
AccelWattch: A Power Modeling Framework for Modern GPUs
Vijay Kandiah

vijayk@u.northwestern.edu
CS & ECE, Northwestern University

USA

Scott Peverelle
scott.peverelle@intel.com

Intel
Canada

Mahmoud Khairy
abdallm@purdue.edu
ECE, Purdue University

USA

Junrui Pan
pan251@purdue.edu

ECE, Purdue University
USA

Amogh Manjunath
manjuna@purdue.edu
ECE, Purdue University

USA

Timothy G. Rogers
timrogers@purdue.edu
ECE, Purdue University

USA

Tor M. Aamodt
aamodt@ece.ubc.ca

ECE, University of British Columbia
Canada

Nikos Hardavellas
nikos@northwestern.edu

CS & ECE, Northwestern University
USA

ABSTRACT
Graphics Processing Units (GPUs) are rapidly dominating the acc-
elerator space, as illustrated by their wide-spread adoption in the
data analytics and machine learning markets. At the same time,
performance per watt has emerged as a crucial evaluation metric
together with peak performance. As such, GPU architects require
robust tools that will enable them to model both the performance
and the power consumption of modern GPUs. However, while
GPU performance modeling has progressed in great strides, power
modeling has lagged behind. To mitigate this problem we propose
AccelWattch, a configurable GPU power model that resolves two
long-standing needs: the lack of a detailed and accurate cycle-level
power model for modern GPU architectures, and the inability to
capture their constant and static power with existing tools. Accel-
Wattch can be driven by emulation and trace-driven environments,
hardware counters, or a mix of the two, models both PTX and
SASS ISAs, accounts for power gating and control-flow divergence,
and supports DVFS. We integrate AccelWattch with GPGPU-Sim
and Accel-Sim to facilitate its widespread use. We validate Accel-
Wattch on a NVIDIA Volta GPU, and show that it achieves strong
correlation against hardware power measurements. Finally, we
demonstrate that AccelWattch can enable reliable design space
exploration: by directly applying AccelWattch tuned for Volta on
GPU configurations resembling NVIDIA Pascal and Turing GPUs,
we obtain accurate power models for these architectures.

CCS CONCEPTS
• Hardware → Power estimation and optimization; • Com-
puting methodologies → Modeling methodologies; Simula-
tion tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480063

KEYWORDS
GPGPU/GPU Computing, Power Modeling and Simulation

ACM Reference Format:
Vijay Kandiah, Scott Peverelle, Mahmoud Khairy, Junrui Pan, Amogh Man-
junath, Timothy G. Rogers, Tor M. Aamodt, and Nikos Hardavellas. 2021.
AccelWattch: A Power Modeling Framework for Modern GPUs. In MICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO ’21), October 18–22, 2021, Virtual Event, Greece. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3466752.3480063

1 INTRODUCTION
Graphics Processing Units (GPUs) are becoming increasingly popu-
lar for accelerating both general-purpose and High-Performance
Computing (HPC) applications. There are 147 GPU-accelerated sys-
tems in the most recent TOP500 HPC list [43], and 70% of the top-50
HPC applications are GPU-accelerated [40]. Similarly, GPUs have
become one of the dominant forces in machine learning and AI
acceleration [11]. As the proliferation of GPUs grows to satisfy the
demand for higher performance, they are fast becoming a major
consumer of power. Thus, it is not surprising that performance per
watt, together with peak performance, have emerged as indispens-
able metrics for evaluating the efficiency of GPU architectures. As
such, GPU architects require robust tools that will enable them to
quickly and accurately model both the performance and the power
consumption of modern GPUs.

However, while GPU performance modeling has progressed in
great strides [20], GPU powermodeling has lagged. GPUWattch [21]
has been an indispensable tool for modeling the power consump-
tion of new innovations in GPU architectures, but it was designed
to model (and validated against) older architectures with fewer
energy efficiency optimizations.

Attempting to model recent GPUs such as Pascal [29], Volta [30]
and Turing [31] using the methodology employed by GPUWattch
produces significant inaccuracies, both in terms of absolute num-
bers and in terms of the relative power consumption of individual
hardware components. This can lead to inadvertently optimizing
components that may not be as important for energy efficiency in
real systems as the model may allude. We find that a key source of
errors is the lack of a model for Dynamic Voltage and Frequency

https://doi.org/10.1145/3466752.3480063
https://doi.org/10.1145/3466752.3480063

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Kandiah, et al.

Validation

AccelWattch config files

AccelWattch modeling

Performance model runs

Hardware
power

measurements

Technology scaling
from Volta to target architecture

Validation kernels

Validated AccelWattch power model

Dynamic power modeling

Hardware
power

measurements

HW perf. counters + Accel-Sim SASS à Power component map
“FADD” à FPU_add
“IMUL” à ALU_mul

...

AccelWattch power modeling

PTX à Power component map
“add.s32” à FPU_add
“mul.f64” à DPU_mul

...

Yes

No

Need
refinement?μbenchmarks Hardware

profiling

Final μbenchmarks set for dynamic power modeling

μbenchmarks for dynamic power modeling

Static power modeling

Analytic modeling

μbenchmarks for divergence-
aware static power modeling

Divergence-aware static
power model

Analytic modeling

μbenchmarks for idle-SM
static power modeling

Idle SM static power model

Final static power model

Constant power
modeling

Hardware perf. counters

Accel-Sim, SASS

Performance modeling
Select
perf.

model

SIM SASS

HW

HYBRID

Accel-Sim, PTXSIM PTX

1

2

5

6
9

3

4

Activity factors, #SMs, #lanes,
instruction mix, #cycles, Vdd, f

Can we do
better?

Yes

No
7

Quadratic optimization solver

Solver constraints

Quadratic programming

New scaling factors

Initial Scaling Factors
(starting point Si)

AccelWattch
Power Model

8

Activity factors, #SMs, #lanes,
instruction mix, #cycles, Vdd, f

Constant power

Static power

Dynamic power

Figure 1: AccelWattch power modeling flowchart.

Scaling (DVFS). Lacking a DVFS model results in recent GPUs being
reported to have a negative constant power term. Our insight, that
power under V-F scaling is better modeled by a 3rd-degree poly-
nomial missing a quadratic term (Section 4.2), allows AccelWattch
to accurately estimate constant power.

Another key source of error is the lack of a model for capturing
the power-down of hardware components, and their contribution
to static power when powered-up but inactive. In the absence of
such a model, static power is lumped into a single constant, an
oversimplification for modern chips with aggressive power gat-
ing. We infer, for the first time to our knowledge, how modern
GPUs power-gate chip-wide hardware components (e.g., L2 cache),
Streaming Multiprocessor (SM)-wide components (e.g., L1 caches)
and lane-specific components (e.g., FPUs). AccelWattch accurately
models the effect of reactivating power-gated structures. It does so
by capitalizing on our insights (Section 4.3) that: (1) activating the
first SM powers up global chip components which leak when not
switching; (2) activating the first lane of an SM powers up SM-wide
components, which leak when inactive; and (3) activating subse-
quent lanes additionally powers up only those lanes’ execution
units. Our insight, that the simultaneous execution of operations
within a warp (now supported by modern GPUs [30]) presents
a counter-intuitive sawtooth pattern of power consumption (Sec-
tion 4.4), allows AccelWattch to accurately model thread divergence
in the presence of Instruction-Level Parallelism (ILP) (Section 4.5).

Some recently-proposed power models [2, 13, 47] target modern
GPUs, but they, as well as earlier works [16, 50] are provided only as
analytic models over average behavior, which hinders research that
requires cycle-level accuracy (e.g., research on DVFS). Moreover,
analytic models are hard to extend to describe novel architectural
components; often it is easier to build a cycle-level model that
emulates the component’s behavior and use it for evaluation. To
support cycle-level research, the computer architecture community
needs a robust and configurable power modeling tool, capable of
supporting cycle-accurate simulation.

We address the lack of cycle-level power modeling tools for
modern GPUs by introducingAccelWattch, a newGPU powermodel
that is configurable, capable of cycle-level calculations in emulation
and trace-driven environments, and supports DVFS. To the best of

our knowledge, AccelWattch is the only power model capable of
modeling both PTX (virtual ISA) and SASS (native machine ISA)
instructions, and the only open-source tool capable of modeling
closed-source workloads with hand-tuned SASS instructions—it
only needs a binary. In addition, AccelWattch is the only GPU power
model that can be driven by either pure software performance
models (e.g., Accel-Sim [20]), or hardware performance counters
commonly found in modern GPUs (thereby capturing execution
on real silicon), or a combination of the two. These AccelWattch
variants allow researchers to balance the trade-off between power
model accuracy and performance modeling effort.

We validate AccelWattch against hardware power measurements
on an NVIDIA Volta GV100 [30] GPU running a suite of 26 kernels
from NVIDIA CUDA Samples [35], Rodinia 3.1 [7], Parboil [41], and
CUTLASS 1.3 [32] suites. AccelWattch yields a mean absolute per-
centage error (MAPE [9]) between 7.5–9.2±2.1–3.1%, depending on
the AccelWattch variant, achieving a Pearson r coefficient of 0.83–
0.91. These errors are a factor of 22–24× lower than GPUWattch’s
when targeting the same architecture. As a case study, we apply
AccelWattch on kernels from DeepBench [25] workloads, and find
that it obtains 12.79% MAPE over hardware power measurements
despite the significant limitations of existing performance models.
We demonstrate the reliability of AccelWattch for design space
exploration by applying our validated AccelWattch Volta model
(i.e., without retraining or needing new hardware measurements) to
model the power of two GPU architectures: a Pascal TITAN X [29],
and a Turing RTX 2060S [31]. AccelWattch accurately predicts the
power consumption of these new architectures, achieving 11± 3.8%
and 13 ± 4.7% MAPE, respectively.

In summary, we make the following contributions:

• For the first time to our knowledge, we infer and introduce
an analytic model that explains and accurately captures con-
stant, static, and dynamic power consumption in the pres-
ence of DVFS, thread divergence, intra-warp functional unit
overlap, variable SM occupancy, and power gating.

• We introduce AccelWattch, a cycle-level constant, static and
dynamic power model for the NVIDIA Volta GPU architec-
ture. AccelWattch resolves long-standing needs for modern
GPU architectures: the lack of a cycle-level power model, and

AccelWattch: A Power Modeling Framework for Modern GPUs MICRO ’21, October 18–22, 2021, Virtual Event, Greece

the inability to capture the constant and static power with
existing methodologies. We validate AccelWattch and show
it achieves high correlation to hardware measurements.

• To the best of our knowledge, AccelWattch is the only GPU
power model that can be directed by emulation (PTX) or
trace-driven (SASS) software performance models, or by
hardware performance counters, or by a combination of the
above. This allows for the study of discrete hardware com-
ponents without the need to develop performance models
of the entire architecture.

• We demonstrate that AccelWattch can enable reliable design
space exploration. Directly applying the Volta power model
on a GPU configuration resembling the Pascal and Turing
architectures results in accurate power models for these
architectures without tuning specifically for them.

2 ACCELWATTCH MODELINGWORKFLOW
We follow the process shown in Figure 1 to develop a model that
accurately estimates: (a) constant power, for example by board
fans and peripheral circuitry, in the presence of DVFS 1○; (b) static
power in the presence of execution divergence, the simultaneous
execution of operations within the same warp [30], variability in
SM occupancy, and the power gating of lanes, SMs, and global chip
hardware components 2○– 4○; and (c) dynamic power consumption
for each individual hardware component 5○– 8○. To model dynamic
power, we develop a suite of 102 microbenchmarks that isolate
and stress the various components of a modern GPU 5○. We use
them, together with hardware power measurements and execution
statistics 6○, to bound any modeling inaccuracies using quadratic
programming 7○. AccelWattch is driven by a performance model,
which provides AccelWattchwith statistics on hardware component
activity, active SMs and lanes, voltage-frequency parameters, and
cycle count 6○. We integrate AccelWattch with GPGPU-Sim [3] and
Accel-Sim [20] to facilitate its use for both PTX [37] and SASS [36]
simulations, producing the AccelWattch PTX SIM and AccelWattch
SASS SIM variants, respectively.

AccelWattch can also be driven by hardware performance coun-
ters collected during execution on real silicon, either entirely (Accel-
Wattch HW) or in combination with software-modelled ones (Accel-
Wattch HYBRID). This allows for the study of discrete hardware
components without the need to develop accurate software perfor-
mance models for the entire architecture. Building comprehensive
and accurate performance models for GPUs is a painstaking and
time-consuming process. In the absence of sophisticated software
performance models like Accel-Sim [20] for future GPUs, one can
use hardware performance counters and execution on real silicon to
model the power of a GPU architecture, and replace the hardware
performance counters of the component targeted by the research
with counters obtained from a model of only that component.

The AccelWattch framework can be used to estimate the power
consumption of a kernel running on a new architecture by first
initializing it with the AccelWattch model 8○. Then, a performance
model provides AccelWattch with the kernel’s execution statistics
(e.g., through simulation or hardware counters from execution on
real silicon) 9○. If needed, the resulting power estimates are scaled
to a new technology node.

A salient feature of AccelWattch is its longevity. As architectures
and technology continue to evolve, power modeling tools must
adapt to match their target systems. A key feature of AccelWattch is
that it is software-only; it makes use of integrated powermonitoring
tools in modern GPUs, and requires no external equipment beyond
a GPU card. Our power modeling framework is equipped with
a suite of microbenchmarks, analytical models, an optimization
solver, and a validation methodology that can support future GPUs.

3 THE ARCHITECTURE OF NVIDIA VOLTA
GPUs execute programs known as "kernels", which comprise sev-
eral threads, often thousands. Threads do not execute instructions
independently; rather, sets of 32 threads (warps) execute the same
instruction on different data by using their thread ID to select the
data items to work on.

A Volta GV100 GPU chip consists of 80 Streaming Multiproces-
sors (SMs). Each SM is partitioned into four processing blocks [30],
each with 16 INT32 cores for integer arithmetic, 16 FP32 and 8 FP64
cores for 32- and 64-bit floating-point, two tensor cores for matrix
arithmetic, one special function unit (SFU) for complex operations
(e.g., log), one warp scheduler, one dispatch unit, and a 64KB register
file [30]. The INT32, FP32 and FP64 cores have adders, multipliers,
and fused-multiply-add (FMA) units. The warp scheduler and dis-
patch unit can issue one instruction per clock to 32 execution lanes.
Each of the 4 processing blocks per SM has 8 LD/ST units and a
12KB L0 instruction cache [19]. Each SM features a 128KB L1 data
cache/shared memory, 2KB L1 and 64KB L1.5 constant caches, and
a 128KB L1 instruction cache. The GPU has a 6144KB unified L2
cache at the chip level, and a 32GB GPU DRAM off chip [19].

4 CONSTANT, STATIC AND IDLE POWER
MODELING

4.1 Hardware Experimentation Methodology
We use NVIDIA Management Library (NVML) [33] and the higher-
level API, NVIDIA System Management Interface (nvidia-smi) [28]
interchangeably for collecting power measurements on silicon for
all of our experiments. If needed, we vary the processor frequency
with nvidia-smi (e.g., for the constant power modeling experiments
described in Section 4.2). When possible, we lock the processor
frequency to the default applications clock frequency while collect-
ing power measurements for microbenchmark and validation suite
kernels. We ensure that the microbenchmarks present the desired
behavior by profiling them using hardware performance counters
provided by NVIDIA Nsight Compute [39].

To protect our experiments from the impact of temperature
variations, we bring the GPU chip to 65oC before taking power
measurements for a target kernel. Temperature variability affects
static power exponentially. Keeping a constant temperature during
hardware measurements eliminates this noise. After AccelWattch
learns a model assuming constant temperature, one can model
temperature variations by multiplying the modeled static power
with an experimentally-derived temperature-dependent factor.

4.2 DVFS-Aware Constant Power Modeling
At a high level, GPU power can be described by Eq. (1):

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Kandiah, et al.

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

P
o

w
e

r
(W

)

Processor Frequency (GHz)

INT_MEM

INT_ADD

FP_ADD

FP_MUL

NANOSLEEP

Modeled

Figure 2: Measured and curve-fitted total power with vary-
ing processor frequency on GV100.

Ptotal = Pproc,dyn + Pmem,dyn

+ Pproc,static + Pmem,static + Pconst (1)

The terms Pproc,dyn and Pmem,dyn comprise the dynamic power
consumption of the GPU chip andmemory, respectively, and depend
on the respective component’s frequency, voltage and technology
parameters (e.g., capacitance, gate length). The Pproc,static and
Pmem,static terms comprise the static power consumption of the
GPU chip and memory, respectively, and depend on voltage and
technology parameters only. GPUs consume power not only by
activating microarchitectural components (e.g., ALUs, caches) or
through leakage currents at inactive components (static power), but
also by peripheral components such as GPU board fans and other
auxiliary support circuitry. We capture the power consumption of
these components in the constant power term Pconst . We rewrite
Eq. (1) to reflect these dependencies and obtain Eq. (2), in which
C refers to the gate capacitance, V the supply voltage, and f the
clock frequency. The terms a,a′,b,b ′,m, and n are constants that
abstract away environmental, technology and design factors (a,b
for GPU chip dynamic and static power; a′,b ′ for memory):

Ptotal = aCV 2 f + a′CV 2 f + bV + b ′V + Pconst

=mCV 2 f + nV + Pconst (2)

The methodology employed by prior cycle-level models like
GPUWattch [21] to estimate constant power is based on Eq. (2) and
does not work on recent GPUs [13]. This methodology relies
on scaling down the frequency f , which linearly reduces the first
term (dynamic power). By running kernels at varying frequencies
and measuring the GPU’s power consumption each time, one could
estimate this linear relationship. Extrapolating this line to f = 0
eliminates themCV 2 f term and leaves only the nV + Pconst term,
providing an estimate of the static and constant power.

Modern GPUs employ DVFS to scale voltage with frequency and
this invalidates the underlying assumptions of the above methodol-
ogy. Fitting the experimental results from a GPU employing DVFS
(like Volta) to a linear model (as in GPUWattch) results in a nega-
tive constant and static power estimate, which is clearly incorrect.
Recently-published data for fully-realized processors show a near-
linear relationship in the frequency-voltage curve [18, 51]. Hence,
we can approximate the voltage scaling as a linear function of
frequency, V ≈ k f , and rewrite Eq. (2) as:

Ptotal = βC f 3 + τ f + Pconst (3)

0
20
40
60
80

100
120
140
160

Inactive
Chip

1 Lane
× 1 SM

1 Lane
× 80 SMs

8 Lanes
× 80 SMs

16 Lanes
× 80 SMs

24 Lanes
× 80 SMs

32 Lanes
× 80 SMs

M
ea

su
re

d
Po

w
er

 (W
)

Addl. Lanes

SM Activation

Chip Global

Const

+2480
lanes

+1840
lanes+1200

lanes+560 lanesfirst SM lane on chip
(activating first SM)

+79 lanes, 1 per SM
(activating +79 SMs)

Figure 3: Inferring the power consumption of activating
power-gated chip-wide and SM-wide components.

Thus, total power can be approximated by a cubic polynomial
with a missing quadratic term (β , τ are constants). Armed with
Eq. (3), we perform hardware power measurements at varying clock
frequencies of kernels running on a Volta GV100 following the
methodology at Section 4.1. We then curve-fit the experimentally-
measured data on curves of the form of Eq. (3). Figure 2 shows
the experimental results, along with the fitted cubic polynomi-
als. We evaluate a mixture of high-power microbenchmarks (e.g.,
INT_MEM, which executes a mix of integer and memory operations
and exceeds 200 W), light workloads (e.g., NANOSLEEP, which ex-
ecutes only nanosleep instructions), and moderate workloads (e.g.,
INT_ADD, FP_ADD, and FP_MUL which execute integer adds, FP
adds, and FP muls, respectively).

The fitted polynomials of the form of Eq. (3) show strong cor-
relation to the hardware power measurements (0.998 Pearson r
coefficient). By extrapolating the fitted curves all the way to the
y-axis intercept point, we can estimate the total power of the GPU
when f = 0. That is, the y-intercept corresponds to Pconst . Follow-
ing this methodology, we estimate that the constant power Pconst
for a Volta GV100 is 32.5 W.

4.3 Power-Gating-Aware Static Power Model
After estimating constant power, i.e., Pconst in Eq. (3), we next
consider the second term, τ f , which models static power. First,
we turn our attention to modeling static power in the presence of
power gating. We infer how modern GPUs are gating chip-wide,
SM-wide and lane-specific hardware components. We measure the
impact on power consumption of re-activating these components
on real hardware, and introduce an analytic model that explains
the power-gating behavior of GPUs and accurately captures their
power consumption in the presence of power gating. To the best of
our knowledge, this is the first time that the power-gating behavior
of GPUs is inferred, measured and modeled analytically.

When lanes or SMs are inactive, modern GPUs gate them to
conserve power. There are some components that all SMs share
(e.g., L2 cache). These global chip components are powered up
even when there is only one SM active on the GPU. When they
are activated, these components leak power when they are not
switching. Similarly, there are components that all lanes share in an
SM (e.g., L1 caches, shared memory. These SM-wide components
are active even when there is only one thread active in an SM, while
the remaining lanes are power gated. These components also leak
power when they are not switching. As additional lanes become
active, they power up their own lane-specific functional units (e.g.,
INT32 and FP32 cores) which may also leak power when inactive.

AccelWattch: A Power Modeling Framework for Modern GPUs MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Figure 3 shows the hardware-measured power of a microbench-
mark that issues integer operations to a varying number of SMs and
lanes per SM. When no SM is active on the chip, it consumes only
constant power (estimated in Section 4.2). When the microbench-
mark runs on only one lane on one SM (1 Lane × 1 SM), that first
SM activation powers up that SM’s structures, but also activates
global chip structures shared by all SMs.When themicrobenchmark
utilizes additional SMs (1 Lane × 80 SMs), it additionally powers
up only the SM-wide components of the additional SMs. As a re-
sult, the first activated SM on a GPU consumes 47× more power
than each one of the subsequently-activated SMs. For example,
1 Lane × 80 SMs consumes 70% more power than 1 Lane × 1 SM,
even though it utilizes 79× more SMs.

Similarly, the first lane activation in an SM also activates SM-
wide structures that are shared by all lanes. In contrast, activating
additional lanes also powers up only those lanes’ functional units.
As a result, the first activated lane in an SM demands 31× more
power than lanes activated after it. For example, 8 Lanes × 80 SMs
consumes 10% more power than 1 Lane × 80 SMs, even though it
utilizes 7× more lanes.

The increased power consumption after re-activating a compo-
nent is both due to higher dynamic power as the component is
utilized (captured by our dynamic power model), as well as higher
static power. We capture the latter in the analytic model we intro-
duce in the next section, as the effects of power gating are inherently
linked to the effects of execution divergence.

4.4 Divergence-Aware Static Power Modeling
When a warp executes in an SM, it may leave some lanes inac-
tive due to execution divergence, which may be gated to conserve
power. The active lanes, however, still leak power as not all of their
components are continuously utilized. We capture this behavior of
a warp with y active lanes in Eq. (4).

Pstatic,addLane = (Pstatic,32Lanes − Pstatic,f ir stLane) / 31
Pstatic,yLanes = Pstatic,f ir stLane + Pstatic,addLane · (y − 1) (4)

The Pstatic,f ir stLane term captures the static power of the first
active lane, to whichwe attribute the static power of all the SM-wide
components that lanes share. Each additional active lane is only re-
sponsible for its own functional units’ static power, Pstatic,addLane .
The Pstatic,32Lanes term refers to the static power when 32 lanes
are active. We refer to Eq. (4) as the Linear static power model, as
it distributes equally the static power among all lanes of a warp
except the first lane.

However, the linear model of Eq. (4) does not always match
real-world observations. An SM in Volta comprises 4 processing
blocks [30], each with 16 CUDA cores. A warp executes by running
two 16-thread half-warps, one after the other. If a warp has y ≤ 16
threads active, the processing block executes the active half-warp
but forgoes the execution of the empty one. Thus, the same fraction
of lanes is active on every cycle, and the power consumption rises
as y grows. At y = 16, all 16 cores on all processing blocks are
always active, consuming maximum power.

If a warp has 16 < y < 32 active threads, then “full half-warps”
with 16 active threads (maximum power consumption) alternate
with “partial half-warps” with the remaining active threads (lower

power consumption). Thus, the power consumption for 16 < y < 32
will be lower than the power consumption for y = 16 (note that
the energy consumption will still be higher). When y = 32, all
processing clusters once again execute “full half-warps” and reach
maximum power. We capture this counter-intuitive behavior in
Eq. (5), to which we refer as the Half-warp static power model.

Pstatic,yLanes =

Pstatic,f ir stLane
+Pstatic,addLane · (y − 1), if y ≤ 16

Pstatic,f ir stLane
+ 1
2Pstatic,addLane · 15
+ 1
2Pstatic,addLane · (y − 17), if y > 16

(5)

To study this behavior experimentally, we follow the process
shown in Figure 1- 2○ and the methodology described in Section 4.1.
We develop microbenchmarks that utilize all SMs but with config-
urable thread divergence. We run each microbenchmark at varying
clock frequencies and thread divergence, collect hardware power
measurements, and curve-fit them to Eq. (3) (the fitted curve has
1% MAPE). From the fitted Eq. (3) for each microbenchmark, we
estimate its static power (fitted τ f term) when only one lane is
active per warp (Pstatic,f ir stLane), and when 32 lanes are active
per warp (Pstatic,32Lanes). Then, we replace Eq. (3)’s τ f term with
the linear and the half-warp models from Eqs. (4) and (5) to obtain
an analytic model for total power that is divergent-aware.

We validate the half-warp power model in Figure 4a, which com-
pares the power estimated by AccelWattch with hardware power
measurements for a microbenchmark that issues INT_MUL instruc-
tions. The power for this microbenchmark strongly follows the
half-warp model. We emphasize that the blue line in Figure 4a rep-
resents hardware measurements. It is indeed the case that 16-lane
and 32-lane warps consume the maximum power on real hardware,
and all other configurations consume less, giving rise to a sawtooth
pattern. However, other cases (e.g., Figure 4c) follow the linear
model instead. The reasons behind this behavior are discussed next.

4.5 ILP and Execution Divergence
When a kernel uses only one functional unit, power strongly fol-
lows the half-warp model (Figure 4a). When exercising two units,
(e.g., when the kernel issues both INT32 and FP32 instructions—
Figure 4b), the half-warp behavior is less pronounced. This happens
because Volta can simultaneously execute operations in the same
warp by running multiple functional units concurrently [30]. A ker-
nel with ILP can exploit this behavior to execute faster. As different
operations usually have different latencies, their executions become
interleaved in time. Hence, on every cycle we observe a statistical
mix of full and partial half-warps: if we take a snapshot of the GPU,
we will observe processing blocks executing “full half-warps” (Sec-
tion 4.4) of one instruction concurrently with “partial half-warps” of
the other. This statistical mix smooths out the sawtooth-like pattern
of power consumption. When more units are employed (Figure 4c)
the behavior becomes almost purely linear. Thus, static power for
active SMs gradually drifts from the half-warp to the linear model,
depending on the instruction mix. To the best of our knowledge,
this is the first time this behavior is inferred and modeled.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Kandiah, et al.

0
25
50
75

100
125
150
175

0 4 8 12 16 20 24 28 32 36

W
at

ts

#Active Threads per Warp

Measured Linear Model Half-warp Model

(a) INT_MUL

0
25
50
75

100
125
150
175

0 4 8 12 16 20 24 28 32 36

W
at

ts

#Active Threads per Warp

Measured Linear Model Half-warp Model

(b) INT_FP

0
25
50
75

100
125
150
175

0 4 8 12 16 20 24 28 32 36

W
at

ts

#Active Threads per Warp

Measured Linear Model Half-warp Model

(c) INT_FP_SFU

Figure 4: Hardware measurements and modeled power with varying number of active threads in each warp.

Capitalizing on this observation, we assess the typical instruc-
tion patterns in GPU kernels and develop microbenchmarks that
selectively stress them. We identified a total of 9 instruction mix
categories, ranging from homogeneous categories with only in-
teger ADD or only integer MUL instructions, to categories com-
prising a mix of instructions: int, int/FP, int/FP/DP, int/FP/SFU,
int/FP/TEX, int/FP/tensor, and a category of only light instructions
(e.g., nanosleep). We create the appropriate half-warp or linear
models for each instruction mix and integrate them in AccelWattch.
During an AccelWattch run, the performance model (simulator or
hardware counters) reports the lane occupancy and instruction mix
to AccelWattch, which then picks the appropriate power model.

4.6 Power Modeling for Idle SMs
Following a similar methodology, shown in Figure 1- 3○, we develop
a model that captures the power consumption of SMs that are idle.
We follow the methodology in Section 4.1 to develop microbench-
marks that vary the number of active SMs but use all 32 lanes of
each warp (so thread divergence does not perturb our results). For
simplicity, we assume that all SMs contribute equally to power
consumption when they are occupied with the same microbench-
mark. Thus, we estimate the dynamic plus static power per active
SM when running microbenchmark i , Pdyn+static,perActiveSM,i ,
through Eq. (6), where Ptotal,80SMs,i is the hardware power mea-
surement of microbenchmark i with all SMs active (GV100 has 80)
and Pconst is the constant power estimated in Section 4.2.

Pdyn+static,perActiveSM,i = (Ptotal,80SMs,i − Pconst) / 80 (6)

When the same microbenchmark i is configured to occupy fewer
SMs, NactiveSMs , we still expect each active SM to expend the
power shown by Eq. (6). With that in mind, Eq. (7) models the
power of all idle SMs (combined), where Ptotal is the hardware
power measurement of that experiment.

PidleSMs,i = Ptotal,i − Pconst − Pdyn+static,perActiveSM,i · NactiveSMs (7)

Wemodel the static power consumption per idle SM formicrobench-
mark i as a linear model in which each idle SM contributes equally:
Pper IdleSM,i = PidleSMs,i/NidleSMs . We repeat this process for
all n microbenchmarks, and use the geomean in Eq. (8) as the final
estimate of idle SM power.

0
20
40
60
80

100
120
140

0 10 20 30 40 50 60 70 80 90

Po
w

er
 (W

)

#Idle SMs

Measured AccelWattch Modeled

Figure 5: Validation of Idle SM static power model.

Pper IdleSM =
n

√√ n∏
i=1

Pper IdleSM,i (8)

Figure 5 shows that AccelWattch exhibits strong correlation
with hardware measurements of the total power when running the
INT_MUL microbenchmark, validating our model.

4.7 Putting It All Together
We combine Eq. (4), Eq. (5), and Eq. (6) and model the static power
per active SM with y active lanes per warp in Eq. (9). The term
Pstatic,yLanes,80SMs is identical to Pstatic,yLanes in Eqs. (4) and
(5); we just make it explicit that the term is for 80 SMs.

Pstatic,yLanes,perActiveSM = Pstatic,yLanes,80SMs / 80 (9)

Taking all of the above into account, AccelWattch’s overall power
model is shown in Eq. (10).

Ptotal,yLanes,kSMs = Pdyn + Pstatic,yLanes,perActiveSM · k

+ Pper IdleSM · (80 − k) + Pconst (10)

The two middle terms of Eq. (10) comprise AccelWattch’s final
static power model (Figure 1- 4○) for y active lanes and k active
SMs. The term Pdyn corresponds to the dynamic power, and is the
subject of the next section.

5 DYNAMIC POWER MODELING
5.1 Dynamic Power Model Formulation
AccelWattch employs an iterative approach to tune its parameters
for dynamic power modelling, similar to GPUWattch, but it uses
quadratic programming [4] instead of a least-squares solver. Given
N microarchitectural components, the dynamic power consumed

AccelWattch: A Power Modeling Framework for Modern GPUs MICRO ’21, October 18–22, 2021, Virtual Event, Greece

by a kernel can be described by Eq. (11) as a function of each compo-
nent’s i energy per access Ei , its activity factor ai (i.e., the number
of accesses to it during execution), and the run time TelapsedT ime .

Pdyn =
N∑
i=1

ai · Ei
TelapsedT ime

(11)

The initial estimate Êi of component i’s energy consumption per
access is likely to be inaccurate. We consider this inaccuracy as an
unknown variable xi in equation Ei = Êi · xi and rewrite Eq. (10)
for y active lanes and k SMs as:

Pest . =
N∑
i=1

ai · Êi
TelapsedT ime

· xi + Pstatic,yLanes,perActiveSM · k

+ Pper IdleSM · (80 − k) + Pconst (12)

One can view Eq. (12) as a dot product between a vector of power
coefficients P̂i · xi , ..., Pstatic,activeSM · 1, PidleSM · 1, Pconst · 1
(which remain constant for a given GPU) and activity factors, ai , y
and k , which vary across kernels. These vectors have N + 3 dimen-
sions. N components of the vectors relate to estimated dynamic
power, where each component contains an unknown factor, xi .
The three remaining components (modeled in Section 4) relate to
constant, static, and idle SM power (these components effectively
have xi = 1). A single kernel will produce a vector with N + 3 ac-
tivity factors, which can be used to estimate that workload’s power
consumption on the GPU. A collection of M kernels will provide
M ×(N +3) set of equations, shown in Eq. (13). In this equation, the
initially-inaccurate power estimates for the power components in
Pest . are corrected by the parameter vectorX , to obtain a power for
each kernel that approximates its hardware power measurement,
Pmeas . .

P
M×(N+3)
est . × X (N+3)×1 = PM×1

meas . (13)
Given enough workloadsM , we can solve the system of Eq. (13)

and obtain the best estimates X ∗. We model dynamic power as
an equation system with 22 parameters (Table 1). We tune these
parameters using 102 microbenchmarks, each stressing specific
microarchitectural components (Table 2), producing a 102 × 22
set of linear equations. Eq. (14) formulates the complete power
model as an optimization problem, which AccelWattch solves using
quadratic programming [4].

X ∗ = argmin
X

(
XT × PTest . × Pest . × X − (PTest . × Pmeas .)

T × X
)

s.t. ∀i : 0.001 ≤ Xi ≤ 1000 ∧ Xstatic = XidleSM = Xconst = 1
XALU ≤ XF PU ≤ XDPU ∧ XALU ≤ Ximul

Xfpmul ≤ {Ximul ,Xdpmul ,Xsqr t ,Xloд ,Xsin ,Xexp ,Xtensor ,Xtex } (14)

Table 1 lists the dynamic power components (corresponding
components of X) modeled by AccelWattch. Each INT32, FP32, and
FP64 unit in Volta can perform additions, multiplications, FMAs,
and a few other operations. Each of these operations activates
different parts of the functional unit’s circuitry, which results in
a different power consumption per operation. Thus, AccelWattch
tracks these operations separately. Similarly, AccelWattch tracks
SFU operations separately (e.g., log, sqrt). The L2 Cache and NoC

components cannot be distinguished from each other, hence we
model them together (similarly for DRAM and Memory Controller).

The AccelWattch HW model collects the information shown in
Table 1 from hardware counters, except for the shaded components.
There are no hardware counters for L1i and register file activity,
and while DRAM read and write counters exist, there is no DRAM
precharge counter. AccelWattch HYBRID is built similarly, but with
the L2 Cache and NoC counters derived fromAccel-Sim simulations.

5.2 Performance Modeling Framework
We developed AccelWattch by extensively modifying the dormant
McPAT-based [22] GPUWattch [21] power model that comes pack-
aged with the underlying GPGPU-Sim v4.0.1 [3] integrated in Accel-
Sim v1.1.0 [20]. AccelWattch is driven by a performance model,
which provides AccelWattch with statistics on hardware compo-
nent activity, active SMs and lanes, voltage-frequency parameters,
and cycle count (Figure 1- 6○).

For the performance model of AccelWattch variants driven fully
or partially by software simulations (SASS SIM, PTX SIM, HYBRID)
we use the latest publicly-available version of Accel-Sim v1.1.0 [20].
Accel-Sim has been extensively validated against Volta, showing
strong performance correlation with > 0.97 Pearson r coefficient.
For SASS simulationswe feed Accel-Simwith SASS traces generated
by the NVIDIA Binary Instrumentation Tool (NVBit) [45]. For PTX
simulations, Accel-Sim invokes the underlying GPGPU-Sim.

At each sampling period (500 cycles) Accel-Sim provides exe-
cution statistics to AccelWattch, which uses them to estimate the
workload’s power for each sampling period. As the performance
model provides AccelWattch with frequency and voltage settings at
each sampling interval, AccelWattch can scale the estimated power
for that interval following Eq. (2). Thus, if the performance model
is DVFS-capable, AccelWattch will calculate all power transitions.

Similarly, for the AccelWattch variants driven by hardware (HW
and HYBRID), AccelWattch collects hardware activity and exe-
cution statistics from kernel runs on real silicon using hardware
counters provided by NVIDIA Nsight Compute [39]. For these mod-
els, AccelWattch collects dynamic instruction information and lane
activity from the SASS traces (which are also obtained from execu-
tion on real silicon). For AccelWattch HYBRID, we follow the same
methodology as for AccelWattch HW for all available hardware
counters, but we utilize the methodology for AccelWattch SASS
SIM to obtain the activity counters for the L2 Cache and NoC.

5.3 Microbenchmarking for Dynamic Power
Following the process shown in Figure 1- 5○ and the methodology
in Section 4.1, we build a suite of 102 microbenchmarks that stress
target hardware components to estimate their power consumption.
We use a mixture of compiler options, inline-assembly (PTX), and
pointer-chasing (for microbenchmarks that stress the memory hi-
erarchy) to work around default compiler optimizations. We place
the Region of Interest (ROI) of these kernels inside an unrolled loop,
and run them on silicon with a high loop iteration count.

Table 1 lists the 22 microarchitectural components that Accel-
Wattch tracks. Table 2 combines them into coarser-grain categories
and lists the number or microbenchmarks that target components

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Kandiah, et al.

Table 1: Dynamic power components in AccelWattch.

AccelWattch Dynamic
Power Component

Hardware Unit
on Volta

AccelWattch Dynamic
Power Component

Hardware Unit
on Volta

Instruction Buffer L0 Inst. Cache sqrt

SFUInstruction Cache L1i log
Constant Cache Constant Cache sin/cos
L1d Cache L1d Cache/

Shared Memory
exp

Shared Memory Tensor Core Tensor Core
Register File Register File Texture Unit Texture Unit
ALU INT32 core Scheduler Sched. & Dispatch
int mul/mad SM Pipeline SM Pipeline
FPU FP32 core L2 Cache L2 Cache
fp mul/mad NoC NoC
DPU FP64 core Dram DRAM
dp mul/mad Memory Controller Memory Controller

Table 2: AccelWattch tuning µBenchmarks.

Hardware
Comp. Category

µBench
Count

Hardware
Comp. Category

µBench
Count

Active/Idle SMs 12 Register File 1
INT32 core 9 dCaches + Sh.Mem. + NoC 11
FP32 core 8 DRAM + MC 2
FP64 core 8 Tensor core 6
SFU 9 Mix 29
Texture Unit 7 Other (L0, L1i, Pipeline, Scheduler) 102

within each category. The mix microbenchmarks target combina-
tions of these categories. The Other category includes components
such as the SMpipeline, scheduler, and L0 and L1i instruction caches.
All microbenchmarks stress this category, so all are included.

Figure 6 shows the dynamic power heat-map of microbench-
marks based on the hardware component categories they target.
Each cell’s color encodes the fraction of dynamic power a mi-
crobenchmark spends on the corresponding GPU component, as
estimated by AccelWattch SASS SIM. It is important to note that
even if a hardware unit is stressed by continuously issuing instruc-
tions to it, other units may also be accessed with a high frequency
(e.g., register file, L1i), and the power consumed by these other
units may be higher than the targeted one’s. In such cases, the
heat-map cell corresponding to the targeted unit may not appear
“hot”. For example, this behavior appears with units that do not con-
sume much power, e.g., the Texture Unit, or with microbenchmarks
that stress the INT32 Core with highly-divergent code. Overall, the
heat-map demonstrates that each microbenchmark exercises the
corresponding GPU component it targets, and our suite adequately
exercises all components.

To build the power model of an AccelWattch variant (Section 2),
we collect each hardware component’s activity when running a
microbenchmark from the respective performance model, and gen-
erate a set of per-component power estimates. These estimates,
together with hardware measurements of total power consumption,
are used in the quadratic programming optimization of Eq. (14).

5.4 Quadratic Programming Optimization
We perform quadratic programming optimization to minimize the
relative error between the modeled system power and the measured
hardware power (Eq. (14)). At each step of the regression, we obtain
new per-component scaling factors that we supply to AccelWattch
and re-iterate, until the solver can no longer reduce the relative
errors (Figure 1- 7○). We enforce per-scaling-factor constraints on

Register File

IN
T3

2
 C

o
re

FP
3

2
 +

FP
6

4
 C

o
re

SF
U

Te
n

so
r

C
o

re

Te
xt

u
re

 U
n

it

R
e

gi
st

e
r

Fi
le

d
C

ac
h

e
s

+

Sh
.M

e
m

+N
O

C

D
R

A
M

 +
 M

C

O
th

e
rs

GPU Hardware Components

µ
B

en
ch

m
ar

k
C

at
e

go
ri

es

INT32 Core

FP32/FP64 Core

SFU

Tensor Core

Texture Unit

dCaches+Sh.Mem

DRAM + MC

Mix

0.1639344 0.3278689 0.4918033 0.6557377 0.8196721 0.9836066 1.147541 1.3114754 1.4754098 1.6393443 1.8032787 1.9672131 2.1311475 2.295082 2.4590164 2.6229508 2.7868852 2.9508197 3.1147541 3.2786885 3.442623 3.6065574 3.7704918 3.9344262 4.0983607 4.2622951 4.4262295 4.5901639 4.7540984 4.9180328 5.0819672 5.2459016 5.4098361 5.5737705 5.7377049 5.9016393 6.0655738 6.2295082 6.3934426 6.557377 6.7213115 6.8852459 7.0491803 7.2131148 7.3770492 7.5409836 7.704918 7.8688525 8.0327869 8.1967213 8.3606557 8.5245902 8.6885246 8.852459 9.0163934 9.1803279 9.3442623 9.5081967 9.6721311 9.836065610 10.163934 10.327869 10.491803 10.655738 10.819672 10.983607 11.147541 11.311475 11.47541 11.639344 11.803279 11.967213 12.131148 12.295082 12.459016 12.622951 12.786885 12.95082 13.114754 13.278689 13.442623 13.606557 13.770492 13.934426 14.098361 14.262295 14.42623 14.590164 14.754098 14.918033 15.081967 15.245902 15.409836 15.57377 15.737705 15.901639 16.065574 16.229508 16.393443 16.557377 16.721311 16.885246 17.04918 17.213115 17.377049 17.540984 17.704918 17.868852 18.032787 18.196721 18.360656 18.52459 18.688525 18.852459 19.016393 19.180328 19.344262 19.508197 19.672131 19.83606620 20%

0%

5%

10%

15%

Figure 6: Dynamic power heat-map of GPU hardware com-
ponent categories exercised by microbenchmarks.

the quadratic solver to guard against unrealistic component power
estimates. In particular, we ensure all scaling factors are positive,
and we constrain the energy cost of execution units to guard against
unrealistic estimates (see constraints in Eq. (14)).

We use two different starting points for the scaling factors used
in the initial iteration of this process. For one of the starting points,
all initial scaling factors are set to one, thus there is no scaling
taking place initially. The other starting point is obtained from the
GPUWattch model for NVIDIA Fermi GTX 480 [27] which has been
independently validated [21]. Due to having two starting points, we
end up with two AccelWattch models. The model obtained from the
Fermi starting point achieves higher accuracy (9.2% vs. 14.8%MAPE
on the validation set for SASS SIM). Thus, for each AccelWattch
variant, we adopt the model obtained from the Fermi starting point
as the final AccelWattch model (Figure 1- 8○).

6 VALIDATION
6.1 Target Architecture and Workloads
We validate AccelWattch against a Volta GV100 GPU (Table 3) by
applying the AccelWattch power models on a suite of validation
kernels that are not part of the training set.

Our validation suite consists of a wide range of kernels selected
from NVIDIA CUDA Samples (SDK) [35], Rodinia 3.1 [7], Par-
boil [41], and CUTLASS 1.3 [32]. Including NVIDIA SDK is impor-
tant for the unbiased evaluation of AccelWattch. It does not skew
results to AccelWattch’s favor: AccelWattch SASS SIM achieves
9.91% MAPE for NVIDIA SDK, compared to 4.9% (Parboil), 9.55%
(Rodinia), and 9.98% (CUTLASS). On the contrary, AccelWattch ex-
periences its largest error in one of the SDK workloads (dct_k2). All
workloads are compiled with NVCC V11.0.167 [34] with compute-
capability support for Volta (code=sm_70).

To collect hardware power measurements, we launch the target
validation kernel to the default CUDA stream repeatedly in a loop
so that it runs sufficiently long for accurate hardware measure-
ments using NVML. We ensure that the kernel runs for NVML’s
entire sampling period through nvidia-smi. We wait until the chip
reaches 65oC, then collect several power measurements. We let

AccelWattch: A Power Modeling Framework for Modern GPUs MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Table 3: Target GPUs for validation and case studies.

GPU Tech.
Node

Clock Frequency for
HW Power Measurement

Power
Limit

Case
Study?

Quadro GV100 (Volta) 12 nm 1417 MHz 250 W N
TITAN X (Pascal) 16 nm 1470 MHz 250 W Y
RTX 2060S (Turing) 12 nm 1905 MHz 175 W Y

Table 4: List of kernels in validation suite.

Kernel Run-time
Coverage Benchmark Kernel Run-time

Coverage Benchmark

CUDA Samples 11.0
tensor_K1 100% cudaTensorCoreGemm dct_K1 19.6% dct8x8
binOpt_K1 100% BinomialOptions dct_K2 72.3% dct8x8
walsh_K1 47.8% fastWalshTransform histo_K1 52.9% histogram
walsh_K2 49.4% fastWalshTransform msort_K1 71.8% mergesort
qrng_K1 66.4% quasirandomGenerator msort_K2 26.3% mergesort
qrng_K2 33.6% quasirandomGenerator sobol_K1 100% SobolQRNG

Rodinia 3.1
kmeans_K1 91.6% kmeans sradv1_K1 53.9% sradv1
bprop_K1 75.7% backprop hspot_K1 100% hotspot
bprop_K2 24.3% backprop b+tree_K1 48.5% b+tree
pfind_K1 100% pathfinder b+tree_K2 51.5% b+tree

CUTLASS 1.3 (cutlass-wmma) Parboil
cutlass_K1 100% input: 2560x16x2560 sgemm_K1 100% sgemm
cutlass_K2 100% input: 4096x128x4096 mri-q_K1 100% mri-q
cutlass_K3 100% input: 2560x512x2560 sad_K1 95.9% sad

the chip cool down back to its idle-state temperature, repeat at
least 5 times, and report the average across all measurements. We
observe that measurements at the NVML resolution frequency are
stable throughout kernel execution (0.0018–1.9% variance across
all measurements and repetitions). If a target kernel cannot reach
65oC, we use a power-hungry kernel first to heat up the chip to
much higher than 65oC, and then switch to the target kernel and
collect power measurements at 65oC as the chip cools down.

NVML has a low sampling frequency of 50-100 Hz. Thus, we are
unable to collect accurate hardware power measurements of short-
running kernels (< 2µs run time) because their measurements
are perturbed by other events (e.g., invocation/setup overheads
to prepare the next kernel iteration, host synchronization, PCI
transfers). We exclude such kernels from our suite. We also exclude
kernels that are impractical to simulate (> 2 days per run) due to
exceedingly-long simulation times and multi-TB instruction trace
storage requirements. All kernels are run to completion.

Table 4 lists our full evaluation suite of 26 kernels from 18 work-
loads along with their run-time coverage of the respective work-
loads they are from.We use the largest available input configuration
for all workloads except CUTLASS, for which, we use three different
input matrix sizes. We exclude CUTLASS, hotspot, and pathfinder
from the PTX SIM validation suite because they do not compile for
Accel-Sim’s PTX mode We exclude pathfinder from the HW and
HYBRID validation suites because NVIDIA Nsight Compute fails
to provide hardware performance counters for this workload.

To validate AccelWattch, we follow the flow in Figure 1- 9○ and
discussed in Section 2, with a NVIDIA Volta GV100 GPU as the
target architecture. We compare AccelWattch’s power estimates
with hardware measurements obtained for the validation suite
kernels running on a GV100 GPU.

(a) Volta SASS SIM, MAPE: 9.2%

(c) Volta HW, MAPE: 7.5%

(b) Volta PTX SIM, MAPE: 13.7%

(d) Volta HYBRID, MAPE: 8.2%

0
30
60
90

120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

0
30
60
90

120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

0
30
60
90

120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

0
30
60
90

120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

Figure 7: Correlation plots for AccelWattch validation.

6.2 Validation Results
Figure 7 shows the correlation plots of the estimated vs. measured
power consumption and the corresponding MAPE for AccelWatch
SASS SIM and PTX SIM for Volta. Overall, AccelWattch exhibits
stronger correlation for SASS than PTX. We attribute this to the
fact that PTX instructions do not map 1:1 to SASS instructions;
prior work [14] demonstrates that simulating a virtual ISA (PTX)
introduces inaccuracies compared to simulating the native ISA
(SASS), which directly corresponds to execution on hardware units.

AccelWattch SASS SIM modeling a Volta GV100 compared to
hardware measurements attains a MAPE of 9.2% ± 3.12% (95%
confidence interval) with a maximum relative error of 30%. Two
thirds of our validation suite kernels (17 out of 26) have < 10%
absolute relative error, while only 4 kernels have an absolute relative
error of > 20%. In comparison, when modeling a Volta architecture,
GPUWattch reaches a MAPE of 219% with maximum error 447%
(Section 7.3). For the twoGPUs it is trained for (GTX 480 andQuadro
FX5600), GPUWattch achieves average error of 9.9% and 13.4%,
respectively, but with a maximum relative error of 57.8%. Overall,
AccelWattch successfully tracks the high variability in measured
power across our validation suite (from 90 W up to 230 W).

Among all variants, AccelWattch HW achieves the lowest MAPE
(7.5%). This is expected, as it is driven by performance counters
collected from execution on real silicon, and does not suffer from the
inevitable inaccuracies of software performance models (e.g., Accel-
Sim). However, AccelWattch HW is the most restrictive model, as it
does not lend the same modeling flexibility as software simulators.

AccelWattch HYBRID is introduced as a way to alleviate this
problem. The HYBRID variant utilizes hardware performance coun-
ters for all components except the ones that the user decides to
replace with their own models. Thus, users may partially avoid the
inordinate effort required to build, tune and validate highly sophis-
ticated software models of entire GPU architectures, and instead
focus their attention on only the few components that are relevant
to their research target. As an example of a HYBRID model in this
paper, we target the L2 and NoC hardware components and replace
their statistics with ones obtained from Accel-Sim. AccelWattch

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Kandiah, et al.

AccelWattch Case Studies

20.3% 20.1% 20.7% 27.3%
38.0%

17.1% 17.9% 18.4%

27.2%
21.6%

3.2%

2.1% 2.2%

2.3%
0.7%17.6%

13.1% 11.1%8.0%

3.2% 4.9%

8.0% 5.1%

2.9%

2.3%
2.5%

2.5% 2.0%
6.7%

14.2% 14.3%

2.8% 4.6%

8.4%

8.9% 6.9%

6.9% 6.9%
15.9%

31.4% 30.2%

9.9% 9.9%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Volta
SASS SIM

Volta
HW

Volta
HYBRID

Pascal
SASS SIM

Turing
SASS SIM

PO
W

ER
 (N

O
RM

AL
IZ

ED
)

Others

DRAM + MC

Caches + NOC

FPU+ DPU

ALU

RegFile

Idle_SM

Static

Const

Figure 8: Normalized per-component power breakdown.

HYBRID achieves a MAPE of 8.2%, showing that it can successfully
trade-off accuracy for modeling flexibility.

Figure 8 (left) shows the normalized power breakdown estimated
by AccelWattch for Volta averaged across all kernels in the vali-
dation set. The register file, static power, and constant power are
the most significant power contributors, together consuming 55%
of the total system power on average. Volta also has a measurable
Idle_SM power component, owing to having a high number of SMs
which our validation suite kernels do not always fully utilize. The
Others category comprises of the instruction buffer, scheduler, SM
pipeline, texture units, and tensor cores (exercised by only 4 out of
26 kernels). As Volta does not have hardware performance counters
for register file and L1i, the AccelWattch HW solver minimizes error
by lumping their power to other commonly-accessed ones: instruc-
tion buffer, scheduler, and SM pipeline. Hence, the Others category
grows proportionally to accommodate this reassignment. Accel-
Wattch HYBRID shows a similar trend. Figure 8 also shows that
replacing the hardware counters for L2 and NoC hardly changes
the power breakdown compared to HW, suggesting that HYBRID
is likely to work well when the software model of the targeted
component closely approximates its behavior on real silicon.

Figure 9 shows the power breakdown for each kernel. Tensor
cores consume a significant portion of total system power (geomean
28.7%) for the kernels that use them. Note that tensor cores are
not part of the Others category in Figure 9. Also, several kernels
(backprop_k1, hotspot_k1, sgemm_k1) consume over 90% of the
peak power. We postulate this happens because these kernels keep
resources busier than the rest due to high thread IPCs (5690, 7157,
and 4668, respectively) and have a nearly even split of ALU and
FPU (DPU) instructions, which can execute concurrently on Volta.

7 CASE STUDIES
7.1 Modeling Pascal and Turing Architectures
An important goal of an architecture power model is to enable
accurate design space exploration. For the use-case scenarios, we
envision an architect who starts with the Volta architecture and
uses AccelWattch to estimate the power consumption for a new
architecture with different parameters. While GPUWattch is config-
urable, its accuracy when varying parameters has been identified as
a weakness [26] (see also Section 7.3). Thus, as our first case study,
we apply AccelWattch to estimate the power consumption of two
new architectures for which it has not been tuned. We emphasize
that if we directly tuned models for these GPUs they would likely
result in more accurate models.

Ideally, we would validate AccelWattch predictions for these
new architectures against Volta chips that employ these different
configurations. However, such chips do not exist. As a proxy, we
select configuration parameters similar to the NVIDIA Pascal and
Turing architectures, and compare against real Pascal and Turing
chips. The Pascal and Turing architectures are the nearest to Volta.
Hence, they are the most likely to have similar hardware imple-
mentations. Differences in the implementation of hardware units
and the ISA between Volta and these architectures will manifest as
modeling error. Table 3 lists the parameters of the target GPUs.

The evaluation closely follows the validation flow shown in
Figure 1- 9○, with small modifications. First, the workloads are
compiled with compute-capability support for Pascal and Turing
(code=sm_61 and code=sm_75 compiler options, respectively). Sec-
ond, Volta, Pascal and Turing implement different ISAs. Thus, com-
paring hardware runs on Pascal (or Turing) with Volta-derived
traces in Accel-Sim would introduce spurious inaccuracies; we only
attempt to model different architectural parameters with Accel-
Wattch in these use cases after all, not different ISAs. To avoid such
spurious inaccuracies, we re-extract traces for Pascal and Turing
GPUs to use in the validation of the corresponding use cases. Accel-
Wattch is still using the Volta-trained model—the traces are used
only for validation purposes. Differences in hardware implementa-
tions still manifest as errors, as we do not attempt to model different
functional unit implementations. We exclude all workloads that
use tensor cores (CUTLASS and cudaTensorCoreGemm) from our
validation suite for Pascal, since Pascal does not have tensor cores.

AccelWattch is based on the Volta architecture which is imple-
mented at 12 nm, while Pascal is at 16 nm. Thus, following the
flow in Figure 1- 9○, after we collect power estimates for Pascal
from AccelWattch, we apply technology scaling based on published
IRDS [17] parameters. Technology scaling reduces MAPE by 1.22%

0
25
50
75

100
125
150
175
200
225
250

b+
tr

ee
_K

1

b+
tr

ee
_K

2

bp
ro

p_
K1

bp
ro

p_
K2

bi
nO

pt
_K

1

dc
t_

K1

dc
t_

K2

w
al

sh
_K

1

w
al

sh
_K

2

hi
st

o_
K1

hs
po

t_
K1

km
ns

_K
1

m
So

rt
_K

1

m
So

rt
_K

2

m
riq

_K
1

sa
d_

K1

sg
em

m
_K

1

pf
in

d_
K1

qr
ng

_K
1

qr
ng

_K
2

so
bo

l_
K1

sr
ad

_K
1

cT
en

so
r_

K1

cu
tla

ss
_K

1

cu
tla

ss
_K

2

cu
tla

ss
_K

3

PO
W

ER
 (W

)

Measured
Others
DRAM + MC
L2 + NOC
icache + Ccache
L1D+SHRD
TENSOR
SFU
FPU+ DPU
ALU
RegFile
Idle SM
Static
Const

Figure 9: AccelWattch validation: AccelWattch SASS SIM modeling a Volta GV100.

AccelWattch: A Power Modeling Framework for Modern GPUs MICRO ’21, October 18–22, 2021, Virtual Event, Greece

(c) Turing SASS SIM, MAPE: 13%

(a) Pascal SASS SIM, MAPE: 11% (b) Pascal PTX SIM, MAPE: 10.8%

(d) Turing PTX SIM, MAPE: 14%

0
30
60
90
120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

0
30
60
90
120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

0
30
60
90
120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

0
30
60
90
120
150
180
210
240
270

0 30 60 90 120 150 180 210 240 270

Ac
ce

lW
at

tc
h

 P
ow

er
 (W

)

Measured Power (W)

Figure 10: Correlation plots for case studies.

for PTX and 1.85% for SASS compared to the non-scaled models.
Turing is also at 12 nm so it does not need technology scaling. We
also set the constant power for Turing at 1.7× higher than Volta’s
to approximate the new board’s fans and peripheral circuitry. We
only make this change so we can compare against a real-world chip
without perturbations from unrelated components; architecture
research does not typically modify fans and peripherals.

Figure 10 shows the correlation plots of the estimated vs. mea-
sured power consumption for the two case studies, and Figure 11
shows the per-component breakdowns for all kernels. Overall,
AccelWattch shows strong correlation to hardware power mea-
surements for both Pascal and Turing. Figure 8 (right) shows the
normalized average power breakdown. Similarly to Volta, the reg-
ister file, static power and constant power are the three most sig-
nificant components, together consuming 67.7% and 70.7% of the
average total system power on Pascal and Turing, respectively.

Computer architects typically evaluate their designs by compar-
ing a figure of merit (e.g., power) relative to a baseline design across

workloads. As all simulators occasionally exhibit high errors, archi-
tects typically also consider averages across manyworkloads, rather
than only a few worst-case applications. Following this common
pattern, Figure 12a shows the estimated power of Pascal relative
to the estimated power of Volta across workloads, and on average
(red bar). The figure also shows the hardware-measured power
of Pascal relative to Volta chips running the same workloads for
comparison, along with an average of the relative hardware mea-
surements. Similarly, Figures 12b and 12c show the estimated and
hardware-measured power of Turing relative to Volta and Turing
relative to Pascal. While AccelWattch’s error varies by workload,
the aggregate estimate closely tracks real hardware measurements
for all architectures. Across all workloads (26 for Turing, 22 for
Pascal), the average relative power as estimated by AccelWattch
differs from the average relative power measured in hardware by
1% for Pascal vs. Volta, 3% for Turing vs. Volta, and 1% for Turing
vs. Pascal. High errors are rare in AccelWattch: only 9 out of 26
workloads exhibit error over 10%.

The error is higher for Turing over Volta (Figure 12b) largely due
to inaccuracies in Accel-Sim (Accel-Sim is not part of this work).
For example, the L1d miss rate for kmeans_K1 on a Turing RTX
2060S is 10× higher than the one estimated by Accel-Sim, leading
to a 1.7× error in the run time estimate. As AccelWattch depends
on the run time estimate to convert energy to power (Eq. (12)), inac-
curacies in the performance model can adversely affect the power
estimates. In addition, some errors are artifacts of ISA and hardware
changes, which we did not intend to capture in these use cases,
and are therefore spurious (Section 7.1). The Turing power relative
to Volta is also concentrated in relatively small changes around
zero (Figure 12b), which makes it easy even for small inaccuracies
to result in estimates pointing in the opposite direction (kmns_k1,
sad_k1, pfind_k1). Even with the adverse impact of performance
model inaccuracies and treading around zero, only in 4 out of 26
workloads (i.e., 15% of the time) AccelWattch’s prediction points
in the opposite direction than the hardware measurement; in 85%
of the time the predictions are tracking the measurements on real

0
25
50
75
100
125
150
175
200

PO
W

ER
 (W

)

(a) Case study: Pascal TITAN X

No tensor cores in Pascal

0
25
50
75
100
125
150
175
200

b+
tr
ee
_K

1

b+
tr
ee
_K

2

bp
ro
p_

K1

bp
ro
p_

K2

bi
nO

pt
_K

1

dc
t_
K1

dc
t_
K2

w
al
sh
_K

1

w
al
sh
_K

2

hi
st
o_

K1

hs
po

t_
K1

km
ns
_K

1

m
So
rt
_K

1

m
So
rt
_K

2

m
riq

_K
1

sa
d_

K1

sg
em

m
_K

1

pf
in
d_

K1

qr
ng
_K
1

qr
ng
_K
2

so
bo

l_
K1

sr
ad
_K

1

cT
en

so
r_
K1

cu
tla

ss
_K

1

cu
tla

ss
_K

2

cu
tla

ss
_K

3

PO
W

ER
 (W

)

Measured
Others
DRAM + MC
L2 + NOC
icache + Ccache
L1D+SHRD
TENSOR
SFU
FPU+ DPU
ALU
RegFile
Idle SM
Static
Const

(b) Case study: Turing RTX 2060S

Figure 11: Case studies: AccelWattch SASS SIM (tuned for Volta), applied to model Pascal and Turing architectures.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Kandiah, et al.

-60%
-50%
-40%
-30%
-20%
-10%

0%

Re
la

tiv
e

Po
w

er

Modeled

Measured

No tensor cores in Pascal

(a) Pascal TITAN X relative to Volta GV100. Error of estimated average relative power: 1%.

-60%
-40%
-20%
0%

20%
40%
60%

Re
la

tiv
e

Po
w

er

Modeled

Measured

(b) Turing RTX 2060S relative to Volta GV100. Error of estimated average relative power: 3%.

-20%
0%

20%
40%
60%
80%

b+
tr

ee
_K

1

b+
tr

ee
_K

2

bp
ro

p_
K1

bp
ro

p_
K2

bi
nO

pt
_K

1

dc
t_

K1

dc
t_

K2

w
al

sh
_K

1

w
al

sh
_K

2

hi
st

o_
K1

hs
po

t_
K1

km
ns

_K
1

m
So

rt
_K

1

m
So

rt
_K

2

m
riq

_K
1

sa
d_

K1

sg
em

m
_K

1

pf
in

d_
K1

qr
ng

_K
1

qr
ng

_K
2

so
bo

l_
K1

sr
ad

_K
1

cT
en

so
r_

K1

cu
tla

ss
_K

1

cu
tla

ss
_K

2

cu
tla

ss
_K

3

Av
g.

Re
la

tiv
e

Po
w

er

Modeled

Measured
No tensor cores in Pascal

(c) Turing RTX 2060S relative to Pascal TITAN X. Error of estimated average relative power: 1%.

Figure 12: Relative Modeled and Measured Power across three architectures for AccelWattch SASS SIM.

silicon. This fraction grows for Turing relative to Pascal to 91%, and
becomes 100% for Pascal relative to Volta.

7.2 AccelWattch for Deep Learning Workloads
GPUs are one of the dominant forces in Machine Learning (ML)
acceleration [11]. To assess AccelWattch’s accuracy in theML space,
our validation suite already includes workloads from CUTLASS,
which primarily consists of general matrix multiply (GEMM) op-
erations. Many operations in modern deep neural networks are
either defined as GEMMs or can be cast as such, thus CUTLASS
is representative of many ML workloads. In this section we delve
deeper into the ML space and evaluate the accuracy of AccelWattch
not only in GEMMs, but also in benchmarks implementing Convo-
lutional (CNN) and Recurrent Long-Short Term Memory Neural
Networks (RNN-LSTM). For this purpose we use DeepBench [25],
a widely-used deep learning benchmark suite.

DeepBench utilizes closed-source, hand-tuned SASS kernels from
the cuDNN [8] and cuBLAS [38] libraries, for which there are no
PTX representations. While AccelWattch can execute closed-source
kernels and estimate their power consumption, validating Accel-
Wattch predictions on DeepBench is challenging and error-prone.
Each DeepBench workload issues 10–130 kernels (geomean 33),
and each kernel only uses about 12 SMs. The GPU hardware exe-
cutes several kernels concurrently. However, Accel-Sim executes
kernels only sequentially, leaving most of the simulated GPU idle
and misleading AccelWattch to report significantly lower power.
This is a limitation of Accel-Sim and not of AccelWattch. To miti-
gate this problem, we hand-construct a possible concurrent kernel

conv-train

conv-inference
gemm-train

gemm-inference

rnn-lstm-train
rnn-lstm-inference

0
30
60
90

120
150
180
210
240

0 30 60 90 120 150 180 210 240

M
od

el
ed

 P
ow

er
 (W

)

Measured Power (W)

Figure 13: Correlation plot for DeepBench benchmarks.

execution schedule for each DeepBench benchmark, and then use
AccelWattch to estimate its power consumption.

Even then, there is no guarantee the schedule is viable or that it
matches the hardware-executed schedule. Kernel dependencies are
unknown (cuDNN and cuBLAS are closed-source) and are thus not
considered in the schedule. Also, cuDNN probes the hardware to
decide which propagation algorithm to use, and may pick different
algorithms for Accel-Sim and hardware execution, leading to hard-
to-compare divergent behaviors. Similarly, AccelWattch HW reads
hardware counters from Nsight, which is also constrained to serial
kernel execution. Since we cannot design a validation process as
precise as for the other benchmark suites, we exclude DeepBench
from the validation suite and only present it as a case study.

We emphasize that these are not constraints imposed by Accel-
Wattch, but by the existing performance simulators and profiling

AccelWattch: A Power Modeling Framework for Modern GPUs MICRO ’21, October 18–22, 2021, Virtual Event, Greece

tools, and only apply to validating AccelWattch’s estimates. Accel-
Wattch can predict the power of individual cuDNN and cuBLAS
kernels just fine. With these restrictions in mind, we perform a
best-effort experiment in which we evaluate the application of
AccelWattch on 6 DeepBench benchmarks: train and inference for
CONV, RNN-LSTM, and GEMM. Figure 13 presents the results.
Overall, AccelWattch SASS SIM obtains 12.79% MAPE over Quadro
GV100 hardware measurements for the DeepBench benchmarks.

7.3 Comparison to GPUWattch
To compare AccelWattch with GPUWattch, we apply GPUWattch’s
Fermi (NVIDIA GTX480) configuration to model Volta. As GPU-
Wattch does not model tensor cores, we enhance it with Accel-
Wattch’s estimates for them. In fact, this is our Fermi starting point
described in Section 5.4, with updates for the components that GPU-
Wattch does not model (i.e., tensor cores). Running SASS and PTX
simulations with this configuration for Volta architectures results
in a MAPE of 219% and 225%, respectively, on the same validation
suite of kernels. GPUWattch calculates unrealistically high power
consumption for all kernels. The average power consumption it
estimates is 530 W, with all but three of the kernels scoring above
300 W and a maximum of 926 W.

Moreover, in some cases GPUWattch reports unrealistic power
consumption for particular components. For example, GPUWattch
reports that constant and static power together account for 10.45 W
on all validation kernels, which corresponds to 2.4% of the total
system power on average. This contradicts our hardware power
measurements on Volta, where even the lightest workload possible
at the lowest frequency setting consumes >30 W. In addition, GPU-
Wattch estimates that an average 14% of the total system power (in-
cluding DRAM) is spent on INT_MUL units, compared to 1.4–1.8%
in all AccelWattch variants. We believe the high power consump-
tion that GPUWattch attributes to multipliers is unrealistic, as they
would consume more power than GPUWattch’s estimate for the
register file (9.1%), pointing to a GPUWattch inaccuracy. Another
notable difference includes GPUWattch’s estimate of 27% of the
system power spent on DRAM, compared to 8.4–9% in AccelWattch.

8 RELATEDWORK
GPU architecture research has been largely enabled by event-driven
cycle-accurate simulators such as GPGPU-Sim [3], Multi2Sim [44],
and MGPUSim [42]. The lack of a fast, SASS-capable simulator was
only recently resolved by Accel-Sim [20], into which AccelWattch
integrates. Validating such tools against real hardware has always
been a crucial component of performance modeling research. Simi-
lar to our work, prior studies [1, 6, 10, 12, 15, 46] present validation
methodologies integrated into contemporary CPU simulators.

Wattch [5], McPAT [22], and SimplePower [49] are robust cycle-
accurate CPU power modeling frameworks that have enabled a
wide range of architecture-level research. Xi et al. [48] provided
insightful guidelines for creating accurate power models with Mc-
PAT, including the use of analytical modeling for power gating and
targeted microbenchmarking, which are followed by AccelWattch.

Cycle-accurate GPU power models based on McPAT (Lim et
al. [23], GPUWattch [21], GPUSimPow [24]) model a decade-old
Fermi architecture [27] at the PTX ISA level only. GPUWattch and

GPUSimPow estimate constant power based on Eq. (2), a method-
ology no longer applicable to modern GPUs. AccelWattch rectifies
this problem and is substantially more accurate than GPUWattch
for modern architectures.

The IPP [16] analytic power model achieves high accuracy, but
requires source-level PTX analysis that is infeasible for large or
closed-source workloads, and PTX may not accurately correspond
to real hardware activity [14]. Guerreiro et al. [13] present an ana-
lytical model that accurately predicts the power consumption of
a GPU given a voltage-frequency setting. However, it provides a
fixed power component encompassing static, constant and idle SM
power, does not account for component power gating, and can only
model architectures with a silicon implementation. AccelWattch is
not similarly constrained, and also models 25 microarchitectural
power components compared to 8 in Guerreiro et al.

In general, analytical models (GPUJoule [2], IPP [16], Guerreiro
et al. [13]) can only capture program-level average power consump-
tion, which hinders research that requires cycle-accurate simulation.
Meanwhile, AccelWattch can provide a power trace at cycle-level
granularity. AccelWattch is the first GPU power model, to the best
of our knowledge, to have power components mapped to the SASS
machine ISA instructions. Owing to this salient feature, Accel-
Wattch can estimate the power consumption of closed-source GPU
workloads that contain hand-tuned assembly.

9 CONCLUSIONS
There is a need for robust tools that will enable GPU architects to
quickly model both the performance and the power consumption
of modern GPUs. In this paper, we introduce AccelWattch, a con-
figurable cycle-level power model for modern GPUs that can be
directed by emulation and trace-driven simulation environments,
hardware performance counters, or a combination of the two, strik-
ing a balance between model accuracy and performance modeling
effort. AccelWattch is the only open-source tool capable of model-
ing closed-source workloads with hand-tuned SASS instructions.

We infer, for the first time to our knowledge, how modern GPUs
power-gate chip-wide, SM-wide and lane-specific hardware com-
ponents, and introduce an analytic power model that accurately
captures the combined effects of power gating, thread divergence,
intra-warp functional unit overlap, and variable SM occupancy. We
also introduce a DVFS-aware methodology for modeling constant
power. We integrate AccelWattch with Accel-Sim and GPGPU-Sim
to facilitate its widespread use and release it in the public domain,
along with its microbenchmarks and support infrastructure, as
an open-source research tool for the computer architecture com-
munity. We extensively validate AccelWattch and find that it is
within 7.5–9.2 ± 2.1–3.1% of hardware power measurements on a
NVIDIA Volta Quandro GV100 GPU. Finally, we demonstrate that
AccelWattch can enable reliable design space exploration.

ACKNOWLEDGMENTS
This work was partially funded by NSF awards CCF-1453853, CNS-
1763743, CCF-1910924, and by a Discovery Grant from the Natu-
ral Sciences and Engineering Research Council of Canada. Tor M.
Aamodt provides consulting services to Huawei Canada.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Kandiah, et al.

A ARTIFACT APPENDIX
A.1 Abstract
The artifact comprises the source code for the AccelWattch power
modeling framework, a model tuned for an NVIDIA Quadro Volta
GV100 GPU, the source code for the microbenchmarks used for
tuning the model, the source code of support scripts and ancil-
lary software, pre-compiled binaries of the validation suite, input
datasets for the validation suite kernels, and Accel-Sim traces for
the power microbenchmarks and validation suite benchmarks. The
artifact is available publicly through an archived repository.

The artifact also describes the requirements and contains instruc-
tions for using the AccelWattch power modeling framework. These
requirements and instructions are detailed in this appendix as well.
Users of the artifact can reproduce the key AccelWattch and case
studies results shown in Figures 7 through 12.

A.2 Artifact check-list
• Algorithm: A cycle-level constant, static and dynamic power

model for the NVIDIA Volta Quadro GV100 GPU architecture tuned
using quadratic programming optimization.

• Program: CUDA microbenchmarks for tuning AccelWattch and
NVIDIA CUDA Samples, Rodinia 3.1, Parboil, and CUTLASS 1.3
benchmark suites. The artifact includes sources and pre-compiled
binaries for all programs in the AccelWattch repository.

• Compilation: GCC 7.5.0 and NVCC V11.0.167.
• Binary: The artifact repository contains pre-compiled CUDA exe-

cutables with dynamically linked libraries for all microbenchmarks
and validation benchmarks.

• Data set: All datasets used in the experiments are publicly available
and also included in the artifact repository.

• Runtime environment: Red Hat Enterprise Linux 8.4 with CUDA
Toolkit 11.0; nvidia-smi from NVIDIA driver 465.19.01.

• Hardware: NVIDIA Volta Quadro GV100 or other similar V100
GPU to collect hardware power and performance measurements and
Accel-Sim traces for the key results; NVIDIA Pascal TITAN X and
NVIDIA Turing RTX2060S for the case studies; Intel Xeon CPU E5-
2695 server or other similar system to run Accel-Sim performance
and AccelWattch power simulations.

• Execution: There should be no other application running on the
target GPU during the power and performance profiling stage. Power
profiling for all validation benchmarks running serially on a single
GPU takes 75 minutes to complete (average across 5 iterations;
15 minutes per iteration). Performance profiling for all validation
benchmarks on a single GPU takes 10 minutes in total. AccelWattch
runs take 16 hours to complete if all jobs are running concurrently.
8 AccelWattch configurations validated; 20 AccelWattch jobs per
configuration.

• Metrics: The artifact reports a per-component power breakdown
from AccelWattch runs for each validation kernel. The artifact also
reports hardware power measurements for the same set of validation
kernels collected from each target GPU.

• Output: Validation graphs, including case studies (Figures 7 – 12).
The artifact also provides an excel sheet that contains the raw data
used to generate these graphs. The expected results are pre-filled
into this sheet.

• Experiments: The artifact includes a set of scripts and a guide
to start from cloning the AccelWattch repository, following the
experimental methodology used in this paper, and finally generating
the Figures 7 through 12.

• How much disk space required (approximately)?: 600 GB

• Howmuch time is needed to prepareworkflow (approximate-
ly)?: Extracting traces and datasets, building the simulator, and
compiling benchmarks can take 6 hours in total.

• Howmuch time is needed to complete experiments (approx-
imately)?: Performing hardware performance and power profiling
for all 3 target GPUs can take 6 hours. AccelWattch power estimates
for all 8 validated configurations presented in Figures 7 through 12
can take 2 days when running concurrently on a x86 system with
56 cores.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: BSD 2.0.
• Workflow framework used?: The Accel-Sim simulation frame-
work is used extensively for managing simulator runs and collecting
hardware performance counters. The build frameworks in individual
benchmark suites are used for building the validation benchmarks.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.5398781

A.3 Description
A.3.1 How to access. The artifact, as described in this paper, is
archived on Zenodo at https://doi.org/10.5281/zenodo.5398781 un-
der a permissive BSD 2.0 license. To ease the adoption of the tool,
we are also in the process of integrating the AccelWattch sources
with the latest version of Accel-Sim in the official Accel-Sim GitHub
repository at https://github.com/accel-sim/accel-sim-framework,
and the sources of the AccelWattch microbenchmarks and valida-
tion benchmarks at the official Accel-Sim GPU application collec-
tion repository at https://github.com/accel-sim/gpu-app-collection.
Interested users should refer to these GitHub links for the latest
version of AccelWattch and its support infrastructure.

A.3.2 Hardware dependencies. NVIDIA Volta Quadro GV100 or
other similar V100 GPU to collect hardware power and performance
measurements and Accel-Sim traces for the key results; NVIDIA
Pascal TITAN X and NVIDIA Turing RTX2060S for the case studies;
Intel Xeon CPU E5-2695 server or other similar system to run Accel-
Sim performance and AccelWattch power simulations.

A.3.3 Software dependencies. AccelWattch uses GCC 7.5.0 and
NVCC V11.0 (from Cuda Toolkit 11.0) with nvidia-smi from NVI-
DIA Driver version 465.19.01. AccelWattch is meant to be run
on a modern linux distribution and relies on the same depen-
dencies as the Accel-Sim framework. The list of Accel-Sim soft-
ware dependencies is at https://github.com/accel-sim/accel-sim-
framework#dependencies. Note that the Accel-Sim framework uses
Python 2.x.x as the default version of Python for its scripts.

A.3.4 Data sets. All datasets for AccelWattch validation bench-
marks are from publicly available benchmark suites, and are in-
cluded in the archived artifact repository. The AccelWattch micro-
benchmarks do not require any input datasets.

A.4 Installation
AccelWattch is located in the accel-sim-framework folder. A thor-
ough setup guide for AccelWattch is available at the AccelWatch.md
file in the archived repository.

A.5 Experiment workflow
The primary experiments consist of running AccelWattch simula-
tions of several CUDA kernels from popular benchmark suites and

https://doi.org/10.5281/zenodo.5398781
https://doi.org/10.5281/zenodo.5398781
https://github.com/accel-sim/accel-sim-framework
https://github.com/accel-sim/gpu-app-collection
https://github.com/accel-sim/accel-sim-framework#dependencies
https://github.com/accel-sim/accel-sim-framework#dependencies

AccelWattch: A Power Modeling Framework for Modern GPUs MICRO ’21, October 18–22, 2021, Virtual Event, Greece

correlating AccelWattch power estimates with hardware power
measurements for the same set of kernels. A thorough experiment
workflow for AccelWattch is available at the AccelWatch.md file
in the repository.

A.6 Evaluation and expected results
The process to generate Figures 7 through 12 involves the following
primary steps:

• Compiling validation set binaries.
• Collecting Accel-Sim SASS traces for validation kernels on
the target GPU card.

• Collecting hardware power measurements for the validation
kernels on the target GPU card.

• Collecting hardware performance counter information for
the validation kernels on the target GPU card. This step is
required for AccelWattch HW and AccelWattch HYBRID
models.

• Building AccelWattch and running AccelWattch jobs for all
validation kernels for all 8 validated configurations.

• Collecting AccelWattch power estimatess from completed
AccelWattch jobs and placing them in the provided excel
sheet to generate Figures 7 through 12.

These steps are explained in more detail at the AccelWatch.md
file in the repository. The mean absolute percentage error (MAPE)
reported for each AccelWattch configuration after reproducing
results should not vary by more than ±2%. The provided excel sheet
is pre-filled with the raw data used to generate the graphs.

A.7 Experiment customization
AccelWattch can estimate power consumption for any CUDA ap-
plication that is compatible with Accel-Sim simulations. Follow
the methodology of Accel-Sim detailed at https://github.com/accel-
sim/gpu-app-collection/blob/release/README.md to add a new
benchmark to the Accel-Sim framework and run Accel-Sim sim-
ulations. AccelWattch power estimatess are then enabled by us-
ing a configuration option in Accel-Sim’s job launching script
run_simulations.py.

REFERENCES
[1] Almutaz Adileh, Cecilia González-Álvarez, Juan Miguel De Haro Ruiz, and Lieven

Eeckhout. 2019. Racing to Hardware-Validated Simulation. In 2019 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS).
58–67. https://doi.org/10.1109/ISPASS.2019.00014

[2] Akhil Arunkumar, Evgeny Bolotin, David Nellans, and Carole-Jean Wu. 2019.
Understanding the Future of Energy Efficiency in Multi-Module GPUs. In 2019
IEEE International Symposium on High Performance Computer Architecture (HPCA).
519–532. https://doi.org/10.1109/HPCA.2019.00063

[3] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.
Aamodt. 2009. Analyzing CUDA workloads using a detailed GPU simulator.
In 2009 IEEE International Symposium on Performance Analysis of Systems and
Software. 163–174. https://doi.org/10.1109/ISPASS.2009.4919648

[4] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge
University Press, Cambridge, UK.

[5] David Brooks, Vivek Tiwari, andMargaretMartonosi. 2000. Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations. In Proceedings of the
27th Annual International Symposium on Computer Architecture (ISCA ’00). 83–94.
https://doi.org/10.1145/339647.339657

[6] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven Eeck-
hout. 2014. An Evaluation of High-Level Mechanistic Core Models. ACM Transac-
tions on Architecture and Code Optimization 11, 3, Article 28 (Aug. 2014), 25 pages.
https://doi.org/10.1145/2629677

[7] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, JeremyW. Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE International Symposium on Workload Characterization
(IISWC). 44–54. https://doi.org/10.1109/IISWC.2009.5306797

[8] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient Primitives
for Deep Learning. CoRR abs/1410.0759 (2014). arXiv:1410.0759 http://arxiv.org/
abs/1410.0759

[9] Arnaud de Myttenaere, Boris Golden, Bénédicte Le Grand, and Fabrice Rossi.
2016. Mean Absolute Percentage Error for regression models. Neurocomputing
192 (2016), 38–48. https://doi.org/10.1016/j.neucom.2015.12.114

[10] Rajagopalan Desikan, Doug Burger, and Stephen W. Keckler. 2001. Measuring
Experimental Error in Microprocessor Simulation. In Proceedings of the 28th
Annual International Symposium on Computer Architecture (ISCA ’01). 266–277.
https://doi.org/10.1145/379240.565338

[11] Forbes. 2019. NVIDIA Dominates The Market For Cloud AI Accelerators More
Than You Think. https://www.forbes.com/sites/paulteich/2019/06/17/nvidia-
dominates-the-market-for-cloud-ai-accelerators-more-than-you-
think/#676dea375edb. Accessed: 2020-11-24.

[12] Jeff Gibson, Robert Kunz, David Ofelt, Mark Horowitz, John Hennessy, and Mark
Heinrich. 2000. FLASH vs. (Simulated) FLASH: Closing the Simulation Loop.
In Proceedings of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS IX). 49–58. https:
//doi.org/10.1145/378993.379000

[13] Joao Guerreiro, Aleksandar Ilic, Nuno Roma, and Pedro Tomas. 2018. GPGPU
Power Modeling for Multi-domain Voltage-Frequency Scaling. In 2018 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA). 789–800.
https://doi.org/10.1109/HPCA.2018.00072

[14] Anthony Gutierrez, Bradford M. Beckmann, Alexandru Dutu, Joseph Gross,
Michael LeBeane, John Kalamatianos, Onur Kayiran, Matthew Poremba, Brandon
Potter, Sooraj Puthoor, Matthew D. Sinclair, Mark Wyse, Jieming Yin, Xianwei
Zhang, Akshay Jain, and Timothy Rogers. 2018. Lost in Abstraction: Pitfalls of
Analyzing GPUs at the Intermediate Language Level. In 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 608–619. https:
//doi.org/10.1109/HPCA.2018.00058

[15] Anthony Gutierrez, Joseph Pusdesris, Ronald G. Dreslinski, Trevor Mudge, Chan-
der Sudanthi, Christopher D. Emmons, Mitchell Hayenga, and Nigel Paver.
2014. Sources of error in full-system simulation. In 2014 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 13–22.
https://doi.org/10.1109/ISPASS.2014.6844457

[16] Sunpyo Hong and Hyesoon Kim. 2010. An Integrated GPU Power and Perfor-
mance Model. In Proceedings of the 37th Annual International Symposium on Com-
puter Architecture (ISCA ’10). 280–289. https://doi.org/10.1145/1815961.1815998

[17] IEEE. 2016. International Roadmap for Devices and Systems. https://irds.ieee.
org/editions/2016/. Accessed: 2020-11-24.

[18] Shailendra Jain, Surhud Khare, Satish Yada, V Ambili, Praveen Salihundam, Shiva
Ramani, Sriram Muthukumar, M Srinivasan, Arun Kumar, Shasi Kumar Gb, Ra-
jaraman Ramanarayanan, Vasantha Erraguntla, Jason Howard, Sriram Vangal,
Saurabh Dighe, Greg Ruhl, Paolo Aseron, Howard Wilson, Nitin Borkar, Vivek
De, and Shekhar Borkar. 2012. A 280mV-to-1.2V wide-operating-range IA-32 pro-
cessor in 32nm CMOS. In 2012 IEEE International Solid-State Circuits Conference.
66–68. https://doi.org/10.1109/ISSCC.2012.6176932

[19] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele Paolo Scarpazza. 2018.
Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking. CoRR
abs/1804.06826 (April 2018). arXiv:1804.06826 http://arxiv.org/abs/1804.06826

[20] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. 2020.
Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). 473–486. https://doi.org/10.1109/ISCA45697.2020.00047

[21] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung
Kim, Tor M. Aamodt, and Vijay Janapa Reddi. 2013. GPUWattch: Enabling
Energy Optimizations in GPGPUs. In Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA ’13). 487–498. https://doi.org/10.
1145/2485922.2485964

[22] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures. In 2009 42nd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 469–
480.

[23] Jieun Lim, Nagesh B. Lakshminarayana, Hyesoon Kim, William Song, Sudhakar
Yalamanchili, and Wonyong Sung. 2014. Power Modeling for GPU Architectures
Using McPAT. ACM Trans. Des. Autom. Electron. Syst. 19, 3, Article 26 (June 2014),
24 pages. https://doi.org/10.1145/2611758

[24] Jan Lucas, Sohan Lal, Michael Andersch, Mauricio Alvarez-Mesa, and Ben Ju-
urlink. 2013. How a single chip causes massive power bills GPUSimPow: A
GPGPU power simulator. In 2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 97–106. https://doi.org/10.1109/ISPASS.
2013.6557150

https://github.com/accel-sim/gpu-app-collection/blob/release/README.md
https://github.com/accel-sim/gpu-app-collection/blob/release/README.md
https://doi.org/10.1109/ISPASS.2019.00014
https://doi.org/10.1109/HPCA.2019.00063
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1145/339647.339657
https://doi.org/10.1145/2629677
https://doi.org/10.1109/IISWC.2009.5306797
https://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1410.0759
https://doi.org/10.1016/j.neucom.2015.12.114
https://doi.org/10.1145/379240.565338
https://www.forbes.com/sites/paulteich/2019/06/17/nvidia-dominates-the-market-for-cloud-ai-accelerators-more-than-you-think/#676dea375edb
https://www.forbes.com/sites/paulteich/2019/06/17/nvidia-dominates-the-market-for-cloud-ai-accelerators-more-than-you-think/#676dea375edb
https://www.forbes.com/sites/paulteich/2019/06/17/nvidia-dominates-the-market-for-cloud-ai-accelerators-more-than-you-think/#676dea375edb
https://doi.org/10.1145/378993.379000
https://doi.org/10.1145/378993.379000
https://doi.org/10.1109/HPCA.2018.00072
https://doi.org/10.1109/HPCA.2018.00058
https://doi.org/10.1109/HPCA.2018.00058
https://doi.org/10.1109/ISPASS.2014.6844457
https://doi.org/10.1145/1815961.1815998
https://irds.ieee.org/editions/2016/
https://irds.ieee.org/editions/2016/
https://doi.org/10.1109/ISSCC.2012.6176932
https://arxiv.org/abs/1804.06826
http://arxiv.org/abs/1804.06826
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1145/2485922.2485964
https://doi.org/10.1145/2485922.2485964
https://doi.org/10.1145/2611758
https://doi.org/10.1109/ISPASS.2013.6557150
https://doi.org/10.1109/ISPASS.2013.6557150

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Kandiah, et al.

[25] Sharan Narang. 2016. DeepBench. https://svail.github.io/DeepBench/. Accessed:
2021-09-08.

[26] Tony Nowatzki, Jaikrishnan Menon, Chen-Han Ho, and Karthikeyan Sankar-
alingam. 2015. Architectural Simulators Considered Harmful. IEEE Micro 35, 6
(2015), 4–12. https://doi.org/10.1109/MM.2015.74

[27] NVIDIA. 2009. Whitepaper: NVIDIA’s Next Generation CUDA Compute Ar-
chitecture: Fermi. https://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf. Accessed: 2020-11-24.

[28] NVIDIA. 2016. nvidia-smi - NVIDIA System Management Interface pro-
gram. http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-
367.38.pdf. Accessed: 2020-11-24.

[29] NVIDIA. 2016. Whitepaper: NVIDIA Tesla P100. https://images.nvidia.com/
content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf. Accessed:
2020-11-24.

[30] NVIDIA. 2017. Whitepaper: NVIDIA Telsa V100 GPU Architecture.
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf. Accessed: 2020-11-24.

[31] NVIDIA. 2018. Whitepaper: NVIDIA Turing GPU Architecture. https://www.
nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/
turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf. Accessed:
2020-11-21.

[32] NVIDIA. 2019. CUTLASS: CUDA template library for dense linear algebra at all
levels and scales. https://github.com/NVIDIA/cutlass. Accessed: 2020-11-24.

[33] NVIDIA. 2019. NVML API Reference. https://docs.nvidia.com/deploy/nvml-
api/nvml-api-reference.html. Accessed: 2020-11-24.

[34] NVIDIA. 2020. CUDA Compiler Driver NVCC, v11.0. https://docs.nvidia.com/
cuda/archive/11.0/cuda-compiler-driver-nvcc/index.html. Accessed: 2021-4-15.

[35] NVIDIA. 2020. CUDA Samples. https://docs.nvidia.com/cuda/archive/11.0/cuda-
samples/index.html. Accessed: 2021-4-16.

[36] NVIDIA. 2020. Instruction Set Reference. https://docs.nvidia.com/cuda/cuda-
binary-utilities/index.html#instruction-set-ref. Accessed: 2020-11-24.

[37] NVIDIA. 2020. Parallel Thread Execution ISA Version 7.0. https://docs.nvidia.
com/cuda/parallel-thread-execution/index.html. Accessed: 2020-11-24.

[38] NVIDIA. 2021. cuBLAS. https://developer.nvidia.com/cublas/. Accessed: 2021-
09-08.

[39] NVIDIA. 2021. Nsight Compute. https://docs.nvidia.com/nsight-compute/
NsightCompute/index.html. Accessed: 2021-9-5.

[40] Addison Snell and Laura Segervall. 2017. HPC application support for GPU
computing. https://www.nvidia.com/content/intersect-360-HPC-application-
support.pdf. Accessed: 2020-11-24.

[41] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen mei W. Hwu. 2012. Parboil:A revised
benchmark suite for scientific and commercial throughput computing. In IMPACT
Technical Report, IMPACT-12-01, University of Illinois, at Urbana-Champaign.

[42] Yifan Sun, Trinayan Baruah, Saiful A. Mojumder, Shi Dong, Xiang Gong, Shane
Treadway, Yuhui Bao, Spencer Hance, Carter McCardwell, Vincent Zhao, Harri-
son Barclay, Amir Kavyan Ziabari, Zhongliang Chen, Rafael Ubal, José L. Abellán,
John Kim, Ajay Joshi, and David Kaeli. 2019. MGPUSim: Enabling Multi-GPU
Performance Modeling and Optimization. In 2019 ACM/IEEE 46th Annual Inter-
national Symposium on Computer Architecture (ISCA). 197–209.

[43] TOP500.org. 2021. TOP500 List. https://www.top500.org/lists/top500/2021/06/.
Accessed: 2021-9-5.

[44] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.
2012. Multi2Sim: A simulation framework for CPU-GPU computing. In 2012
21st International Conference on Parallel Architectures and Compilation Techniques
(PACT). 335–344.

[45] Oreste Villa, Mark Stephenson, David W. Nellans, and Stephen W. Keckler. 2019.
NVBit: A Dynamic Binary Instrumentation Framework for NVIDIA GPUs. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). 372–383. https://doi.org/10.1145/3352460.3358307

[46] MatthewWalker, Sascha Bischoff, Stephan Diestelhorst, GeoffMerrett, and Bashir
Al-Hashimi. 2018. Hardware-Validated CPU Performance and Energy Modelling.
In 2018 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). 44–53. https://doi.org/10.1109/ISPASS.2018.00013

[47] Gene Wu, Joseph L. Greathouse, Alexander Lyashevsky, Nuwan Jayasena, and
Derek Chiou. 2015. GPGPU performance and power estimation using machine
learning. In 2015 IEEE 21st International Symposium on High Performance Com-
puter Architecture (HPCA). 564–576. https://doi.org/10.1109/HPCA.2015.7056063

[48] Sam Likun Xi, Hans Jacobson, Pradip Bose, Gu-YeonWei, and David Brooks. 2015.
Quantifying sources of error in McPAT and potential impacts on architectural
studies. In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA). 577–589. https://doi.org/10.1109/HPCA.2015.7056064

[49] Wu Ye, Narayanan Vijaykrishnan, Mahmut T. Kandemir, and Mary Jane Irwin.
2000. The design and use of simplePower: a cycle-accurate energy estimation
tool. In Proceedings 37th Design Automation Conference. 340–345. https://doi.org/
10.1145/337292.337436

[50] Ying Zhang, Yue Hu, Bin Li, and Lu Peng. 2011. Performance and Power Analysis
of ATI GPU: A Statistical Approach. In 2011 IEEE Sixth International Conference

on Networking, Architecture, and Storage. 149–158. https://doi.org/10.1109/NAS.
2011.51

[51] Brian Zimmer, Yunsup Lee, Alberto Puggelli, Jaehwa Kwak, Ruzica Jevtic, Ben
Keller, Stevo Bailey, Milovan Blagojevic, Pi-Feng Chiu, Hanh-Phuc Le, Po-Hung
Chen, Nicholas Sutardja, Rimas Avizienis, Andrew Waterman, Brian Richards,
Philippe Flatresse, Elad Alon, Krste Asanović, and Borivoje Nikolić. 2015. A RISC-
V vector processor with tightly-integrated switched-capacitor DC-DC converters
in 28nm FDSOI. In 2015 Symposium on VLSI Circuits (VLSI Circuits). C316–C317.
https://doi.org/10.1109/VLSIC.2015.7231305

https://svail.github.io/DeepBench/
https://doi.org/10.1109/MM.2015.74
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://github.com/NVIDIA/cutlass
https://docs.nvidia.com/deploy/nvml-api/nvml-api-reference.html
https://docs.nvidia.com/deploy/nvml-api/nvml-api-reference.html
https://docs.nvidia.com/cuda/archive/11.0/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/archive/11.0/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/archive/11.0/cuda-samples/index.html
https://docs.nvidia.com/cuda/archive/11.0/cuda-samples/index.html
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-ref
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-ref
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://developer.nvidia.com/cublas/
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://www.nvidia.com/content/intersect-360-HPC-application-support.pdf
https://www.nvidia.com/content/intersect-360-HPC-application-support.pdf
https://www.top500.org/lists/top500/2021/06/
https://doi.org/10.1145/3352460.3358307
https://doi.org/10.1109/ISPASS.2018.00013
https://doi.org/10.1109/HPCA.2015.7056063
https://doi.org/10.1109/HPCA.2015.7056064
https://doi.org/10.1145/337292.337436
https://doi.org/10.1145/337292.337436
https://doi.org/10.1109/NAS.2011.51
https://doi.org/10.1109/NAS.2011.51
https://doi.org/10.1109/VLSIC.2015.7231305

	Abstract
	1 Introduction
	2 AccelWattch Modeling Workflow
	3 The Architecture of NVIDIA Volta
	4 Constant, Static and Idle Power Modeling
	4.1 Hardware Experimentation Methodology
	4.2 DVFS-Aware Constant Power Modeling
	4.3 Power-Gating-Aware Static Power Model
	4.4 Divergence-Aware Static Power Modeling
	4.5 ILP and Execution Divergence
	4.6 Power Modeling for Idle SMs
	4.7 Putting It All Together

	5 Dynamic Power Modeling
	5.1 Dynamic Power Model Formulation
	5.2 Performance Modeling Framework
	5.3 Microbenchmarking for Dynamic Power
	5.4 Quadratic Programming Optimization

	6 Validation
	6.1 Target Architecture and Workloads
	6.2 Validation Results

	7 Case Studies
	7.1 Modeling Pascal and Turing Architectures
	7.2 AccelWattch for Deep Learning Workloads
	7.3 Comparison to GPUWattch

	8 Related Work
	9 Conclusions
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization

	References

