Numerical Error Minimizing Floating-Point to Fixed-Point
ANSI C Compilation

Tor Aamodt*

Paul Chow

{aamodt ,pc}@eecg.utoronto.ca

Dept. of Electrical and Computer Engineering
University of Toronto, Toronto, Ontario,
M5S 3G4, Canada

Abstract

This paper presents an ANSI C floating-point to
fixed-point conversion capability currently being inte-
grated within an application specific processor archi-
tecture/compiler co-development project at the Univer-
sity of Toronto. The conversion process utilizes profil-
ing data to capture the dynamic range of floating-point
variables and intermediate calculations to guide in the
generation of scaling operations. An algorithm for gen-
erating shift operations resulting in a minimization of
numerical error due to truncation, rounding and over-
flow is presented along with a novel DSP-ISA operation:
fractional-multiplication with integrated left-shift. Im-
provements in SQNR over previous approaches of up to
6.5 dB, 3.0 dB, 7.9 dB and 12.8 dB, equivalent to 1.1,
0.5, 1.0, and 2.1 extra bits of precision carried through-
out the computations are shown for, respectively, a 4"
order IIR filter, 16!" order lattice filter, radix-2 FFT,
and a non-linear feedback control law.

1 Introduction

Many signal processing algorithms are naturally ex-
pressed using a floating-point representation however di-
rect floating-point computation requires either large pro-
cessor die areas, or slow software emulation. In many
embedded applications the resulting system cost and/or
power consumption would be unacceptable requiring the
development of a hand-coded fixed-point equivalent to
the original algorithm. The process of manually con-
verting any but the most trivial algorithms is tedious
and error prone. Theoretical results such as [1], which is

*This research was supported by the Natural Sciences and En-
gineering Research Council of Canada (NSERC) under a PGS ‘A’
post-graduate studies award, and by a research grant from CITO.
Copyright (©1999, Tor Aamodt and Paul Chow.

based upon L; norm analysis, have so far been limited to
either linear time invariant systems, for which they have
been shown to be overly conservative in practice[2], or
applicable only to specific signal processing algorithms
(e.g. adaptive lattice filters[3]). Furthermore, ANSI C,
still the system-level programming language of choice
for many, requires fundamental language extensions to
express fixed-point algorithms effectively[4, 5].

Approaches to aiding the conversion process include
an autoscaling assembler and C++ class libraries used
to provide bit accurate modeling [2, 6, 7]. More re-
cently, and related to our work, development of partially
automated|[8] and fully automated[9, 10] ANSI C conver-
sion systems have been presented. While [8] is directed
at enabling hardware/software co-design, [9] and [10] are
targeted at converting C code with floating-point oper-
ations into C code with integer operations that can then
be fed through the native C compiler for various digital
signal processors. These automated approaches utilize
profiling to excite internal signals and obtain reliable
range information.

Our work in this area is being conducted within
the framework of the Embedded Processor Architecture
and Compiler Research project at the University of
Toronto!. The project focuses on the concurrent in-
vestigation of architectural features and compiler algo-
rithms for application specific instruction-set processors
(ASIPs) with the aim of producing highly optimized so-
lutions for embedded systems [11, 12]. Central to the ap-
proach is the study of a parameterized VLIW architec-
ture and optimizing compiler system, that enables archi-
tectural exploration while targeting a particular appli-
cation. Motivated by these factors our conversion util-
ity directly targets the processor architecture bypassing
the ANSI C source code regeneration step used in [9]
and [10]. This approach allows for easier exploration

Thttp://www.eecg.utoronto.ca/ pc/research/dsp

of ISA features which may not have simple language
equivalents in C. A feature of key importance in our
framework is the ability to simulate ASIPs with various
fixed-point wordlengths, which enables one to find the
minimum wordlength required for implementing an al-
gorithm effectively. The wordlength impacts both the
signal quality of the resulting fixed-point algorithm, as
well as the cycle time and die area of the required proces-
sor. This wordlength exploration capability is enabled
by our fixed-point code generation scheme and processor
simulator, which in addition also allows the exploration
of various rounding modes.

By profiling intermediate calculation results within
expression trees—in addition to values assigned to ex-
plicit program variables, a more aggressive scaling is
possible than those generated by the ‘worst case esti-
mation’ (WC) technique described in [8], or the ‘statis-
tical’ method presented in [9] (designated here as SNU-z,
where z is a problem dependent parameter that must be
adjusted by trial-and-error to avoid scaling overflows).
The latter two techniques start with range information
for only the leaf operands of an expression tree and
then combine range information in a botton up fashion.
In the first instance [8, 13|, a ‘worst-case estimation’
analysis is carried out at each operation, whereby the
maximum and minimum result values are determined
from the maximum and minimum values of the source
operands. In the second instance [9], the mean and stan-
dard deviation of the leaf operands are profiled as well
as their maximum absolute value. This data is used to
generate a scaling of program variables, and hence leaf
operands, that avoids overflow by attempting to pre-
dict from the signal variances of leaf operands whether
intermediate results will overflow—a seemingly tenuous
relationship at best?. However this method does pro-
duce reasonable solutions for a surpisingly large number
of typical DSP applications. In anycase we believe its
apparent problem dependent reliance upon z is undesir-
able.

As our simulation results testify, our intermediate
result profiling (IRP) algorithm, described in Section
2.2.1 produces better code because it actively seeks ap-
parent correlations between the operands in complex
expressions that may be exploited to improve the ac-
tual precision of the computation. Similar to [10], our
system easily deals with recursive functions and point-
ers used to access multiple data items, and unlike [9]
has support for converting floating-point division op-
erations into fixed-point®. By modifying IRP to re-

2For example, certain ‘pathological’ cases like: “1 4 17 give it
extreme difficulty—in this case, as ‘1’ is a constant with no vari-
ance, SNU-z will generate code that produces “0” as the answer
regardless of how big a value of z one considers. This is clearly
undesirable.

3The authors of [9] did not clarify in their later work[10]
whether this had been addressed

distribute shift operations we may, in some cases, ex-
ploit a favourable property of 2’s-complement addition:
if the sum of N numbers fits into a given wordlength, the
result is valid regardless of whether any of the partial
sums overflow. We designate this approach IRP-SA (in-
termediate result profiling with shift absorption). Fur-
thermore, we have observed that when using IRP-SA,
the result of fractional-multiplication operations is often
left-shifted, suggesting that additional precision can be
obtained by introducing a fractional multiplication with
left shift (FMLS) operation into the processor’s ISA to
access additional LSB’s of the result that would other-
wise be truncated (or rounded). Finally, and mostly as
a matter of convenience our system enables automated
conversion of the most frequently used ANSI math li-
braries such as sin(), cos(), atan(), log(), expQ),
and sqrt () by replacing these calls with versions coded
using portable floating-point ANSI C that then become
part of the input to the floating-point to fixed-point con-
version process.

This rest of this paper is organized as follows, Sec-
tion 2 describes our conversion algorithms and the pro-
posed FMLS instruction, Section 3 presents results com-
paring the performance of code generated by our IRP,
& TRP-SA optimization schemes versus WC and SNU-z
both with and without the proposed FMLS operation
for four applications: a cascaded direct-form 4th order
Chebyshev Type II lowpass filter, a lattice filter realiza-
tion of 161 order elliptic bandpass filter, a 1024 point
radix-2 decimation in time fast fourier transform, and
a complex non-linear feedback control law for a rota-
tional inverted pendulum. Finally, Section 4 concludes
and indicates future directions for our work.

2 Floating-to-Fixed-Point Conversion

Fixed-point numerical representations differ from
floating-point in that the location of the binary point
separating the integer and fractional components of a
number is implied in the usage of a number rather than
explicitly represented using a separate exponent and
mantissa. For instance, when adding two numbers to-
gether using an integer ALU the binary-points must be
pre-aligned, eg. by right shifting the smaller operand.
Therefore the conversion process involves first determin-
ing the location of the binary point for each operand and
intermediate result followed by type conversion and the
insertion of scaling operations as outlined in Figure 1.
The conversion utility is realized using the SUIF
compiler infrastructure developed at Stanford*. SUIF
provides a C front end and a flexible intermedi-
ate representation resulting in an extensible opti-
mization framework. Our compiler infrastructure in-
cludes a modification of the MIPS code generator

4http://suif.stanford.edu

Input C Program

(_ SUIF Front End)

ANST Math Library
Replacement

Alias Analysis
+Identifier Assignment,

\

(Instrument Code)

(_Profile)

/

Generate Scaling
Operations

Code Generation /
Detect & Generate
FMLS instructions

(_ Post-Optimizer)

Simulator

Figure 1: Floating-Point to Fixed-Point Conversion

included in the SUIF distribution that targets our
ASIP/DSP architecture[14], a machine independent
scalar optimizer[14], and a post-optimizer used for sev-

eral machine dependent optimizations specific to our
VLIW architecture[15, 16, 17, 12].

2.1 Range Identification

Before scaling operations can be generated, the dynamic
range of all signals to be converted must be determined.
By using a profiling based approach to determine these
ranges we must immediately accept that our conversion
results will only be as reliable as the profile data is at
predicting the inputs seen in practice (i.e. GIGO). How-
ever we believe that a large enough number of signal-
processing applications can be suitably characterized by
profiling data to make this approach useful.

The common practice of using pointers to access
data in C programs necessitates the incorporation of a
context-sensitive interprocedural alias-analysis the re-
sults of which are used to form a partition over the set of
all addressed floating-point data, and all load/store op-
erations of floating-point values through a pointer. To

simplify matters we do not treat C structures or unions,
and treat array elements homogeneously, although data
presented later (see Section 3.2) does indicate in which
direction to generalize the latter restriction. Each bin
in the partition contains data items and load/store
operations so that a common, statically determined
scaling is used for all accesses to a given data item.
These alias-partition bins, all non-addressed floating-
point data items, and all intermediate floating-point cal-
culations are assigned unique floating-point identifiers
with SUIF’s annotation facility for later use during both
code instrumentation and the generation of scaling oper-
ations. After each assignment to a variable, calculation
of an intermediate result, or read/write access of an ar-
ray, profiling code is inserted to record the maximum
and minimum values encountered. SUIF-to-C conver-
sion of the instrumented code is compiled for the host
machine (e.g. a SUN workstation) using gcc to obtain
profiling results very rapidly even for complex applica-
tions.

2.2 Scaling Algorithms

Prior research on automatic float-to-fixed-point conver-
sion has focused on merely getting it work at all[9], or
more recently, minimizing the overhead due to adding
shift operations[10]. For processors with barrel-shifters—
such as ours, the latter reported gains limited to
about 4%. However, at the same time they report
that the speed-up of direct fixed-point execution com-
pared to emulating floating-point varied between 20
for traditional DSP architectures and 400 for deeply
pipelined VLIW architectures (specifically the Texas In-
struments C6x). This has left open the question of
whether the scaling operations can be assigned in such
a way as to minimize the numerical error introduced by
the use of fixed-point arithmetic operations. A limita-
tion of the worst-case estimation technique when pro-
cessing an additive operation is illustrated by the fol-
lowing example: If both source operands take on values
in the range [-1,1] then it may actually be the case that
the result lies within the range [-0.5,0.5], whereas worst
case estimation would determine that it lies within the
range [-2,2], resulting in two bits being discarded unnec-
essarily. In the following three sub-sections we describe
our algorithm and the proposed fractional multiply with
left shift operation which combine to obtain quite rea-
sonable reductions in output signal error.

2.2.1 1IRP: Local Error Minimization

The architecture wordlength (WL) is implicitly divided
amongst the sign bit, integer word length (IWL), and
a fractional word length (FWL). Profiling obtains the
minimum IWL to prevent overflows for each floating-
point identifier thereby uniquely locating the binary-

point for every variable and intermediate-result. Scal-
ing operations® are added to expression trees using a
post-order traversal that incorporates both the gath-
ered IWL information and the current scaling status
of source operands. The current IWL of X indi-
cates the IWL of X given all the shift operations that
have been applied within the sub-expression rooted at
X. Key to our conversion algorithm is the property
IVVLX current > IWLX measured which holds trivially
for leaf operands of the expression tree, and is preserved
inductively by our scaling rules. Essentially, this con-
dition ensures overflow is avoided provided the sample
inputs to the profiling stage gave a good statistical char-
acterization. It is by exploiting the additional informa-
tion in IWLx jeasured that numerical error may be min-
imized by retaining extra precision wherever possible.

As an example, consider the conversion of the
floating-point expression “A + B” into its fixed-point
equivalent, where A and B could be variables, constants
or subexpressions that have already been processed. To
begin we make

ASSllmptiOIl 1 IWLA+B measured < IWLmaz(A,B)

that is, the value of A + B always fits into the larger of
the IWL required to represent A or B, and

ASSllmptiOIl 2 IWL A measured > IWLB current

that is, A is known to take on larger values than B’s
current scaling. Then the most aggressive scaling, i.e.
the scaling retaining the most precision for future oper-
ations without causing overflow, is given by:

A+ B el (A<<ny)+ (B> [n—npl)
where:

nag = IWLA current IWLA measured

np = IVVLB current IVVLB measured

n = IWLA measured — IWLB measured

Note that n 4 and npg are shift amounts required to ‘max-
imize the precision’ in A and B respectively, and n is
the shift required to align the binary points of A and B.
Now, by defining “xr << —n” = “x >> n”, and invoking
similarity to remove Assumption 2, one obtains:

A + B ﬁnwmd A >> [IWLmaz‘ - IWLA current]

+ B >> [IWLmaz - IVVLB current}
and IWL 41 B current = IW Lypgq. If Assumption 1 is not
true, then it must be the case that IWL 44 B measured =
IWL 02 + 1 (¢f. triangle inequality) and instead:

A —+ B ﬂowmdA >> []_ —+ IWLmaw - IWLA current]
+ B > [1 + IWL ;00 — IWLp current]

5as in ANSI C we use the notation “<<” for left shift opera-
tions, and “>>” for right shift operations

with IWL A4 B current = IWL 6+ 1. Note that the prop-
erty IWLa4 B current > IWL AL B measured is preserved
as required, however we do not yet exploit information
such as the possiblity that a positive value of n 4 may in-
dicate precision has been discarded unnecessarily within
the sub-expression rooted at A. We consider this pos-
sibility in the next section. This transformation also
applies without modification to subtraction operations.
We note for future reference that the above transforma-
tion can be thought of as consisting of two steps: One,
the determination of shift values. Two, the insertion
of shift operations into the expression tree (shift inser-
tion). The IRP algorithm is local in the sense that the
determination of shift values impacts the scaling of the
source operands of the current instruction only.

Similarly, for multiplication operations the scaling
applied to the source operands is:

float-to-fized
—

A-B (A << ny)-(B<<np)

where n 4 and np are defined as before, and the resulting
current IWL is given by

IWLA.B current — IWL 4 measured T IWLp measured

For division, we assume that the hardware supports
2-WL bit by WL bit integer division (this is not
unreasonable-the Analog Devices ADSP-2100, Motorola
DSP56000, Texas Instruments Cbx and C6x all have
primitives for just such an operation) in which case the
scaling applied to the operands is:

A float-to-fized A>> [ndividend - HA}
— —

B B <« np

where ny and np are again defined as before and
Ngividend 1S given by:

Daify = IWL% measured IWLA measured
+ IVVLB measured
Ndividend Ngig , if ngp>0
Ngividend = 0 , otherwise

with the resulting current IWL given by:
IWL% current = Ndividend + 1+ 1

This scaling is combined with the assumption that the
dividend is “shifted” into the upper word by a left shift
of WL — 2 by the division operation. Note that unlike
previous operations, for division knowledge of the result
IWL is also necessary apriori to successfully generate the
scaling operations (i.e. the IWL of the quotient can not
be determined from knowledge of the IWL of the divi-
dend and divisor). We believe that this is why [9] does
not present a procedure for converting division (for our
test cases we used the above method even when evalu-
ating the SNU-z algorithm—however this only affects the
feedback control test case). The worst case estimation

operand ShiftAbsorption(operand OP,
integer SHIFT)
{
// OP: Operand to apply scaling to.
// SHIFT: Desired amount to shift OP
// (negative means left shift).
//
// RESULT: The new sub-expression with
// SHIFT applied to OP
if (SHIFT == 0) return OP;
if (OP is a constant or symbol)
return (OP >> SHIFT);
else if(OP is an additive instruction) {
integer Na = current shift applied to A
integer Nb = current shift applied to B
operand A, B = source operands of OP w/o
scaling
if (SHIFT < 0) {
A = ShiftAbsorption(A, Na + SHIFT)
B = ShiftAbsorption(B, Nb + SHIFT)
return 0OP;
} else { // SHIFT > 0
if(Na, Nb <= 0) {
integer Nmax = max(Na, Nb)
if (-Nmax > SHIFT)
Nmax = -SHIFT
A = shiftAbsorption(A, Na-Nmax)
B = ShiftAbsorption(B, Nb-Nmax)
SHIFT += Nmax
} else {
A = ShiftAbsorption(A, Na)
B = ShiftAbsorption(B, Nb)
}
}
}
return OP >> SHIFT
}

Figure 2: Shift Absorption Procedure

algorithm handles division easily because it can bound
the quotient using the maximum absolute value of the
dividend and the minimum absolute value of the divisor.

2.2.2 IRP-SA: Using ‘Shift Absorption’

As noted earlier, 2’s-complement integer addition has
the favourable property that if the sum of N numbers is
a number which fits into the available wordlength then
the correct result is obtained regardless of whether any
of the partial sums overflows. This property can be ex-
ploited, and at the same time some redundant shift op-
erations may be eliminated if a left shift after an additive
operation is transformed into two equal left shift oper-
ations on the source operands. If the source operands
already have right shift operations applied to them, the
right shift operations can be reduced or eliminated, re-
sulting in the retention of extra precision and the reduc-
tion of numerical error due to truncation or rounding.

Full 8 by 8 bit Product

HNEEEEEENEEEN e

Result

(a) Integer Product (8.0 format)

(b) Fractional Product (1.7 format)

cf. fractional multiplication followed
by a left shift logical of 2 bits

(¢) Fractional Multiply with Left Shift

Figure 3: Different Formats for 8 x 8 bit Multiplication

The resulting shift absorption procedure (see Figure 2)
is used to augment IRP by replacing the shift insertion
phase described earlier.

2.2.3 Fractional Multiply with Left Shift

A fractional fixed-point number has integer word length
zero and takes on values in the range [-1,1). As noted in
the introduction, when using IRP-SA, a large number
of fractional-multiplication operations, which produce
results in the range [-1,1), where found to be directly
followed by non-saturating left shift operations indicat-
ing that extra precision could also be retained in many
multiplication operations. However, the typical DSP in-
struction set architecture does not provide access to the
necessary and available information. Typically DSPs
have a fractional multiplication instruction that take
two fractional operands represented by WL bits and pro-
duces a fractional result represented by WL bits. The
full product computed by the hardware is however 2-WL
bits long and the extra bits are usually either truncated
or rounded into the LSB of the result. We propose that
a new operation, Fractional Multiply with Left Shift be
made available to access the LSBs that would other-
wise be removed unnecessarily (see Figure 3), when the
sequence of operations, illustrated in Figure 4, occurs.
As we shall see in the next section, this extra degree
of freedom allows for non-trivial improvements in signal
quality.

result

|

<<

/N

X shift amount

RN

a b

Figure 4: Fractional Multiply with Left Shift Code-
Generation Pattern

3 Experimental Results

To measure the fidelity of the converted code we use
the signal to quantization noise ratio (SQNR) defined as
the ratio of the signal power to the quantization noise
power. The ‘signal’ in this case is the application out-
put using double precision floating-point arithmetic, and
the ‘noise’ is the difference between this and the output
generated by the fixed-point code. We have selected
results for four typical yet disparate digital signal pro-
cessing tasks to illustrate the effectiveness of the two
algorithms put forward in this paper both alone and in
conjunction with the proposed fractional-multiply with
left shift operation: A 40 order Chebyshev type II low-
pass filter using a direct-form IIR filter realization, a
160 order elliptic bandpass filter using a pole-zero I1IR
lattice filter realization, a 1024 point radix-2 decimation
in time fast fourier transform, and a complex non-linear
feedback control law.

3.1 4th0rder Direct-Form IIR Filter

The filter was designed using MATLAB’s cheby2 com-
mand designing for stopband ripple suppression of 40 dB
and a normalized passband and stopband edge frequen-
cies of 0.1 and 0.2 respectively (see Figure 5) and the
resulting transfer function was processed using tf2sos
to obtain a high quality pairing of poles and zeros for
two cascaded second-order direct-form ITR sections.
The simulation results for both 14-bit and 16-bit
implementations are listed in Table 1 using a 1000 point
white-noise input sequence. The table lists the SQNR
after any constant offset due to accumulated truncation
error has been removed (this offset is greatly affected
by the ordering of negation and multiplication in sum of
products expressions when truncation is used as opposed
to rounding). Below we show three code fragments, the
first is the original code expressed in ANSI C (Figure 6),

Magnitude (dB)

-100 1 1 1 1 1 1 1 1 I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (xmrad/sample)

Phase (degrees)

Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (xmrad/sample)

Figure 5: 4thOrder IIR Filter Transfer Function

-300 L L L I

the second is the 16-bit version generated by IRP (Fig-
ure 7), and the third version is the 16-bit version gener-
ated by IRP-SA (Figure 8).

double A1[3] = { 1, 0.5179422053046, 1.0 };
double b1[2] = { 1.470767736573, 0.5522073405779 };
double A2[3] = { 1, 1.633101801841, 1.0 };
double b2[2] = { 1.742319554830, 0.820939679242 };
double D1[2], D2[2];
void iir4(double *x, double *y)
{

double x1, yi1, t1, t2;

x1 = 0.0117749388721091* *x;

// stage onme:

tl = x1 + b1[0]*D1[0] - b1[1]*D1[1];

yl = A1[0]*t1 - A1[1]%D1[0] + A1[2]*D1[1];

D1[1] = D1[0];

D1[0] = t1;

// stage two:

t2 = y1 + b2[0]*D2[0] - b2[1]*D2[1];

*xy = A2[0]*t2 - A2[1]%D2[0] + A2[2]*D2[1];

D2[1] = D2[0];

D2[0] = t2;
}

Figure 6: 40 Order IIR: Original Floating-Point Code

Note that the converted versions are expressed in
a pseudo-C language: all explicit multiplication opera-
tions are taken here to be fractional rather than inte-
ger. These figures clearly show where the shift absorp-
tion algorithm has uncovered numerous opportunities to
exploit the modular nature of 2’s-complement addition.
Furthermore they show that the fractional-multiply with

int A1[3] = { 16384, 8486, 16384 };
int b1[2] = { 24097, 9047 };
int A2[3] = { 16384, 26757, 16384 };
int b2[2] = { 28546, 13450 };
int D1[2], D2[2];
void iir4(int *x, int *y)
{
int x1, y1, t1, t2;
x1 = 24694 * *x << 1;
t1 = (x1>>3) + (b1[0]*D1[0]<<1) - (b1[1]*D1[1] << 1);
y1 = (A1[0]*t1<<1) - (A1[1]%D1[0]<<1) + (A1[2]*D1[1]<<1);
D1[1] = D1[0];
D1[0] = t1;
t2 = ((y1>>5) + b2[0]*D2[0] - b2[1]*D2[1]) << 1;
xy = (A2[0]*t2 - A2[1]1xD2[0]1<<1) + (A2[2]*D2[1]<<1) << 2;
D2[1] = D2[0];
D2[0] = t2;
}
Figure 7: 4th Order IR Filter: IRP version
int A1[3] = { 16384, 8486, 16384 };
int b1[2] = { 24097, 9047 };
int A2[3] = { 16384, 26757, 16384 };
int b2[2] = { 28546, 13450 };
int D1[2], D2[2];
void iir4(int *x, int *y)
{
int x1, y1, t1, t2;
x1 = 24694 * *x << 1;
tl = (x1>>3) + (b1[0]*D1[0]<<1) - (b1[1]*D1[1]<<1);
y1 = (A1[0]*t1<<1) - (A1[1]%D1[0]<<1) + (A1[2]*D1[1]<<1);
D1[1] = *Di;
D1[0] = t1;
t2 = (y1>>4) + (b2[0]*D2[0]<<1) - (b2[1]*D2[1]<<1);
*y = (A2[0]*t2<<3) - (A2[1]*D2[0]1<<3) + (A2[2]*D2[1]<<3);
D2[1] = D2[0];
D2[0] = t2;
}

Figure 8: 4th Order TIR Filter: IRP-SA version

left shift applies to every fractional multiplication oper-
ation. The SQNR results shown in Table 1 verify the
expected improvements in signal quality do occur.

3.2 16th0rder Lattice Filter

The next example is a 160 order elliptic bandpass filter,
designed as with the previous example using MATLAB.
The transfer function is shown in Figure 9 and the orig-
inal floating-point source code is shown in Figure 10.
The filter was excited with 1000 point white noise in-
put sequence and one of the resulting 32-bit pseudo-C
realizations (IRP-SA) is shown in figure 11.

We found the performance disappointing here and
partially motivated by the notion of iteration dependant
analysis introduced in [8] we investigated further to find
that the dynamic range of the program variables ‘x’,
‘y’, and ‘state’ were very large. Then, by unrolling the

14 Bit 16 Bit
Algorithm || w/o FMLS | w/ FMLS || w/o FMLS | w/ FMLS
SNU-4 44.7 dB 44.7 dB 56.4 dB 56.4 dB
SNU-2 48.3 dB 48.3 dB 60.4 dB 60.4 dB
SNU-0 48.3 dB 48.3 dB 60.4 dB 60.4 dB
wC 45.6 dB 45.6 dB 57.1 dB 57.1 dB
IRP 49.2 dB 49.3 dB 60.9 dB 62.0 dB
IRP-SA 48.8 dB 53.5 dB 61.0 dB 66.9 dB

Table 1: SQNR (AC only) — 4™ Order IR Filter

or 4
@
h=A
o —20F B
k<l
2
S-40 b
(]
=
-60
-80 I I I m I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (xmrad/sample)
1000
& 500F b
Q
Q
<3
Q
z 0
@
@
£
& -500 e
-1000 I I I I I I I I I
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Normalized Frequency (xmrad/sample)
. th . . .
Figure 9: 16" Order Lattice Filter Transfer Function

loop and renaming ‘usage-definition’ webs for ‘x’ and
‘y’ (which act as “accumulators”) and by allowing each
element of array ‘state’ and ‘V’ to have an independent
IWL the dramatic improvements in signal quality shown
in Table 2 were obtained (note that the second column
is for a 16 bit implementation!).

32 Bit w/o Loop Unrolling 16 Bit w/ Loop Unrolling

Algorithm w/o FMLS | w/ FMLS w/o FMLS | w/ FMLS
SNU-4 22.8 dB 22.8 dB 47.1 dB 47.0 dB
SNU-2 27.9 dB 27.9 dB 13.3 dB 13.3 dB
SNU-0 36.1 dB 36.1 dB 13.3 dB 13.3 dB
WC 28.1 dB 28.1 dB 48.3 dB 48.3 dB
IRP 36.1 dB 36.2 dB 51.3 dB 51.3 dB
IRP-SA 36.1 dB 36.2 dB 51.3 dB 50.9 dB

Table 2: SQNR — 161 Order Lattice Filter

Although the loop-unrolling and renaming de-
scribed was carried out manually for this example, hav-
ing decided to do the transformation—a process that the
following analysis is intended to illustrate—the required
code modifications are easy to automate. As per [8] this

#define N 16;
double state[N+1], K[N], VIN+1];

double lattice(double x)
{
double y = 0.0;
for(i=0; i < N; i++) {
x = x - K[N-i-1]*state[N-i-1];
state[N-i] = state[N-i-1] + K[N-i-1]*x;
y =y + V[N-il*state[N-il;

state[0] = x;
return y + V[0]*state[0];

Figure 10: 16t Order Lattice Filter: FloatPt Version

#define N 16;
int state[N+1], K[N], V[N+1];

int lattice(int x)

{
int i, y = 0;
for(i=0; i < N; i++) {
x = x - K[N-i-1] * state[N-i-1];
state[N - i] = state[N-i-] + K[N-i-1] * x;
y =y + (V[N-i]l*state[N-i] << 17);
state[0] = x;
return y + (V[0]*state[0] << 17);
}

Figure 11: 16t Order Lattice Filter: 32-bit FixedPt

loop may not even require unrolling: Seperate iterations
of the loop could use the same inner loop structure but
with index dependent shift values. We note that addi-
tional control structure could be avoided with the avail-
ability of a shift operation that performed arithmetic
shift right, or arithmetic shift left depending upon the
sign of the index dependent shift values. Further analy-
sis of the impact on execution time is required to verify
whether this is warrented.

For this specific example Figures 12, 13, 14, and 15
show histograms of IWL relative frequencies over either
loop indicies or array elements for the internal state,
x accumulator, y accumulator, and ladder coefficients
repectively of the lattice filter. One of the nice proper-
ties of lattice filters is that the lattice coefficients are all
of roughly the same magnitude. In this case there is no
loss of precision by assuming an IWL of zero for all lat-
tice coefficients. Interestingly, when each element of the
internal state vector is profiled separately the average
of the standard deviations of the values assigned to any
one particular state element was found to be only 4.3
bits, versus the range of at least 25 bits exhibited across

state elements as evident in Figure 12. Similarly, for the
accumulators x and y the loop index dependent values
vary with standard deviation equivalent to 1.9 and 1.8
bits, versus 25 and 9 bits across loop indicies!

15

Relative Frequency (percentage of loop indices)

10 15 20 25 30 35 40 45
Integer Wordlength

Figure 12: Lattice Filter: Internal State Wordlength Distri-
bution (Over Array Indices)

15

Relative Frequency (percentage of loop indices)

10 15 20 25 30 35 40 45
Integer Wordlength

Figure 13: Lattice Filter: x Integer Wordlength Distribution

3.3 Radix-2 Decimation in Time FFT

The results for implementing a 1024-point radix-2 dec-
imation in time FFT are listed in Table 3. In this case
significant gains are obtained using both the IRP or
IRP-SA algorithm with the FMLS instruction.

3.4 Rotational Inverted Pendulum

The rotational inverted pendulumn® is a testbed for
testing advanced non-linear control design algorithms.

6see http://www.control.utoronto.ca/ bortoff/pendulum.html

o
=}

Relative Frequency (percentage of loop indices)
= = N w w B S
o u1 al o a1 o a1
T T T T T T T

o
T

Il Il Il
5 6 7 8 9 10 11 12 13 14
Integer Wordlength

Figure 14: Lattice Filter: y Integer Wordlength Distribution

18

16

14

12
g
oy
£10
g
g
fin
s 8
Z
[
['4

6

4

2

0]

-30 -25 -20 -15 -10 -5

Integer Wordlength

Figure 15: Lattice Filter: Ladder Coefficient Integer

Wordlength Distribution

We obtained the original source code for a controller
used to stabilize the pendulum about it’s unstable equi-
librium point that was generated automatically from a
high-level description by Bortoff[18] using Mathemath-
ica. The code involves 23 transcendental function eval-
uations, 1835 multiplications, 21 divisions, and rougly
1000 additions and subtractions. Furthermore, many
expression trees in this code contain over 100 arithmetic
operations. The converted codes exhibits excellent per-
formance, even at wordlengths as low as 12 bits using
IRP-SA with FMLS (see Figure 16 which contrasts the
performance of WC, IRP, and IRP-SA w/ FMLS all us-
ing a 12 bit wordlength). The conversion results are
summarized in Table 4 and show considerable gains due
to IRP, and the FMLS instruction in combination.

14 Bit 16 Bit
Algorithm || w/o FMLS | w/ FMLS || w/o FMLS | w/ FMLS
SNU-4,20 || 28.7dB 28.7 dB 36.7 dB 36.7 dB
wc 28.7 dB 28.7 dB 36.7 dB 36.7 dB
IRP 28.7 dB 34.9 dB 36.7 dB 44.6 dB
IRP-SA 28.7 dB 34.9 dB 36.7 dB 44.6 dB

Table 3: SQNR — 1024-Point Radix-2 FFT

we IRP-SA using FMLS instructions

6 4
\ / double precision floating-point ———
, <

~

v
Ly

i
I
|
|
)
i
)
\

IRP-SA 7

Step Input (Control Reference)

Il Il Il Il
4 6 8 10 12
Time (seconds)

Figure 16: Pendulum Step Response — 12 Bits

4 Conclusions and Future Work

A profiling based algorithm for the generation of scaling
operations was presented in conjuction with a proposed
Digital Signal Processor ISA extension: a fractional-
multiply with left-shift operation. Non-trivial improve-
ments in signal quality over previous conversion ap-
proaches were illustrated. By interpolating the data
presented in tabular form earlier it is seen that improve-
ments equivalent to carrying up to 2.1 extra bits of pre-
cision throughout the computation are achievable by us-
ing IRP-SA in conjunction with the proposed fractional-
multiply with left-shift operation.

Along with the ‘loop unrolling’ technique discussed
in Section 3.2, and renaming methods in general, a whole
class of structural transformations that may be indicated
by the profile data are yet to be investigated. For ex-
ample, the order of evaluation of equal precedence sum-
mation operations can impact the numerical trustwor-
thiness of an algorithm when the operands have differ-
ing IWLs. Profile data may also indicate how to utilize
extended precision arithmetic to fine-tune the trade-off
between speed and signal quality.

The IRP algorithm produces code that generally
causes very few (if any) overflows, and only for small ar-
chitectural wordlengths. When the do occur, overflows

14 Bit 16 Bit
Algorithm || w/o FMLS | w/ FMLS || w/o FMLS | w/ FMLS
SNU-4 4.0 dB 42.7 dB 30.7 dB 54.9 dB
SNU-2 37.9 dB 48.4 dB 49.6 dB 60.0dB
SNU-0 44.2 dB 57.9 dB 55.8 dB 69.5 dB
wC 47.3 dB 54.3 dB 59.2 dB 66.1 dB
IRP 53.1 dB 58.4 dB 65.8 dB 71.8 dB
IRP-SA 52.8 dB 59.4 dB 64.4 dB 72.0 dB
Table 4: SQNR - Rotational Inverted Pendulum

are due to rounding errors that accumulate to affect the
dynamic ranges of internal signals. We believe this effect

can

best be allieviated by using the following two-pass

approach to range-estimation: First-Order Evaluation,
which estimates ranges as outlined in this paper, imme-
diately followed by a Second-Order Evaluation, which
uses a modified version of the profile code that includes a
rounding-noise model (injecting simulated rounding er-
rors into appropriate locations, and with the approapri-

ate

distribution as determined by the First-Order Eval-

uation, in the floating-point profile code).

References

[1]

Leland B. Jackson. On the Interaction of Round-
off Noise and Dynamic Range in Digital Filters.
The Bell System Technical Journal, 49(2), Febru-
ary 1970.

Seehyun Kim and Wonyong Sung. A Floating-Point
to Fixed-Point Assembly Program Translator for
the TMS 320C25. IEEE Trans. Circuits and Sys-
tems II, 41(11), November 1994.

V. John Mathews and Zhenhua Xie. Fixed-Point
Error Analysis of Stochastic Gradient Adaptive
Lattice Filters. IEEE Trans. Acoustics, Speech and
Signal Processing, 38:70-80, 1990. Issue 1.

Kevin W. Leary and William Waddington. DSP/C:
A Standard High Level Language for DSP and Nu-
meric Processing. In Proceedings of the ICASSP,
pages 10651068, 1990.

Wonyong Sung and Jiyang Kang. Fixed-Point C
Language for Digital Signal Processing. In Proc.
29th Annual Asilomar Conf. Signals, Systems, and
Computers, volume 2, pages 816-820, October
1996.

William Cammack and Mark Paley. FixPt: A C++
Method for Development of Fixed Point Digital Sig-
nal Processing Algorithms. In Proc. 27th Annual
Hawaii Int. Conf. System Sciences, 1994.

10

[7]

[10]

[11]

[12]

[13]

[18]

Seehyun Kim and Wonyong Sung. Fixed-Point Op-
timization Utility for C and C++ Based Digital
Signal Processing Programs. IEEE Trans. Circuits
and Systems II, 45(11), November 1998.

Markus Willems, Volker Bursgens, Thorsten
Grotker, and Heinrick Meyr. FRIDGE: An Inter-
active Code Generation Environment for HW/SW
CoDesign. In Proceedings of the ICASSP, April
1997.

Ki-II Kum, Jiyang Kang, and Wonyong Sung.
A Floating-point to Fixed-point C Converter for
Fixed-point Digital Signal Processors. In Proc. 2nd
SUIF Compiler Workshop, August 1997.

Ki-Il Kum, Jiyang Kang, and Wonyong Sung. A
Floating-Point to Integer C Converter with Shift
Reduction for Fixed-Point Digital Signal Proces-
sors. In Proceedings of the ICASSP, volume 4, pages
2163-2166, 1999.

Mazen A.R. Saghir, Paul Chow, and Corinna G.
Lee. Application-Driven Design of DSP Architec-
tures and Compilers. In Proc. ICASSP, pages 11—
437-11-440, 1994.

Mazen A.R. Saghir. Application-Specific
Instruction-Set Architectures for Embedded DSP

Applications. PhD thesis, University of Toronto,
1998.
Markus Willems, Volker Bursgens, Thorsten

Grotker, and Heinrick Meyr. System Level Fixed-
Point Design Based on an Interpolative Approach.
In Proc. 84th Design Automation Conference, 1997.

Sanjay Pujare, Corinna G. Lee, and Paul Chow.
Machine-Independant Compiler Optimizations for
the UofT DSP Architecture. In Proc. 6th ICSPAT,
pages 860-865, October 1995.

Vijaya Singh. An Optimizing C Compiler for a Gen-
eral Purpose DSP Architecture. Master’s thesis,
Univeristy of Toronto, 1992.

Mazen A.R. Saghir. Architectural and Compiler
Support for DSP Applications. Master’s thesis,
University of Toronto, 1993.

Mark G. Stoodley and Corinna G. Lee. Software
Pipelining Loops with Conditional Branches. In
Proc. 29th IEEE/ACM Int. Sym. Microarchitec-
ture, pages 262-273, December 1996.

Scott A. Bortoff. Approximate State-Feedback Lin-
earization using Spline Functions. Automatica,

33(8), August 1997.

