.

Thread scheduling is performed with zero overhead on a
fine grained per cycle basis. Each cycle a warp that is ready
for execution is selected by warp scheduler and issued to the
SIMD pipelines. We use a scheduling policy called DFIFO
[7] which is basically a round robin technique, but if there is
a cache miss in a particular warp, then that warp is not con-
sidered for the scheduling and next ready warp is selected
(i.e., the round robin order can change). All the threads in
each given warp execute the same instruction with different
data values simultaneously in all pipelines. Whenever any
thread inside a warp faces a long latency operation such as
a cache miss, all the threads in the warp are taken out of
the scheduling pool until the long latency operation is over.
Meanwhile other threads that are not waiting are sent to the
pipeline for execution. Since there are many threads run-
ning in the same shader core long latency operations can be

2GDDR3 stands for Graphics Double Data Rate 3 [21]. Graphics
DRAM is typically optimized to provide higher peak data bandwidth.



tolerated to some extent.
We use theimmediate post-dominator(PDOM) [7]

mechanism to allow for diverging control flow among
threads within a given warp. This mechanism employs a
stack to allow separate traversal of different control flow
paths when the threads in a single warp wish to take dif-
ferent paths following a conditional branch. Fung et al. [7]
describe the PDOM mechanism in more detail.

It must be noted that using the local store is crucial to
achieve high performance on GPUs. Using the local store
alleviates the DRAM bandwidth bottleneck that many ap-
plications generally face [20]. In our designs the local store
is backed up by an on-chip cache hierarchy to mitigate the
effects of increased latencies incurred by the interconnec-
tion network and the extra pressure on the memory system.
Each shader core also includes a 32 KB data cache for mem-
ory accesses to the non local-store “global” address space3.

We find this baseline architecture scales well for applica-
tions with very high arithmetic intensity (ratio of arithmetic
operations to memory accesses), but less well for others.
Next we consider how to add additional cache capacity to
reduce interconnection network bandwidth requirements.

3.2 Extending Stream Processor Scalabil-
ity

Increasing cache capacity can reduce memory band-
width requirements for applications that contain sufficient
locality. We propose to achieve this by adding a second
level, shared cache to the design described in Section 3.1. A
shared cache can be advantageous in that some threads may
not require as much capacity at any given time as others,
and furthermore there may be inter-thread temporal locality
among threads since they are from the same application.

For our study, none of the benchmarks require communi-
cation between threads operating on different shader cores,
and all inter-thread communication for threads scheduled on
a particular shader core occurs via the local-store. Hence we
do not model any cache coherence protocol for our L1 or L2
caches (we leave this to future work).

We locate each bank of the L2 cache with a memory
controller. The L2 caches are simple single-port set asso-
ciative caches. Each L2 cache, only caches the data that
maps to its corresponding memory controller and DRAM.
The trade-off of L2 cache addition will be discussed in Sec-
tion 5. We will show that relatively small L2 caches can
substantially improve streaming application performance.
Note that since L2 caches are located on the memory con-
troller side of the network, accesses to L2 caches must al-
ways traverse the network.

3These memory accesses correspond to toglobal memoryaccess
in CUDA–e.g.,ld.global and st.global in the PTX instruction
set [16].

Figure 3. Layout of 8x8 configuration (shaded
areas are memory controllers)

4 Methodology

To model the architecture described in this paper we ex-
tended the simulator used by Fung et al. [7] that models var-
ious aspects of a massively parallel architecture with highly
programmable pipelines similar to contemporary GPU ar-
chitectures. The version of this simulator used in this study
employs the SimpleScalar PISA [3] instruction set to simu-
late scalar threads. The timing simulator accounts for how
these would be grouped into warps by the hardware we
model.

Table 1 shows the simulator’s configuration. Rows that
have multiple entries show different configurations that we
have simulated. We used a detailed interconnection network
model to simulate the mesh network. The interconnection
network of the simulator is an extension of the simulator
introduced in [6] and is highly configurable. Table 2 shows
the interconnection configuration used in our simulations.

The benchmark applications used for this study were se-
lected from SPLASH-2[23], and several CUDA programs
published by NVIDIA [14]. Six benchmarks (BIN, CON,
IMD, MAT, SCN and SOB) use the local store and three
benchmarks (BLK,BIT and LU) do not use the local store.
The simulator’s programming model is similar to that of
CUDA4. A computing kernel is invoked by a spawn instruc-
tion, which signals the SimpleScalar out-of-order core to
launch a predetermined number of threads for parallel ex-
ecution on the GPU simulator. Note that all the spawned
threads for a specific kernel are running the same group of
instructions on different data elements although they might
take different control paths along the way. Our simulator
supports thread blocks and synchronization instructions in-
side the blocks. Every time a compute kernel is spawned
all the threads inside that kernel are divided into groups
of threads called blocks5. All the threads in a block are
assigned to a single shader core for running. Communi-
cation and synchronization among different blocks are not
supported but threads inside each block can communicate

4Currently we must undergo several manual steps to prepare the bench-
marks for running in our simulator which limit the number of benchmarks
used in this study. In this study, we convert CUDA applications to C with
meta information placed in a configuration file used to simulate the effect
of launching a CUDA “grid” onto a GPU (this approach was used in [7] as
well).

5The user specifies the number of threads in each block and hardware
sets a maximum number of threads per block



Table 1. Hardware Configuration
Number of Shader Cores 8 / 56 / 110
SIMD Warp Size 16
Number of Threads per Shader Core 256
Local Storage per Shader Core 16KB
Number of Memory Channels 8 / 8 / 11
GDDR3 Memory Timing tCL=9, tRP =13,tRC =34

tRAS=21,tRCD=12,tRRD=8
Bandwidth per Memory Module 8 / 16 / 32 (Bytes/Cycle)
DRAM queue capacity 32 requests
Memory Controller out of order (FR-FCFS) [19]
L1 Data Cache Size (per core) 32KB 2-way set assoc. LRU
L1 Data Cache Hit Latency 3 cycle latency

(pipelined 1 access/cycle/SIMD pipeline)
Branch Handling Method Post Dominator [7]
Warp Issue Heuristic DFIFO among ready warps [7]
L2 Cache Size (per Mem Controller) 256KB / 512KB / 1MB
L2 Cache Parameters 8-way set assoc. 64B lines LRU

Table 2. Interconnect Configuration
Virtual channels 4
Virtual channel buffers 16
Virtual channel allocator islip
Alloc iters 1
Credit delay 1
Routing delay 1
VC alloc delay 1
Input speedup 2
Flit size 32

Table 3. Benchmark abbreviations
Benchmark Abr.
Black Scholes option pricing BLK
Binomial Options BIN
Bitonic Sort BIT
Convolution Separable CON
Image Denoising IMD
LU LU
Matrix Multiply MAT
Scan Large Array SCN
Sobel Filter SOB

either through the fast local store or main memory with the
aid of barrier instructions6. All the threads that reach a bar-
rier instruction wait for the rest of the threads in their block
to catch up and, when all of threads reach the barrier, they
resume execution again.

5 Performance Evaluation

To evaluate how well the designs introduced in Section 3
scale we simulated 3 different configurations. The first con-
figuration consists of 8 shader cores and 8 memory con-
trollers: a configuration which is intended to represent con-
temporary architectures. The second configuration has 56
shader cores and 8 memory controllers. This configuration
has 896 ALUs (or “streaming processors” [12]) which can
be integrated on a single chip by 2013 according to ITRS [9]
projections. Our third configuration has 110 shader cores
and 11 memory controllers. This would incorporate 1760
ALUs (streaming processors) and could be built by 2016.
According to the ITRS semiconductor roadmap [9] process

6Barrier instructions are specified by user in the body of the kernel and
operate similar to CUDA’s syncthreads() operation [15]

technology should reach 32nm and 22nm by 2013 and 2016,
respectively. The number of ALUs for future generation
GPUs is based on a linear extrapolation of the number of
ALUs on an NVIDIA 8800 series GPU assuming constant
area and overheads per shader core.

In our design the memory controllers are physically dis-
tributed over the chip. Figure 3 shows the physical layout of
the memory controllers in our 8x8 configuration as shaded
areas. A similar layout is applied for 4x4 and 11x11 config-
urations. These layouts are based on the assumption that it
is possible to place pads all over the chip area so that there
is no need for extra wires to connect the memory controller
to chip’s circumference.

Table 3 shows the benchmarks we used for simulations
along with the abbreviations that are used for each bench-
mark in the figures. We ran BLK and BIT for 100 mil-
lion and the rest of the benchmarks for 1 billion instruc-
tions. Figure 4 shows the effect of increasing the number of
cores on IPC. The first bar shows the maximum IPC for each
benchmark given perfect memory (all memory accesses hit
in L1 cache). The “NoL2” bar shows performance of the
device without any L2 cache and “L2” shows the IPC re-
sults when a 256KB L2 cache is added per memory con-
troller. Addition of L2 cache increases the performance
by 14.5%, 54.9% and 82.3% on average for 4x4, 8x8, and
11x11 designs respectively. For the applications that use
the local store (BIN, CON, IMD, MAT, SCN and SOB), the
harmonic mean speedup is 5.7%, 53%, and 50% for 4x4,
8x8, and 11x11 designs respectively; for applications that
do not use the local store (BLK, BIT, and LU) the harmonic
mean speedup is 23.6%, 64%, and 105% for 4x4, 8x8, and
11x11 designs respectively.

Figure 5 shows L1 miss rates for all the “NoL2” and
“L2” configurations in Figure 4. For some benchmarks L1
miss rates with an L2 cache are higher compared to when
there is no L2. Our detailed investigation revealed that this
behavior is related to a complex relationship of cache re-
placement (LRU) and the scheduling policy that we use to
issue warps to the SIMD pipeline. When the L2 cache is
added the order that memory requests return to the shader
core changes dramatically; some of the requests hit in the
L2 and return much faster than the ones that miss in L2
and are serviced by DRAM. This reordering effect com-
bined with the warp scheduling policy creates this counter-
intuitive behavior.

Figure 6 shows the L2 miss rates. As the number of
shader cores increases from 8 (4x4) to 56 (8x8) the L2 miss
rate increases for all the benchmarks. In this configuration
L2 cache size remains the same as the configuration with 8
shader cores while the number of shader cores increases7.

7We hold the size of the L2 per memory controller constant consistent
with the assumption the area of a memory controller block is kept a fixed
ratio with respect to a shader core to minimize the impact on layout as we
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As the number of shader cores increases to 110 (11x11)
some benchmarks behave differently and their cache miss
rate does not increase despite the higher ratio of shader
cores to cache capacity. This configuration has 11 memory
controllers and since we add an L2 cache to each memory
controller this configuration also has a higher aggregate L2
cache capacity. Our version of the LU benchmark does not
have enough threads to use all 110 shader cores and there-
fore its L2 miss rate drops. For the SOB and BIT bench-
marks the working set fits into L2 cache in this configura-
tion. These three benchmarks are also not sensitive to L2
cache size increase as shown in Figure 8.

We measured the DRAM utilization of the various hard-
ware configurations we model, and this data is shown in
Figure 7. The utilization numbers are calculated by count-
ing the number of DRAM responses each cycle even when
there is no outstanding request to DRAM. Therefore, ei-
ther few DRAM requests or poor DRAM scheduling might
result in low utilization. These cases can be separated by
considering the number of requests coming from the mem-
ory controllers. The first three bars for each benchmark in

scale the architecture.
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Figure 6. L2 miss rates for 4x4, 8x8 and
11x11 configurations with 256K L2 per mem-
ory controller

Figure 7 show the data for the NoL2 configurations and the
next three bars show the data when an L2 cache is included.
As shown in the figure, utilization for the second three bars
is lower than the first three, highlighting the effectiveness of
L2 cache in reducing the number of requests sent to DRAM
(recall that performance increases as we add the L2 cache).
Figure 7 is also consistent with Figure 6 as the DRAM uti-
lization decreases for the benchmarks that have an decrease
in L2 cache miss rate (e.g., for BLK, the miss rate increases
going from 4x4 to 8x8 to 11x11, as does the DRAM utiliza-
tion).

5.1 Sensitivity to Cache Size

Figure 8 shows the effects of cache size increase for
11x11 core design. Most benchmarks experience substan-
tial performance boosts when the amount of cache per mem-
ory controller is increased from 256KB to 512KB. The im-
provement for increasing memory capacity from 512KB to
1MB is not as dramatic. One of the interesting observations
in this graph is that benchmarks that benefit from increas-
ing the L2 cache capacity includes those benchmarks that
use the local store. BIN, CON, IMD, MAT and SCN all uti-
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lize local store and all experience a substantial performance
boost as L2 cache size increases from NoL2 to 1MB. We
believe the reason for this is that benchmarks that are able
to easily utilize the local store have a lot of data sharing and
locality—that is why we could write them in such a way
that they can use local store in the first place.

5.2 Sensitivity to DRAM bandwidth

The effects of increasing DRAM bandwidth on perfor-
mance are presented in this section. In order to simulate
a higher bandwidth we changed the DRAM burst length
while keeping the duration of an entire burst transfer (from
start to finish) constant with respect to the shader core clock.
For the 8x8 design with 256KB L2 caches increasing the
burst length from 4 (i.e. 8Bytes/cycle) to 8 and 16 increases
the performance less than 15.8% and 17.1% respectively.
The same burst length increases result in 45.6% and 58%
performance increases when there is no L2 cache. Figure 9
shows that the IPC of configuration with no L2 cache and
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Figure 10. GPU to DRAM clock ratio effects
for 8x8

burst length 16 (third bar) is only 1% higher than the design
with L2 cache and burst-length 4 (fourth bar). We suspect
the reason increasing burst length is not as helpful as in-
creasing cache capacity is that not all data brought in by
larger burst lengths is used before being evicted from the
on-chip caches.

5.3 GPU to DRAM Clock Ratio Effects

Figure 10 shows the effects of changing the GPU to
DRAM clock ratio form 1:1 to 3:2 (every 3 GPU cycles
there is 2 DRAM cycles) for the 8x8 configuration. When
there is no L2 cache on chip IPC drops more than 37% when
clock ratio is increased to 3:2 but when a 256KB L2 cache
is added to each memory controller, IPC only decreases
21%. The only counter-intuitive phenomena in Figure 10 is
LU’s IPC increase for about 1% when the DRAM is slowed
down. This is again due to our L1 cache replacement pol-
icy: Close inspection reveals that victim L1 cache lines are
selected when the memory requests comes back to L1, dur-
ing the time new cache line is on its way, new requests can



still hit in the cache changing the LRU line.

6 Related Work

The Cell processor [17] is a hardware architecture that
can function like a stream processor with appropriate soft-
ware support. It consists of a controlling processor and a
set of SIMD co-processors each with independent program
counters and instruction memory. Merrimac [5] and Imag-
ine [1] are both streaming processor architectures developed
at Stanford. Merrimac is designed in a scalable way so that
many Merrimac chips can be put together to form a cluster
of stream processors. All these chips have on-chips stream
register files (SRF). Merrimac [5] also has a single layer of
cache on the memory controller side which is very expen-
sive to access. We quantified the effects of varying cache
size, DRAM bandwidth and other parameters which to our
knowledge has not been published previously. All these de-
signs have different programming models from the CUDA
like programming model that we employ.

Khailany et al. [10] explore VLSI costs and performance
of a stream processor as the number of streaming clusters
and ALUs per cluster scales. They use an analytical cost
model. The benchmarks they use also have a high ratio
of ALU operations per memory reference which is a prop-
erty that eases memory requirements of streaming applica-
tions. Govindaraju et al. [8] present a memory model to an-
alyze the performance of GPU-based scientific algorithms
and use it to improve cache efficiency. Their model is based
on texturing hardware that uses 2D block-array representa-
tion to transfer the data between texture caches and video
memory. Their design applies to previous generations of
GPUs that were not directly programmable for general pur-
pose computing.

UltraSPARC T2 [22] microprocessor is a multithreading,
multi-core CPU which is a member of the SPARC family,
and the successor to the UltraSPARC T1 [11]. UltraSparc
come in 4, 6 and 8 core variations and each core is capable
of running 8 threads concurrently. They have a crossbar be-
tween L2 and the processor cores (similar to our placement
of the L2 in Figure 2). Although the T1 and T2 support
many concurrent threads (32 and 64, respectively) com-
pared to other contemporary CPUs, the number of threads is
very small compared to the number on a high end contem-
porary GPU (e.g., the Geforce 8800 GTX supports 12,288
threads per chip). Our smallest design for example supports
8x16 threads executing in a single cycle, while it can have
many more threads in the scheduler pool. As a result, the
ratio of threads to cache size is much smaller in our archi-
tecture.

7 Conclusions and Future Work

In this paper, we argued that it is important that program-
mer effort be amortized across future generations of stream
processor architectures. We focused on stream processors
similar to GPUs and used a programming model similar to
CUDA. We explored the benefits applications written using
CUDA like models will obtain as chip resources scale. We
proposed to use a mesh topology as a scalable on-chip in-
terconnection network and to use on-chip cache hierarchy
to decrease the pressure on memory system and back up the
explicitly managed local store. We evaluated our design us-
ing several parallel benchmarks and showed that by adding
a banked L2 cache on the memory controller side of the chip
a mesh based stream processor’s performance can improve
substantially. Our future work includes exploring further
tradeoffs in cache organization and interconnect topology
of single chip stream processors. We are also planning to
investigate the performance versus area tradeoff of our pro-
posed design.
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