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Recently, software utilities for automating the translation of floating-point signal-processing ap-

plications written in ANSI C into fixed-point versions have been presented. This dissertation

investigates a novel fixed-point instruction-set operation, Fractional Multiplication with internal

Left Shift (FMLS), and an associated translation algorithm, Intermediate-Result-Profiling based

Shift Absorption (IRP-SA), that combine to enhance fixed-point rounding-noise and runtime per-

formance when supported by a utility that directly targets the instruction set. A significant

feature of FMLS is that it is well suited to the latest generation of embedded processors that

maintain relatively homogeneous register architectures. FMLS may improve the rounding-noise

performance of fractional multiplication operations in several ways depending upon the specific

fixed-point scaling properties an application exhibits. The IRP-SA algorithm enhances this by

exploiting the modular nature of 2’s-complement addition, which allows the discarding of most-

significant-bits that are redundant due to inter-operand correlations that often arise, for example,

in recursive filters with poles close to the unit circle. Rounding-noise reductions equivalent to car-

rying as much as 2.0 additional bits of precision throughout the computation are demonstrated.

Furthermore, by encoding a set of only four shift distances into the FMLS operation, speedups

of up to 13 percent are produced while retaining almost all of the noise reduction benefits.

Generally, the conversion process uses profiling to capture the dynamic-range of floating-

point variables and intermediate calculations that in turn guides the generation of fixed-point

scaling operations. Two enhancements are presented: index-dependent scaling (IDS), and second-

order profiling. IDS implements a form of unconditional block-floating-point scaling that can

dramatically reduce output rounding-noise. Second-order profiling helps eliminate arithmetic

overflows due to the accumulated effects of roundoff errors.

Finally, a brief investigation into the impact of profile input selection indicates that small

samples can suffice to obtain robust conversions.
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Chapter 1

Introduction

Many signal-processing algorithms are naturally expressed using a floating-point representation,

however floating-point computation requires larger processor die area, or slower software emula-

tion. In many embedded applications the resulting system cost and/or power consumption would

be unacceptable. This situation is typically resolved by hand-coding a fixed-point version of the

original algorithm with tolerable distortion due to finite wordlength effects. However, the process

of manually converting any but the most trivial algorithms is time consuming, tedious, and error

prone. Furthermore, ANSI C, still the system-level programming language of choice for many,

requires fundamental language extensions to express fixed-point algorithms effectively [LW90].

These factors have motivated the development of floating-point to fixed-point conversion utilities

that might at least partially automate the process [WBGM97a, KKS97, AC99, AC00, Syn00].

The instruction-set enhancements and supporting compiler algorithms presented in this disserta-

tion enhance the roundoff-error and runtime performance of automatically generated fixed-point

code produced by such a conversion utility. Prior to this work, two research groups had pub-

lished work on automated floating-point to fixed-point conversion starting from ANSI C descrip-

tions [WBGM97a, KKS97], and recently Synopsys Inc. has introduced a design utility closely

modeled on one of these [Syn00].

This introductory chapter elaborates on the motivation, goals, and methodology of this

dissertation, presents a summary of the fundamental research contributions it provides and briefly

outlines the detailed exposition to follow.

1



1.1 Motivation and Goals

In the dawning era of information technology ever more computing power is being hidden within

consumer products. Although embedded microprocessors have always had a strong market, bur-

geoning growth in demand for wireless internet access and related information appliances will

undoubtably make embedded computing far more visible to both consumers and academia alike.

Unsurprisingly, the domain of embedded computing emphasizes different design criteria compared

to general purpose computing: Low power consumption and real-time signal processing require-

ments combine with the perpetual market demand for minimal unit cost to impact all facets of

design. This dissertation focuses on the development of techniques that can favorably impact one

of the most pervasive decisions in embedded system design: The selection of fixed-point versus

floating-point processor cores. Texas Instruments, a leading supplier of embedded processors,

estimates that for every floating-point processor in the field there are at least five fixed-point pro-

cessors [TI00]. However, as already noted, converting floating-point source code into fixed-point

machine code requires either slow and power hungry floating-point emulation, or a tedious and

error-prone manual fixed-point conversion process.

Ideally, a tool is desired that will take a high-level floating-point representation of an algo-

rithm and automatically generate fixed-point machine-code that provides a “good enough” ap-

proximation of the input/output behaviour of the original specification while meeting real-time

processing deadlines. Naturally, the distinction is often subjective and hinges on how “goodness”

itself is measured and is therefore also dependent upon the application domain of interest. It

must be noted that this problem definition is significantly different from that tackled by tradi-

tional compiler optimizations. Those generally attempt to minimize execution time and/or code

size while preserving observable behaviour precisely. For many digital signal-processing appli-

cations—particularly those that begin and end with an interface to analog-to-digital (A/D) and

digital-to-analog (D/A) data converters—retaining full precision throughout the computation is

often not essential as these input/output interfaces have dynamic-ranges vastly smaller than that

of the IEEE standard floating-point arithmetic used in general purpose microprocessors. Fur-

thermore, many signal processing applications operate in an environment that may tolerate a fair

amount of degradation providing the designer with an additional degree-of-freedom to exploit

when optimizing system cost. For example, one of the properties of high-fidelity audio repro-

duction is that the signal-power of any uncorrelated noise present in the playback is at least

2



80 decibels (dB) lower than that of the original signal [Slo99]. By comparison, 80 dB is the

dynamic-range of a 14 bit integer.

Developing and enhancing an automated floating-point to fixed-point conversion tool that

at least partially fulfills this demand was the primary goal of this investigation. Specifically,

the primary goal was to develop a utility that minimizes output rounding-noise when using

single-precision fixed-point arithmetic1. This can be viewed as an initial step towards the goal of

providing a utility that optimally matches an arbitrary output rounding-noise design specification

by selectively using extended-precision or emulated floating-point arithmetic only for sensitive

calculations. Indeed, the techniques developed in this dissertation can be used orthogonally to

algorithms [SK95, KHWC98] that estimate, or which aid in estimating, the minimal precision

required at each operation to meet the output specification. The main requirements for the

present investigation can be broken down as follows:

Fidelity Good matching of the fixed-point version’s output to the original.

Robustness Acceptable operation for any input likely to be encountered.

Performance The fixed-point code generated by the utility should be fast.

Turnaround Quick translation to enable fast, iterative program development.

Implicit in the second issue, robustness, is an important trade-off with the first: the level of

roundoff-noise introduced into the fixed-point translations output [Jac70a]. This investigation

illustrates that by expending more effort during the conversion process this trade-off can often

be improved by reducing roundoff-noise performance without incurring any undesirable arith-

metic overflow or saturation (either of which greatly distort the program output). The key to

this tradeoff is the collection of more detailed dynamic-range information. Finally, it should be

noted that fixed-point translation should significantly improve runtime performance compared to

floating-point emulation on the same hardware to justify degrading input/output fidelity at all.

A secondary goal of this dissertation was the investigation of processor architecture consid-

erations that might be implicated in the automated conversion process. The objective being the

optimization of the instruction set architecture (ISA) given that a floating-point to fixed-point

conversion process is part of the overall software design infrastructure.

1The type of single-precision fixed-point arithmetic operations considered here use and produce operands (in a
single machine operation) that have the same precision as that directly supported by the register file.
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1.2 Research Methodology

This investigation was conducted within the framework of the Embedded Processor Architecture

and Compiler Research Project at the University of Toronto2. The broader focus of that project

is investigating architectural features and compiler algorithms for application specific instruction-

set processors (ASIPs) with the objective of producing highly optimized solutions for embedded

systems [Pen99, SCL94, Sag98]. Central to the approach is the concurrent study of a parame-

terized very long instruction word (VLIW) digital signal processor (DSP) architecture, UTDSP,

and supporting optimizing compiler infrastructure that together enable significant architectural

exploration while targeting a particular embedded application. The original motivation of the

project came from the observation that many traditional digital signal processor architectures

make very poor targets for high-level language (HLL) compilers [LW90]. Indeed, concurrently

exploring the architectural and compiler design-space is a well established practice within the

doctrine of quantitative computer architecture design [PH96]. The underlying observation being

that the compiler and architecture cooperate to deliver overall performance because almost all

software is now developed using high-level languages rather than assembly-level programming.

This is even beginning to be true in the embedded computing domain where the practice of

manual assembly coding was most fervently adopted due to stringent limitations on memory and

computational resources.

Respecting this guiding philosophy, the floating-point to fixed-point conversion utility devel-

oped during this investigation fits inline with more traditional scalar optimizations in the overall

compiler workflow. This approach allows for an easier exploration of ISA features that may

not have simple language equivalents in ANSI C without the need for introducing non-standard

language extensions that are, in any case, only needed when converting what is more naturally

thought of as a floating-point algorithm into fixed-point3.

The following sub-sections describe, in turn, the scope of this investigation, the selection

criteria used to pick performance benchmarks, the specific performance metrics employed, and

the strategy for managing the empirical study that forms the basis of this dissertation. Taken

together these constitute the research methodology of this investigation.

2http://www.eecg.utoronto.ca/˜pc/research/dsp

3On the other hand, one possible benefit of including standardized fixed-point extensions in ANSI C is that
greater reuse of fixed-point signal processing code across embedded computing platforms might be achieved.
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1.2.1 Scope of Inquiry

Successfully meeting the conflicting requirements of high-accuracy and fast, low-power execution

for a particular application may require transformations at several levels of abstraction starting

from algorithm selection, and reaching down to detailed low-power circuit design techniques. For

example, a direct implementation of the Discrete Fourier Transform (DFT) requires O(N 2) arith-

metic operations, however through clever manipulations the same input-output mapping can be

achieved using only O(NlogN) operations via the Fast Fourier Transform (FFT) algorithm. As it

took “many years” before the discovery4 of the FFT after the DFT was first introduced [PFTV95],

it should probably come as no surprise to learn that although clearly desirable, providing similar

mathematical genius within the framework of an optimizing compiler remains mere fantasy—at

least for the time being.

On the other hand, if focus is restricted to merely transforming linear time-invariant (LTI)

digital filters into fixed-point realizations with minimal roundoff-noise characteristics some ana-

lytical transformations are known. In particular, synthesis procedures for minimizing the output

roundoff-noise of state-space [MR76, Hwa77], extended-state space [ABEJ96], and normalized lat-

tice [CP95] filter topologies have been developed using convenient analytical scaling rules based

upon signal-space norms [Jac70a, Jac70b]. In addition to selecting an optimal filter realization for

a given topology, the output roundoff-noise may be reduced through the use of block-floating-point

arithmetic in which different elements of the filter structure are assigned a relative scaling, but the

dynamic-range of all elements is offset by incorporating a single exponent [Opp70]. Alternatively,

output roundoff-noise may be reduced through the use of quantization error feedback [SS62] in

which time-delayed copies of roundoff-errors undergo simple signal-processing operations before

being fed back into the filter structure in such a way that output roundoff-error noise is reduced.

These optimization procedures, the signal-space norm scaling rules, as well as the block-

floating-point, and error-feedback implementation techniques are reviewed in Section 2.3. Al-

though clearly powerful, within the framework of this investigation these approaches all suffer a

common limitation: To apply them the compiler requires knowledge of the overall input/output

filter transfer function. Unfortunately, imperative programming language descriptions5, such as

4“Re-discovery”: Gauss is said to have discovered the fundamental principle of the FFT in 1805—even predating
the publications of Fourier [PFTV95]. However, the FFT was apparently not widely recognized as an efficient
computational method until the publication of an algorithm for computing the DFT when N is a composite
number (the product of two or more integers) by Cooley and Tukey in 1965 [OS99].

5The elements of an imperative programming language are expressions, and control flow as embodied by sub-
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those produced when coding software in ANSI C, do not provide this information in a readily

accessible format. Recovering a canonical high-level transfer function description from the infi-

nite set of imperative language encodings possible requires the compiler to perform some rather

intensive analyses6. One particular floating-point to fixed-point conversion utility found in the

literature [Mar93] avoids this pitfall by starting from a high-level declarative7 description of a

signal-flow graph. Although this approach might integrate well within a high-level design tool

such as The Mathworks’ Simulink design environment [MAT], it still suffers from the drawback

that to profitably target a broad range of embedded processors such high-level development tools

must leverage an ANSI C compiler for machine code generation, and, as already noted, ANSI C

lacks support for succinctly and unambiguously representing fixed-point arithmetic8.

An interesting alternative for achieving reduced power consumption and processor die area

is to dramatically simplify the floating-point hardware itself. Recently a group of CMU re-

searchers presented a study of the use of limited precision/range floating-point arithmetic for

signal-processing tasks such as speech recognition, backpropagation neural-networks, discrete co-

sine transforms and simple image-processing operations [TNR00]. They found that for these

applications the necessary precision of the mantissa could be reduced to as low as between 3 and

11 bits, with an exponent represented with only 5 to 7 bits before appreciable degradation in

application behaviour was observed. This was found to result in a reduction in multiplier en-

ergy/operation of up to 66%. However, the authors conclude that some form of compiler support

may be needed to effectively exploit these operations in more general contexts. This approach

will not be considered further in this dissertation (an outline for further investigation along these

lines is provided in Section 6.2.1).

To summarize, although transformations based upon detailed signal-space analysis may

provide dramatically improved rounding-error performance while maintaining a low probability

routines and and branches (both conditional and otherwise) [Set90].

6The analysis is feasible although the implementation is by no means trivial and is deferred for future work—see
Appendix D for more details.

7A description that explicitly models the connections (and their temporal properties) between different nodes
in the SFG [Mar93].

8Some DSP vendors supply compilers that understand variants of ANSI C such as DSP/C [LW90] but none of
these language extensions has really caught on. The Open SystemC initiative recently spear-headed by Synopsys
Inc. [Syn], and extensively used by the Synopsys CoCentric Fixed-Point Designer (described in more detail in
Section 2.4.5), does not appear to have been adopted by any DSP compiler vendors yet (in particular, at the time
of writing, Texas Instruments had “no committed plans to use any of this technology” in its products [Ric00]).
Obviously, if and when such support becomes widely available the analytical techniques listed above might enjoy
more widespread usage.
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of overflow, the techniques currently available have a number of limitations. Specifically,

1. They offer very problem-dependent solutions (for example, optimizing the roundoff-noise

of a very specific LTI filter topology), and furthermore are not applicable to nonlinear or

time-varying systems.

2. Often the fixed-point scaling is chosen primarily on the basis of its analytical tractability

rather than to retain maximal precision (an example of this is seen in Section 2.3.2).

3. Extracting a static signal-flow graph from an arbitrary imperative programming language

description can be difficult. Indeed, in some cases the signal-flow graph has a parameter-

ized form that yields a family of topologies. Furthermore, each filter coefficient must be

a known constant to apply these techniques.

Although the last item is occasionally merely a matter of inconvenience, the other issues stand and

therefore this investigation focused on a lower level of abstraction. At this level we merely concern

ourselves with the allocation of fixed-point scaling operations for a given dataflow through a

particular signal processing algorithm. The main considerations are then estimating the dynamic-

range of floating-point quantities within the code in the presence of fixed-point roundoff-noise,

and deciding how to allocate scaling operations given these dynamic-range estimates. Again,

given the dependence of the signal-space norm dynamic-range estimation method9 on complete

knowledge of the input/output transfer function, combined with its limited applicability (it only

applies to LTI filters), a more practical profile-driven dynamic-range estimation methodology was

employed. Two other observations justify this approach: First, those applications that benefit

most from fixed-point translation—primarily those signal-processing applications producing and

consuming quantities limited in dynamic-range—are also those with inputs that appear relatively

easy to bound using a representative set of samples10; Second, the analytical scaling rules are

often very conservative. For example a prior study showed that applying the L1-norm scaling

rule to a 4th-order low-pass filter with human speech as the input-signal source produced an

average SQNR of 36.1 dB versus 60.2 dB when using profile data to guide the generation of

scaling operations11 [KS94a].

9This will be reviewed in more detail in Section 2.3.1.

10Bound in the sense that the dynamic-range at each internal node is bounded using this input sample set.

11This is equivalent to around 4-bits of lost dynamic-range. The study used several samples of speech of sub-
stantial length (close to 4 seconds) in making the measurements.
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1.2.2 Benchmark Selection

Central to the quantitative design philosophy is the thoughtful selection of appropriate benchmark

applications to which one would apply insightful performance metrics. Naturally, to yield useful

insights these benchmarks should reflect the workloads expected to be encountered in practice.

Embedded applications are often dominated by signal processing algorithms. Therefore signal

processing kernels from several diverse application areas were selected to evaluate the merits of the

techniques proposed in this dissertation. It should be noted that previous UTDSP researchers had

already contributed a wide assortment of signal processing benchmarks. However, the primary

use of these benchmarks was in evaluating improvements in execution-time and long instruction

encoding rather than SQNR performance degradation accompanying behavioral modifications

such as fixed-point translation. Furthermore, given a profile-based translation methodology, the

issue of selecting appropriate inputs for both profiling and testing becomes far more important.

To obtain meaningful data in light of these factors, new benchmarks and associated input data

were introduced. These will be described in greater detail in Chapter 3.

1.2.3 Performance Metrics

There are two main performance measures of interest for this investigation: execution time, and

input/output fidelity12. The speedup of native fixed-point applications relative to an emulated

floating-point version is often measured in orders of magnitude13. This being the case, run-

time performance is still a major design consideration in fixed-point embedded design. In this

dissertation, application speedup is defined in the usual way:

Speedup =
Baseline Execution Time

Enhanced Execution Time

However, as there was insufficient time to implement an IEEE compliant floating-point emula-

tion library to obtain a “baseline execution time”, speedup measurements are primarily used to

highlight the benefit of architectural enhancements.

12Robustness is qualitatively assessed in Chapter 5 by employing the latter metric across different input samples.

13In [KKS99] the authors measured speedups of 28.5, 29.8, and 406.6 for respectively, the Motorola 56000,
Texas Instruments TMS320C50, and TMS320C60 when comparing native fixed-point execution to floating-point
emulation.
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To measure the reproduction quality, or fidelity, of the converted code the signal-to-quantization-

noise-ratio (SQNR), defined as the ratio of the signal power to the quantization noise power, was

employed. The ‘signal’ in this case is the application output14 using double-precision floating-

point arithmetic, and the ‘noise’ is the difference between this and the output generated by the

fixed-point code. For a sampled data signal y, the SQNR is defined as

SQNR = 10 log10

∑

n y2[n]
∑

n(ŷ[n] − y[n])2
, measured in decibels (dB) (1.1)

where ŷ is the fixed-point version’s output signal. In fixed-point implementations there are three

principle sources of quantization errors that contribute to the difference between ŷ and y:

1. Multiplication, arithmetic shifts, and accumulator truncation.

2. Coefficient quantization.

3. Input quantization.

For this investigation the first item is of primary concern. Coefficient quantization distorts the

input/output behaviour in a deterministic way and although it is very difficult to accounted for

this change a priori during filter design, the effect can be account for in hindsight by generating

a special version of the baseline floating-point program that incorporates the coefficient quanti-

zation. Input quantization can be thought of as a special case of the first item and accordingly

no attempt was made to isolate this effect.

It should be noted that SQNR is not always the most appropriate metric of performance.

For instance, if the application is a pattern classifier, e.g. a speech recognition application, the

best metric might be the rate of classification error. On the other hand, if the application is a

feedback control system, the change in system response time, or overshoot may become the most

important performance metric. Even for audio applications, perhaps the most obvious domain in

which to apply SQNR, it is likely that psychoacoustic metrics such as those employed in the MP3

audio compression algorithm15 would make better performance metrics. However, for the purpose

14Most applications investigated are single-input, single output.

15MP3 is the MPEG1 layer 3 audio compression standard. More information can be found at the Motion Pictures

Experts Group (MPEG) Website: http://www.cselt.it/mpeg

9



of this investigation SQNR is perhaps the most generally applicable metric across applications

and has the benefit that it is easily interpreted.

Expressing SQNR enhancement by merely listing the absolute SQNR measurement using

competing techniques has the drawback that it is hard to summarize the effect of a particular

technique across different benchmarks because different benchmarks tend to have widely varying

baseline SQNR performance. From the definition in Equation 1.1 the difference of two SQNR

measurements, ŷA, and ŷB made against the same baseline output y(n) (with enhancement “B”

providing better SQNR performance than “A”) yields,

SQNRB − SQNRA = 10 log10

∑

n(ŷA[n] − y[n])2
∑

n(ŷB [n] − y[n])2

ie. a measure of the relative noise power introduced by the two techniques. Thus one way to

consolidate SQNR measurements is to choose one of the competing conversion techniques as a

baseline and to summarize relative improvement measured against it. This new measure permits

meaningful comparison of SQNR enhancement across applications.

In this dissertation another technique will often be employed to summarize SQNR data.

By measuring the SQNR at several datapath bitwidths it is possible to obtain a measure of the

improvement in terms of the equivalent number of bits of precision that would need to be added

to the datapath to obtain similar SQNR performance using the baseline approach. This measure-

ment is shown schematically in Figure 1.1 for four SQNR measurements contrasting the same

two fictitious floating-point to fixed-point conversion techniques, again labeled “A” and “B”. One

limitation of this method of summarizing data is that the results can be highly dependent upon

the two bitwidths used in obtaining the four SQNR measurements. For instance, for the ficti-

tious example shown in Figure 1.1, the SQNR measured using method “B” improves at a slightly

faster rate as additional precision is made available16—ie. the dotted lines are not exactly paral-

lel. Irrespective of this apparent drawback, this approach provides the most compelling physical

connection as it directly relates to the potential reduction in necessary datapath bitwidth that

could result when using one approach over another. The values reported in this dissertation are

averages of the horizontal measurement indicated in the figure measured from the two endpoints

16An increase in datapath bitwidth of one bit might be expected to improve output SQNR by around
20log102 ≈ 6dB than when using method “A”. However, during this investigation it was found that the actual
improvement tended to vary considerably when measured directly.
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Figure 1.1: Example Illustrating the Measurement of “Equivalent Bits” of SQNR Improvement

B(w1) and A(w2), which simplifies to the following expression:

Equivalent Bits =
1

2

(

B(w1) − A(w1)

A(w2) − A(w1)
+

B(w2) − A(w2)

B(w2) − B(w1)

)
(

w2 − w1

)

(1.2)

where w1 is the shorter wordlength, w2 is the longer wordlength, B(·) is the SQNR in dB using

method “B”, and A(·) is the SQNR in dB using method “A”.

1.2.4 Simulation Study Organization

This dissertation examines a complex design space. To effectively explore the impact of the

floating-to-fixed-point translation algorithms and associated ISA enhancements introduced in this

dissertation it was necessary to limit the exploration to a few potentially interesting “sub-spaces”.

The initial assessment is based upon SQNR and runtime performance compared against the

two prior approaches in the literature. In particular for these initial experiments the following

constraints were set:

1. Only two distinct datapath bitwidths are explored.
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2. The rounding mode is truncation (ie. no rounding, or saturation).

3. The same input is used for both profiling and measuring SQNR performance.

Empirically it was observed that SQNR performance measured using a given input signal was

maximized by using that same input when collecting dynamic-range information. Therefore, the

initial assessment presents, in some sense, a best-case analysis with respect to input variation.

However, one of the most important issues associated with the profile-based floating-point to

fixed-point conversion approach central to this dissertation is that of robustness: Whether or not

the inputs used during profiling are sufficiently general to cover all inputs likely to be encountered

after system deployment. In other words: Do they drive the measured dynamic-range values to

the maximum value, or will some unexplored input later cause some internal values to exceed

these estimates? To address this particular concern a separate study was undertaken. It was

found that concise training inputs exist that can characterize very large sets of input data leading

to fixed-point code with both good fidelity and robustness (however it appears some room remains

for improving the tradeoff between fidelity and robustness if these training sets were tailored more

carefully).

Another dimension of practical interest is the dependence of SQNR enhancement upon spe-

cific signal-processing properties of an application. To gain some insight into this phenomenon

a study was conducted to assess the variation of SQNR enhancement with change in the pole

locations of a simple second-order filter section. It was found that the SQNR enhancement due

to the compiler and instruction-set enhancements put forward in Chapter 4 complements the

baseline performance variation with pole-location that is well know in the signal-processing liter-

ature [Jac70b]. A more startling observation is that the FMLS operation proposed in Chapter 4

leads to dramatic but non-uniform improvements in SQNR for one particular implementation of

the Fast Fourier Transform as a function of datapath bitwidth. The results of these additional

investigations are also presented in Chapter 5.
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Contribution Chapter and Section

IRP Algorithm 4.2.1

IRP-SA Algorithm 4.2.2

FMLS Operation 4.3

Index-Dependent Scaling 4.4.1

2nd-Order Profiling Algorithm 4.4.2

Table 1.1: Thesis Contributions

1.3 Research Contributions

This dissertation makes several research contributions. Perhaps the most striking is the intro-

duction of a novel digital signal processor operation: Fractional Multiplication with internal Left

Shift (FMLS). This operation and other significant contributions of this investigation are listed

in Table 1.1 and outlined briefly in the sub-sections that follow.

1.3.1 A Floating-Point to Fixed-Point Translation Pass

A fully functioning SUIF-based17 floating-point to fixed-point conversion utility was developed

as part of this dissertation. A convenient feature of this utility is the ability to target ASIPs

with an arbitrary fixed-point datapath wordlength. The associated UTDSP simulator introduced

in Section 1.3.3 matches this bitwidth configurability up to 32 bits and provides bit accurate

simulation. Although the conversion utility is primarily accessed via the command line, a graphical

user interface (GUI) based “browser” was also developed to correlate the detailed dynamic-range

information collected during profiling with the original floating-point code (for a screen shot

see Figure C.1, on page 121). These features combine to enable an exploration of the minimal

architectural wordlength required to implement an algorithm effectively using single-precision

fixed-point arithmetic. The utility handles language features such as recursive function calls and

pointers used to access multiple data items, as do two prior conversion utilities [WBGM97a,

KKS99]. Similar to [WBGM97a] the system provides a capability for index-dependent scaling

of loop carried/internal variables and distinct array elements. Furthermore, the conversion of

17SUIF = Stanford University Intermediate Format, http://suif.stanford.edu

13



floating-point division operations, floating-point elements of structured data types and/or arrays

of such composite types, in addition to frequently used ANSI C math libraries are all provided.

As noted, the floating-point to fixed-point conversion problem itself may be broken into two

major steps: First, determining the dynamic-range of all floating-point signals, and then finding

a detailed assignment of scaling operations. Note that these are in fact coupled problems—the

assignment of scaling operations contributes to rounding-noise which in turn affects the dynamic

range. However, for most applications of interest the coupling appears to be very weak. The first,

third, and fourth sub-sections to follow highlight this dissertation’s contributions to solving the

dynamic-range estimation problem, while the first two introduce novel algorithms for generating

the scaling operations themselves.

Intermediate Result Profiling (IRP) Fixed-Point Translation Algorithm

It is shown that the additional information obtained by profiling the dynamic-ranges of inter-

mediate calculations within arithmetic expression-trees provides the floating-point to fixed-point

translation phase with significant opportunities to improve fixed-point scaling over prior auto-

mated conversion techniques. This is important because prior conversion systems have opted out

of collecting this type of information based on the argument that profile time must be minimized

as much as possible, without attempting to quantify the implied SQNR trade-off.

Shift Absorption (IRP-SA)

To enhance the basic IRP approach an algorithm was developed for distributing shift operations

throughout expression trees so that SQNR is improved. This shift absorption algorithm, IRP-SA,

exploits the modular properties of 2’s-complement addition coupled with knowledge of inter-

operand correlations that cause the dynamic-range of an additive operation to be less than that

of either input operand. This rather peculiar condition often arises due to correlations in signal

values within digital filter structures that are only apparent via signal-flow-graph analysis or

intermediate result profiling.

Index-Dependent Scaling

As noted, but again not quantified by other researchers [WBGM97a, WBGM97b], the dynamic-

range of a variable may be significantly different depending upon the location of the specific

definition being considered. In this context location means either a specific program operation
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(eg. as identified by program memory address location), or that operation as parameterized by

some convenient program state such as a loop counter. A partial justification of this proposition

goes as follows [WBGM97a]: When software developers write applications with floating-point

data types, the dynamic-range of variables as a function of location is totally ignored out of shear

convenience. It has been proposed [WBGM97a, WBGM97b] that in such cases an “instantiation

time” scaling method be used, however the method used is described in very abstract terms and

no empirical data was reported to illustrate its efficacy. As part of this dissertation a related

implementation called index-dependent scaling was developed and studied. This method captures

one form of “instantiation time” scaling related to control-flow loops of known duration. It is

seen that indeed vast improvements in SQNR performance are possible, but unfortunately, the

current implementation only applies to two of the benchmarks.

Second-Order Profiling

One concern when using profile data generated from the original floating-point specification is

adequately anticipating the effect of fixed-point rounding-errors on dynamic-range. It sometimes

happens that accumulated rounding errors cause internal overflows even when the same data is

used to test the fixed-point code as was used in originally collecting dynamic-range information.

One approach to this problem is to statistically characterize internal signal distributions. This

approach has been explored at length by other researchers [KKS97, KS98b], but suffers from

the drawback that such distributions are hard to accurately quantify leading to the application

of conservative fixed-point scaling. This dissertation proposes and evaluates an approach in

which the results of applying fixed-point scaling are re-instrumented and fed through a second

phase of profiling to estimate the effects of quantization on dynamic-range. It was found that this

technique does eliminate such overflows in many cases but at the cost of significantly complicating

the software architecture of the translation system.

1.3.2 Fixed-Point ISA Design Considerations

An instruction-set architecture defines an interface between hardware and software. Due to

physical constraints only a limited set of operations can be supported in any particular processor.

Given a limit on hardware resources, the optimal mix of operations is application dependent. For

instance, the availability of bit-reversed addressing in digital signal processors during calculation
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of the FFT can eliminate an O(N log N) sorting operation, providing substantial speedups18,

however no other applications and certainly no ANSI C compiler to date can directly make

use of this addressing mode. Similarly, some of the Streaming SIMD Extensions of the Intel

Pentium III microprocessor improve performance significantly for only a few albeit important

applications such as speech recognition, and MPEG-2 decoding. Again, in these cases the gains

are substantial: improvements of 33% and 25% are obtained respectively via the inclusion of one

additional operation in the instruction set [RPK00].

As already noted, within the framework of this dissertation, there is another important

dimension to consider other than execution-time: SQNR performance. Traditional DSP archi-

tectures enable improved fixed-point SQNR performance via extended-precision arithmetic and

accumulator buffers. Accumulators complicate the code-generation process because they couple

the instruction selection and register-allocation problems [AM98]. The following two sub-sections

introduce a new fixed-point ISA operation for improving SQNR performance that potentially

captures some of the SQNR benefits of using a dedicated accumulator, while remaining easy for

the compiler to handle. An added benefit is that runtime performance is also improved.

Fractional Multiplication with internal Left Shift (FMLS)

It was found that the IRP-SA algorithm frequently exposed fractional-multiplication operations

followed by a left scaling shift operation, ie. a shift discarding most significant bits (MSB’s). This

condition arises for three separate reasons: First, occasionally the product of two 2’s-complement

numbers requires one bit less than their scaling would imply19; second, if the multiplicands are

inversely correlated; third, if the product is additively combined with another quantity that is

negatively correlated with it. Regardless of which situation applies, additional precision can

be obtained by introducing a novel operation into the processor’s instruction set: Fractional

Multiplication with internal Left Shift (FMLS). This operation accesses additional least signifi-

18Although the overall FFT algorithm remains an O(N log N) problem the speed-up is significant enough to
merit dedicated hardware.

19For example, consider 3×3 bit 2’s-complement multiplication,
3 × 2 = 6 (decimal)

011 × 010 = 00 0110 (binary)

More generally, for 2’s-complement integer multiplication on fully normalized operands, there is always one redun-
dant sign bit in the 2 × bitwidth result except when multplying the most negative representable number by itself.
The main point to be made is that, as in the above example, it often happens there are even two redundant sign
bits although standard practice is to assume there is only one.
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cant bits of the 2×wordlength intermediate result, which are usually rounded into the LSB of

the 1×wordlength fractional product, by trading these off for a corresponding number of most

significant bits that would have been discarded subsequently anyway.

An additional benefit of the FMLS operation encoding is that frequently non-trivial speedups

in computation are also possible. The runtime performance benefits of combining an output shift

with fractional multiplication have been acknowledged by previous DSP architectures [Ins93]

where the peak performance benefit is limited primarily to inner-product calculations using block-

scaling because the output shift is often dictated by a control register requiring separate modifi-

cation each time the output scaling changes. It is argued in this dissertation that encoding the

output shift directly into the instruction word is better because, in addition to enhancing signal

quality, simulation data indicates that a very limited set of shift values is responsible for most of

the execution speedup and this encoding avails these benefits to a larger set of signal processing

applications.

1.3.3 A New UTDSP Simulator and Assembly-Level Debugger

To investigate the effects of varying the datapath wordlength, the existing UTDSP simulator

created by previous UofT researchers required modifications. However, it was estimated that

the required modifications would entail more programming effort than simply re-implementing

the simulator almost entirely. Subsequently it was also decided that the need had arisen for an

interactive source-level debugger to aid in tracking down the cause of any errors in the overall

system (float-to-fixed conversion utility, code generator, post-optimizer, and simulator). Unfor-

tunately, time constraints only permitted the development of an assembly-level debugger which

is nonetheless an improvement over the existing infrastructure.

1.4 Dissertation Organization

This rest of this dissertation is organized as follows: Chapter 2 provides background material

on the Embedded Processor Architecture and Compiler Research Project, summarizes common

fixed-point implementation strategies, and describes prior automated floating-point to fixed-point

conversion systems. Chapter 3 introduces the applications used to evaluate floating-point to

fixed-point conversion performance during this investigation. Chapter 4 describes the conversion

algorithms and the FMLS operation proposed by this dissertation, then goes on to introduce the

17



index-dependent scaling and second-order profiling techniques. Chapter 5 presents the results

of the initial simulation study comparing the SQNR and runtime performance of IRP, IRP-SA

and FMLS with the two prior approachs in the literature and then presents the results of an

investigation into the robustness of the profile-based approach and also explores the impact of

digital filter design parameters on the SQNR enhancement due to FMLS. Chapter 6 concludes

and indicates some promising directions for future investigation related to the work presented in

this dissertation.
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Chapter 2

Background

The research described in this dissertation draws upon aspects of many broad and well estab-

lished engineering disciplines, specifically digital signal processing, numerical analysis, optimizing

compiler technology, and microprocessor architecture design. To frame the detailed presentation

that follows, this chapter presents salient background material from these areas. To begin, a

brief outline of the Embedded Processor Architecture and Compiler Research Project that this

dissertation contributes to is presented.

2.1 The UTDSP Project

Beginning with an initial investigation in the early 1990’s in which the DSP56001 was modi-

fied by applying RISC design principles resulting in doubled performance [TC91], the Embedded

Processor Architecture and Compiler Research Project (also known as “The UTDSP Project”)

has progressed to include the development of the first physical prototype [Pen99], and an ex-

tensive compiler infrastructure [Sin92, SCL94, SL96, PLC95, Sag98]. VLIW technology provides

a method of exploiting instruction level parallelism (ILP), however, rather than using area and

power hungry hardware scheduling mechanisms such as those employed in dynamically sched-

uled superscalar microprocessors—examples of which are the Intel Pentium Pro, AMD K6, MIPS

R10000, PowerPC 620, HP PA-8000, and Compac Alpha 21264 [Far97]—VLIW processors ex-

pose ILP support directly to the compiler. In a VLIW processor each instruction is divided into

several explicit operations. Typically this means that the VLIW instructions are indeed very

long—for the current fixed-point version of UTDSP, which has 7 function units, each instruction

is 7×32 bits wide—224 bits in total! The fixed-point UTDSP architecture is shown schematically
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Figure 2.1: UTDSP Fixed-Point VLIW Architecture

in Figure 2.1, which is based upon Figure 2.2 in [Sag98]. In this figure, the following acronyms are

used: program control unit (PCU), memory unit (MU), address unit (AU), and data unit (DU).

This figure illustrates the UTDSP’s Harvard architecture (separate data and instruction memo-

ries) as well as its use of dual data-memory banks, which enhance data-memory bandwidth—a

very important consideration for signal processing applications. Not shown are the control signals

emanating from the PCU that governing the operation of each function unit.

There are at least two major challenges to effectively implementing a VLIW architecture.

One is that a large number of read and write ports are needed for each register file. Each

function unit attached to a register file typically needs two read ports and one write port, which

can seriously complicate the design of the register file. For example, the current implementation

of the UTDSP has 8 read and 4 write-ports to the data register file, and 6 read and 4 write-ports

to the address register file. Motivated by techniques used on two prior VLIW architectures, Sean

Peng proposed using a replicated array of high-speed dual-ported SRAM macros with 2 read and
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Figure 2.2: Saghir’s Multi-Op Pointer Decoding Mechanism

2 write ports. Each replicated register-file would then contain a copy of the same data increasing

the number of read ports linearly. To increase the number of write ports, write accesses would

have to be time-multiplexed. Unfortunately, in the final implementation the register files had to

be synthesized because the required SRAM macros could not be made available [Pen99].

A second major implementation issue is the high instruction-memory bandwidth required

when the VLIW encoding is represented explicitly. If instruction-memory is located on-chip this

does not significantly impact power consumption or speed, however instruction memory is often

located off-chip. To avoid a large pin-count and associated power-consumption / clock-cycle

penalties, a two-level instruction packing scheme was proposed by Mazen Saghir [Sag98], and

implemented by Sean Peng in the initial fabrication of the UTDSP processor. This technique

solves the problem by placing the most frequently used instructions in a compressed on-chip

instruction-store and instead reads in 32-bit “multi-op” instruction-pointers from off-chip memory.

These multi-op pointers contain table look-up information and a bitmask needed to decompress

the instructions in the instruction-store (see Figure 2.2, which expands upon Figure 5.4 in [Sag98]).

The basic pipeline structure of the UTDSP is illustrated in Figure 2.3, where the pipeline

stages are labelled ‘IF’ for instruction fetch, ‘ID’ for instruction decode, ‘EX’ for execute, and ‘WB’
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Figure 2.3: The Basic 4-Stage UTDSP Instruction Pipeline

for write-back. These four stages proceed in parallel for sequential operations fed to any particular

function unit, and therefore up to 4 × 7 = 28 individual operations may be active in the UTDSP

core at any one time. When using the two-level packing scheme, the instruction-fetch stage is

divided into two separate stages, ‘IF1’, and ‘IF2’, bringing the total pipeline depth to 5-stages.

Forwarding logic is used to eliminate all Read-After-Write (RAW) pipeline hazards1. Further-

more, by folding the customary memory-access stage (normally situated after the execution-stage

and before the write-back stage) into the execution-stage, all pipeline stalls due to memory read

operations can be eliminated with forwarding logic (at the expense of eliminating displacement

and indexed addressing modes from the load-store units).

The UTDSP compiler infrastructure is outlined in Figure 2.4. Roughly, it is divided into

three sections. The front end, provided by an enhanced version of SUIF v1, parses the ANSI C

source code and performs machine-independent scalar optimizations and instruction-scheduling /

register-allocation assuming a single-issue UTDSP ISA. The post-optimizer parses the assembly

level output of the SUIF front-end and performs VLIW instruction scheduling, as well as the

following machine-dependent optimizations:

• Generation of Modulo Addressing Operations

• Generation of Low-Overhead Looping Operations

1For example, consider the sequence:
i: r1 := ...
i+1: ... := r1 + ...

With the pipeline structure in Figure 2.3, and without data-forwarding and/or pipeline-interlocking, instruction
‘i+1’ will read the value of register ‘r1’ existing before instruction ‘i’ can write its value to the register file, which
would violate sequential semantics.
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• Software Pipelining

• Data Partitioning

Modulo addressing is important for efficiently processing streaming data without incurring the

overhead of reorganizing data buffers or explicitly coding the complex address arithmetic calcu-

lations it replaces. Low-overhead looping operations improve the computational through-put of

small inner loops by eliminating the pipeline-delay associated with conditional branches through

the use of a special hardware counter that takes the place of the loop index. Software pipelin-

ing is a technique used to enhance ILP by reducing the length of the critical path through an

inner-loop. This is done by temporarily unrolling loop operations and reframing them so opera-

tions that were originally from different loop iterations can be scheduled to execute in parallel.

Data partitioning enhances parallelism by removing structural hazards associated with access

to memory. For instance, many DSP algorithms take the inner-product of a coefficient vector

with some input data. The inner-loop of this kernel requires two memory reads per iteration.

By using software-pipelining it is possible to schedule the inner-loop in one VLIW instruction

word, provided these two memory reads can progress in parallel. One possible solution is to use

dual-ported data-memory but this invariably increases the processor cycle-time. The solution

usually employed in commercial DSP’s is to provide two separate single-ported memory banks.

This memory model is not supported by the semantics of ANSI C, however by using sophisticated

graph partitioning algorithms to allocate data structures, the post-optimizer is able to exploit

such dual data-memory banks effectively.

The output of the post-optimizer is statically scheduled VLIW assembly code. If the two-

level instruction packing scheme is used the VLIW assembly code then passes though the code

compression stage, otherwise the code may be executed directly on the simulator. As the code

compression software was developed concurrent with this investigation, the results presented later

use the shorter 4-stage pipeline, however this certainly does not affect SQNR measurements, and

furthermore, the effect on speedup is readily estimated by modifying the branch penalty of the

simulator to reflect the impact of the longer pipeline under the assumption that all code fits in the

on-chip instruction store (a branch penalty of two-cycles, consistent with the two-level instruction

packing scheme was used for all simulations reported here).
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2.2 Signal-Processing Using Fixed-Point Arithmetic

Fixed-point numerical representations differ from floating-point in that the location of the binary-

point separating integer and fractional components is implied by a number’s usage rather than

explicitly represented using separate exponent and mantissa. For example, when adding two

fixed-point numbers together their binary-points must be pre-aligned by right-shifting the smaller

operand2. This is illustrated in Figure 2.5. To minimize the impact of finite-precision arithmetic

each fixed-point value, x̂(n), should be scaled to maximize its precision while ensuring the maxi-

mum value of that signal is representable. This normalization is given by the Integer Word Length

(IWL) of the underlying signal, x(n), which is defined as:

IWL[x] = blog2(max
∀n

|x(n)|)c + 1 (2.1)

where b·c is the “floor” function that truncates its real-valued argument to the largest integer less

than or equal to it. Then, as shown in Figure 2.5, the binary point of x̂(n) is placed a distance

of IWL + 1 measured from (and including) the most significant bit (MSB) position of x̂(n)—the

extra bit being used to represent the sign.

2.2.1 Fractional Multiplication

When considering fixed-point multiplication we must distinguish between two different imple-

mentations: integer, and fractional. These are summarized graphically in Figure 2.6. Integer

multiplication is well known, however some may not be well acquainted with fractional multi-

plication. Generally, in signal processing applications we want to preserve as much precision as

possible throughout all intermediate calculations. This means that a product calculation should

use operands scaled to the full bitwidth of the register file resulting in an integer product roughly

twice as wide as the register file bitwidth. However, regular integer multiplication, as supported

in languages such as ANSI C, only provides access to the lower word (ie. containing the least sig-

nificant bits) as shown in Figure 2.6(b). Without resorting to machine specific semantics and/or

extended-precision arithmetic the only acceptable workaround within such language constraints

is to prescale both source operands to half the wordlength before performing the multiplication.

2Often it is also necessary to introduce an additional right shift by one bit for both operands to avoid an overflow
when carrying out the addition operation.
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However, this greatly reduces the relative accuracy of the product calculation. To see this, let

the product of x and y be expressed as

xy = (x0 + δx)(y0 + δy)

where δx and δy are the representation error in representing x and y due to the finite precision of

the hardware. Then, ignoring the second-order term, the relative error in the product is given by

Relative Error =
xy − x0y0

x0y0

≈ δy

y0
+

δx

x0

Since the effect of prescaling x and y, is that the representation errors δx and δy become larger by

a factor of 2( 1
2
bitwidth) the relative error in the product increases dramatically. This effect worsens

if the dynamic ranges of both x and y are in fact not insignificant as δx and δy remain fixed as

x0 and y0 get smaller. In any event, an alternative often employed in fixed-point digital signal

processors is to discard the lower half of the double wordlength product and retain only the upper
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word. As noted earlier, almost always this results in one redundant sign bit and usually this is

discarded in favour of an additional least significant bit, as shown in Figure 2.6(c) for the case of

8 x 8 bit multiplication3.

2.2.2 Multiply-Accumulate Operations

To maintain maximum precision in long sum of product calculations most traditional fixed-point

DSP architectures4 employ an extended precision accumulator buffer to sum the double-precision

result of fixed-point multiplication without any truncation. An extended-precision accumula-

tor may provide enhanced rounding-error performance over fractional multiplication because

the lower word of the accumulator is typically rounded into the result at the end of the sum

of products computation giving a final result with the same single-precision bitwidth obtained

using fractional multiplication, but with better accuracy. Typically there is only one extended-

precision accumulator available and furthermore its usage is implied by the operation being per-

formed therefore a strong coupling exists between instruction-selection, register-allocation, and

instruction-scheduling [AM98]. This coupling limits runtime performance and makes the com-

piler code-generation problem far more difficult. A related difficulty is that some programming

technique must be available for specifying that the result of a multiplication is to be interpreted

3Again recall the one exception is that multiplication of the largest magnitude negative number by itself yields
a result with no redundant sign bits.

4For example, the Texas Instruments TMS320C5x, Motorola DSP56000, Analog Devices ADSP-2100.
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as double-precision. Using ANSI C it may be possible to do this as follows: the source operands

of the multiplication could be declared to be of type ‘int’ and the accumulator would then be

declared to be of type ‘long int’. However, this only works if the compiler interprets a ‘long

int’ to have twice the precision of an ‘int’ value. However such features are machine specific

in the ANSI C standard meaning that fixed-point signal-processing code written this way would

not run correctly if built on most desktop systems.

It is probably for these reasons that the original implementors of UTDSP did not include an

extended-precision accumulator. It is interesting to note that the Texas Instruments TMS320C62x

fixed-point VLIW digital signal processor also lacks dedicated accumulator buffers [Tex99a].

On the other hand, while sporting a 32-bit datapath and register file, the C62x only pro-

vides 16 × 16-bit integer multiplication operations. One way to interpret this is that to solve

the allocation problem, the designers of the C62x made all the registers double-precision. In

this case “extended-precision” multiply-accumulate operations can be generated using the C62x

ANSI C compiler by declaring the source operands to be ‘short int’, and the accumulator to

be ‘int’ [Tex99b, Tex99c]. Perhaps coincidentally, this arrangement is portable to most 32-bit

ANSI C compilers commonly used on desktop workstations.

The FMLS operation and the IRP-SA algorithm can be viewed as ways to obtain some

of the benefit of having an extended-precision accumulator without introducing irregularity into

the processor architecture. The underlying observation being that the individual terms in short

sum-of-product calculations are often correlated enough that the resulting IWL of the sum is less

than the IWL of the individual terms being added together.

2.3 Common Fixed-Point Implementation Techniques

Analytical techniques for obtaining dynamic-range estimates and synthesizing digital filter struc-

tures with minimal fixed-point roundoff noise properties are well known, as are two sophisticated

fixed-point implementation techniques that improve output rounding noise: block floating-point

arithmetic, and quantization error feedback. This section summarizes each of these in turn, how-

ever none were implemented within the floating-point to fixed-point conversion system developed

for this dissertation. Therefore, these descriptions mainly serve to contrast the easily imple-

mentable techniques reviewed in Section 2.4, and in Chapter 4 with what might be possible

through substantial additional work.
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2.3.1 Lp-Norm Dynamic-Range Constraints

In the seminal publication, On the Interaction of Roundoff Noise and Dynamic Range in Digital

Filters [Jac70a], Leland B. Jackson investigates the fixed-point roundoff noise characteristics of

several digital filter configurations analytically. To do this he introduces an analytical technique

for estimating the dynamic-range of internal nodes within the system to generate fixed-point

scaling operations that will not produce any overflows in the case of deterministic inputs, or

that at least limit the probability of overflow in the case of random inputs. This technique relies

upon knowledge of the signal-space norms of the input and transfer function to each internal node.

Before describing the technique, it is important to emphasize that it is not applied easily within an

automated conversion system that starts with an ANSI C algorithm description because complete

knowledge of the digital filter transfer function is required. Appendix D provides some insight into

the difficulty of obtaining this information using the standard dataflow and dependence analysis

techniques exploited within optimizing compilers.

To begin, Jackson considers an LTI digital filter abstractly as consisting of a set summation

nodes together with a set of multiplicative edges. Each multiplicative edge entering a summation

node (from the input) is assumed to introduce rounding errors modeled as additive white-noise

with zero-mean and variance σ2
0 = ∆2

12 where ∆ is the absolute value represented by the least

significant bit position of the fixed-point representation. Of interest then are the transfer functions

from the input to each summation node, Fi(z), and the transfer function from each summation

node to the output, Gj(z). To obtain bounds upon the dynamic-range of internal nodes the

transfer functions Fi(z) are of primary interest. Jackson’s derivations of the dynamic-range

bounds as set forth in [Jac70a] are summarized by the short sequence of mathematical statements

below. The output at time step ‘n’ at branch node ‘vi’ is given by

vi(n) =

∞∑

k=0

fi(k)u(n − k) ,

or, equivalently, in the z-domain,

Vi(z) = Fi(z)U(z) (2.2)

These latter two statements are related by the well known z-transform and its (perhaps lesser
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known) inverse:

F (z) =
∞∑

n=−∞

f(n)z−n

f(n) =
1

2πj

∮

Γ
F (z)zn−1dz

where Γ, the contour of integration can be taken as the unit circle for stable systems. Hölder’s

inequality, a well known relation in real analysis5, applied to Equation 2.2 states that

‖Vi‖1 ≤ ‖Fi‖p‖U‖q , provided

(
1

p
+

1

q
= 1

)

(2.3)

Where the Lp-norm of a periodic function G(ω) with period ωs is given by:

‖G‖p =

[
1

ωs

∫ ωs

0
|G(ω)|pdω

]1/p

Hölder’s inequality (2.3), combined with the fact that

|vi(n)| ≤ ‖Vi‖r , ∀n ,∀r ≥ 1

(derived in [Jac70a]) can by applied to Equation 2.2 leading to the important result:

|vi(n)| ≤ ‖Fi‖p‖U‖q , provided

(
1

p
+

1

q
= 1

)

(2.4)

This equation states that the range of the internal node vi is bounded by a constant that depends

upon the transfer function to the node, and the input signal’s frequency spectrum. For stationary,

non-deterministic inputs Jackson provides a similar result in terms of the z-transform of the auto-

correlation of the input (The auto-correlation is defined as ϕu(m) = E [u(n)u(n + m)], where E[·]
is the statistical expected-value operator). The corresponding result to Equation 2.4 for the non-

5An outline of the proof of Hölder’s inequality is given in [Tay85].
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deterministic case is

σ2
vi
≤ ‖Fi‖2

2p‖Φ‖q ,

(
1

p
+

1

q
= 1

)

(2.5)

where Φ is the z-transform of ϕ.

In the case of both Equations 2.4 and 2.5, only a few values of p and q are of practical

interest. Specifically, values leading the L1, L2, and L∞ norms of either the input or transfer

function: The L1 norm is the average absolute value; L2
2 represents the average power; and, L∞

represents the maximum absolute value.

2.3.2 Roundoff Error Minimization of Digital Filter Realizations

Five years subsequent to Jackson’s seminal publications, Hwang [Hwa77], and independently,

Mullis and Roberts [MR76], extended his work by proposing synthesis procedures that achieve

minimum output rounding noise for the state-space formulation of a discrete-time LTI digital

filter. State space realizations include a broad range of realization topologies as special cases,

however, the minimization procedures used in [MR76, Hwa77] are not constrained to any par-

ticular one of these and a related side-effect is that the minimization procedures result in filter

structures with greatly increased computational complexity: O(N2) versus O(2N) for the simplest

realizations. This latter issue has been tackled more recently with the development of similar

minimization procedures for extended state-space realizations [MFA81, ABEJ96], and normalized

lattice filter topologies [LY90, CP95] neither of which will be examined further here, except to

say that they are based upon the application of similar analyses applied to a varied problem

formulation. The state-space representation of single input single output (SISO) LTI digital filter

is given by the matrix equations:

x(n + 1) = Ax(n) + bu(n)

y(n) = cx(n) + du(n) (2.6)

where A, B, c, and d are N ×N , N ×1, 1×N , and 1×1 respectively. The approach used to solve

the output rounding-noise minimization problem is to reduce it to finding an N ×N non-singular

similarity transformation matrix T that minimizes the output roundoff error under the assumption

that the dynamic-range is given by an L2-norm bound on the transfer-function to each node, and
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that ∆ is the same for each component of the state x. Mullis and Roberts show solutions for both

the situation where the wordlengths of each component x is constrained to be equal, and where the

wordlengths can vary about some average value. A similarity transform leaves the input/output

behaviour of the system the same under the assumption of infinite precision arithmetic, but can

dramatically affect the roundoff error when finite precision arithmetic is employed. T modifies

the system in (2.6) such that the new realization is given by the matrices:

(A′, b′, c′) = (T−1AT, T−1b, cT )

Key to the derivation of T are the matrices:

K = AKAT + bbT

W = AT WA + cT c

Mullis and Roberts show a particularly efficient method of obtaining the solution to these matrix

equations in [MR76]. The output rounding noise variance, σ2, in the case of average bitwidth m,

is found in [MR76] to be given by the expression,

σ2 =
(n + 1)n

3

(
δ

2m

)2

·
[

n∏

i=1

KiiWii

] 1
n

. (2.7)

where δ derives from the dynamic-range constraint in Equation 2.5 with p = 1, q = ∞, and is pro-

portional to ‖u‖∞ (the constant of proportionality affecting the probability of overflow). A lengthy

procedure generating a similarity transformation T that minimizes (2.7) is given in [MR76]. Of

more interest here however, is the geometrical interpretation of the minimization procedure given

by Mullis and Roberts in Appendix A of [MR76]: Define the quantity,

e (P ) =

(
detP
∏n

i=1 Pii

)1/2

(2.8)

which takes on values between 0 and 1. Then (2.7) can be rewritten as

σ2 =
n(n + 1)

3

(
δ

2m

)2

det (KW )
1
n [e (K) e (W )]−

2
n (2.9)
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(a) Storage Efficiency e(K) (b) Quantization Efficiency e(W)
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Figure 2.7: Geometric interpretation of the efficiencies e (K) and e (W ). In both cases, efficiency

is measured as the ratio of the volume of the smaller rectangular region to volume of larger

rectangular region. Reproduced from Figure 5 in Appendix A of [MR76].

According to Mullis and Roberts the quantities e (K) and e (W ) in Equation 2.9 can be inter-

preted as storage and quantization efficiencies respectively which are illustrated schematically in

Figure 2.7 which recreates Figure 5 in Appendix A of [MR76]. In either case they state that the

efficiency can be thought of as the ratio of the volume of two rectangular regions bounding or

intersecting a hyper-ellipsoid defined by e(K) or e(W): In the case of the storage efficiency, e(K),

this hyper-ellipsoid represents the region the state is likely to be found in given a unit variance

random input sequence. Therefore, the larger rectangular region in Figure 2.7(a) represents the

set of representable states in the original system and the smaller rectangular region represents

the more tight fitting set possible after a rotation of the coordinate system by T . The benefit

of this rotation is that a larger percentage of the available quantization levels—a fixed quantity

for a given datapath bitwidth and filter complexity—are actually used in practice leading to a

reduction in output roundoff noise.

In the case of the quantization efficiency, e(W), Mullis and Roberts indicate that it is

necessary to recognize that after conversion to fixed-point the actual system response is no longer

given by Equation 2.6, but rather by,

x(n + 1) = Ax(n) + bu(n) + ξ(n)
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y(n) = cx(n) + du(n)

Where ξ(n) can be viewed as a random process. The effect of ξ(t) is to add a noise sequence with

variance,

σ2 = E
(
ξT Wξ

)

to the output. The smaller rectangle on the right hand side of Figure 2.7 is defined by the

intersection of the ellipse ξT Wξ ≤ σ2 and the coordinate axis. It represents the region the

random error vector ξ may inhabit. The question is then, how to maximize this volume for a

given output variance, which they show is equivalent to minimizing the probability of overflow

for a given output rounding noise variance. Again the solution is to perform a transformation to

align the coordinate axis with this ellipsoid, which defines a surface for which the output error

is constant. The goal of the minimization procedure therefore reduces to that of simultaneously

diagonalizing K and W.

2.3.3 Block Floating-Point Arithmetic

Block floating-point arithmetic provides a useful trade-off between the large dynamic-range / in-

creased hardware complexity of floating-point and the limited dynamic-range / relative simplicity

of fixed-point hardware. By jointly scaling a group of signals resulting in a block of mantissas and

a single exponent, it is possible to obtain the dynamic-range of floating-point arithmetic while

maintaining most of the efficiency of fixed-point arithmetic for several linear signal processing

operations. Although many useful forms of block floating-point have been demonstrated [RB97],

this sub-section will limit the discussion to the illustrative example given by Alan V. Oppen-

heim in his seminal 1970 publication, Realizing Digital Filters Using Block-Floating-Point Arith-

metic [Opp70].

In that paper, Oppenheim provides the following example: Consider the all-pole N th-order

infinite duration impulse response filter,

yn = xn + a1yn−1 + a2yn−2 + . . . + aNyn−N
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Figure 2.8: Block-Floating-Point Implementation of an N th-Order All-Pole Direct Form IIR

Filter. Reproduced from [Opp70, Figure 1]

The block-floating-point implementation is shown in Figure 2.8, where6:

∆n =
1

α 2(blog2 max{|x̂n|,|w1n|,|w2n|,...,|wNn|}c+1)
(2.10)

An =
1

α 2(blog2 max{|xn|,|yn−1|,|yn−2|,...,|yn−N |}c+1)
(2.11)

An = An−1∆n (2.12)

6There is a clever trick to getting Equation 2.12: Rewrite it to solve for ∆n and then note that An−1 can be
pulled through the exponent, floor, log, max and absolute-value operations in the denominator of Equation 2.11.
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The principle idea is that internal to the filter, the dynamic-range is “clamped” so that fixed-point

arithmetic can be used without undue loss of precision. In Figure 2.8, the input xn is scaled by

An which normalizes it with all the previously calculated internal state values win, i ∈ {1, ..., N}.
The output, yn is obtained by renormalizing the output of the filter by 1/An after the internal

state has been updated. During each filter update, the internal signals are renormalized by the

value ∆n. Note that the base-2 logarithmic operation in Equation 2.10 can be implemented very

efficiently in hardware by detecting the number of redundant sign bits in the fixed-point value

being operated on—a standard operation in most digital signal processor instruction sets. Similar

to the manner in which fixed-point dynamic-range constraints were derived in Equation 2.4, the

value α in Equation 2.10 depends upon the filter transfer function and is tuned to limit the

probability of overflow, a conservative value being [KA96],

α = dlog2

(

1 +

N∑

i=1

|ai|
)

e

To transform a floating-point ANSI C program to use block-floating-point arithmetic it is apparent

that the signal-flow graph is necessary for two reasons: To calculate the ∆ and An scaling factors,

and to know where these scaling factors should be applied, it is necessary to identify the delay

elements in the signal-flow graph. These are not necessarily obvious by inspecting the source

code because they are often represented implicitly (see Appendix D).

2.3.4 Quantization Error Feedback

Another implementation technique that improves SQNR performance of recursive filter struc-

tures, first proposed in 1962 by Spang and Schultheiss [SS62], is the use of quantization error

feedback, also known as “error spectrum shaping”, “noise shaping”, and “residue feedback”[LH92].

Recursive structures can be particularly sensitive to rounding errors. By feeding the error signal

through a small finite-impulse response filter and adding the result back to the original filter’s

input before the quantization nonlinearity, it is possible to favorably shape the transfer function

from noise source to output.

Typically, fixed-point datapaths employing accumulators are assumed. A simple example

taken from [HJ84] illustrates the principle very succinctly. Figures 2.9 and 2.10 recreate Figure 1

and 3 in [HJ84]. Ignoring quantization the transfer function from u(n) to y(n) in Figure 2.9 is
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given by:

G(z) =
1

1 + b1z−1 + b2z−2

A double precision accumulator is used to sum the input and the results of multiplying the delayed

output values by the coefficients −b1 and −b2. The results of the accumulator are quantized by

an operation which is represented in this figure by the box labeled ‘Q’. This nonlinear operation

can be modeled as an additive noise source with uncorrelated samples uniformly distributed

over the range ±2−b when the coefficient multiplier performs an (b + 1) × (b + 1)-bit fixed-point

multiplication (cf. Figure 2.6(b), on page 27). By replacing the quantization block with this

additive noise source, as shown in the inset to Figure 2.9, the output can be viewed as the

superposition of the individual filter responses to the input u(n) and random process e(n). In

Figure 2.9 the transfer function from e(n) to y(n) is the same as from u(n) to y(n), specifically

G(z). However, by feeding back the error samples using a short FIR filter as shown in Figure 2.10

the transfer function from e(n) to y(n) becomes,

Gye(z) =
1 + β1z

−1 + β2z
−2

1 + b1z−1 + b2z−2

while the transfer function from u(n) to y(n) remains G(z). Therefore, by carefully choosing β1

and β2 the overall output noise spectrum can be shaped to significantly reduce the output noise

variance. In general the best choice of the feedback filter coefficients βi for a given filter depends

upon the exact form of G(z) [LH92], and therefore automatic compiler generation is hindered as

before, because detailed knowledge of G(z) is required.

2.4 Prior Floating-Point to Fixed-Point Conversion Systems

Prior work has been conducted on automating the floating-point to fixed-point conversion process.

This section quickly reviews the work of five pre-existing systems for converting floating-point

programs into fixed-point. The first system, FixPt, is an example of a common approach to aiding

the conversion process—using C++ operator overloading and special fixed-point class libraries

to allow bit-accurate simulation without having to explicitly specify each scaling shift. The

second system starts with an explicit signal-flow graph representation and can therefore apply
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analytical dynamic-range estimation techniques to guide the generation of scaling operations. The

remaining three systems, SNU, FRIDGE, and the CoCentric Fixed-Point Designer, all provide

automatic fixed-point translations starting with ANSI C input descriptions. Due to the very time

consuming nature of the floating-point to fixed-point conversion process there are undoubtably

numerous conversion systems developed ‘in-house’ that remain unpublished. The overview given

here is high-level. In the case of the SNU and FRIDGE conversion systems further details will

be highlighted in the sequel where appropriate.

2.4.1 The FixPt C++ Library

The FixPt C++ Library, developed by William Cammack and Mark Paley uses operator overload-

ing to ease the transition from floating-point to fixed-point [CP94]. The FixPt datatype provides

dynamic-range profiling capabilities and simulates overflow and rounding-noise conditions. One

glaring limitation of any C++ library of this form is that they cannot be used to profile tem-

porary FixPt objects created when intermediate values are computed during the evaluation of

compound expressions. The nature of all profiling techniques is that some ‘static’ representation

must exist that can capture the values that result from multiple invocations. A direct result

of this limitation is that the conversion of division operations is not supported because, unlike

other arithmetic operators, proper scaling of fixed-point division operations requires knowledge

of the result’s dynamic-range as well as that of the source operands. In summary, FixPt, and

similar utilities, enable the designer to interactively search for a good fixed-point scaling but still

demands a significant amount of the designers attention.

2.4.2 Superior Tecnico Institute SFG Fixed-Point Code Generator

The Signal Flow Graph Compiler developed by Jorge Martin of Superior Tecnico Institute in Por-

tugal [Mar93], generates a fixed-point scaling by analyzing the transfer-function to each internal

node analogous to the Lp-norm scaling rule described in Section 2.3.1. The input program must

be directly represented as a signal-flow graph using a declarative description language developed

specifically for the utility.

2.4.3 Seoul National University ANSI C Conversion System

A team lead by Wonyong Sung in the VLSI Signal Processing Lab at Seoul National Univer-

sity (SNU) has been investigating fixed-point scaling approaches based upon profiling since
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1991 [Sun91]. Most recently they presented a fully automated [KKS97, KKS99] ANSI C con-

version system based upon the SUIF compiler infrastructure, while earlier work focused upon

C++ class libraries to aid the conversion process via bit accurate simulation [KS94b, KKS95,

KS98b], Language extensions to ANSI C supporting true fractional fixed-point arithmetic opera-

tions [SK96, KS97], wordlength optimization for hardware implementation [SK94, SK95, KS98a],

and an auto-scaling assembler [KS94a].

Some of the SNU VLSI Processing Lab’s work on wordlength optimization for hardware

implementation was commercialized via the Fixed-Point Optimizer of the Alta Group of Cadence

Design Systems, Inc. in late 1994.

As part of this dissertation some deficiencies of the SNU ANSI C floating-point to fixed-point

conversion algorithm used in [KKS97] were identified. These are:

1. Lack of support for converting floating-point division operations.

2. Incorrect conversion results for some simple test cases.

3. Introduction of a problem dependent conversion parameter.

Specifically the procedure used in [KKS97] appears to aggressively assume no overflows will occur

while propagating dynamic-range information in a bottom-up manner through expression-trees

when starting from actual measurements which are only taken for leaf operands. This appears

to work because the dynamic-range of a leaf operand, say x, is determined using the relation

[KS94a],

R(x) = max
{(

|µ(x)| + n × σ(x)
)

,max |x|
}

where µ(x) is the average, σ(x) is the standard deviation, and max |x| is maximum absolute value

of x measured during profiling. For [KKS97], n was chosen by trial and error to be around 4.

Notice, that by setting n large enough, overflows tend to be eliminated throughout the expression

tree so long as σ(x) is non-zero for each leaf operand. For this investigation this algorithm

was re-implemented within the framework presented in Chapter 4, and is accessible by setting a

command-line flag (see Appendix C). As some of the benchmarks introduced in this dissertation

use division this particular operation is scaled using the IRP scaling rules which incorporate

additional profile measurements (see Equation 4.2, on page 64). This is perhaps, only fair because

even though the utility described in [KKS97] does not support this an earlier publication by the
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same group [KS94a] presents a floating-point to fixed-point assembly translator that handles

division because in that framework the required information is available. This modified approach

is designated SNU-n in this dissertation.

A limitation of the SNU-n technique when processing additive operations is illustrated by the

following example: If both source operands take on values in the range [-1,1) then it may actually

be the case that the result lies within the range [-0.5,0.5), whereas at best SNU-n would determine

that it still lies in the range [-1,1), resulting in one bit being discarded unnecessarily. A more

disconcerting limitation of the SNU-n scaling procedure, as implemented for [KKS97] is that it has

the unfortunate property that it does not accurately predict localized overflows—a straightforward

counter example is an expression such as “A + B” where A and B take on values very closely

distributed around 2n for some integer n. In this case it can be shown that the required value of

the problem dependent n parameter to successfully prevent overflow of A+B grows rapidly as the

variance of A and B shrink. As this happens other unrelated parts of the program begin to suffer

excessively conservative scaling that bears little relation to their own statistical properties viewed

in isolation. Although their subsequent publication [KS98b] presents a C++ Library (similar to

the FixPt Library described in Section 2.4.1) which reduces this cross-coupling by selecting n on

the basis of the signal’s higher-order statistics, even these methods cannot eliminate the overflow

problem outlined above without resorting to the detailed profiling techniques introduced in this

dissertation, or the conservative range-estimation techniques presented next.

2.4.4 Aachen University of Technology’s FRIDGE System

A partially automated, interactive floating-point to fixed-point hardware/software co-design sys-

tem has been developed at the Institute for Integrated Systems in Signal Processing at Aachen

University of Technology in Germany [WBGM97a, WBGM97b] at least partially motivated by

limitations of the SNU group’s wordlength optimization utility, and the lack of support for high-

level languages (the SNU group subsequently introduced the ANSI C floating-point to fixed-point

conversion utility described in [KKS97, KKS99]).

The Fixed-point pRogrammIng DesiGn Environment (FRIDGE) introduces two fixed-point

language extensions to the ANSI C programming language to support the conversion process.

Specifically FRIDGE operates by starting with a hybrid specification allowing fixed-point specifi-

cation of interfaces to other components. All other signals are left in a floating-point specification

and dependence analysis is used to “interpolate” the known constraints to all intermediate cal-

41



culation steps using worst-case inferences, such as

max
∀t

(

A(t) + B(t)
)

= max
∀t

A(t) + max
∀t

B(t)

the input scaling is propagated to all other unspecified signals. The interactive nature of this

conversion system is due to the fact that at the outset the user may underspecify the design so that

additional fixed-point constraints must be entered. Although not stated in their publications, one

cause of such under-specification surely results from internal signals that have recursive definitions

such as often encountered in signal processing applications, for example:

x = 0.0;

while( /* some condition is true */ ) {
u = /* read input */
x = f(x,u);

}
/* write output based on value of x */

The FRIDGE system allows for profile data to be used to update the IWL specification in such

cases. A further limitation of the worst-case estimation technique that is specific to additive

operations is illustrated by the following example: If both source operands take on values in

the range [-1,1) then it may actually be the case that the result lies within the range [-0.5,0.5),

whereas worst case estimation would determine that it lies within the range [-2,2), resulting in

two bits being discarded unnecessarily.

Relative to the methods proposed in this dissertation, FRIDGE suffers the following defi-

ciencies:

1. A dependence upon fixed-point language extensions.

2. Use of a worst-case scaling algorithm which produces scaling that is more conservative

than necessary for several benchmarks.

A general deficiency of the FRIDGE publications to date is their lack of quantitative results. As

part of this investigation the performance of the “worst-case evaluation” method central to the

FRIDGE “interpolation” algorithm (described in detail later) has been bounded by implementing

it within the software infrastructure developed for this dissertation. Specifically, the approach

used differs from the FRIDGE implementation in that the IWL of the leaf operands of each ex-

pression tree are determined using profile data, and worst-case estimation is used to “interpolate”
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the dynamic-ranges of all intermediate calculations. Furthermore, support for division is included

by retaining the minimum absolute value during interpolation (further details are discussed in

Section 4.2.1). This modified approach is designated WC throughout this investigation.

In a later publication [KHWC98] these researchers integrated a technique for estimating the

required wordlength needed for a given SQNR deterioration from their default maximal precision

interpolation, which grows the bitwidth after each operation to maintain, in some sense, “max-

imum precision”. This can be viewed as a stepping stone towards the ultimate goal of allowing

the designer to provide an acceptable output noise profile to the conversion system and having

it produce an optimal design meeting this requirement. The idea [KHWC98] is to estimate the

useful amount of precision at each operation by “interpolating” an estimate of the noise vari-

ance accumulated after each fixed-point operation. They proposed that if the precision of an

operation greatly exceeds the noise, some least significant bits may be discarded. This analysis

oriented technique is contrast to iterative search based technique proposed by Seoul National

University researchers in [SK95]. Such techniques can be used orthogonally to the architectural

enhancements and the scaling procedures developed during the current investigation.

2.4.5 The Synopsys CoCentric Fixed-Point Design Tool

Recently Synopsys Inc. introduced the CoCentric Fixed-Point Design Tool which appears to be

closely modeled upon the FRIDGE system [Syn00]7. One significant modification introduced is

the explicit recognition of the poor performance of the “worst-case evaluation” algorithm, however

no description could be found for the “better than worst-case... range propagation” method that

is said to replace it. Most likely it involves making more intelligent inferences where the same

variable is used more than once in an expression. For example consider:

y =
x

1 + x

If the range of x is [0,1) then the “worst-case estimation” of y’s range is [0,1) whereas the

actual range of y is [0,0.5). In summary this tool appears to have two main limitations: (i)

The output is SystemC [Syn], rather than ANSI C—this is only a limitation because to date

no DSP vendors have a SystemC compiler; (ii) The tool does not let the designer specifgy the

7This inference was not made explicit in Synopsys’ press release, but the description of these systems are almost
identical.
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desired SQNR performance at the output, push a button and get code that is guarenteed to meet

this specification with minimal cost. Although this dissertation does not improve on the latter

shortcoming it does remove the dependence upon special language extensions.
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Chapter 3

Benchmark Selection

When evaluating a new compiler optimization or architectural enhancement it is customary to

select a set of relevant benchmark applications to monitor the change in performance. Unfortu-

nately, the existing UTDSP benchmark suite was found to be inadequate for this investigation for

two reasons: One, the applications it contained were generally very complicated making it hard

to trace errors especially in light of the floating-point to fixed-point conversion process itself; and

two, very little importance was placed on the detailed input/output mapping being performed or

the input samples provided. The original benchmark suite is described in Section 3.1. The new

benchmark suite used for this investigation is described in Section 3.2. Two pervasive changes

in the new benchmark suite are: One, an increased emphasis on the specific input sequence(s)

used when profiling, or making SQNR measurements; and two, a detailed specification of the

signal processing properties of the benchmarks themselves. In prior UTDSP investigations these

factors were more or less irrelevant because the focus was on optimizations that exactly preserve

input/output behaviour. However the SQNR properties of the fixed-point translations of many

applications are highly dependent upon, on the one hand, factors that do not impact runtime

performance, and on the other, properties of the inputs used to make the measurements. This

is natural and to be expected when using fixed-point arithmetic. However, it makes the task of

selecting appropriate test cases harder because a deeper understanding of each benchmarks is

required.
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3.1 UTDSP Benchmark Suite

The previous suite of DSP benchmarks developed for the UofT DSP project can be divided

into 6 smaller kernel programs [Sin92], and 11 larger application programs [Sag93]. These are

summarized in Table 3.1, and 3.2, which are quoted from [Sag98, Tables 2.1 and 2.2, respectively].

Note that each kernel has two versions, one for a small input data set, and one for a larger data

set.

While some of the larger applications, such G721 A, G721 B, and edge detect, where not

directly applicable to this investigation merely because they are purely integer code, most of

the others relied heavily upon ANSI C math libraries. Although generic ANSI C libraries were

developed to support automated floating-point to fixed-point conversion of such applications, the

conversion results for these applications is lackluster and in at least a few cases this appears to

be related to errors in translating a few of the ANSI math libraries themselves. Worse than the

discouraging results, however, is the lack of insight poor performance yields for such complex

applications: Tracing the source of performance degradation to either poor numerical stability or

an outright translation error becomes a nightmare without the support of sophisticated debugging

tools. These could not be developed within the time constraints of this investigation1.

The kernel applications are far simpler, and generally performed quite well after floating-

point to fixed-point translation, with the exception of the “large version” of the LMS adaptive

filter, lmsfir 32 64. This particular benchmark does not appear to have been coded properly

in the first place as several signals in the original floating-point version become unbounded or

produce NaNs2. Although these kernel benchmarks provided, for the most part, encouraging

results, they also yield little additional insight because the input sets were very small (even

for the “large input” versions) and in some cases the specific filter coefficients picked by the

original authors where actually just random numbers. Similarly, the FFT kernels do not actually

calculate the Discrete Fourier Transform, but rather use “twiddle” coefficients set to unity rather

than calculating the appropriate roots of unity. Hence, most of these applications required at

least some modifications to provide reliable and meaningful SQNR data.

1A detailed description of the required functionality is provided in Section 6.2.8, along with some indication of
how to extend the current infrastructure in this way.

2NaN = Not a Number, for example division by zero produces an undefined result.
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Kernels Description

fft 1024 Radix-2, in-place, decimation-in-time Fast

fft 256 Fourier Transform

fir 256 64
Finite impulse response (FIR) filter

fir 32 1

iir 4 64
Infinite impulse response (IIR) filter

iir 1 1

latnrm 32 64
Normalized lattice filter

latnrm 8 1

lmsfir 32 64
Least-mean-square (LMS) adaptive FIR filter

lmsfir 8 1

mult 10 10
Matrix Multiplication

mult 4 4

Table 3.1: Original DSP kernel benchmarks

3.2 New Benchmark Suite

In addition to providing a realistic selection of instruction mix, control-flow and data-dependencies,

the benchmark suite used for this study had to exercise numerical properties found in typical ex-

amples of floating-point code that one might actually want translated into fixed-point. Using the

UTDSP Benchmark Suite as a rough guide, the benchmarks listed in Table 3.3 were, borrowed,

modified, or developed during this thesis. The following subsection details each group in turn.

3.2.1 2nd-Order Filter Sections

One of the most basic structures commonly used in digital filtering is the 2nd-order section:

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2

For any given 2nd-order transfer function, there are in fact an infinite number of realizations,

however only a few are commonly used in practice. These are the direct-form, transposed direct-

form, and coupled form. The direct-form comes in two variations, form I, and form II, both
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Application Description Comment

G721 A Two implementations of the ITU G.721 ADPCM speech pure integer code

G721 B transcoder

V32.modem V.32 modem encoder/decoder mostly integer

adpcm Adaptive differential pulse-code modulation speech encoder ANSI math, no

compress Image compression using discrete cosine transform (DCT) ANSI math, no

edge detect Edge detection using 2D convolution and Sobel operators pure integer code

histogram Image enhancement using histogram equalization okay

lpc Linear predictive coding speech encoder ANSI math, no

spectral Spectral analysis using periodogram averaging ANSI math, no

trellis Trellis decoder mostly integer

Table 3.2: Original DSP application benchmarks

illustrated in Figure 3.1. By reversing the sense of the signal-flow graph of the Direct Form

section, the transposed direct form II realization shown in Figure 3.2 is obtained. For direct form

sections coefficient quantization can cause severe systematic distortion for poles and zeros near

the real axis of the z-plane (see [OS99, pp. 383]). To reduce the distorting effects of coefficient

quantization the “coupled-form” also shown in Figure 3.2 is recommended [OS99]. This figure is

interpreted by representing the complex conjugate poles as z = re±jθ. Note that this later figure

implements the poles (not the zeros) and therefore uses twice as many multipliers to perform the

same calculation. Generally the rounding-noise performance of each structure differs and usually

it is difficult to anticipate which structure has the best performance for a given filter specification.

3.2.2 Complex LTI Filters

To develop filters of order N > 2 one common approach is to combine 2nd-order sections either in

parallel or cascade. The parallel form is found by performing partial fraction expansion on H(z),

whereas the cascade form is found by factoring the numerator and denominator and grouping

complex-conjugate poles and zeros. Another common form is the lattice filter representation

which can be implemented in two forms: a regular form and a normalized form [JM75].
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Group Benchmark Abbreviation Input

2nd-Order Sections Direct Form II - various

Transposed Direct Form II - various

Complex LTI Filters Cascade Form IIR4-C uniform white-noise

Parallel Form IIR4-P uniform white-noise

Lattice Filter LAT uniform white-noise

Normalized Lattice Filter NLAT uniform white-noise

FFT 128-Point In-Place Decimation in Time:

From Numerical Recipies in C FFT-NR uniform white-noise

From Mathworks RealTime Workshop FFT-MW uniform white-noise

Matrix 10x10 Matrix Multiply MMUL10 uniform white-noise

Levinson-Durbin Recursion LEVDUR speech

(Mathworks RealTime Workshop)

Non-Linear ANSI Math Functions: Sin(x) SIN ramp: [−2π, 2π]

Rotational Inverted Pendulum INVPEND reference step

Table 3.3: Floating-Point to Fixed-Point Benchmark Suite

In [KKS99] the SNU authors present a fourth-order infinite impulse response (IIR) filter

using two cascaded direct-form II sections. As the filter coefficients presented in [KKS99] are not

described in terms of the synthesis procedure used, a closely matching set of filter coefficents where

designed using MATLAB’s cheby2ord and cheby2 commands for passband ripple of 5dB and

stopband ripple suppression of 40 dB with normalized passband and stopband edge frequencies of

0.1 and 0.2 respectively—see Figure 3.3(a). The resulting transfer function was processed using

tf2sos to obtain a high quality pairing of poles and zeros for two cascaded second-order direct-

form IIR sections (In particular, the stages were normalized using tf2sos’s ‘2-norm’ scaling rule

and descending frequency poles, which is supposed to minimize the peak roundoff noise). The

same transfer function is also used to implement the parallel form (IIR4-P), but in this case a

partial fraction expansion was obtained using MATLAB’s residuez command.

The lattice and normalized lattice filter benchmarks (see Figures 3.4 and 3.5) use coeffi-

cients that implement a 16th-order elliptic bandpass filter with passband between 0.2 and 0.3,
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Figure 3.1: Direct Form Implementations

stopband suppression of 60 dB and passband ripple less than 1 dB (see Figure 3.3(b)). What

distinguishes the “normalized” version from the regular version is that it has normalized dynamic-

range throughout the structure making manual fixed-point scaling easy. As with the coupled-

form second-order section, these benefits require a doubling in the number of multipliers. In

Section 4.4.1 it will be shown that using “index-dependent” scaling the unnormalized version can

attain almost the same SQNR performance as this normalized version.
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3.2.3 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an efficient method of calculating the Discrete Fourier

Transform (DFT) F (k) of a signal f(n), defined as,

F (k) =

N∑

j=0

f(j)e
2πijk

N (3.1)

where i =
√
−1. The DFT has many important uses in signal processing such as power spectrum

estimation, and efficient implementation of the discrete time convolution. The FFT relies upon

the following properties of WN = e2πi/N [OS99, pp. 631]:

1. W
k[N−n]
N = W−kn

N = (W kn
N )∗ (complex conjugate symmetry)

2. W kn
N = W

k(n+N)
N = W

(k+N)n
N (periodicity in n and k)

By using this property it is possible to follow a “divide and conquer” approach by repeatedly

separating the even and odd parts of the sequence to yield the Danielson-Lanczos approach

discovered in 1942 [PFTV95, pp. 504]:

F (k) =

N/2−1
∑

j=0

f(2j)e
2πi(2j)k

N +

N/2−1
∑

j=0

f(2j + 1)e
2πi(2j+1)k

N

F (k) = F e
k + W kF o

k

That is, the O(N 2) summation in Equation 3.1 can be turned into two O( N2

4 ) summations.

Applying this recursively to a input sequence with length equal to a power of two yields log N

recursions.

As with the un-normalized version of the lattice filter topology, the FFT requires a form

of “index dependent” scaling with respect to these recursions for optimal SQNR performance.

Unfortunately, when the FFT is coded the form of the resulting loops requires a more sophisti-

cated dependence analysis before the floating-point to fixed-point translator can apply the “index

dependent” scaling technique to this benchmark. The degradation experienced when not using

this form of “unconditional block-floating-point scaling” [Ana90, pp. 150] (which is typical for

hand-coded fixed-point implementations) increases the larger the number of points in the input

to the FFT.
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3.2.4 Matrix

The matrix product is often used in image compression algorithms whereas the Levinson-Durbin

algorithm is used in linear predictive coding of speech, which in turn is used as a subroutine for

adaptive differential pulse code modulation.

3.2.5 Nonlinear

ANSI C Math Libraries

As noted earlier, the floating-point to fixed-point conversion utility supports most of the ANSI C

math libraries. This support is achieved by substituting calls to generic floating-point imple-

mentations. Typically these work by normalizing the input argument into a small interval using

various mathematical identities. To evaluate the function on this more limited interval a poly-

nomial approximation is used. For this investigation the FFT and rotational inverted pendulum

benchmarks required the evaluation of sin(x), therefore this function in particular was isolated

as one of the benchmarks.

Rotational Inverted Pendulum

The rotational inverted pendulum3 is a testbed for nonlinear control design. It is open-loop un-

stable and highly nonlinear (see illustration in Figure 3.7). For this dissertation source code

was obtained for a nonlinear feedback controller for the rotational inverted pendulum that had

previously been generated automatically from a high-level description by Professor Scott Bortoff4

using Mathematica. This controller was developed to support his noted research on the applica-

tion of spline functions to provide approximate state feedback linearization[Bor97]. The source

code repeatedly invokes a feedback control that performs 23 transcendental function evaluations,

1835 multiplications, 21 divisions, and roughly 1000 addition and subtractions—200 times per

second. Many expression trees in this code contain well over 100 arithmetic operations. A typical

expression-tree in this application, coded in floating-point ANSI C is presented in Figure 3.6. In

the lab the control code is currently run on a Texas Instruments TMS320C3x 32-bit floating-point

digital signal processor. Using the FMLS operation and the floating-point to fixed-point conver-

3see http://www.control.utoronto.ca/˜bortoff/pendulum.html

4From the UofT Systems Control Group.
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dT3_2_num2 = 23.52134080672779 -

3.589119491935888*x3_pow_2 -

1.313711250221152*x3*x4 +

0.7493450852549165*x4_pow_2 +

407.3562031532389*cos_x2 -

0.156180558010814*x3_pow_2*cos_x2 -

0.1971572009235276*x3*x4*cos_x2 +

2.469632336828052*x4_pow_2*cos_x2 -

113.8927328193415*cos_2_x2 +

17.59783635420282*x3_pow_2*cos_2_x2 +

6.361123953461211*x3*x4*cos_2_x2 -

3.628405382401232*x4_pow_2*cos_2_x2 -

8.01669870392631*cos_3_x2 -

2.786855645010946*x3_pow_2*cos_3_x2 -

4.942402751800363*x3*x4*cos_3_x2 +

0.3694729082286728*x4_pow_2*cos_3_x2 -

1.413593345312733*x3_pow_2*cos_4_x2 +

2.314037567169191*cos_5_x2 +

0.0927325588391402*x3_pow_2*cos_5_x2 +

0.1648590771415527*x3*x4*cos_5_x2 +

0.07298448727620823*x3_pow_2*cos_6_x2 +

13.77669957921471*x3*sin_x2 -

10.37331055934839*x4*sin_x2 -

0.002390534441696694*x3_pow_2*x4*sin_x2 -

0.004233238073837774*x3*x4_pow_2*sin_x2 -

0.05237426516844785*x4_pow_3*sin_x2 -

4.327519412493209*x3*sin_2_x2 +

4.071310772836944*x4*sin_2_x2 -

0.3951108949310163*x3_pow_2*x4*sin_2_x2 -

0.1416205703924616*x3*x4_pow_2*sin_2_x2 +

0.07997396916279952*x4_pow_3*sin_2_x2 +

1.086130390579641*x3*sin_3_x2 +

1.448862324921179*x4*sin_3_x2 +

0.091002988690406*x3_pow_2*x4*sin_3_x2 +

0.1611511258059226*x3*x4_pow_2*sin_3_x2 -

0.004129093529015642*x4_pow_3*sin_3_x2 +

0.06269660668416089*x3_pow_2*x4*sin_4_x2 -

0.07697526856764572*x4*sin_5_x2 -

0.003096820146761731*x3_pow_2*x4*sin_5_x2 -

0.005483952343223741*x3*x4_pow_2*sin_5_x2 -

0.003237055202597347*x3_pow_2*x4*sin_6_x2;

Figure 3.6: Sample Expression-Tree from the Rotational Inverted Pendulum Controller

sion utility developed during this investigation it appears a 12-bit fixed-point microcontroller may

be able to achieve essentially the same performance (see Figure 3.8).
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Figure 3.7: The University of Toronto System Control Group’s Rotational Inverted Pendulum,

(source http://www.control.utoronto.ca/˜bortoff)
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Chapter 4

Fixed-Point Conversion and ISA Enhancement

This chapter describes the floating-point to fixed-point conversion process and the FMLS opera-

tion—the main contributions of this dissertation. The corresponding software implementation is

documented in Appendix C. The conversion process can be divided into two phases: dynamic-

range estimation and fixed-point scaling. Dynamic-range estimation is performed using a profil-

ing technique described in Section 4.1. A straight-forward fixed-point scaling algorithm that was

found to produce effective fixed-point translations is described in Section 4.2.1. In Section 4.2.2

this technique is extended to exploit inter-operand correlations within floating-point expression-

trees. The resulting code generation algorithm suggests a novel DSP ISA enhancement which is

the subject of Section 4.3. A very important issue is the impact a variable’s definition contexts

can have on its dynamic-range. This issue is explored in Section 4.4.1 where it is shown that

dramatic improvements in fixed-point SQNR performance can be achieved on some benchmarks

when this information is exploited. The issue of accurately predicting dynamic-range taking into

account the effects of fixed-point roundoff-errors is taken up in Section 4.4.2. Finally, a summary

of suggested fixed-point ISA features is given in Section 4.5.

4.1 Dynamic-Range Estimation

Given the difficulty of implementing the Lp-norm range-estimation technique for signal-processing

applications coded in ANSI C, combined with its inherent limitations, a reasonable alternative

is to use profile-based dynamic-range estimation. This may be somewhat disappointing because

profiling has some well known limitations: The strength of any profile based optimization pro-

cedure is strongly dependent upon the ability of the designer to predict the workloads encoun-
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tered in practice. Specifically, when contemplating floating-point to fixed-point translation, the

dynamic-range of floating-point signals1 within a program must be estimated conservatively to

avoid arithmetic overflow or saturation during fixed-point execution as these conditions lead to

dramatically reduced fidelity. If no profile data is available for a particular basic block2 the mean-

ingfulness of any fixed-point translation of signals limited in scope to that block is questionable.

For the simple benchmarks explored during this dissertation this is never an issue, however for

more complex control-flow, one option is to fall-back on floating-point emulation wherever this

occurs. An argument supporting this default action, which may increase the runtime of the af-

fected code, is the proposition that if the code was not executed during profiling it may not be

an execution bottleneck for the application during runtime. However, extra care must be taken

to ensure real-time signal processing deadlines would be met in the event that these sections of

code actually execute. Alternatively, if dynamic-range information is available for the signals

“entering” and “leaving” such basic blocks, the FRIDGE interpolation technique (Section 2.4.4)

can be applied (the current implementation does neither but rather indicates which instructions

have not been profiled).

The basic structure of a single-pass profile-based conversion methodology is outlined in

Figure 4.1. The portion of this figure surrounded by the dotted line expands upon the darkly

shaded portion of Figure 2.4 on page 23. This basic structure can be modified by allowing the

results of bit-accurate simulations to be fed back into the optimization process. This feedback

process may be necessary due to the effects of accumulated roundoff errors: When a signal is

initially profiled the dynamic-range may be close to crossing an integer word length boundary.

After conversion to fixed-point, accumulated roundoff errors may cause the dynamic-range to

be larger than the initial profile data indicated, potentially causing an overflow condition and a

dramatic decrease in the output quality of the application. The two-phase profiling methodology

is taken up in more detail in Section 4.4.

Turning back to the relatively simple single-pass profile approach: Before evaluating the

IWL (Equation 2.1 on page 25), for each floating-point signal, these signals must be assigned

unique identifiers. Note that special attention must be given were pointers are used to access

1The term “signal” will be used to represent either an explicit program variable, an implicit temporary value,
or a function-argument / return-value.

2“Formally, a basic block is a maximal sequence of instructions that can be entered only at the first of them and
exited only from the last of them [ ignoring interrupts ].” This definition must be modified slightly where delayed
branches are concerned [Muc97].
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data. For this purpose a context sensitive interprocedural alias-analysis is performed in order to

group the memory locations, and access operations that must share the same IWL. For the scaling

algorithms introduced in this dissertation it suffices to profile the maximum absolute value every

time the signal is defined. In practice this is done by adding a short function call or inline code

segment to record the maximum of the current value and previous maximum. This step is usually

called “program instrumentation”. To simplify the profiling of initial values assigned at program

start-up, all uses of a signal are also profiled. As profile overhead was not the primary concern

during this investigation an explicit function call to a profile subroutine was used to simplify the

instrumentation process. Collecting higher-order statistics is a straightforward extension and is

employed when investigating sources of error and in the SNU-n scaling algorithm.

Floating-Point Source Code

?
Parse Input
Program

?
Identifier Assignment

?

q

Instrument Code

?
Profile

)
Determine Required
Scaling Operations

?
Generate Code

?
Fixed-Point Executable

Figure 4.1: Single-Pass Profile Driven Fixed-Point Scaling
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4.2 Allocating Fixed-Point Scaling Operations

Having gathered estimates of the dynamic-range for each floating-point signal, the next step is

generating fixed-point scaling operations. Note that there is a great deal of flexibility in this

process: There may be many consistent scaling assignments3 that can satisfy the requirement

that no signal overflows its storage. What distinguishes these is the amount of overhead due to

the scaling operations, and the distortion of the original program due to finite wordlength effects.

The primary goal of this investigation was to find a scaling assignment technique that maintains

the highest accuracy throughout the computation. Ideally the translation process would be able

to rearrange the computation so that the observable effects of rounding-errors were minimized.

Apart from the sophisticated methods described in Chapter 2, far simpler transformations such

as rearranging the order of summation when three or more terms are involved can significantly

impact the accuracy of fixed-point computation. Due to time-constraints, methods based upon

such straightforward approaches were not considered (although with a little more work the cur-

rent infrastructure is well suited to investigating them). Naturally the question arises whether

much runtime performance is being lost by optimizing for SQNR rather than execution time. In

this regard a study by Ki-Il Kum, Jiyang Kang and Wonyong Sung at Seoul National University,

showed that when barrel-shifters4 are used, a speedup limited to 4% is found using a globally opti-

mized scaling assignment generated using simulated annealing [KKS99]. As most DSPs including

the UTDSP have a barrel-shifter it appears the potential gain is not particularly significant. The

following subsections introduce the IRP and IRP-SA scaling algorithms developed during this

investigation.

4.2.1 IRP: Local Error Minimization

The Intermediate-Result Profile (IRP) scaling algorithm takes the dynamic-range measurements

and floating-point code as inputs, and modifies the code by adding scaling shifts and changing the

base types of all floating-point expressions into fixed-point. Type conversion is not as trivial as

it may sound when dealing with structured data as the byte offsets used to access this data may

need to change. As ANSI C allows many ways for such offsets to be produced, errors will occur

3A scaling assignment is the set of shift operations relating the fixed-point program to its floating-point coun-
terpart. A scaling assignment is consistent if the IWL posited for the source and destination operands of each
arithmetic operator is consistent with that operator.

4A barrel-shifter is an arithmetic unit which shifts its input a specified number of bits in a single operation.
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if strict coding standards are not adhered to (The standard currently supported is documented

in Appendix C).

Definition 1 The measured IWL is the IWL obtained by profiling or signal-space analysis.

In this investigation profiling is used. However, given a signal-flow-graph representation and

a signal-space characterization of the input, Jackson’s Lp-norm analysis (cf. Section 2.3.1) or

even more sophisticated weighted-norm analysis techniques [RW95] could be employed to define

the measured IWL. The main point is that, to first order, the generation of fixed-point scaling

operations does not depend upon the actual measurement technique itself.

Definition 2 The current IWL of X indicates the IWL of X given all the shift operations applied

within the sub-expression rooted at X, and the IWL of the leaf operands.

IRP starts by labeling each node within an expression tree with its measured IWL and then

processes the nodes in a bottom up fashion. As each node is processed, scaling operations5 are

applied to its source operands according to the current and measured IWL of each source operand,

the operation the node represents, and the measured IWL of the result of the operation. Once a

node has been processed its current IWL is known, and the procedure continues. A snapshot of

the conversion process is shown in Figure 4.2.

For each signal IRP maintains the property IWLX current ≥ IWLX measured . As the current

IWL of all variables and constants is defined as their measured IWL, this holds trivially for leaf

operands of the expression-tree, and is preserved inductively by the IRP scaling rules. Note

that this condition ensures overflow is avoided provided the sample inputs to the profiling stage

gave a good statistical characterization and accumulated rounding-errors are negligible. It is by

exploiting the additional information in IWLX measured that rounding-error may be reduced by

retaining extra precision wherever possible. Each floating-point variable has current IWL equal

to its measured IWL. Each floating-point constant c is converted to ROUND
(

c 2WL−IWL(c)−1
)

where ROUND(·) rounds to the nearest integer, and the current IWL is IWL(c). For assignment

operations the current IWL of the right hand side is equalized the measured IWL of the storage

5As in ANSI C, “<<” is used to represent a left shift, and “>>” is used to represent a right shift.
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Figure 4.2: The IRP Conversion Algorithm

location. For comparison operators the side with the smaller IWL is right shifted to eliminate

any IWL discrepancy.

The following three subsections describe the scaling rules applied to each internal node, de-

pending upon the type of operation being considered. The first subsection presents the conversion

of floating-point addition by way of example. This applies without modification to subtraction.

The second and third subsections summarize the rules and salient details for multiplication and

division.

Additive Operations

Consider converting the floating-point expression “A + B” into its fixed-point equivalent (re-

ferring again to the generic case presented in Figure 4.2). Here A and B could be variables,

constants or subexpressions that have already been processed. To begin make

Assumption 1 IWLA+B measured ≤ max
{

IWLA current, IWLB current

}

that is, the value of A + B always fits into the larger of the current IWL of A or B, and

Assumption 2 IWLA measured > IWLB current
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that is, A is known to take on larger values than B’s current scaling. Then the most aggressive

scaling, i.e. the scaling retaining the most precision for future operations without causing overflow,

is given by:

A + B
float-to-fixed−→ (A << nA) + (B >> [n − nB])

where:

nA = IWLA current − IWLA measured

nB = IWLB current − IWLB measured

n = IWLA measured − IWLB measured

Note that nA and nB are the shift amounts that maximize the precision in the representation of

A and B without causing overflow, and n is the shift required to align the binary points of A and

B. Now, by defining “x << −n” = “x >> n”, and invoking similarity to remove Assumption 2,

one obtains:

A + B
float-to-fixed−→ (A >> [IWLmax − IWLA current]) + (B >> [IWLmax − IWLB current])

where: IWLmax = max
{

IWLA measured, IWLB measured

}

and IWLA+B current = IWLmax.

If Assumption 1 is not true, then it must be the case that IWLA+B measured = IWL max + 1

because the result IWL grows, and the most it can grow is one more than the measured IWL of

the larger operand. Hence, to avoid overflow each operand must be shifted one more bit to the

right:

A + B
float-to-fixed−→ (A >> [1 + IWLmax − IWLA current] ) +

(B >> [1 + IWL max − IWLB current]) (4.1)

with IWLA+B current = IWLmax+1. The IRP algorithm is local in the sense that the determination

of shift values impacts the scaling of the source operands of the current instruction only. Note

that the property IWLA+B current ≥ IWLA+B measured is preserved, however we do not yet
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exploit the fact that a left shifting of either operand may indicate that precision was discarded

unnecessarily somewhere within that sub-expression. The shift absorption algorithm presented

in Section 4.2.2 explores this possibility and uses a modified version of Equation 4.1 in which

“IWLmax +1” (or “IWLmax” if Assumption 1 holds) is replaced by IWLA+B measured. This slight

modification introduces an important subtlety: When using 2’s-complement arithmetic discarding

leading most significant bits (not necessarily redundant sign bits!) before addition is valid if the

correct result (including sign bit) fits into the resulting wordlength of the input operands.

Multiplication Operations

For multiplication operations the scaling applied to the source operands is:

A · B float-to-fixed−→ (A << nA) · (B << nB)

where nA and nB are defined as before, and the resulting current IWL is given by

IWLA·B current = IWLA measured + IWLB measured

The prescaling significantly reduces roundoff-error when using ordinary fractional multiplication.

Division Operations

For division, we assume that the hardware supports 2·WL bit by WL bit integer division (this is

not unreasonable–the Analog Devices ADSP-2100, Motorola DSP56000, Texas Instruments C5x

and C6x all have primitives for just such an operation, however the current UTDSP implemen-

tation does not) in which case the scaling applied to the operands is:

A

B

float-to-fixed−→ A >> [ndividend − nA]

B << nB
(4.2)

where nA and nB are again defined as before and ndividend is given by:

ndiff = IWLA
B

measured − IWLA measured + IWLB measured

ndividend = ndiff , if ndiff ≥ 0
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ndividend = 0 , otherwise

Note that ndividend must be greater than zero to avoid overflowing the dividend. The resulting

current IWL given by:

IWLA
B

current = ndividend + IWLA measured − IWLB measured

This scaling is combined with the assumption that the dividend is placed in the upper word by

a left shift of WL − 1 by the division operation (the dividend must have two sign bits for the

result to be valid). Note that unlike previous operations, for division knowledge of the operation’s

result IWL is required generate the scaling operations for the source operands because the IWL

of the quotient cannot be inferred from the IWL of the dividend and divisor6. This condition

cannot be satisfied by the SNU-n methodology used in [KKS97] however the WC algorithm can

be extended to handle division provided the quotient is bounded using the maximum absolute

value of the dividend and the minimum absolute value of the divisor.

4.2.2 IRP-SA: Applying ‘Shift Absorption’

As noted earlier, 2’s-complement integer addition has the favourable property that if the sum

of N numbers fits into the available wordlength then the correct result is obtained regardless of

whether any of the partial sums overflows. This property can be exploited, and at the same

time some redundant shift operations may be eliminated if a left shift after an additive operation

is transformed into two equal left shift operations on the source operands. If a source operand

already has a shift applied to it the new shift applied to it is the original shift plus the “absorbed”

left shift. If the result is a left shift and this operand is additive, the absorption continues

recursively down the expression tree—see Figure 4.3. This shift allocation subroutine is combined

with IRP to provide the IRP-SA algorithm. The basic shift absorption routine is easily extended

6 Deriving this result is somewhat tricky. As the dividend must have two sign bits:

IWLA current + 2 = (IWL A

B
current + 1) + (IWLB current + 1)

To obtain a valid quotient we must have IWL A

B
measured ≤ IWL A

B
current. Now, assuming that A and B are

normalized (ie. IWLX measured = IWLX current) and letting A′ represent A >>ndividend:

IWLA′ current = IWLA measured + ndividend = IWL A

B
current + IWLB current

∴ ndividend ≥ IWL A

B
measured − IWLA measured + IWLB measured

Choosing equality, as long as that yields a non-negative value for ndividend, is the desired result.
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*- - - - - - - - - - - - - - - - - - - - -*

| OP: Operand to apply scaling to. |

| SHIFT: Shift we desire to apply at OP |

| (negative means left shift). |

| RESULT: Shift actually applied at OP |

*- - - - - - - - - - - - - - - - - - - - -*

operand ShiftAbsorption( operand OP, integer SHIFT )

{
if( OP is a constant or symbol )

return (OP >> SHIFT); // **

else if( OP is an additive instruction ) {
if( SHIFT < 0 ) {

integer Na = current shift of A

integer Nb = current shift of B

operand A, B = source operands of

OP w/o scaling

A = ShiftAbsorption( A, Na + SHIFT )

B = ShiftAbsorption( B, Nb + SHIFT )

return OP; // no shift applied to OP

}
}
else return (OP >> SHIFT)

}

Figure 4.3: Shift Absorption Procedure

to eliminate redundant shift operations not affecting numerical accuracy, eg.

“((A << 1) + (B << 1)) >> 1” ≡ “A + B”

which is true provided the left shifts did not change the sign of either summand, and the sum

does not overflow. Both are ensured by virtue of the fact that the only way A and B get left

shifted is through prior applications of the shift-absorption procedure. A sample conversion is

illustrated in Figures 4.4, 4.5, and 4.6. Focusing on the second line in Figure 4.5, which illustrates

the conversion obtained using IRP, we see that the result of the entire expression is left shifted

by two bits before assigning it to yout. Contrast this with the corresponding line in Figure 4.6

where the shift has been distributed over the addition operations by applying the shift absorption

algorithm.
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t2 = xin + 1.742319554830*d20 - 0.820939679242*d21;

yout = t2 - 1.633101801841*d20 + d21;

d21 = d20;

d20 = t2;

Figure 4.4: Original Floating-Point Code

t2 = ((xin >> 5) + 28546 * d20 - ((26901 * d21) >> 1)) << 1;

yout = ((((t2 >> 1) - 26757 * d20) << 1) + d21) << 2;

d21 = d20;

d20 = t2;

Figure 4.5: IRP Version

4.3 Fractional Multiplication with internal Left Shift (FMLS)

The FMLS operation was briefly described in Section 1.3.2 and is illustrated in Figure 4.7. Focus-

ing on Figures 4.7(c) and (d) illustrates the difference between a regular fractional multiply and

the FMLS operation with left shift by two bits. In this case the FMLS operation picks up two bits

of added precision by discarding two most significant bits. Figure 4.8 illustrates the associated

code generation pattern assuming the compiler intermediate representation supports expression-

trees (the current implementation uses a more limited “peephole” pattern recognizer because the

code-generator operates on a list of pseudo-instructions). As noted earlier, the IRP-SA algorithm

often uncovers fractional multiply operations followed by a left scaling shift. Regular fractional

multiplication discards the lower part of the 2×WL product and the left shift then vacates some

least significant bits and sets them to zero. By moving the left shift operation “internal” to the

fractional multiply additional accuracy is retained by trading-off most significant bits that will

end up being discarded for additional least significant bits. These MSBs may or may not be

redundant sign bits. The simulation data presented in Chapter 5 indicates that a limited set of

shift distances—between 2 and 8 distinct values—suffices to capture most of the benefits to both

SQNR and execution time. This is encouraging because it limits the impact on both operation

t2 = (xin >> 4) + ((28546 * d20) << 1) - 26901 * d21;

yout= (t2 << 2) - ((26757 * d20) << 3) + (d21 << 2);

d21 = d20;

d20 = t2;

Figure 4.6: IRP-SA Version
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encoding, FMLS hardware implementation, and processor cycle-time. Clearly this encoding ex-

hibits good orthogonality between instruction selection and register allocation, and is therefore

easier to support than accumulator based operations within the framework of most compilers.

Moreover, the FMLS encoding may reduce runtime because at least two (non-parallelizable) oper-

ations in the previous encoding are being performed in roughly the same time it took to perform

just one.

fractional part

	
︷ ︸︸ ︷

XXXXXXx

integer part

U
︷ ︸︸ ︷

XXXX

I
implied binary point

(a) Source Operands

Full 8 by 8 bit Product

︷ ︸︸ ︷

ABADFASFASFAASDUFASABABAA

ABADUFASABAA
︸ ︷︷ ︸

Result

asdblah blah blhsh

(b) Integer Product (8.0 format)

asdblah blah blhsh

(c) Fractional Product (1.7 format)

asdblah blah blhsh

� cf. fractional multiplication followed
by a left shift logical of 2 bits

(d) Fractional Multiply with

internal Left Shift

Figure 4.7: Different Formats for 8 x 8 bit Multiplication

Before implementing the FMLS certain costs should be weighed more closely. Specifically,

there are three negative consequences: One, the area penalty of the shifting structure; two, the

added pressure on the instruction encoding space; and three, the cycle-time impact due to a

potentially longer critical path. The fewer FMLS shift distances that must be supported, the

smaller the area of the shift network. The size of this network is O(WL×|S|) where |S| is the

number of FMLS shift distances. Also, fewer shift distances imply less pressure on instruction

encoding: FMLS requires dlog2 |S|e bits to encode the shift distance. For |S| = 2, 4 or 8 the

FMLS operation needs 1, 2 or 3 bits to encode the shift distance. The cycle-time impacts the
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� I

shift amount?

� I

a b

Figure 4.8: FMLS Code-Generation Pattern

overall execution time through the expression:

Execution Time = CPI × (Number of Executed Instructions) × (Cycle Time)

Where the CPI is the average cycles per instruction taking into account the impact of branches.

In this case each instruction consists of several VLIW operations which execute in parallel7. The

FMLS operation may impact CPI by affecting the average number of instructions executed be-

tween branches, however this is a secondary effect. The main impact of the FMLS operation is on

the number of instruction packets executed: Whether the FMLS operation encoding reduces the

total number of executed instructions depends upon whether the compiler’s scalar optimizations

and VLIW instruction scheduling can actually exploit the reduced path length through the portion

of the computation performed by FMLS operations: For example, by adding induction-variable

strength reduction, a common scalar optimization that was not properly supported by the basic

UTDSP compiler infrastructure, the speedup due to the FMLS operation changes from a mere

2% to 12% for the lattice filter benchmark. Turning again to the impact on cycle-time: The cur-

rent implementation of the UTDSP architecture provides a multiply-accumulate operation that

increases the processor’s cycle-time between 19 and 74 percent for the best and worst-case circuit

delays see Table 4.1 [Pen99]. The delay through the accumulate stage of this operation would

likely mask the delay through the shift portion of a combined fractional multiply and shift opera-

7An alternative formulation of execution time is in terms of average parallelism, total number of operations
executed, and cycle-time.
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Critical Path Group Maximum delay in the group Major component and its delay

Best Case Worst Case Component Best Case Worst Case

ALU and bypassing paths 15.8 ns 34.7 ns MAC Unit 11 ns 25 ns

Data Memory and bypassing 13.3 ns 20 ns On-chip Data Memory 9 ns 11 ns

Decoder Memory paths 9.3 ns 11.7 ns On-chip Decoder Memory 9 ns 11 ns

Table 4.1: The delay of the first three critical path groups for UTDSP. (From Table 5.3 in [Pen99])

tion. If the execute stage of the multiply-accumulate were sub-divided into two execute stages or

the multiply accumulate were eliminated entirely this situation might change. Are either of these

possibilities likely in future generations of UTDSP? Yes: The Texas Instruments TMS320C62x

fixed-point digital signal processor, which is also a VLIW, has no multiply-accumulate opera-

tion and instead uses software-pipelining for multiply-accumulate operations. Furthermore, it is

deeply pipelined and uses up to 5-execute stages—in particular the multiplier uses two execute

stages. In such situations, access to on-chip memory (a single-cycle operation on most commercial

DSPs) is likely to be the new critical-path (see Table 4.1). In any event, it is clear that determin-

ing the exact impact of FMLS on the overall processor cycle-time requires detailed circuit-level

simulation.

Now, if the set of FMLS shifts is limited to, for example, 4 shift distances, an obvious

question is how should fractional-multiplies followed by unsupported shift distances be supported?

To enhance SQNR it is clear the the largest FMLS left-shift should be used whenever possible,

however it should also be clear that right-shifting by one bit the result of a FMLS operation that

left-shifts by N-bits does not yield the equivalent of an FMLS with left-shift by N-1. Therefore,

the best strategy is to select the largest left shift, not greater than the desired left shift, and if

necessary followup with left shift immediate operation to make up the difference.

4.4 Fixed-Point Translation Enhancements

This section explores two enhancements to the fixed-point translation process. Conceptually these

are orthogonal to the IRP, and IRP-SA algorithms (implementation is another matter altogether).

The first, index-dependent scaling (IDS) creates a form of “unconditional block floating-point

scaling” in which each iteration of a simple loop may have a distinct scaling assignment, but this
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scaling is determined a priori by a more involved profiling algorithm. Following this, 2nd-order

profiling, which can eliminate overflows due to accumulated rounding-errors, is described.

4.4.1 Index-Dependent Scaling

This section explores the index-dependent scaling (IDS) algorithm developed as part of this disser-

tation. This technique accomplishes a goal similar to the “instantiation time” scaling technique

introduced by the FRIDGE researchers [WBGM97a, WBGM97b]. The basic idea of “instantia-

tion time” scaling is to delay IWL binding as late as possible while maintaining static scaling: If a

variable is defined more than once it may be possible to assign a distinct IWL to each definition.

This depends upon the associated control-flow of the program. However, the FRIDGE publica-

tions [WBGM97a, WBGM97b] are lacking in detail and furthermore do not present empirical

evidence of the technique’s effectiveness. This, along with the rather poor performance of the

lattice filter benchmark using the techniques presented so far in this Chapter motivated the study

of the IDS technique.

IDS encompasses two distinct techniques for allowing the scaling of operations within a

loop of known duration to more closely relate to the dynamic range encounted during application

execution. Both of these techniques rely upon the refinement of dynamic-range profile information

possible when some additional context is used to discriminate signals grouped together out of

programming convenience. In this case the additional context is usually the loop index. Briefly

stated, the techniques are:

1. Array element dependent scaling.

2. Loop index dependent, scalar variable instantiation scaling.

Application of these techniques is not independent. The fundamental observation motivating

array element dependent scaling is that signals grouped together as an array do not necessarily

have similar distributions. A subtle condition that must hold before this technique may be applied

is that each load or store operation to the array in question, within any loop, must be either to

the same element, or else it must be possible to determine the element accessed uniquely in a

way that depends only on the value of the loop index. If this condition fails, each array element

must be given the same scaling throughout the entire application.

The second technique, loop index dependent scalar variable instantiation scaling, is moti-

vated by the observation that the dynamic range of a scalar variable may change dramatically
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while the loop executes. In this case particular attention must be paid to the lifetime of each

scalar variable instantiation. Some instantiations of a variable might only be defined and used

within the same iteration of the loop body, whereas others might be defined in one iteration

and then used subsequently in the next iteration. Although both may be profiled by merely

cataloging the samples by the loop index value at the definition, care must be taken in the latter

case when dealing with the scaling applied to specific usages of this definition within the loop.

In the lattice filter benchmark, shown in Figure 4.9, the latter case applies to both the ‘x’ and

‘y’ scalar variables. Specifically, usage u1 has a reaching definition from outside of the loop body

(d1), and one from inside the loop body (d2). Usage u1 must therefore be scaled using the

current IWL associated with either d1 or d2, depending upon the loop index—clearly upon first

entering the loop, d1 is the appropriate definition to use and this definition has only one current

IWL associated with it. Thereafter the current IWL of d2 should be used, and furthermore, the

current IWL of d2 changes with each iteration—the appropriate IWL for u1 being the IWL of

d2 from the previous iteration. Finally, usage u3 must use the current IWL of d2 from the last

iteration of the loop body. This additional complexity is contrasted by the relative simplicity

involved in scaling u2, which always uses the current IWL of d2 from the same loop iteration.
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#define N 16

double state[N+1], K[N], V[N+1];

double lattice( double x )

{
double y = 0.0;

for( i=0; i < N; i++ ) {
x = x - K[N-i-1]*state[N-i-1];

state[N-i] = state[N-i-1] + K[N-i-1] * x ;

y = y + V[N-i]*state[N-i];

}
state[0] = x ;

return y + V[0]*state[0];

}

Figure 4.9: Subtleties of applying index-dependent scaling

Using IDS each expression-tree within a loop must be assigned a scaling that changes during
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Algorithm Lattice Filter Normalized Lattice Filter

32 Bit w/o IDS 16 Bit w/ IDS 16 Bit w/o IDS 16 Bit w/ IDS

SNU-4 22.8 dB 47.1 dB 44.4 dB 41.7 dB

WC 28.1 dB 48.3 dB 48.2 dB 55.6 dB

IRP 36.1 dB 51.3 dB 53.5 dB 57.2 dB

IRP-SA 36.1 dB 51.3 dB 53.5 dB 57.5 dB

Table 4.2: SQNR – 16th Order Lattice and Normalized Lattice Filters

each iteration. There are essentially two ways to do this: One is to completely unroll the loop,

the other is to apply each scaling operation conditionally. The latter obviously slows execution

considerably even when special purpose bidirectional shift operations which shift left, or right,

depending upon the the sign of the loop-index dependent shift distance that is loaded into general

purpose register from a lookup table. For the lattice filter benchmark a slowdown of roughly 20%

was measured in this case. Completely unrolling the loop to avoid the need for loading a set of shift

distances each iteration is naturally faster (50% faster for the lattice filter, and 61% faster when

combined with induction-variable strength-reduction), but increases memory usage proportional

to the number of loop iterations. The exact memory usage trade-off depends upon how efficiently

the shift distances can be stored in memory when using the former technique. For instance, if the

shift distances were represented using 4-bits, an operation (somewhat similar to a vector-processor

scatter operation) that reads 8 shift distances from a 32-bit memory word could write them to

the set of registers allocated to hold the shift distances. An implementation detail related to

loop-unrolling in this context is the application of induction-variable strength-reduction (IVSR).

This well known scalar optimization often yields considerable speedups however its application

destroys the high-level array-access information required to apply IDS. Careful bookkeeping is

required because IVSR must be applied before loop-unrolling, but the loop-unrolling process itself

requires information about index-dependent scaling.

Benchmark Results

The index-dependent scaling technique only applies to two of the benchmarks in the test suite pre-

sented earlier: The lattice and normalized lattice filter benchmarks. However, on the lattice filter
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(a) ‘x’ wordlength
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(b) ‘y’ wordlength
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(c) internal state wordlength
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(d) Lattice filter ladder coefficients

Figure 4.10: Distribution versus Loop Index or Array Offset

benchmark it dramatically improves SQNR performance. Table 4.2 contrasts the performance

of a 32 bit fixed-point implementation without index dependent scaling with a 16 bit fixed-point

implementation with index dependent scaling using the SNU-n, WC, IRP, and IRP-SA shift al-

location algorithms defined earlier (for completeness, the performance of the normalized lattice

filter is also shown). The 16 bit version actually outperforms the 32 bit version by a margin of

15 dB!

The impact of index-dependent scaling can be understood better by observing the dynamic-
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range distribution for the scalar variables, ‘x’, and ‘y’, over loop index value, and the arrays

‘V’, and ‘state’ over element offset. Histograms illustrating these distributions are displayed

in Figure 4.10. These histograms display the number of elements (or loop-iterations) with a

particular maximum value (quantified by IWL). The purpose of plotting this information is to

provide a ‘feel’ for the amount of information lost by grouping essentially distinct signals with

the same fixed-point scaling. Focusing on Figure 4.10(a) we see that the scalar variable ‘x’ takes

on values with a dynamic-range of at least 24 bits when ‘x’ is considered the same signal for

each iteration of the loop. Trying to “cram” this large dynamic range into only 32 bits results

in the diminished performance of the 32 bit fixed-point version of the code—by grouping signals

with dramatically different dynamic-ranges together with the same fixed-point scaling the relative

error for the “smaller” signals is dramatically increased which may lead to very poor fidelity as

in the case of the lattice filter benchmark.

The IDS algorithm, as presented here, is a first step towards the goal of approximating

block-floating-point code without performing signal-flow-graph analysis. An obvious next step

would be to extend this approach to deal with nested loops yielding array offsets dependent upon

multiple loop indices. The performance of both Levinson-Durbin, and Fast-Fourier Transform

benchmarks might improve dramatically by applying such a technique. In particular, for the

FFT it would be desirable to treat the whole data array as a block with a single outer-loop

index-dependent scaling—this is a standard approach when hand-coding the FFT for fixed-point

DSPs [Ana90]. However, to do this, the compiler must be able to recognize that each outer-loop

iteration updates the data array using the values calculated for the previous iteration. This

requires a very sophisticated dependence analysis because the elements are accessed in a fairly

irregular way.

4.4.2 Eliminating Arithmetic Overflows due to Accumulated Rounding Errors

After converting an application to fixed-point using any of the approaches discussed so far, over-

flows may occur even though fixed-point scaling was applied after measuring the dynamic-range

over all inputs of interest and even when using very large input data sets. Generally this is

a greater problem the smaller the bitwidth of the fixed-point datapath or the larger and more

complex the application. The cause appears to be accumulated roundoff-errors that cause the

dynamic-range of some signals within the fixed-point version of the application to increase to such

a point that they become larger than the fixed-point scaling can represent. One way to mitigate
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this problem is to use saturating arithmetic operations. These are often available in commercial

digital signal processors to reduce distortion due to arithmetic overflow. However, the IRP-SA

algorithm relies upon the overflow properties of 2’s-complement arithmetic. Furthermore, while

limiting nonlinear distortion, saturation does not eliminate it entirely.
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Figure 4.11: The Second Order Profiling Technique (the smaller box repeats once)

The prior investigations into automated floating-point to fixed-point conversion have placed

a significant emphasis on the ability to modify the fixed-point translation in the event some

calculations are found to cause overflows. Furthermore, the worst-case analysis and statistical

approaches are designed with the paramount objective of avoiding overflow. In the case of SNU-

n conservative estimates of the dynamic-range of a signal are based upon first, second, and

sometimes higher moments of that signal’s distribution. The WC technique very specifically tries

to avoid overflow in the “worst-case” scenario. In this dissertation another approach is used based

upon using two profiling steps: First, to determine each signal’s dynamic-range, and second, to

estimate the accumulation of rounding-noise due to fixed-point arithmetic (see Figure 4.11). The
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second profile is essentially performing an empirical sensitivity analysis. Once again, if a signal-

flow graph representation were available this would be unnecessary. This profiling algorithm

has been implemented in conjunction IRP and IDS fixed-point scaling algorithms described in

Sections 4.2.1, and 4.4.1 respectively. So far this analysis has been used to eliminate overflows for

the Levinson-Durbin benchmark to eliminate overflows on datapaths down to 19-bits. Without

second-order profiling this benchmark required a 25-bit datapath to operate without overflow.

It seems feasible that having determined that some operations would lead to overflow, and

having then increased IWLs where necessary to avoid this, the additional rounding-noise intro-

duced by increasing IWLs might cause new overflows. In some cases this appears to happen.

It is postulated that further iterations would eventually eliminate all overflows provided the

wordlength is larger than some critical, application dependent value. This has yet to be verified

experimentally or otherwise.

4.5 Fixed-Point Instruction Set Recommendations

This section provides a summary of other instruction-set modifications that should be contem-

plated for future fixed-point versions of the UTDSP architecture. The justification for many

of these recommendations is based upon study of existing fixed-point instruction sets, and im-

plementation techniques known to find wide-spread usage in the DSP community. For each

recommendation, a description of the operation, and its use is provided.

Fixed-point division primitives

These perform fixed-point division by calculating one bit of the quotient at a time using long-

division. This operation is used for signal processing algorithms that require division and is

needed for evaluating some transcendental functions.

Mantissa normalization operations

This operation is useful for supporting transcendental function evaluation an is essential for

emulating floating-point operations. The input is an integer, and outputs are: (i) the same

integer left-shifted so that it has no redundant sign bits; and (ii) the number of positions it was

shifted.

Saturation mode addition and subtraction
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As noted earlier, these operations are often used to minimize the impact when dynamic-range

estimates are erroneous.

Arithmetic shift immediate

The shift distance is encoded as part of the operation. This reduces memory usage and execution

time.

Arithmetic bidirectional shift

The shift distance is stored in a register. The sign dictates which direction to shift. This operation

does not appear to have been proposed anywhere else but could be useful for index-dependent

scaling when applied to very long loops.

Extended precision arithmetic support

Generally some arithmetic operations may need to be evaluated to greater precision. The current

UTDSP ISA does not support extended precision arithmetic. Traditional DSPs store the carry-in

and carry-out information in their status registers but for the VLIW architecture this is awkward

and some other means must be found.
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Chapter 5

Simulation Results

This chapter begins by presenting the results of a detailed investigation of the performance of the

IRP and IRP-SA algorithms proposed in Section 4.2, alone and in combination with the FMLS

operation proposed in Section 4.3. In Section 5.2 the focus turns to the issues of robustness

and the impact of application design on SQNR enhancement. The latter is relevant to a clearer

understanding of which applications benefit from the FMLS operation.

5.1 SQNR and Execution-Time Enhancement

This section explores the SQNR and runtime performance enhancement using IRP, IRP-SA

and/or FMLS. As a basis for comparison the SNU-n and WC algorithms introduced in [KKS97,

WBGM97a], and reviewed in Section 2.4, are used. SQNR data was collected for both 14 and

16-bit datapaths. Speedup results are based upon the cycle counts using a 16-bit datapath1. For

the lattice filter benchmarks IDS with loop-unrolling and induction-variable strength reduction

was applied (Section 4.4.1). Several observations can be made about the data:

1. IRP-SA and FMLS combine to provide the best SQNR and execution-time performance.

2. Only 2 to 8 FMLS shift distances are required to obtain most of the enhancement.

One caveat: The speedup data does not include an estimate of the processor cycle-time penalty

due to the FMLS operation. As mentioned earlier in Section 4.3 the impact on processor cycle-

1For the Levinson-Durbin algorithm 24 and 28-bit datapaths had to be used for SQNR measurements to avoid
severe degradation due to numerical instability. Using second-order profiling (Section 4.4.2) it was possible to
eliminate all overflows for datapaths as short as 19-bits. The speedup measurements for this benchmark are based
upon a 28-bit architecture.
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time might very well be negligible when the set of supported shift distances is small. However, as

the multiplier is usually on the critical path the impact should be estimated using a circuit-level

simulation methodology. Of course, this does not impact the accuracy of the rounding error

(SQNR) measurements.

In this chapter speedup and equivalent bits data are presented using bar charts. These two

metrics were introduced and motivated in Section 1.2.3. The raw SQNR and cycle count data

are also recorded in Appendix A, however the main conclusions to be drawn are most readily

apparent in the graphical presentation found here. The raw data include the SQNR values as

measured in dB, and the processor cycle counts are of practical interest when examining an

individual application in isolation, but obscure trends across a diverse set of applications.

Figures 5.1 through 5.5 present measurements of the SQNR for the benchmarks introduced

in Chapter 3. Each bar actually represents four SQNR measurements using the equivalent bits

metric introduced in Section 1.2.3 (see Figure 1.1, and Equation 1.2 on page 11 for definition).

Figure 5.1 plots the SQNR enhancement of IRP-SA versus IRP, SNU-n, and WC. Note that in

some instances the enhancement of IRP-SA versus SNU-n was “infinite” for some values of n

because of overflows (these infinite enhancement values are “truncated” to an enhancement of

5 bits in the chart). Looking at Figure 5.1 a few observations can be made:

1. The optimal value of n for SNU-n varies between applications: In many cases a lower-

value improves SQNR, however for LAT, FFT-NR, and FFT-MW a low value leads to

overflows that dramatically reduce the SQNR performance.

2. In most cases IRP is as good or marginally better than IRP-SA with the exception of

IIR4-P (the parallel filter implementation).

3. In all cases except one IRP-SA is better than SNU-n or WC with the exception of LEV-

DUR (the Levinson-Durbin recursion algorithm). In this case SNU-n performance is

better for all n considered.

The first observation is not altogether surprising given the nature of the SNU-n algorithm (see

discussion in Section 2.4.3). On the other hand the second observation is somewhat disappointing:

it was expected that exploiting the modular nature of 2’s-complement addition would improve

SQNR performance. The problem is that shift absorption increases the precision of certain

multiply-accumulate operations without improving overall accuracy because left shifting the result

of a fractional multiply after truncating the least significant bits does not improve the accuracy
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of the calculation. This observation motivated the investigation of the FMLS operation. The

final point, that IRP-SA usually does better than the pre-existing approaches, was expected as

these approaches do little to retain maximal precision at each operation but rather focus on

reducing the chance of overflows. The reason LEVDUR performance using SNU-n was better

than WC, IRP, or IRP-SA is that the latter approaches all generated one or more overflows.

These overflows are due to accumulated fixed-point roundoff-errors causing the dynamic-range of

a limited set of signals to be larger than that found during profiling, and indeed large enough to

exceed the IWLs calculated during profiling. The second-order profiling technique (Section 4.4.2)

can eliminate these overflows, and furthermore, merely using the FMLS operation also eliminates

these overflows. The latter is clearly evident in Figure 5.2, which we turn to next.

-2

-1

0

1

2

3

4

5

SQ
N

R
 E

nh
an

ce
m

en
t  

(E
qu

iv
al

en
t B

its
) 

IIR4-C IIR4-P NLAT LAT FFT-NR FFT-MW LEVDUR MMUL10 INVPEND SIN

SNU-4
SNU-2
SNU-0
WC
IRP

Figure 5.1: SQNR Enhancement using IRP-SA versus IRP, SNU, and WC

Figure 5.2 presents the SQNR enhancement due to the FMLS operation and/or the IRP-

SA algorithm as compared to using the IRP algorithm alone assuming all necessary FMLS shift

distances are available. There are two significant observations: First, in six cases a “synergistic”

effect exists. In these cases the performance improvement of IRP-SA combined with FMLS

is better than the combined performance improvement of IRP-SA or FMLS in isolation. The

benchmarks exhibiting this synergistic effect are: IIR4-C, IIR4-P, LAT, INVPEND, LEVDUR,
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Figure 5.2: SNQR Enhancement of FMLS and/or IRP-SA versus IRP

and SIN. The basis of the synergy is that shift absorption increases the number of fractional

multiplies that can use FMLS, which is also manifested as redistribution of output shift values

towards more left-shifted values as illustrated for the IIR-C benchmark in Figure 5.3.

The second observation regarding Figure 5.2 is that FMLS can potentially improve the

SQNR performance by the equivalent of up to two bits of extra precision. This dramatic im-

provement is seen only for FFT-MW. It is interesting to note that FFT-NR—an alternative

implementation of the FFT with better baseline SQNR performance, experiences much less en-

hancement2. Indeed, using FMLS the performance of FFT-MW is better than that of FFT-NR.

However, the SQNR performance of FFT-MW is enhanced through an entirely different mech-

anism than that at work in any of the other applications (note that there is no “synergistic”

effect in this case). Upon close examination it was found that the FMLS operation leads to a

large amount of accuracy being retained for one particular fractional multiplication operation.

For this operation an internal left shift of seven bits was generated, but not because the result

is added to something anti-correlated with it. Instead, this left-shift is manifested because the

2FFT-MW evaluates the twiddle factors explicitly, whereas FFT-NR uses recurrence relations. The latter
technique is more efficient, but introduces additional rounding-error.
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Figure 5.3: Change in Output Shift Distribution Due to Shift Absorption for IIR-C

source operands are inversely correlated with one another. Direct evidence for this conclusion is

shown in Figure 5.4 which captures an sviewer3 session in the midst of probing the affected code.

Another significant observation about FFT-MW not visible in Figure 5.2 is that its SQNR per-

formance does not improve uniformly with increasing datapath bitwidth. This issue is examined

further in Section 5.2 (see Figure 5.14, page 94).

Figure 5.5 presents the SQNR enhancement when the number of output shift distances is

limited to 2, 4, or 8 distinct values. These values were determined by optimizing for speedup

across applications (we look at the speedups themselves next). For each benchmark the output

shift values where ranked by execution frequency and shift values were selected primarily by this

speedup criteria but also to keep the range of values contiguous. The motivation for including

some form of bias is that the set of benchmarks is small and therefore prone to showing spurious

trends—for example that shifting left by 7 is more likely that shifting left by 4. This particular

bias reflects the fact that it is legitimate and worthwhile to left shift the result of a FMLS to

yield a larger overall left shift, but not legitimate to right shift the result of an FMLS operation

3See Appendix C for detailed descriptions of the software tools.
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Figure 5.4: sviewer screen capture for the FFT-MW benchmark. Note that the highlighted

fractional multiplication operation has source operand measured IWLs of 7 and 2 which sums

to 9, but the measured result IWL is 2. This indicates that the source operands are inversely

correlated.

to obtain the equivalent of a FMLS with smaller left shift. The FMLS internal shift sets used

for this investigation are summarized in Table 5.1. The statistics leading to this selection are

summarized in Table A.11 on page 111. The main observation to be made from the data in

Figure 5.5 is that FMUL-2 (ie. left by one, or no shift at all) suffices to capture most of the

SQNR benefit. The biggest exception to this is FFT-MW, in which case roughly half the benefit

is retained using FMUL-2, three quarters using FMUL-4, etc....

Now we consider the impact FMLS has on execution time. The first observation that can

be made about the baseline ISA is that it should contain a shift immediate operation. In the

current UTDSP implementation the shift distance is read from a register which usually requires

an additional load-immediate operation (This can usually be mitigated by using value-numbering4

but this optimization also tends to increase register-pressure). This encoding is inefficient because

the range of shift values that are likely to be encountered can easily be expressed in the amount

of space currently used to encode the register containing the shift distance. Furthermore, this

4see [Muc97] for definition
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Name Output Shift Set

FMUL-2 fractional multiply: left by one; none

FMUL-4 fractional multiply: left by 1, 2; none; right by 1

FMUL-8 fractional multiply: left by 1 to 4; none; right by 1 to 3

Limiting all output shifts available for all arithmetic operators

Table 5.1: Available Output Shift Distances

inefficiency matters because shift operations are frequently used in fixed-point signal-processing

applications. The speedup achieved by merely adding shift-immediate operations to the ISA is

shown in Figure 5.6. Clearly this makes a significant difference: Speedups of up to 18% are

observed.

Figure 5.7 plots the speedup using FMUL-n compared to the modified baseline ISA including

the shift-immediate operation. The aggregate improvement due to both FMLS and the shift-

immediate operation is displayed in Figure 5.8. There is some speedup benefit using only two

shift distances, however using the FMUL-4 encoding (ie. four shift distances) seems to capture the

most significant chunk of the benefit across applications—up to a factor of 1.13 for INVPEND. It

is important to note that the shift distances generated using IRP or IRP-SA are not specifically

optimized for the available shift distances in each of these cases. A topic for future study is the

selection of scaling operations based on the values supported by the ISA (Section 6.2.3).

Finally, we consider the speedup using IRP, IRP-SA and/or FMLS in comparison to WC

and SNU-n. Figure 5.9 shows the speedup or slowdown when using IRP-SA versus the other

scaling algorithms. After combining the FMLS operation (assuming all required shift distances

are available) the results shift more in favor of IRP-SA as shown in Figure 5.10.

5.2 Robustness and Application Design Considerations

In the previous section the evaluation methodology ignores two important details that will be

explored next. Section 5.2.1 presents results from a study of the impact the inputs used to profile

have on final performance, whereas Section 5.2.2 presents results from a study of the impact of

filter design on SQNR enhancement.
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Figure 5.5: Comparison of the SNQR enhancement using different FMLS shift sets and IRP-SA

5.2.1 Selecting Appropriate Profile Inputs

This section reports the results for a qualitative study of the robustness of the floating-point to

fixed-point conversion process with respect to input variation. As dynamic-range estimates are

gathered by profiling with a finite input sequence, the question naturally arises whether another

input sequence could later cause overflows and seriously degrade fidelity. This problem clearly

grows with the complexity of the application being translated. If the application implements

a linear-time invariant filter then it seems reasonable to consider condensing the set of input

sequences into a single number such as their L∞-norm bound, and then to profile using a chirp

or random signal scaled in some way by this bound.

To investigate this, the IIR4-C benchmark was subjected to various “training” sequences

during profiling, and the SQNR performance was measured using a different “test” input. The

training inputs were: One, a uniformly distributed pseudo-random sequence, a normally dis-

tributed pseudo-random sequence, a chirp, and a separate sample from the same source as the test

input (this second sample is labelled “voice train”, and the test sample was labelled “voice test”

in the results that follow). The test input was 30 seconds of a male CNN correspondent’s voice

sampled at 44.1 kHz. To quantify the experiment, each of these profile signals was scaled so the
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Figure 5.6: Speedup after adding the Shift Immediate Operation

appropriate norm was unity, and then a multiplicative factor was applied to only the training

input until no overflows occurred using the test input. The results for the L2-norm are summa-

rized in Table 5.2 on page 92. Examining this data it is clear that the required scaling factor is

smallest for the sample taken from the same speaker (1.0) and the next smallest factor is for the

chirp signal (somewhere between
√

12 and
√

13). It seems likely that using a small sample of rep-

resentative phonemes5 for training would yield performance somewhere between these extremes.

In any event, the important conclusion to draw from this data is in the achieved SQNR: It was

not initially obvious that good SQNR performance could be achieved using, say, a chirp signal

for profiling, however, this data supports that conclusion. An important topic for further study

is the general interrelationship between application design and those profile inputs that provide

aggressive yet robust dynamic-range estimates (eg. how does the
√

12 to
√

13 prescaling factor

found above depend upon the application being profiled?)

5phoneme n. any of the units of sound in a specified language that distinguish one word from another. (source:
Oxford English Dictionary)
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Figure 5.7: Speedup after adding FMLS to the Baseline with Shift Immediate (using IRP-SA)

5.2.2 Impact of Pole Locations on SQNR Enhancement

In this section the SQNR enhancement using IRP-SA and FMLS is studied as the complex-

conjugate pole locations of a simple 2nd-order section is varied in the complex plane for both

the direct and transposed form (reverting to using the same input, a uniformly distributed pseu-

dorandom sequence, for profiling and testing). The transfer function under consideration is the

following:

H(z) =
1

1 + a1z−1 + a2z−2

For real values of a1 and a2 this transfer function has roots at [DR95]:

z =
√

a2 e±j arccos(− 1
2
a1a

− 1
2

2 )

Setting ρ =
√

a2 and θ = arccos(− 1
2a1a

− 1
2

2 ) we examine the SQNR enhancement as a function

of ρ and θ, the radial and angular position of the transfer function poles. Figure 5.11 displays

the dependence on ρ, and Figure 5.12 displays the dependence on θ. Note that both Figures
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Figure 5.8: Speedup with FMLS and Shift Immediate versus IRP-SA

present data averaged over several values of the unplotted variable. Clearly the enhancement

is not uniform and significantly depends upon the pole locations. The reason for this is that

the pole locations impact the correlations observed within the filter structure, and this in turn

dictates how much benefit there is to using the FMLS operation. Looking at Figure 5.11 the

synergistic effect of combining FMLS and IRP-SA is visible in a different form than in Figure 5.2.

In particular, the closer the poles are to the unit circle the more pronounced the synergy. Also,

comparing Figure 5.12 to the baseline SQNR performance dependence on θ plotted in Figure 5.13

it is apparent that using FMLS and IRP-SA aids performance where baseline performance is

degraded. Generally, when designing higher-order filters, poles tend to get placed closer to the

unit circle the steeper the filter cutoff. This is also where roundoff-error effects are generally more

pronounced.

5.3 Detailed Impact of FMLS on the FFT

Figure 5.14 on page 94 presents the SQNR performance of the FFT-MW benchmark versus

datapath bitwidth for various transform lengths and shows the enhancement due to the FMLS
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Figure 5.9: Speedup of IRP-SA versus IRP, SNU and WC

operation. Using the equivalent bits metric, enhancements of up to 4-bits are possible, but the

enhancement is highly bitwidth dependent. Earlier, the source of the enhancement was shown

to be largely due to one FMLS operation, however it remains unclear why the enhancement is

so uneven. Looking at the sequence of plots in Figure 5.14 it should be clear that the longer the

transform length, the larger the effect. Generally, the longer the transform length the more the

input is prescaled to avoid overflows during the computation. On the other hand, the notches in

the upper curves appear to occur at roughly the same bitwidth for each transform length.
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Figure 5.11: SQNR Enhancement Dependence on Conjugate-Pole Radius
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Training Sequence Multiplier SQNR Overflows

voice test 1 52.9 dB 0

voice train 1 50.1 dB 0

uniform 1 1.03 dB 128283√
2 2.49 dB 182805

2 5 dB 21495

3 13.2 dB 5850

4 27 dB 28

5 52.5 dB 0

normal 1 0.51 dB 150395

2 4.89 dB 21779

3 13.2 dB 2001

4 27 dB 28

5 52.8 dB 0

chirp 1 3.44 dB 95481

2 16.9 dB 3574

3 27 dB 28√
12 25.2 dB 28√
13 52.8 dB 0

4 49.9 dB 0

Table 5.2: Robustness Experiment: Normalized Average Power
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Figure 5.12: SQNR Enhancement Dependence on Conjugate-Pole Angle
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Figure 5.13: Baseline SQNR Performance for |z| = 0.95
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(c) 256-Point FFT

12 14 16 18 20 22 24 26 28 30 32
−20

0

20

40

60

80

100

120

140

Datapath (bits)

S
Q

N
R

 (
dB

)

IRP           
IRP−SA        
IRP w/ FMLS   
IRP−SA w/ FMLS

(d) 1024-Point FFT

Figure 5.14: FMLS Enhancement Dependence on Datapath Bitwidth for the FFT
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Chapter 6

Conclusions and Future Work

Due to its broad acceptance, ANSI C is usually the first and last high-level language that DSP

vendors provide a compiler for. Furthermore, fixed-point DSPs generally have lower unit cost and

consume less power than floating-point ones. Unfortunately, ANSI C it is not well suited to devel-

oping efficient fixed-point signal-processing applications for two reasons: First, it lacks intrinsic

support for expressing important fixed-point DSP operations like fractional multiplication. Sec-

ond, when expressing floating-point signal-processing operations the underlying signal-flow graph

representation, which is very useful when transforming programs into fixed-point, is obscured.

It is therefore not surprising that fixed-point software development usually involves a consid-

erable amount of manual labor to yield a fixed-point assembly program targeted to a specific

architecture.

The primary goal of this investigation was to improve this situation by developing an

automated floating-point to fixed-point conversion utility directly targeting the UTDSP fixed-

point architecture when starting with an ANSI C program and a set of sample inputs used for

dynamic-range profiling. A secondary goal was to consider fixed-point instruction-set enhance-

ments. Towards those ends, architectural and compiler techniques that improve rounding-error

and execution-time performance were developed and compared in this dissertation with other re-

cently developed automated conversion systems. The following subsections summarize the main

contributions, and present areas for future work.
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6.1 Summary of Contributions

An algorithm for automatically generating fixed-point scaling operations, Intermediate Result

Profile with Shift Absorption (IRP-SA), was developed, in conjunction with a novel embedded

fixed-point ISA extension: Fractional-Multiply with internal Left Shift (FMLS). The current

SUIF-based implementation targets the UTDSP architecture however this tool can be retar-

geted to other instruction sets with additional work (see Section 6.2.4). Using IRP-SA without

the FMLS operation SQNR enhancements approaching 1.5-bits were found in comparision to

the FRIDGE worst-case estimation scaling algorithm, and approaching 4.5-bits in comparison

to SNU-4 (Figure 5.1). Combining IRP-SA with FMLS provides as much as 2-bits worth of

additional precision (Figure 5.2) and in some exceptional cases may lead to improvements of

over 4-bits (Figure 5.14(d)). The FMLS encoding can also lead to speedups by a factor of 1.32

when all shift distances are available, and 1.13 when four options: left-shift by two, left shift

by one, no shift, and right shift by one, are available (Figure 5.7). Generally, these techniques

aid applications where short sum-of-product calculations with correlated operands dominate the

calculations. Such code often arises in signal-processing applications of practical interest. The

index-dependent scaling algorithm (IDS), which can be viewed as a step towards the automatic

generation of block-floating-point code, was presented and shown to improve rounding-error per-

formance phenomenally (by the equivalent of more than 16-bits of additional precision), but only

for one benchmark: The unnormalized lattice filter (Table 4.2). Finally, a technique for eliminat-

ing overflows due to the accumulated effects of fixed-point roundoff-error, second-order profiling,

was investigated by applying it to the IDS and IRP algorithms. This technique shows significant

promise for eliminating the need for designers to tweak the results of the automated floating-point

to fixed-point translation process.

6.2 Future Work

While this dissertation led to the development of a fully automated floating-point to fixed-point

conversion utility, it did not nearly exhaust the potential compiler and architectural techniques

that might enhance the SQNR and runtime performance provided by automated floating-point to

fixed-point translations. Unfortunately, converting programs to fixed-point is still not a “push-

button operation” in all cases. This section catalogs a smorgasbord of topics for future study.
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6.2.1 Specifying Rounding-noise Tolerance

Ideally, the designer should be able to provide, in some format, a specification of the permis-

sible distortion at the program output, and have this constraint met automatically (perhaps

through a variety of techniques). An iterative search methodology, for achieving this goal was

presented by other researchers [SK94]. However, their methodology does not scale-up well for

increasing input program sizes. On the other hand, the utility developed for this investigation

does not provide this capability at all, but instead undertakes a best effort conversion within

the constraint of using single-precision fixed-point arithmetic. What is required is some form of

analysis of the output sensitivity to rounding-errors occurring throughout the calculation. The

total output rounding-error sensitivity might then be estimated using the statistical assumption

of uncorrelated rounding-errors. Given an output rounding-noise target, the bitwidth of each

arithmetic operation within the program can be increased until the target is met with the ad-

ditional objective of minimizing execution time overhead, or power consumption. One way of

approximating the results of this sensitivity analysis is a data-flow analysis type algorithm de-

scribed recently [KHWC98]. Essentially, the idea embodied in that approach is to estimate the

useful precision of each operation using elementary numerical analysis, and to truncate bits that

are almost meaningless due to rounding-error by combining and propagating this information

throughout the program.

There are two principle ways one may vary the precision of arithmetic operations: Through

instruction level support for extended precision arithmetic, or the selective gating of sections of

the function unit to provide the outward appearance of a variable precision arithmetic unit1.

The former technique is often employed in fixed-point DSPs (although it is not yet supported by

UTDSP). The later technique has only recently caught researcher’s attention in their search for

ways reduce power consumption. Researchers from Princeton University recently presented the

results of a study on the use of a microarchitectural technique for optimizing power consumption

in superscalar integer arithmetic logic units [BM99, Mar00]. Their technique exploits the fact

that not all operands used for integer arithmetic require the use of the full bitwidth available.

By measuring the relative frequency of narrow bitwidth operands they reported power savings

of around 50% in the integer unit by using a microarchitectural technique to record the required

1A simpler alternative that makes sense in light of the trend for ever smaller Silicon feature sizes, would be to
have several different bitwidth ALUs within the same function unit, and disable the clock tree to all those except
the one actually needed.
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ALU precision for each operation. A related technique could be used for fractional arithmetic in

digital signal processors (where the effect on the overall power budget might be more pronounced).

Specifically, instead of using hardware detection to determine the effective bitwidth, the ISA could

directly encode support for variable precision fixed-point arithmetic operations, and the compiler

could then determine the required bitwidth of each arithmetic operation as outlined above.

Interestingly, researchers at Carnegie-Mellon University recently published results of an

investigation of the benefits of optimizing the precision and range of floating-point arithmetic

for applications that primarily manipulate “human sensory data” such as speaker-independent

continuous-speech recognition, and image processing [TNR00]. They too evaluated the work in

[BM99] in the context of their research and put forward a similar conjecture: That the best

way to exploit variable precision arithmetic for signal-processing applications would be to expose

control over it directly to the compiler.

6.2.2 Accumulator Register File

One particular form of extended-precision arithmetic generally used in classical DSPs is the

use of an extended-precision accumulator for performing long sum-of-product calculations with

maximum precision but without introducing a heavy execution time penalty. This is probably the

best way to improve the SQNR performance of finite-impulse response (FIR) digital filters without

resorting to bloated extended precision arithmetic. FIR filters constitute a very important class of

signal-processing kernels, and one that does not seem to benefit much from the FMLS operation

developed during this investigation.

Unfortunately, accumulators are hard to generate code for within the framework of most

optimizing compilers because they couple instruction selection and register allocation. Recently

some promising work on code generation for such architectures was presented [AM98], however,

regardless of how well the code is generated, these specialized registers may represent a fundamen-

tal instruction level parallelism (ILP) bottleneck for many applications. One possible architectural

feature that may enhance available ILP would be the inclusion of a small accumulator register

file. This small register file would connect directly to the fixed-point function units associated

with multiplication and addition. The key is then developing a compiler algorithm to use this

specialized register file wisely. In particular, these registers should primarily be used where the

additional precision is actually needed, something that would be more readily apparent within the

context of the floating-point to fixed-point translation process if the sensitively analysis described
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in the previous subsection were available.

6.2.3 Better Fixed-Point Scaling

This subsection lists techniques that may lead to better single-precision fixed-point scaling.

Sparse Output-Shift Architectures: Further work on shift allocation could begin by con-

sideration of specifically targeting the limited subset of available FMLS shift distances. The

current implementation merely divides the labor between the “closest” FMLS distance and a

shift-immediate operation. In some cases it seems reasonable that the shift-immediate operation

could be eliminated at the cost of introducing additional rounding-noise by adjusting the current

IWLs of some signals.

Sub-Expression Re-Integration: This optimization applies in the case where a usage-definition

web for an explicit program variable contains only one definition. The simpliest case is when the

usage-definition web also contains only one usage. The idea is to take the expression causing

the definition and move it into the expression-tree using the value defined. The potential benefit

is that shift-absorption could then uncover additional precision. Indeed, within the normalized

lattice filter benchmark considerable correlations exist that cannot be exploited using the FMLS

operation because shift absorption yields left shifted leaf operands. In this particular case the

situation is significantly complicated by the fact that there are generally two usages, and the

definition occurs in a prior iteration of the outer loop through an element of an array.

Reaching Values In order to support sub-expression re-integration the current implementation

supports reaching values2, an analysis determines the dynamic-range of the usages of variables. It

may happen that the dynamic-range of a variable depends significantly upon the control flow of

a program. This has been observed in the context of multiple loop iterations for the lattice filter

benchmark where applying index-dependent scaling brought a dramatic improvement in SQNR

performance (Table 4.2). Using reaching-values it is also possible to specialize the scaling (ie.

current IWL) of a variable depending upon the basic block in which it is used. At control-flow

join points the current IWL on each brach for each live variable may need to be modified to

reflect the reaching values in the basic block being entered. In its elementary form the FRIDGE

2Analogous to reaching definitions—a fundamental dataflow analysis heavily used in traditional optimizing
compilers.
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interpolation algorithm performs this form of scaling, however no quantitative results underscor-

ing its effectiveness have been presented so far.

Order of Evaluation Optimizations: The order of evaluation of arithmetic expressions may

significantly impact the inherent numerical error in the calculation. For example, consider the

floating-point expression A+B+C. If the IWL of one of the values, say A, dominates the others,

then the best order of evaluation for preserving the accuracy of the final result is A + (B + C).

Similar considerations apply with multiplicative operations. The goal here would be to develop

an algorithm that takes a floating-point expression-tree and orders the operations for minimum

roundoff-error. The situation is complicated because, although the range of leaf operations is

known, their inter-correlations may not be and therefore the range of newly created internal

nodes may only be estimated, and would perhaps benefit from subsequent re-profiling.

Improving Robustness: When a region of code is not reached during profiling, the utility devel-

oped for this dissertation will not provide a meaningful fixed-point conversion for the associated

floating-point operations. If during the lifetime of the application some combination of inputs

happens to cause the program to enter any such region the results may cause severe degradation

in performance and/or catastrophic failure. A straightforward solution is to use floating-point

emulation in such regions, however “interpolating” the range from basic blocks with profile in-

formation, as in the FRIDGE system developed at Aachen [WBGM97a, WBGM97b], is also a

viable alternative.

Truncation Roundoff Effects: When using truncation arithmetic, conversion of floating-point

constants should include analysis as to the impact of both the sign and the magnitude of roundoff

error after conversion. Empirically this appears to affect both systematic errors (particularly DC

offset) as well as the level of uncorrelated rounding error.

Procedure Cloning: Procedure cloning [Muc97, chapter 19], uses call-site specific information

to tailor several versions of a subroutine that are optimized to the particular context of the sites.

For instance, Muchnick [Muc97] gives the example that a procedure f(i,j,k) might be called

in several places with only two different values for the i parameter, say 2 or 5. He then suggests

that two versions of f(), called f 2() and f 5() could be created and each of these can be opti-

mized further by employing constant propagation. In the context of floating-point to fixed-point

conversion, procedure cloning would likely be beneficial for a subroutine if the dynamic-range
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of floating-point values passed to the subroutine varies significantly between distinct call sites.

Towards this end, the current implementation supports call site specific inter-procedural alias

analysis. With a bit of work on the profile library it should be quite easy to determine the

dynamic-range of a subroutine’s internal signals at each call site in isolation. The next step

would be to use sensitivity analysis information to partition these into specialized versions.

Connection to Hardware Synthesis: The role of the floating-point to fixed-point conversion

process in the context of hardware synthesis merits further investigation. This is a more gen-

eral problem than investigated here and introduces interesting questions regarding the trade-off

between rounding-error performance, area and timing. To reduce rounding-error the tendency

would be to use larger arithmetic structures or multi-cycle extended precision operations. On

the other hand sensitivity considerations may allow certain computations to be performed using

smaller bitwidths, which reduces the area cost for the associated hardware.

6.2.4 Targeting SystemC / TMS320C62x Linear Assembly

The CoCentric Fixed-Point Designer Tool introduced by Synopsys commands a high price tag

of $20,000 US for a perpetual license. At present it seems that the primary advantage of this

system over the utility developed for this dissertation, other than the Synopsys brand name, is it’s

support for parsing and generating SystemC. SystemC is an Open Standard recently introduced

by Synopsys to aid the development of hardware/software co-design of signal processing applica-

tions. It should be almost trivial to extend the SUIF-to-C conversion pass, s2c, to generate the

SystemC syntax for fractional multiplication by interpreting the extensions to the intermediate

form introduced during this investigation.

The Texas Instruments TMS320C62x is a fixed-point VLIW DSP. The associated compiler

infrastructure provides a Linear Assembly format [Tex99c] which abstracts away the register-

allocation and VLIW scheduling problem while otherwise exposing the underlying machine se-

mantics. This assembly format should be very easy to generate in much the same way and would

make the current utility quite useful for those developers using the TMS320C62x.

6.2.5 Dynamic Translation

An anonymous reviewer for ASPLOS-IX, to which an early draft of this work was submitted (but

regrettably not accepted), asked how costly the profiling procedure is, and whether it could be
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performed dynamically. This question is meaningful in light of two events: One, the recent discov-

ery that dynamic optimization [BDB00, AFG+00], in which software is re-optimized as it executes

using information not available at compile time, may in fact lead to significant performance ben-

efits; Two, an increasing interest in the Java programming language for developing embedded

applications that are easily portable across hardware platforms [BG00]. Hence it may make some

sense to develop a floating-point to fixed-point conversion pass as part of a dynamic conversion

process within a Java Virtual Machine framework, where dynamic optimization is beginning to

receive significant attention. In general, a dynamic floating-point to fixed-point conversion sys-

tem may be one way of achieving some of the benefits of block-floating-point operation without

performing signal-flow-graph analysis. Indeed, to make the system practical it might also make

sense to think of hardware that does support floating-point operations, but which can disable

the associated hardware (leading to potentially significant power reduction) once the necessary

profiling and fixed-point code generation process is complete.

6.2.6 Signal Flow Graph Grammars

As noted throughout this dissertation, one of the most significant limitations of ANSI C is the

difficulty in recovering a signal-flow graph representation of a program. Clearly one approach is

to apply brute force in developing a signal-flow graph extraction analysis phase. Another is to

introduce language level support for encoding signal flow graphs. To gain widespread acceptance

such a language must be capable of succinctly describing complex algorithms, while retaining

interconnection information.

6.2.7 Block-Floating-Point Code Generation

(Conditional) block-floating-point was described in Section 2.3.3. Starting with a signal-flow

graph representation it is possible to produce block-floating-point code. One of the side benefits

of block-floating-point compared to fixed-point is that overflow concerns are largely eliminated.

Some initial work in this direction was started by Meghal Varia during the summer of 2000.

Unfortunately the work was inconclusive: A great deal of difficulty was encountered in extracting

the signal-flow graph representation.

A different approach would be to extend the index-dependent scaling (IDS) algorithm to

achieve unconditional block-floating-point generation. The distinction here is that profiling is used

to determine the actual dynamic-range variation of various program elements, as parameterized
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by some convienient program state. As already mentioned, the FFT is often implemented in this

way, but the existing IDS implementation must be extended to cope with nested loops and/or

multi-dimensional arrays.

6.2.8 High-Level Fixed-Point Debugger

After performing the floating-point to fixed-point conversion process it becomes very hard to

trace through arithmetic calculations even in a properly functioning program. Obviously, if the

conversions always worked, the need to debug the fixed-point version would never arise. This

seems unlikely for several reasons, but the most obvious is that some programs are so numerically

unstable, or require so much dynamic-range, that a fixed-point version may be impossible. While

detailed analysis and/or profiling may help detect and correct the latter situation by selective

use of extended-precision or emulated floating-point arithmetic, the former condition is likely to

be a problem encountered often as designers explore new signal processing algorithms.

Therefore, a high-level fixed-point debugger analogous to the GNU project’s [GNU] gdb

debugger (and its related graphical user interfaces xxgdb and ddd3) should be developed. Dur-

ing the summer of 1999 Pierre Duez, then a third year Engineering Science student investi-

gated the possibility of leveraging the development efforts of xxgdb and/or ddd by investigat-

ing their interface with gdb. The result of this effort was a summary of the minimal require-

ments of a gdb-like debugger from the perspective of ddd. This report is available online at

http://www.eecg.utoronto.ca/~aamodt/float-to-fixed/.

It should be noted that the present software infrastructure employed in the Embedded Pro-

cessor Architecture and Compiler Research project does not support any high-level debugging.

Ignoring for the moment any mention of fixed-point debugging, the issues that must be addressed

immediately before any high-level debugging can be made available are as follows:

1. The UTDSP code generator, dgen, must produce symbol table information, such as which

memory location or register holds the current value of a variable in the source file, or which

line of code is responsible for each assembly statement. Currently no such information is

produced.

2. The Post-Optimizer does not support the parsing and analyzing of symbol table informa-

tion even if it was available. This is a great deficiency and limits the input programs it

3ddd = Data Display Debugger, http://www.gnu.org/software/ddd
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can process regardless of whether one wished to debug them.

3. The debugger must be able to evaluate symbolic expressions passed by the user in terms

of registers and memory locations.

The interface between code generator and debugger is generally a standard symbol table format

such as COFF, stabs, or dwarf. To support fixed-point debugging it is apparent that an extension

to these formats must be made so that scaling information may be passed on to the debugger

after the floating-point to fixed-point conversion process has ended. To catch overflow conditions

the debugger will likely have to instrument the code being debugged, and to make matters more

complicated, not all overflows signify an error condition (partial sums may overflow as long as

the final sum is smaller than the bitwidth available).
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Appendix A

Detailed Results

A.1 SQNR Data: Tabular Presentation

14-bit 16-bit Cycle Counts

Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS Baseline Limiting Shift Immediate

SNU-4 31.5 dB 31.6 dB 43.5 dB 43.6 dB 72006 56006 60006

SNU-2 37.5 dB 37.6 dB 49.7 dB 49.8 dB 72006 56006 60006

SNU-0 37.4 dB 37.5 dB 49.4 dB 49.5 dB 72006 56006 60006

WC 37.4 dB 37.5 dB 49.4 dB 49.5 dB 72006 56006 60006

IRP 38.6 dB 38.1 dB 50.6 dB 50.2 dB 72006 56006 60006

IRP-SA 38.4 dB 44.0 dB 50.4 dB 56.2 dB 72006 52006 60006

FMUL-8 FMUL-4 FMUL-2

Algorithm 14-bit 16-bit cycles 14-bit 16-bit cycles 14-bit 16-bit cycles

SNU-4 31.5 dB 43.5 dB 56006 31.5 dB 43.5 dB 56006 31.5 dB 43.5 dB 60006

SNU-2 37.5 dB 49.7 dB 56006 37.5 dB 49.7 dB 56006 37.5 dB 49.7 dB 60006

SNU-0 37.4 dB 49.4 dB 56006 37.4 dB 49.4 dB 56006 37.4 dB 49.4 dB 60006

WC 37.4 dB 49.4 dB 56006 37.4 dB 49.4 dB 56006 37.4 dB 49.4 dB 60006

IRP 38.0 dB 50.0 dB 56006 38.0 dB 50.0 dB 56006 38.0 dB 50.0 dB 58006

IRP-SA 43.8 dB 56.0 dB 54006 44.1 dB 56.3 dB 54006 44.1 dB 56.3 dB 58006

Table A.1: Cascaded-Form 4th Order IIR Filter
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14 Bit 16 Bit Cycle Counts

Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS Baseline Limiting Shift Immediate

SNU-4 28.7 dB 28.7 dB 40.7 dB 40.7 dB 64006 52006 56006

SNU-2 18.2 dB 18.2 dB 51.4 dB 51.4 dB 68006 52006 56006

SNU-0 18.2 dB 18.2 dB 50.9 dB 50.9 dB 68006 52006 56006

WC 18.2 dB 18.2 dB 49.1 dB 49.1 dB 76006 54006 60006

IRP 18.2 dB 18.2 dB 51.0 dB 51.0 dB 68006 52006 56006

IRP-SA 41.6 dB 45.8 dB 52.8 dB 56.3 dB 66006 50006 56006

FMUL-8 FMUL-4 FMUL-2

Algorithm 14-bit 16-bit cycles 14-bit 16-bit cycles 14-bit 16-bit cycles

SNU-4 28.7 dB 40.7 dB 54006 28.7 dB 40.7 dB 54006 28.7 dB 40.7 dB 56006

SNU-2 18.2 dB 51.4 dB 54006 18.2 dB 51.4 dB 54006 18.2 dB 51.4 dB 56006

SNU-0 18.2 dB 50.9 dB 54006 18.2 dB 50.9 dB 54006 18.2 dB 50.9 dB 56006

WC 18.2 dB 49.1 dB 56006 18.2 dB 49.1 dB 56006 18.2 dB 49.1 dB 60006

IRP 18.2 dB 51.0 dB 54006 18.2 dB 51.0 dB 54006 18.2 dB 51.0 dB 56006

IRP-SA 45.8 dB 56.3 dB 50006 45.8 dB 56.3 dB 50006 45.0 dB 55.7 dB 52006

Table A.2: Parallel-Form 4th Order IIR Filter

14 Bit 16 Bit Cycle Counts

Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS Baseline Limiting Shift Immediate

SNU-4 39.8 dB 39.8 dB 41.7 dB 41.7 dB 366013 364013 366013

SNU-2 10.0 dB 10.0 dB 10.0 dB 10.0 dB 366013 364013 366013

SNU-0 10.0 dB 10.0 dB 10.0 dB 10.0 dB 366013 364013 366013

WC 44.3 dB 44.3 dB 55.8 dB 55.8 dB 416013 366013 384013

IRP 45.8 dB 46.0 dB 57.6 dB 57.5 dB 366013 364013 366013

IRP-SA 45.8 dB 46.0 dB 57.6 dB 57.5 dB 366013 364013 366013

FMUL-8 FMUL-4 FMUL-2

Algorithm 14-bit 16-bit cycles 14-bit 16-bit cycles 14-bit 16-bit cycles

SNU-4 39.8 dB 41.7 dB 364013 39.8 dB 41.7 dB 366013 39.8 dB 41.7 dB 366013

SNU-2 10.0 dB 10.0 dB 364013 10.0 dB 10.0 dB 366013 10.0 dB 10.0 dB 366013

SNU-0 10.0 dB 10.0 dB 364013 10.0 dB 10.0 dB 366013 10.0 dB 10.0 dB 366013

WC 44.0 dB 55.6 dB 366013 44.0 dB 55.6 dB 368013 44.0 dB 55.6 dB 384013

IRP 45.7 dB 57.2 dB 364013 45.7 dB 57.2 dB 366013 45.7 dB 57.2 dB 366013

IRP-SA 46.0 dB 57.5 dB 364013 46.0 dB 57.5 dB 366013 46.0 dB 57.5 dB 366013

Table A.3: Normalized Lattice Filter
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14 Bit 16 Bit Cycle Counts

Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS Baseline Limiting Shift Immediate

SNU-4 34.6 dB 34.6 dB 47.4 dB 47.4 dB 300013 272013 280013

SNU-2 4.2 dB 4.2 dB 3.1 dB 3.1 dB 304013 272013 284013

SNU-0 4.2 dB 4.2 dB 3.1 dB 3.1 dB 304013 272013 284013

WC 34.0 dB 34.0 dB 47.1 dB 47.1 dB 386013 278013 350013

IRP 37.5 dB 37.5 dB 50.0 dB 50.0 dB 300013 272013 288013

IRP-SA 37.5 dB 37.1 dB 50.0 dB 51.0 dB 308013 274013 294013

FMUL-8 FMUL-4 FMUL-2

Algorithm 14-bit 16-bit cycles 14-bit 16-bit cycles 14-bit 16-bit cycles

SNU-4 34.6 dB 47.4 dB 278013 34.6 dB 47.4 dB 280013 34.6 dB 47.4 dB 280013

SNU-2 4.2 dB 3.1 dB 282013 4.2 dB 3.1 dB 284013 4.2 dB 3.1 dB 284013

SNU-0 4.2 dB 3.1 dB 282013 4.2 dB 3.1 dB 284013 4.2 dB 3.1 dB 284013

WC 34.0 dB 47.0 dB 306013 34.0 dB 47.0 dB 310013 34.0 dB 47.0 dB 350013

IRP 37.5 dB 50.0 dB 280013 37.5 dB 50.0 dB 282013 37.5 dB 50.0 dB 286013

IRP-SA 37.1 dB 51.0 dB 278012 38.6 dB 50.8 dB 280012 37.8 dB 51.0 dB 286012

Table A.4: Lattice Filter

14 Bit 16 Bit Cycle Counts

Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS Baseline Limiting Shift Immediate

SNU-4 13.1 dB 21.7 dB 28.5 dB 36.9 dB 244892 233636 232476

SNU-2 20.0 dB 21.3 dB 23.6 dB 24.0 dB 232988 232060 228444

SNU-0 20.0 dB 21.3 dB 23.6 dB 24.0 dB 232988 232060 228444

WC 23.4 dB 25.4 dB 36.0 dB 40.0 dB 268940 246396 246476

IRP 26.2 dB 29.7 dB 42.0 dB 45.2 dB 242892 220292 241820

IRP-SA 26.2 dB 29.5 dB 42.0 dB 45.0 dB 242900 220292 242836

FMUL-8 FMUL-4 FMUL-2

Algorithm 14-bit 16-bit cycles 14-bit 16-bit cycles 14-bit 16-bit cycles

SNU-4 13.8 dB 28.1 dB 227652 13.5 dB 28.1 dB 228892 13.5 dB 28.5 dB 232476

SNU-2 20.3 dB 23.6 dB 226188 20.3 dB 23.6 dB 226188 20.3 dB 23.6 dB 228332

SNU-0 20.3 dB 23.6 dB 226188 20.3 dB 23.6 dB 226188 20.3 dB 23.6 dB 228332

WC 23.9 dB 36.0 dB 243996 23.9 dB 36.0 dB 244108 23.9 dB 36.0 dB 246364

IRP 27.6 dB 45.0 dB 239396 27.6 dB 45.0 dB 239508 27.2 dB 44.1 dB 240748

IRP-SA 27.5 dB 44.8 dB 239396 27.5 dB 44.8 dB 239508 27.4 dB 44.3 dB 240748

Table A.5: FFT: Numerical Recipes in C Implementation
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14 Bit 16 Bit Cycle Counts

Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS Baseline Limiting Shift Immediate

SNU-4 14.3 dB 32.6 dB 31.6 dB 33.6 dB 326788 309228 320460

SNU-2 4.0 dB 4.2 dB 4.2 dB 4.3 dB 320244 304964 317212

SNU-0 4.0 dB 4.2 dB 4.2 dB 4.3 dB 320244 304964 317212

WC 20.8 dB 32.8 dB 33.2 dB 53.5 dB 335228 316932 328164

IRP 20.7 dB 33.0 dB 33.0 dB 56.5 dB 324956 306180 319444

IRP-SA 20.7 dB 32.7 dB 33.0 dB 56.5 dB 326356 306180 319444

FMUL-8 FMUL-4 FMUL-2

Algorithm 14-bit 16-bit cycles 14-bit 16-bit cycles 14-bit 16-bit cycles

SNU-4 14.3 dB 31.5 dB 316396 14.3 dB 31.5 dB 320460 14.3 dB 31.5 dB 320460

SNU-2 4.0 dB 4.2 dB 313148 4.0 dB 4.2 dB 317212 4.0 dB 4.2 dB 317212

SNU-0 4.0 dB 4.2 dB 313148 4.0 dB 4.2 dB 317212 4.0 dB 4.2 dB 317212

WC 32.6 dB 52.7 dB 324100 20.7 dB 33.0 dB 328164 20.8 dB 33.0 dB 328164

IRP 32.7 dB 54.9 dB 306180 20.7 dB 32.9 dB 308212 20.7 dB 32.9 dB 308212

IRP-SA 32.5 dB 54.9 dB 306180 29.8 dB 46.4 dB 308212 26.0 dB 40.0 dB 308212

Table A.6: FFT: Mathworks RealTime Workshop Implementation

24 Bit 28 Bit Cycle Counts

Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS Baseline Limiting Shift Immediate

SNU-4 55.6 dB 53.6 dB 74.9 dB 75.2 dB 580363 526573 577623

SNU-2 54.2 dB 54.7 dB 75.0 dB 74.8 dB 577773 525303 575523

SNU-0 54.2 dB 54.7 dB 75.0 dB 74.8 dB 577773 525303 575523

WC 42.0 dB 42.0 dB 66.9 dB 68.3 dB 580523 526433 577633

IRP 45.4 dB 45.4 dB 75.0 dB 74.9 dB 575673 524253 575523

IRP-SA 45.4 dB 55.0 dB 75.0 dB 74.8 dB 575373 524253 575373

FMUL-8 FMUL-4 FMUL-2

Algorithm 24-bit 28-bit cycles 24-bit 28-bit cycles 24-bit 28-bit cycles

SNU-4 55.8 dB 75.4 dB 577553 55.8 dB 75.4 dB 577553 55.8 dB 75.4 dB 577553

SNU-2 54.9 dB 74.9 dB 575303 54.9 dB 74.9 dB 575303 54.9 dB 74.9 dB 575453

SNU-0 54.9 dB 74.9 dB 575303 54.9 dB 74.9 dB 575303 54.9 dB 74.9 dB 575453

WC 42.0 dB 66.9 dB 577413 42.0 dB 66.9 dB 577413 42.0 dB 66.9 dB 577563

IRP 45.4 dB 74.9 dB 574253 45.4 dB 74.9 dB 574253 55.0 dB 74.9 dB 575453

IRP-SA 55.0 dB 74.8 dB 574253 55.0 dB 74.8 dB 574253 55.0 dB 74.9 dB 575303

Table A.7: Levinson-Durbin Algorithm
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14 Bit 16 Bit Cycle Counts

Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS Baseline Limiting Shift Immediate

SNU-4 40.7 dB 40.7 dB 52.8 dB 52.8 dB 220435 220435 220435

SNU-2 46.8 dB 46.8 dB 58.8 dB 58.8 dB 220435 204435 220435

SNU-0 46.7 dB 46.7 dB 58.8 dB 58.8 dB 220435 204435 220435

WC 46.7 dB 46.7 dB 58.8 dB 58.8 dB 220435 204435 220435

IRP 46.7 dB 46.7 dB 58.8 dB 58.8 dB 220435 204435 220435

IRP-SA 46.7 dB 46.7 dB 58.8 dB 58.8 dB 220435 204435 220435

FMUL-8 FMUL-4 FMUL-2

Algorithm 14-bit 16-bit cycles 14-bit 16-bit cycles 14-bit 16-bit cycles

SNU-4 40.7 dB 52.8 dB 220435 40.7 dB 52.8 dB 220435 40.7 dB 52.8 dB 220435

SNU-2 46.8 dB 58.8 dB 204435 46.8 dB 58.8 dB 204435 46.8 dB 58.8 dB 220435

SNU-0 46.7 dB 58.8 dB 204435 46.7 dB 58.8 dB 220435 46.7 dB 58.8 dB 220435

WC 46.7 dB 58.8 dB 204435 46.7 dB 58.8 dB 220435 46.7 dB 58.8 dB 220435

IRP 46.7 dB 58.8 dB 204435 46.7 dB 58.8 dB 220435 46.7 dB 58.8 dB 220435

IRP-SA 46.7 dB 58.8 dB 204435 46.7 dB 58.8 dB 220435 46.7 dB 58.8 dB 220435

Table A.8: 10 × 10 Matrix Multiplication

14 Bit 16 Bit Cycle Counts

Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS Baseline Limiting Shift Immediate

SNU-4 4.0 dB 42.7 dB 30.7 dB 54.9 dB 16392059 12901815 15587590

SNU-2 37.9 dB 48.4 dB 49.6 dB 60.0 dB 16524905 12942218 15700444

SNU-0 44.2 dB 57.9 dB 55.8 dB 69.5 dB 16372113 12738945 15553123

WC 47.3 dB 54.3 dB 59.2 dB 66.1 dB 16323608 12885470 15585290

IRP 53.1 dB 58.4 dB 65.8 dB 71.8 dB 19029172 12678759 17255026

IRP-SA 52.8 dB 59.4 dB 64.4 dB 72.0 dB 18779312 12883513 17019356

FMUL-8 FMUL-4 FMUL-2

Algorithm 14-bit 16-bit cycles 14-bit 16-bit cycles 14-bit 16-bit cycles

SNU-4 37.8 dB 49.5 dB 14751274 -19.3 dB 43.1 dB 15298968 -18.3 dB 36.3 dB 15581337

SNU-2 48.6 dB 61.2 dB 14716824 45.9 dB 57.0 dB 15506200 40.7 dB 52.4 dB 15731606

SNU-0 55.8 dB 67.8 dB 14535940 51.6 dB 64.3 dB 15326470 47.8 dB 59.4 dB 15581967

WC 56.7 dB 68.7 dB 14590683 52.6 dB 64.2 dB 15404437 48.6 dB 60.0 dB 15629981

IRP 57.8 dB 70.8 dB 14326659 57.7 dB 70.7 dB 15107674 58.2 dB 70.8 dB 15851398

IRP-SA 57.8 dB 70.8 dB 14154965 57.5 dB 70.7 dB 15054606 57.3 dB 70.2 dB 15594101

Table A.9: Rotational Inverted Pendulum
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14 Bit 16 Bit Cycle Counts

Algorithm w/o FMLS w/ FMLS w/o FMLS w/ FMLS Baseline Limiting Shift Immediate

SNU-4 42.0 dB 51.7 dB 54.2 dB 64.3 dB 82963 79506 80763

SNU-2 48.1 dB 57.2 dB 60.2 dB 69.9 dB 81706 77306 78563

SNU-0 24.6 dB 24.6 dB 24.6 dB 24.6 dB 84220 78563 81077

WC 60.3 dB 60.9 dB 73.7 dB 74.3 dB 86734 78563 82334

IRP 59.1 dB 63.7 dB 78.8 dB 79.9 dB 87991 78563 83277

IRP-SA 59.1 dB 66.8 dB 78.8 dB 79.9 dB 87991 78563 82334

FMUL-8 FMUL-4 FMUL-2

Algorithm 14-bit 16-bit cycles 14-bit 16-bit cycles 14-bit 16-bit cycles

SNU-4 42.0 dB 54.2 dB 79506 42.0 dB 54.2 dB 80763 42.0 dB 54.2 dB 80763

SNU-2 48.1 dB 60.2 dB 77306 48.1 dB 60.2 dB 78563 48.1 dB 60.2 dB 78563

SNU-0 24.6 dB 24.6 dB 79820 24.6 dB 24.6 dB 79820 24.6 dB 24.6 dB 81077

WC 60.3 dB 73.7 dB 78563 60.3 dB 73.7 dB 79820 60.3 dB 73.7 dB 82334

IRP 62.7 dB 78.8 dB 78563 62.7 dB 78.8 dB 79820 62.7 dB 78.8 dB 82334

IRP-SA 65.8 dB 78.8 dB 78563 65.8 dB 78.8 dB 79820 62.7 dB 78.8 dB 82334

Table A.10: Sine Function
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A.2 FMLS Shift Statistics

Fractional-Multiply Ouput Shift Distance (negative means left)

Benchmark -7 -3 -2 -1 0 1 2 3 4 5

IIR4-C 0.000 0.091 0.182 0.273 0.455 0.000 0.000 0.000 0.000 0.000

IIR4-P 0.000 0.000 0.222 0.333 0.333 0.000 0.000 0.000 0.111 0.000

NLAT 0.000 0.000 0.000 0.049 0.617 0.111 0.136 0.074 0.012 0.000

LAT 0.000 0.082 0.061 0.163 0.531 0.102 0.020 0.041 0.000 0.000

FFT-NR 0.000 0.000 0.105 0.854 0.024 0.012 0.000 0.006 0.000 0.000

FFT-MW 0.031 0.000 0.044 0.674 0.188 0.000 0.063 0.000 0.000 0.000

LEVDUR 0.000 0.000 0.020 0.001 0.024 0.000 0.000 0.000 0.000 0.954

MMUL10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

INVPEND 0.000 0.003 0.097 0.297 0.262 0.040 0.051 0.050 0.040 0.032

SINE 0.000 0.088 0.000 0.000 0.559 0.235 0.000 0.118 0.000 0.000

Table A.11: Execution frequency of various fractional multiply output shift distances using IRP-SA
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Appendix B

Benchmark Source Code

B.1 4th-Order Cascade Transposed Direct-Form Filter (IIR4-C)

#include "traps.h"

int N;

float xin;

float yout;

#define B10 0.0479970027935968

#define B11 0.0248503158916388

#define B12 0.0479970027935968

#define A11 1.47071856063896

#define A12 0.552172932736804

#define B20 3.01199496247403

#define B21 4.91868463132214

#define B22 3.01199496247403

#define A21 1.74228788307745

#define A22 0.820923379906023

#define G 0.0814543720978445

main()

{
int i;

double x1, t1, y1, t2, y;

double d10,d11,d20,d21;

d10 = 0.0;

d11 = 0.0;

d20 = 0.0;

d21 = 0.0;

input_dsp( &N, 4, 3 );

while(1) {
input_dsp( &xin, 4, 3 );

x1 = xin;

t1 = x1 + A11*d10 - A12*d11;

y1 = B10*t1 - B11*d10 + B12*d11;

d11 = d10;

d10 = t1;

t2 = y1 + A21*d20 - A22*d21;

y = B20*t2 - B21*d20 + B22*d21;

d21 = d20;

d20 = t2;

yout = G * y;

output_dsp( &yout, 4, 3 );

}
}
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B.2 4th-Order Parallel IIR Filter (IIR4-P)

#include "traps.h"

#define K 2.597795865839035e-02

#define A11 1.742287883077446e+00

#define A12 -8.209233799060226e-01

#define B10 -2.283849788845249e-01

#define B11 1.760053894284693e-01

#define A21 1.470718560638960e+00

#define A22 -5.521729327368045e-01

#define B20 2.141826124956898e-01

#define B21 -8.058699904919778e-02

int N;

float xin, yout;

main()

{
int i;

double x1, t1, y1, t2, y2;

double d10,d11,d20,d21;

d10 = 0.0;

d11 = 0.0;

d20 = 0.0;

d21 = 0.0;

input_dsp( &N, 4, 3 );

while(1) {
input_dsp( &xin, 4, 3 );

x1 = xin;

t1 = x1 + A11*d10 + A12*d11;

y1 = B10*t1 + B11*d10;

d11 = d10;

d10 = t1;

t2 = x1 + A21*d20 + A22*d21;

y2 = B20*t2 + B21*d20;

d21 = d20;

d20 = t2;

yout = y1 + y2 + K*xin;

output_dsp( &yout, 4, 3 );

}
}

B.3 Lattice Filter

#include "traps.h"

#define N 16

int NPOINTS;

double state[N+1];

float x_in, y_out;

double K[N] = { -8.0380843e-01, 9.9726008e-01, -6.1292607e-01, 9.9255235e-01,

-7.6436698e-01, 9.8924596e-01, -6.8231637e-01, 9.8657153e-01,

-7.1422442e-01, 9.8598665e-01, -7.0814408e-01, 9.8371570e-01,

-7.1385064e-01, 9.7093687e-01, -6.9453536e-01, 7.5064742e-01 };

double V[N+1] = { 2.9049974e-09, -6.7737383e-09, -1.7263484e-07, 1.3344477e-08,

1.0810331e-06, 3.4095960e-06, -7.3864451e-06, -2.6919930e-05,

-8.1417947e-05, 5.5457631e-05, 4.0015261e-04, -8.0278815e-05,

-5.2940299e-04, -1.1501863e-03, 3.7620980e-04, 9.8925144e-04,

1.2805204e-03 };

main()

{
int i, n;

input_dsp( &NPOINTS, 4, 3 );

for( n=0; n < NPOINTS; n++ ) {
double x, y;

input_dsp( &x_in, 4, 3 );

x = x_in;

y = 0.0;

for( i=0; i < N; i++ ) {
x -= K[N-i-1]*state[N-i-1];

state[N-i] = state[N-i-1] + K[N-i-1]*x;

y += V[N-i]*state[N-i];

}
state[0] = x;

y += V[0]*state[0];

y_out = y;

output_dsp( &y_out, 4, 3 );

}
}
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B.4 Normalized Lattice Filter
#include "traps.h"

#define N 16

double state[N+1];

double K[N] = { -8.0380843e-01, 9.9726008e-01, -6.1292607e-01, 9.9255235e-01,

-7.6436698e-01, 9.8924596e-01, -6.8231637e-01, 9.8657153e-01,

-7.1422442e-01, 9.8598665e-01, -7.0814408e-01, 9.8371570e-01,

-7.1385064e-01, 9.7093687e-01, -6.9453536e-01, 7.5064742e-01 };

double SQRT_1_MINUS_K2[N] = {
0.594888231402282, 0.0739752177313028, 0.790140261418411, 0.121818851207346,

0.644781451257463, 0.146261514499469, 0.731057023241021, 0.163329777424263,

0.699916764962566, 0.166824236913518, 0.706067958457933, 0.179731526376176,

0.700297982127316, 0.239335735891244, 0.719458569835449, 0.660702997456,

};

double V[N+1] = {
0.0515902225132069, -0.0715624901592503, -0.134918569894436, 0.00824041400845165,

0.0813206732807291, 0.165377884503288, -0.0524010572788676, -0.139614252487308,

-0.068967001839029, 0.0328797804800245, 0.0395778680711315, -0.00560627244781236,

-0.00664483036708585, -0.0101099399032589, 0.00079144007506782, 0.00149727100347517,

0.0012805204,

};

int NPOINTS;

float x_in, y_out;

main()

{
int i, n;

input_dsp( &NPOINTS, 4, 3 );

for( n=0; n < NPOINTS; n++ ) {
double x, y;

input_dsp( &x_in, 4, 3 );

x = x_in;

y = 0.0;

for( i=0; i < N; i++ ) {
state[N-i] = SQRT_1_MINUS_K2[N-i-1]*state[N-i-1] + K[N-i-1]*x;

x = SQRT_1_MINUS_K2[N-i-1]*x - K[N-i-1]*state[N-i-1];

y += V[N-i]*state[N-i];

}
state[0] = x;

y += V[0]*state[0];

y_out = y;

output_dsp( &y_out, 4, 3 );

}
}
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B.5 FFT from Numerical Recipies in C

/*

Press et. al., "Numerical Recipes in C", 2nd Edition

Cambridge University Press, 1992, pp. 507-508

Replaces data[1..2*nn] by its discrete Fourier transform, if isign is

input as 1; or replaces data[1..2*nn] by nn times it inverse discrete

Fourier transform, if isign is input as -1. data is a complex array

of length nn or, equivalently, a real array of length 2*nn. nn MUST

be an integer power of 2 (this is not check for!)

*/

(code omitted due to copyright restrictions)

B.6 FFT from Mathworks RealTime Workshop

/*

* DSP Blockset 1-D FFT

*

* Reference:

* A COOLEY-TUKEY RADIX-2, DIF FFT PROGRAM

* COMPLEX INPUT DATA IN ARRAYS X AND Y

* C. S. BURRUS, RICE UNIVERSITY, SEPT 1983

*

* Copyright (c) 1995-1999 The MathWorks, Inc. All Rights Reserved.

* $Revision: 1.2 $ $Date: 1999/01/13 14:00:27 $

*

* modificated by Tor Aamodt Sept 1st, 2000

*/

(code omitted due to copyright restrictions)

B.7 Matrix Multiply

#include "traps.h"

#define A_ROW 10

#define A_COL 10

#define B_ROW 10

#define B_COL 10

double a_matrix[10][10];

double b_matrix[10][10];

double c_matrix[10][10];

void mult( double a_matrix[A_ROW][A_COL],

double b_matrix[B_ROW][B_COL],

double c_matrix[A_ROW][B_COL] );

int main()

{
while(1) {

input_dsp(a_matrix,100,4);

input_dsp(b_matrix,100,4);

mult(a_matrix, b_matrix, c_matrix);

output_dsp(c_matrix,100,4);

}
}

void mult( double a_matrix[A_ROW][A_COL],

double b_matrix[B_ROW][B_COL],

double c_matrix[A_ROW][B_COL] )

/* a_matrix: input matrix A (row-major) */

/* b_matrix: input matrix B (row-major) */

/* c_matrix: output matrix C (row-major) */

{
int i, j, k;

double sum;

for (i = 0; i < A_ROW; i++) {
for (j = 0; j < B_COL; j++) {

sum = 0.0;

for (k = 0; k < B_ROW; ++k)

sum += a_matrix[i][k] * b_matrix[k][j];

c_matrix[i][j] = sum;

}
}

}
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B.8 Levinson-Durbin from Matlabs Real-Time Workshop
/*

* SDSPLEVDURB - Levinson-Durbin solver for real correlation functions.

* DSP Blockset S-Function to solve a symmetric Toeplitz system of

* equations using the Levinson-Durbin recursion. Input is a vector

* of autocorrelation coefficients, starting with lag 0 as the first

* element. Recursion order is length(input)-1.

*

* Author: D. Orofino, 14-Jul-97

* Copyright (c) 1995-1999 The MathWorks, Inc. All Rights Reserved.

* $Revision: 1.11 $ $Date: 1999/01/13 14:01:44 $

*/

(code omitted due to copyright restrictions)

B.9 Sine function
/* a quotation from the gnu’s math.h --> */

#define M_PI 3.14159265358979323846 /* pi */

#define M_PI_2 1.57079632679489661923 /* pi/2 */

#define M_PI_4 0.78539816339744830962 /* pi/4 */

#define M_1_PI 0.31830988618379067154 /* 1/pi */

#define M_2_PI 0.63661977236758134308 /* 2/pi */

/* <-- end quotation */

float sine( float xin )

{
float sgn = 1.0f;

float x, x_tmp;

if( xin < 0.0f ) {
sgn = -1.0f;

xin = -xin;

}
// scale into [0,pi/2]

if( xin > M_PI_2 ) {
float n, diff, N_float;

int N;

int Quad;

n = xin * M_2_PI;

N = (int) n;

N_float = (float)N;

diff = xin - M_PI_2*(N_float);

Quad = N & 3;

if( Quad == 0 ) x_tmp = diff;

else if( Quad == 1 ) x_tmp = M_PI_2 - diff;

else if( Quad == 2 ) { x_tmp = diff; sgn = -sgn; }
else { x_tmp = M_PI_2 - diff; sgn = -sgn; }

} else x_tmp = xin;

x = x_tmp * M_1_PI;

return sgn*x*(3.140625+x*(0.02026367+x*(-5.325196+x*(0.5446778+1.800293*x))));

}

float X[1257];

int main( void )

{
float y;

int i;

input_dsp( X, 1257, 0 );

for( i = 0; i < 1257; i++ ) {
y = sine( X[i] );

output_dsp( &y, 1, 0 );

}
}

B.10 Rotational Inverted Pendulum

Code omitted for brevity.
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Appendix C

Software Documentation

The overall floating-point to fixed-point conversion system is a rather large beast1 written mostly

in ANSI C++. It can be built for both Unix and Microsoft Win32 environments, although it was

primarily developed under Linux. The utility has a top level shell script that provides a simple

command line interface to access most of its functionality under a UNIX environment. This

appendix documents both the user interface and the software architecture. The source code, and

benchmarks used for this investigation is available for academic use from the World Wide Web

from the author’s University of Toronto website:

http://www.eecg.utoronto.ca/~aamodt/float-to-fixed

The documentation in this appendix corresponds to Version 1.0 of the software, released Septem-

ber 1st, 2000.

C.1 Coding Standards

Before describing how to use the utility it is important to note that certain programming con-

structs that are legal ANSI C cannot be successfully converted to fixed-point. Indeed, due to

essentially poor software engineering in no part the fault of this author, the postoptimizer does

not support basic block with more than 1024 operations, nor locally declared arrays or structured

data! Apart from these unrelated problems, the floating-point to fixed-point conversion utility

generally does not support type casting through pointers. This is significant because occasionally

1At last count 31,000 lines of sparingly-documented, well-structured and heavily object-oriented code had been
designed, written, debugged and tortured specifically for this dissertation.
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hard-core programmers will directly manipulate the bitfield of floating-point values by accessing

them through a pointer with type pointer-to-integer, which is perfectly legal in ANSI C provided

appropriate casting operations are used. Another limitation is that accesing double-precision

arrays using a pointer is unlikely to work depending on how the pointer is generated. The reason

is that when converted to fixed-point, double-precision arrays are changed to arrays of single-

precision integers and this means the byte offset (or, more correctly, the datapath wordlength

aligned offset) must be translated. Currently this is only sure to be done if this offset is calculated

using the ANSI C square bracket syntax.

C.2 The Floating-Point to Fixed-Point Translation Phase

C.2.1 Command-Line Interface

The top level script is invoked with the command:

mkfxd [options] <file1>.c [ <file2>.c ... ]

mkfxd stands for “make fixed” but is much easier to type. The options currently available are

documented in Tables C.1, and C.2. A typical run is displayed in Figure C.2. All temporary files

are created in sub-directory “.mkfxd” of the working directory.

A GNOME/Gtk+ based2, GUI-ified3 program called sviewer (which stands for ”signal

statistics viewer”) is provided to browse the IWL profile data (Figure C.1). To invoke sviewer

one must first be in the “.mkfxd” sub-directory. The syntax is:

sviewer -f Range.db <file1>.ida [ <file2>.ida ... ]

By left-clicking with the workstation’s mouse on the ‘+’ symbols a hierarchical tree view analogous

to the source programs symbol table, and expression tree structure can be explored. Each floating-

point variable, or operation is shown with its measured IWL. In addition, if suitable build options

are used selecting a signal will display a histogram of the signal’s IWL values measured during

profiling.

2Gtk+ and GNOME are application programming interfaces (API’s) (ie. sets of software libraries) for devel-
oping X-Window applications with a look-and-feel very closely (but not exactly!) like the Microsoft Windows
graphical user interface. These API’s are available under the terms of the GNU Public License (GPL) from
<http://www.gnome.org>. For details of the GPL goto <http://www.gnu.org>.

3graphical user interface
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Figure C.1: A typical sviewer session
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Type Option Description

range estimation -2 run second-order profiling phase

-d<m><t> index dependent scaling, m = mode,

t = IWL threshold; available scaling modes:

o : use omni-directional shifts

u : unroll index dependent loops

-M<iterations> maximum loop iterations that can be index

dependent

-A<threshold> minimum IWL variation for index dependent

arrays

-t<fname> <fname> is a file listing the path to one

input file that will be used for training.

Default is to use “input.dsp” in the current

directory.

floating-point to -x “worst-case” scaling (Section TODO)

fixed-point -S<factor> Use Seoul National University group’s scaling

conversion rules (where possible), <factor> is a

algorithm positive real number used to generate IWLs

(try 4.0)

-a IRP-SA (Section 4.2.2)

default IRP (Section 4.2.1)

code generation -m Fractional Multiply with internal Left Shift (FMLS)

-C62x Generate ANSI C output for the Texas Instruments

TMS320C62x

optimization -O<level> 0 - no optimization

1 - default

2 - big basic blocks (extra constant propagation)

-R strength reduce before loop unrolling

architecture -w<N> fixed-point bitwidth of <N> bits

-r<mode> fixed-point rounding mode, default: ‘t’

f - ‘full’ (error = ± 0.5 LSB)

v - ‘Von Neumann’ (error = ± 1 LSB)

t - ‘truncation’ (error = 0 to 1 LSB)

Table C.1: mkfxd Options Summary (continued in Table C.2)
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Type Option Description

simulation -e stop after first overflow or exception

-c<prog> <prog> is an executable to be started in conjunction

with the simulator to provide external system dynamics

(eg. for feed-back control simulations). This option

causes the creation of UNIX fifo’s “input.dsp” and

“output.dsp” which used to facilitate communication

between the two.

-T<fname> <fname> is the a file listing one or more input files to

use to test the fixed-point version of the code

-o<fname> <fname> is the output filename generated by the adjunct

executable specified by the ‘-c’ option, which is used

for SQNR comparisons

simulation output -D Do not delete the simulation outputs (these can take up

a large chunk of disk space!).

-n<N> if the output signal is a vector, use <N> as the

number of elements in this vector for element-wise

SQNR measurement.

-b<mode> output is in binary format; <mode> can be one of

‘i’ 32-bit 2’s-complement integer

‘f’ 32-bit single precision floating-point

‘d’ 64-bit double precision floating-point

Table C.2: mkfxd Options Summary (cont’d...)
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$ mkfxd -w16 -ttrain.vectors -Ttest.vectors -bf -a -m iir4.mod.c

UofT DSP Floating-Point to Fixed-Point Conversion Utility

Copyright (C) 1999-2000 Tor Aamodt

(aamodt@eecg.utoronto.ca)

University of Toronto

ALL RIGHTS RESERVED

building original code... done.

dismantling AST’s... done.

linking symbol tables... done.

adding math library conversions... done.

identifier assignment... done.

first-order code instrumentation... done.

building profiling executable... done.

executing first-order instrumented code... time: 0 seconds

change double-precision floating-point to single... done.

float-to-fixed conversion... done.

scalar optimizations... done.

code generation... done.

post-optimization... done.

Beginning bit accurate simulation...

TESTING BENCHMARK uniform.pcm

executing original code... done.

bit accurate simulation...

Running UTDSP Bit-Accurate Simulator...

MaxIntP = 0x7fff, MaxIntN = 0xffff8000

program terminated by input.dsp EOF

Total cycles = 62006

Average parallelism = 2.16142

Total Overflows = 3221

Total Saturations = 0

...done.

REPRODUCTION QUALITY

~~~~~~~~~~~~~~~~~~~~

versus original code (with ANSI C math libraries):

SQNR = 67.2 dB

AC only = 67.3 dB

DC fraction = 2.08 %

Figure C.2: Typical UTDSP Floating-Point to Fixed-Point Conversion Utility Session
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C.2.2 Internal Structure

This section provides high-level documentation of the floating-point to fixed-point conversion util-

ity source code. The mkfxd script calls a number of different executables and these executables

in turn depend upon several shared libraries to ease software management. The most important

passes called by mkfxd, and a brief description of what they do are listed in the order they are

called in Table C.3. Similarly, the shared libraries are listed in Table C.4. The physical depen-

dencies between the various libraries is illustrated in Figure C.3. Note that libsigstats.a’s

dependence upon libObjectID.so is only visible to libf2i.so—from libRange.a’s perspec-

tive this dependence has been eliminated so that profile executables do not need to link with

libObjectID.so or libsuif1.so. This property is summarized by the open circle on the vector

connecting libsigstats.a with libObjectID.so.

libRange.a

?

libf2i.so

j

?

�

U

libAliasAnalysis.so

?

libsigstats.a

?

libDFA.so

�

?

libCFA.so

� ?
libObjectID.so

)

libScalingMode.solibgeneric.a

?

libBitVector.alibCFG.so

q
libsuif1.so

Figure C.3: Software Module Dependencies

.
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Program Dependencies Description

addmath libsuif1.so Find ANSI math library invocations and replace them
with calls to portable versions (distinguished by the prefix
“utfxp ”).

precook libDFA.so This pass enforces certain coding standard expectations in
preparation for index-dependent profiling. Specifically the
loop indices of “simple for loops” are renamed so that a
unique index variable is associated with each simple for loop.
In addition, “loop carried variables” and “loop internal” for
floating-point variables in such loops are isolated by adding
redundant copies before and after the loop, followed by re-
naming.

id assign libScalingMode.so
libAliasAnalysis.so
libObjectID.so
libDFA.so

This pass performs inter-procedural alias-analysis to de-
termine the floating-point alias partitions. These and all
other floating point variables, operands and operations are
then given unique identifiers.

instr code libf2i.so For “first-order” profiling, instrumentation code is in-
serted to record the dynamic range of each floating-point
quantity of interest. For “index-dependent” analysis, ei-
ther the loop index, or the array offset is used to tabu-
late the IWL more context sensitively. In addition, for
“second-order” profiling, the results of “first-order” pro-
filing are used to generate the scaling schedule (cf. f2i

below) which is used to simulate the effects of accumu-
lated rounding-noise.

f2i libf2i.so The actual fixed-point scaling operations are generated
here. All floating-point symbols are converted to fixed-
point.

scalar opt libDFA.so Various scalar optimizations were implemented to round
out those provided by the SUIF distribution.

Table C.3: Floating-to-Fixed Point Conversion Steps
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Library Direct Dependencies Description

libBitVector.a none C++ class for optimized boolean set opera-
tions. Very nifty interface.

libCFG.so libsuif1.so C++ classes for basic control flow analysis.
Provides the control flow graph interface re-
quired for loop detection and data flow anal-
ysis.

libgeneric.so libsuif1.so Frequently used routines for manipulating
SUIF structures.

libObjectID.so libsuif.so C++ classes for appending identifiers onto
SUIF objects and saving/restoring detailed
information to/from persistent storage.

libsigstats.a libObjectID.so Objects for storing and retrieving profile data
to/from persistent storage.

libAliasAnalysis.so libCFG.so Inter-procedural alias-analysis.
Alias-partition generation.

libCFA.so libCFG.so
libBitVector.a

Loop / loop-nest detection.

libDFA.so libCFA.so
libgeneric.a

A generic data flow analysis class library
(SUIF has a rather cumbersome program
called “sharlit” that act as a data flow analy-
sis generator. I found it easier to use my own
library instead.)

libf2i.so libDFA.so
libsigstats.a

Routines for performing fixed-point scaling.

Table C.4: Shared Libraries
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C.3 UTDSP Simulator / Assembly Debugger

This section documents the bitwidth configurable, assembly level simulator/debugger developed
for this thesis. Simulator is invoked from the command line using the command:

DSPsim -w<bitwidth> [-r<mode>] [-e] [-d] <VLIW Assembly File>

The bitwidth parameter, specified by the ‘-w’ option, can be any positive value up to 324. The
‘-r’ option specifies the rounding mode for fixed-point operations, available modes are truncation
(default), convergent (f), and von Neumann (v). The ‘-e’ option halts the simulation on the
first overflow. The ‘-d’ option starts the simulator in debugging mode; in this mode the user is
presented with the following prompt:

(DSPdbg)

At this stage the debugger is waiting for commands from the user. The options available at this
point are summarized in Table C.5, where round parenthesis indicate shortcuts.

4Currently this bitwidth also affects address arithmetic, therefore bitwidths below a certain value may cause
array accesses to be calculated incorrectly. For this investigation datapaths as low as 12 bits were used without
encountering this problem.
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Command Options Description

(b)reak <n>|<label> Break at line number <n>, or when the program

counter reaches <label>

(c)ontinue Continue program execution

(d)elete <n> Delete breakpoint number <n>

(f)inish Finish procedure

(h)elp Print this listing

info [a|d|...] Print one of the following:

a - address registers

d - integer registers

f - floating-point registers

m - data memory

l - line number of next instruction to execute

c - call stack

i - next instruction to execute

b - breakpoints and watchpoints

s - symbol table

(i)nterrupt Interrupt execution

(n)ext Execute the next line (skip over call)

(q)uit Stop execution of the program.

(r)un Begin program execution.

(s)tep Step (into call)

(w)atch [x|y]<addr> break when the value at address <addr> in x or y data

memory changes

[a|d|f]<no> break when the value in register [a|d|f]<no> changes

x stop program execution

Table C.5: DSPsim Debugger User Interface
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Appendix D

Signal-Flow Graph Extraction

Let’s begin by considering the following ANSI C code fragment:

v1 = 0.0;

v2 = 0.0;

for( int i=0; i < N; i++ ) {
y = a1 * v1 + a2 * v2 + x; // statement s1

v2 = v1; // statement s2

v1 = y; // statement s3

}

This code implements the following signal-flow graph:

x - + - + - y

z−1z−1 ��

6
a2

6
a1

After identifying a simple loop structure not containing any nested control-flow the delay elements
may be identified by examining each variable usage in the body of the loop sequentially and
checking to see that it has a subsequent reaching-definition in the body of the loop. At this point
we have the following information:

1. x and y are input and output signals respectively.

2. The usages of v1 and v2 in statement s1 represent delay elements.

The first item would be determined via special compiler directives, or the semantics of the target
platform (i.e. for UTDSP we would consider all input dsp() and output dsp() subroutine calls.
To construct the signal-flow graph, start at the output y and trace back through the graph by
flowing use-def chains. The situation is more complicated when accessing data in arrays: In this
case dependence analysis must be used to identify the delay elements.
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