
Emerald: Graphics Modeling for SoC Systems
Ayub A. Gubran and Tor M. Aamodt

Department of Electrical and Computer Engineering

University of British Columbia

{ayoubg,aamodt}@ece.ubc.ca

ABSTRACT
Mobile systems-on-chips (SoCs) have become ubiquitous comput-

ing platforms, and, in recent years, they have become increasingly

heterogeneous and complex. A typical SoC includes CPUs, graphics

processor units (GPUs), image processors, video encoders/decoders,

AI engines, digital signal processors (DSPs) and 2D engines among

others [33, 70, 71]. One of the most significant SoC units in terms

of both off-chip memory bandwidth and SoC die area is the GPU.

In this paper, we present Emerald, a simulator that builds on ex-

isting tools to provide a unified model for graphics and GPGPU

applications. Emerald enables OpenGL (v4.5) and OpenGL ES (v3.2)

shaders to run on GPGPU-Sim’s timing model and is integrated

with gem5 and Android to simulate full SoCs. Emerald thus pro-

vides a platform for studying system-level SoC interactions while

including the impact of graphics.

We present two case studies using Emerald. First, we use Emer-

ald’s full-system mode to highlight the importance of system-wide

interactions by studying and analyzing memory organization and

scheduling schemes for SoC systems. Second, we use Emerald’s

standalone mode to evaluate a novel mechanism for balancing the

graphics shading work assigned to each GPU core.

CCS CONCEPTS
• Computing methodologies → Modeling and simulation;
Graphics processors; • Computer systems organization →

System on a chip; Heterogeneous (hybrid) systems.

KEYWORDS
GPU, Graphics, SoC, Simulation

ACM Reference Format:
Ayub A. Gubran and Tor M. Aamodt. 2019. Emerald: Graphics Modeling

for SoC Systems. In The 46th Annual International Symposium on Computer
Architecture (ISCA ’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3307650.3322221

1 INTRODUCTION
The end of Dennard scaling has resulted in limits to the percentage

of a chip that can switch at full frequency [27]. This has lead to

increasing use of specialized accelerator cores in heterogeneous

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00

https://doi.org/10.1145/3307650.3322221

systems [33] and heterogeneous systems-on-chips (SoCs) are now

ubiquitous in energy-constrained mobile devices.

With the increasing prevalence of heterogeneous SoCs there is

a commensurate need for architectural performance models that

model contemporary SoCs. Although existing performance models

such as gem5 [17] and MARSSx86 [55] enable running a full oper-

ating system, they lack an ability to capture all hardware due to the

absencemodels for key elements such as graphics rendering [28, 62].

The exclusion of such key components limits researchers’ ability to

evaluate common use cases (e.g., GUI and graphics-intensive work-

loads), and may lead researchers to develop solutions that ignore

significant system-wide behaviors. A recent study [62] showed that

using software rendering instead of a hardware model “can severely

misrepresent” the behavior of a system.

To provide a useful model for studying system-wide behavior we

believe an architecture model for a contemporary heterogeneous

SoC must: (1) support a full operating system software stack (e.g.,

Linux and Android), (2) model the main hardware components

(e.g., CPU, GPUs and the memory hierarchy), (3) provide a flexible

platform to model additional special components (e.g., specialized

accelerators). A tool that meets these requirements would allow

architecture researchers to evaluate workloads capturing the intri-

cate behavior of present-day use-cases, from computer games to

artificial intelligence and augmented reality.

The gem5 simulator [17] can evaluate multicore systems in-

cluding executing operating system code and has been extended

to model additional system components. Table 1 compares vari-

ous frameworks for modeling GPU enabled SoCs including Gem-

Droid [20], gem5-gpu [56]. These two simulators extend gem5 to

capture memory interactions and incorporate existing GPGPUmod-

els, respectively. GemDroid uses multiple single-threaded traces

of a modified Android emulator that captures events (e.g., IP core

invoked via an API call) and adds markers in the instruction trace.

When an event is encountered while replaying an instruction trace

memory traffic generated by that event is injected while pausing

instruction execution. Multiprogrammed parallelism is modeled by

replaying multiple independent single-threaded traces. Using static

traces limits the ability to capture intricate system interactions or

to evaluate ideas that exploit low-level system details. While gem5-

gpu adds a GPGPU model to gem5, it does not support graphics

workloads.

In this paper, we introduce Emerald, a GPU simulator. Emerald is

integrated with gem5 to provide both GPU-only and full-system per-

formance modeling meeting the three requirements above. gem5-

emerald builds on GPGPU-Sim [16] and extends gem5 full-system

simulation to support graphics. Emerald’s graphics model is able

to execute graphics shaders using the same model used by GPGPU-

Sim thus enabling the same microarchitecture model to be used

for both graphics and GPGPU workloads. Additional models were

https://doi.org/10.1145/3307650.3322221
https://doi.org/10.1145/3307650.3322221

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Gubran and Aamodt

CPU Core
L1
L2

CPU Core
L1
L2

❶

CPU NoC

System NoC

DMA
Devices DRAM

❺

❻ ❼

L2

GP
U

 N
oC L1

Caches
L1

Caches

SC

SC

GPU
❷

❸
❹

Figure 1: Overview of gem5-emerald HW architecture

added to support graphics-specific functions. In addition, to use

Emerald under a full-system SoC model, we modified Android to

add a driver-like layer to control our GPU model.

We employ Emerald in two case studies. In the first, we use gem5-

emerald full-system to re-evaluate work [20, 74] that used trace-

based simulation to evaluate memory scheduling and organization

schemes for heterogeneous SoCs. This case study demonstrates

issues that are difficult to to detect under trace-based simulation.

The second case study uses the stand-alone GPU to evaluate dy-

namic fragment shading load-balancing (DFSL), a novel technique

that dynamically balances fragment shading across GPU cores.

DFSL employs “temporal coherence” [63] – similarity of succes-

sively rendered frames – and can reduce execution time by 7.3-19%

over static work distribution.

Simulator Model GPU Model FS Simulation
GPGPU Graphics

gem5 Execution driven No No Yes

GemDriod Trace driven No Yes No

gem5-gpu Execution driven Yes No Yes

Emerald Execution driven Yes Yes Yes

Table 1: Simulation platforms

The following are the contributions of this paper:

(1) Emerald
1
, a simulation infrastructure that extends GPGPU-

Sim [16] to provide a unified simulator for graphics and

GPGPU workloads;

(2) An infrastructure to simulate SoC systems using Android

and gem5;

(3) A study of the behavior of memory in SoC systems high-

lighting the importance of detailed modeling incorporating

dependencies between components, feedback from the sys-

tem, and the timing of events;

(4) DFSL, a dynamic load-balancing technique exploiting graph-

ics temporal coherence to improve GPU performance.

2 EMERALD SOC ARCHITECTURE
Figure 1 shows an overview of the SoC architecture that gem5-

emerald models. The SoC model consists of a CPU cluster (1) with

either in-order or out-of-order cores with multiple cache levels. The

GPU cluster (2) consists of multiple GPU shader cores (SCs). Each

1
The source code for Emerald can be found at https://github.com/gem5-graphics/

gem5-graphics

Draw
call①

② Vertex data Vertex
shading③ Primitive

assembly ④

Clipping
& Culling⑤ Rasterization⑥ Fragment

shading⑦

Raster
Ops⑧ Framebuffer⑨ Done

Figure 2: OpenGL pipeline realized by Emerald

SC consists of multiple execution lanes executing multiple GPU

threads in a lock-step manner. GPU threads are organized in groups

of 32 threads, i.e., warps [53].

In our baseline design, GPU L1 caches (3) are connected to

a non-coherent interconnection network; meanwhile, the GPU’s

L2 cache (4) is coherent with CPU caches (following a similar

design to [56]). The system network (5) is a coherent network

that connects the CPU cluster, the GPU cluster, DMA devices 6
(e.g., display controllers) and the main memory 7 .

It is relatively easy to change the connections and network types

(gem5 provides several interchangeable network models). We use

gem5 classic network models as they provide efficient implementa-

tions for faster full-system simulation, which can consume a con-

siderable amount of time with slower models that do not support

fast-forwarding (e.g., gem5 Ruby). The number of CPUs, GPU’s SCs,

the type and number of specialized accelerators and the on-chip net-

work connecting them are widely configurable as well. Additionally,

cache hierarchies and coherence are also configurable.

3 GRAPHICS ARCHITECTURE
Below we describe the OpenGL pipeline and graphics hardware

modeled in Emerald.

3.1 Graphics Pipelines
Figure 2 shows the OpenGL pipeline realized by Emerald. An

OpenGL API draw call (1) sends vertex data (2) to the ver-

tex shading stage (3). Vertex data includes 3D positions and other

optional vertex attributes such as color, texture coordinates and

normal vectors. The vertex shading stage transforms 3D vertex coor-

dinates to 2D screen-space coordinates by running a vertex shader

program. After vertex shading, vertex positions and attributes are

are passed to primitive assembly (4), which converts a stream of

screen-space vertices to a sequence of base primitives (triangles,

triangle fans or strips as per the current OpenGL configuration).

Assembled primitives then proceed through clipping and culling

stages (5). Trivially invisible back-faced and out of rendering

volume primitives are discarded. Primitives that fall partially out-

side the rendering volume are clipped into smaller primitives. The

resulting triangles proceed to the rasterization stage (6).

Rasterization is the generation of fragments from primitive ver-

tices by interpolating position attributes and any additional op-

tional attributes. Optional variable attributes, such as texture or

any user-defined variable attributes, are only interpolated when

enabled. Other user-defined attributes (uniform attributes), are not

interpolated and hold the same value across vertices/fragments.

https://github.com/gem5-graphics/gem5-graphics
https://github.com/gem5-graphics/gem5-graphics

Emerald: Graphics Modeling for SoC Systems ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

The rasterization stage passes the generated fragments and the

corresponding attributes to the fragment shading stage.

The fragment shading stage (7) is, typically, the most compute

intensive stage in the pipeline. User-defined fragment shaders pro-

cedurally apply lighting computation to each fragment. Texture

lookups and fragment coloring are performed at this stage. Once

the associated fragment shader program transforms fragments, they

are sent to the raster operations stage (8).

The raster operations stage is where procedures like blending,

depth testing and stencil operations are applied. For blending, frag-

ments are blended with the corresponding pixels on the frame-

buffer (9). In depth testing, each fragment depth is compared

against the corresponding depth value in the depth buffer. If a frag-

ment passes the depth test, the new fragment is written to the

framebuffer (overwriting the previous value); otherwise, the frag-

ment is invisible and discarded. Stencil operations work similarly to

depth testing, where a stencil buffer is used as a mask to determine

which fragments can be written to the framebuffer.

3.2 Contemporary Graphics Architectures
The abstract nature of graphics APIs, such as an OpenGL pipeline

like that described in Section 3.1 or Direct3D facilitates a large

design space for GPU hardware as evidenced by the wide rage of

vendor architectures [4, 10, 18, 21, 23, 60, 72].

Emerald builds on theNVIDIA-like GPUmodel in GPGPU-Sim [16]

version 3.2.2. Like all contemporary GPUs, Emerald implements

a unified shader model rather than employing different hardware

for different shader types. Although many mobile GPUs employ

tile-based rendering [23, 60, 72], Emerald, follows a hybrid design

similar to that of Nvidia’s [21], which is employed in Nvidia’s dis-

crete and mobile GPUs [51, 52]. This hybrid approach combines

aspects of immediate-mode rendering (IMR) and tile-based render-

ing (TBR).

IMR architectures process primitives fully, including fragment

shading, according to their draw call order. For each primitive, the

GPU performs vertex shading operations on world-space primitives

to produce the corresponding screen-space versions along with

their attributes. The GPU rasterizes the screen-space primitives to

create fragments that are input to the fragment shading stage.

Mobile GPU vendors use TBR architectures [10, 18, 23, 60, 72]

to reduce off-chip memory footprint and power consumption. TBR

architectures reduce the cost of fragment shading, which often

dominates the cost of rendering, by binning geometry across a set

of 2D tiles in screen-space then rendering using an on-chip buffer.

An initial binning pass performs vertex shading on all primitives

in a scene and stores the resulting screen-space primitives in off-

chip per tile memory bins. Then a follow-up rasterization pass

renders the content of each tile by processing the geometry in the

corresponding bin. Main memory accesses are avoided using an

on-chip tile buffer for depth testing and blending.

Complex geometry can reduce performance on TBR architec-

tures relative to IMR due to binning overhead. Thus, ARM uses a

hierarchical tiling scheme [23] to reduce the number of primitives

stored in memory bins in geometry-dense scenes, while Qualcomm

can support both IMR and TBR [57].

Input
vertices

Vertex
distribution

Vertex
shading

Clipping &
Culling

Primitive
setup

Primitive
assembly

Coarse
rasterization

Fine
rasterization

Tile
Coalescing

Fragment
shading &
blending

Late-Z

Framebuffer
commit

Hierarchical-
Z

A

B

C

D

E

G

H

I

J

M

N

Graphics Fixed-function stage
Graphics & GPGPU fixed-function stage
Graphics & GPGPU programmable stage

Early-Z
L

K

Primitive
distribution

F O

Figure 3: Emerald graphics pipeline

Emerald uses a hybrid rendering approach similar to ones de-

scribed by AMD and NVIDIA [4, 29, 37, 45]. We we refer to this

hybrid approach as immediate tiled rendering (ITR). Similar to TBR,

ITR divides the screen into a grid of tiles; however, instead of imple-

menting a separate binning pass where all geometry is processed

first, ITR splits primitives into batches, where batch sizes can be

adjusted to suit the rendered content [4]. ITR then bins and caches

each batch’s vertex shading results on-chip before using them im-

mediately for fragment shading [37]. ITR relies on locality between

consecutive primitives, which will likely render to the same group

of screen-space tiles, to avoid the overhead of storing and reading

the entire screen-space geometry to/from off-chip memory as it

is the case with TBR; thus, ITR is more efficient than TBR when

processing geometry-rich scenes.

3.3 Emerald Architecture
3.3.1 Emerald Graphics Pipeline. Figure 3 shows the hardware

pipeline Emerald models. Emerald implements the logical pipeline

in Figure 2 by employing hardware stages found in contemporary

GPU architectures [2, 5, 6, 26, 29, 30, 44, 47, 64]. A draw call initi-

ates rendering by providing a set of input vertices A . Vertices are

distributed across SIMT cores in batches (B , C). Once vertices

complete vertex shading, they proceed through primitive assembly

(D) and clipping & culling (E). Primitives that pass clipping and

culling are distributed to GPU clusters based on screen-space posi-

tion (F). Each cluster performs primitive setup (G). Then, coarse

rasterization (H) identifies the screen tiles each primitive cov-

ers. In fine rasterization (I) input attributes for individual pixels
are generated. After primitives are rasterized, and if depth testing

is enabled, fragment tiles are passed to a Hierarchical-Z/stencil

stage (J), where a low-resolution on-chip depth/stencil buffer

is used to eliminate invisible fragments. Surviving fragments are

assembled in tiles (K) and shaded by the SIMT cores. Emerald em-

ploys programmable, or in-shader, raster operations where depth

and blending (stages L , M and N), are performed as part of

the shader program as opposed to using atomic units coupled to

the memory access schedulers. Hardware prevents races between

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Gubran and Aamodt

fragment tiles targeting the same screen-space position [29] (Sec-

tion 3.3.5). Depth testing is either performed early in the shader, to

eliminate a dead fragment before executing the fragment shader

(L), or at the end of the shader (N). End of shader depth testing

is used with fragment shader programs that include instructions

that discard fragments or modify their depth values. Finally, frag-

ment data is written to the corresponding pixel position in the

framebuffer (O).

Name Description

Execution units

(SIMT lanes)

Single instruction multiple data (SIMD) pipeline

that executes scalar threads in groups of warps

(each warp contains 32 threads).

SIMT Stacks

Stacks are used to manage SIMT threads branch

divergence by keeping track of active threads in

each branch on the top of the stack.

Register File

A banked register file inspired by an Nvidia’s de-

sign. Operand collectors are used for communicat-

ing between execution units and the register file.

Shared Memory

Per SC banked scratchpad buffer used for intra-

thread block communications.

Caches [53]
2

L1I: Instruction cache.

L1D: For global (GPGPU) and pixel data.

L1T: Read-only textures cache.

L1Z: Depth cache.

L1C: Constant & vertex cache.

L2: A second level cache coherent with CPU L2

caches (in our baseline model we use L1 caches

that are non-coherent with each other or the L2

cache).

Coalescing Logic

Coalesces memory requests from SIMT lanes to

caches

Table 2: SIMT Core Components

Graphics draw call

Interconnection network

L2 cache
Atomic

Operations
Unit (AOU)

SIMT
Cluster 0

SIMT
Cluster 1

SIMT
Cluster 2

SIMT
Cluster
(N-1)

SIMT Cores Clusters

GPU L2 Cache & Atomic Operations Unit

3

2

GPU

1

System
Network

Figure 4: GPU Architecture

3.3.2 Emerald GPU Architecture. As shown in Figure 4, Emer-

ald’s hardware architecture consists of a set of single-instruction

multiple-thread (SIMT [50, 54]) core clusters (1) and L2 cache with

atomic operations unit (AOU) (2). An interconnection network

(3) connects GPU clusters, the AUO and the L2 cache to each

other and to the rest of the system (i.e., to DRAM or to an SoC

NoC).

2
Baseline cache configurations are shown. Emerald readily allows alternative cache

hierarchies to be used.

Setup stage

Coarse
rasterization

Hi-Z buffer

Fine
rasterization

Tile
Coalescer

Hi-Z

Interconnection
Network

VPO Unit

SIMT Cluster

2
3

4 5 6

7

8

9 SIMT Core

Register
File

Shared
Memory

SIMT Lanes
SIMT Stack

Coalesced
memory accesses

Constant
Cache

Texture
Cache

Data
Cache

Z-Cache

I-Cache

SIMT Core

Register
File

Shared
Memory

SIMT Lanes
SIMT Stack

Coalesced
memory accesses

Constant
Cache

Texture
Cache

Data
Cache

Z-Cache

I-Cache

SIMT Core

Register
File

Shared
Memory

SIMT Lanes
SIMT Stack

Coalesced
memory accesses

Constant
Cache

Texture
Cache

Data
Cache

Z-Cache

I-Cache

1

Figure 5: GPU SIMT cluster

VPO
UnitVertex warp

bufferVertex warp
bufferVertex

warp buffer

Bounding-box
calculations

Primitive mask
generation

Primitive masks
reorder buffer

Interconnection
network

To other
clusters

From other
clusters

To raster
pipeline

From SIMT cores

1

2

3

4

5

Figure 6: VPO Unit

Figure 5 shows the organization of of SIMT cluster. Each SIMT

cluster has SIMT cores (1) and fixed pipeline stages (2 to 8)

to implement stages G to K in Figure 3.

Our SIMT core model builds upon GPGPU-Sim [16] version 3.2.2.

SIMT cores execute shader programs for vertices and fragments

by grouping them in warps (sets of 32 threads), which execute on

SIMT lanes in a lock-step manner. Branch divergence is handled

by executing threads of taken and non-taken paths sequentially.

A SIMT stack is used to track which path each thread has taken.

Memory accesses are handled by a memory coalescing unit, which

coalesces spatially local accesses into cache-line-sized chunks. Each

SIMT core has a set of caches that handle different types of accesses.

Table 2 provides a summary of SIMT core components. Screen-

space is divided into tiles (TC tiles), where each TC tile position is

assigned to a single SIMT core (details in Section 3.3.5).

3.3.3 Vertex Shading. When a draw call is invoked, vertices are

assigned for vertex processing, in batches, to SIMT cores in a round-

robin fashion. Batches of, sometimes overlapping, warps are used

when assigning vertices to SIMT cores. The type of primitive being

rendered determines the overlapping degree and, effectively, how

vertices are assigned to warps [3]. Without vertex overlapping,

primitive processing stages (i.e., VPO 2 and setup 3) would

need to consult vertices from multiple warps when primitive for-

mats with vertex sharing are in use (e.g., GL_LINE_STRIP and

GL_TRIANGLE_STRIP); thus, overlapped vertex warps allow paral-

lel screen-space primitive processing even when using primitive

formats with vertex sharing.

Emerald: Graphics Modeling for SoC Systems ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Vertex shaders fetch vertex data from memory, transform ver-

tices, and write result vertices, i.e., their position data along with

other optional output attributes, to the L2 cache (Figure 4 2). In

addition, SIMT cores (Figure 5 1) also send vertex position data

generated by vertex shaders to the Vertex Processing and Opera-

tions (VPO) unit (Figure 5 2), which distributes primitives among

SIMT cores as detailed in the following section.

3.3.4 Primitive Processing. The VPO unit (Figure 6), which is in-

spired by Nvidia’s work distribution crossbar interface [47, 59],

assigns primitives to clusters for screen-space processing. SIMT

cores write position data of vertex warps into one of the vertex

warp buffers (Figure 6 1). A bounding-box calculation unit (2)

consumes position data from each warp in (1) and calculates the

bounding-box for each primitive covered by the warp. Since ver-

tices are overlapped between warps, according to the primitive

type in use as explained in Section 3.3.3, there is no need to consult

vertex position data from other warps that may be rendered on

other SIMT clusters.

Bounding-box calculations (2) generate a warp-sized primitive

mask for each SIMT cluster. For each vertexwarp, a cluster primitive

mask conveys if that particular cluster is covered (i.e., mask bit is

set to 1), or not covered (i.e., mask bit is set to 0) by each of the

primitives in the warp.

The primitive mask generation stage (3) sends each created

mask to its corresponding cluster. If the current cluster is the des-

tination, the mask is committed locally to the primitive masks

reorder buffer (4), i.e., the PMRB unit. Otherwise, the intercon-

nection network (5) is used to communicate primitive masks to

other clusters.

On the receiving end, the PMRB unit collects primitive masks

from all clusters. Each primitive mask contains an ID for the first

primitive covered by the mask which allows the PMRB unit to store

masks according to their draw call order. To avoid deadlocks, the

vertex shader launcher limits the number of active vertex warps to

the available space in PMRB units.

The PMRB unit processes masks according to their draw call

order. For each mask, the PMRB unit checks each mask bit to deter-

mine if the corresponding primitive covers part of the screen-space

area assigned to the current cluster; if not, the primitive is sim-

ply ignored. On the other hand, if a primitive covers part of the

screen-space area assigned to the current cluster (mask bit is set

to 1), the primitive should be processed by the current cluster and

the corresponding primitive ID is communicated to the setup stage

(Figure 5 3). The setup stage uses primitive IDs to fetch the corre-

sponding vertex data from the L2 cache. Following that, primitives

go through stages 4 to 8 which resemble the pipeline described

in Section 3.3.1.

3.3.5 The TC Stage. The tile coalescing (TC) stage (8) assembles

quads of fragments from multiple primitives before assigning them

to the corresponding SIMT core for fragment shading. By coalescing

fragments from multiple primitives, TC coalescing improves SIMT

core utilization when running fragment shading, especially when

handling micro-primitives.

Figure 7 shows the TC unit. In 1 , the TC unit receives raster
tiles from the fine-rasterization stage or the Hi-Z stage (if enabled).

Hi-Z
(optional)

Fine
Rasterization

From pipeline

Staged
tile

Staged
tile

Staged
tile

Staged
tile Tiles

staged for
coalescing

TC Tile

Coalescing
Logic

TCE 0
Staged

tile
Staged

tile
Staged

tile
Staged

tile

TC Tile

TCE 1
Staged

tile
Staged

tile
Staged

tile
Staged

tile

TC Tile

TCE N

Tile distributor (TCTD)

1

2

3

4

5

To fragment shading
6

TC tile
execution

state

SIMT core
execution status

7

Coalescing
Logic

Coalescing
Logic

Figure 7: TC Unit

A tile distributor (2) stages incoming primitive fragment tiles to

one of the TC engines (TCEs). At any given point, each TCE stages

and coalesces (3 and 4) tiles that correspond to a single screen-

space TC tile (5); this means fragments from a particular TC tile

are executed on the same SIMT core. A TC tile can cover multiple

raster tiles (e.g., 4×4 raster tiles).

A raster tile is a tile used by the pipeline in Figure 5 (4 to 6).

When staging a new raster tile, the tile distributor checks if a TCE

is already operating on the corresponding TC tile. If this is the case,

the new raster tile is staged to the corresponding TCE; otherwise,

the tile distributor stages the new raster tile to an empty TCE.

TCE assembles staged raster tiles into one TC tile if there are

no conflicts, or to multiple TC tiles if there are overlapping raster

tiles. TCEs flush TC tiles to the corresponding SIMT cores when the

staging area is full and no new quads can be coalesced. In addition,

TCEs set a maximum number of cycles without new raster tiles

before flushing the current TC tile.

Before issuing a TC tile to a SIMT core, the TCE checks if a

previous TC tile, for the same screen-space location, has not finished

shading 7 . Only a single TC tile is being shaded for a TC location

at a given point of time to allow in-shader depth and blending

operations to be performed. Once fragment shading for a TC tile is

performed, result fragments are committed to the framebuffer.

In case study II in Section 6, we study how the granularity of

TC tile mapping to SIMT cores can affect performance, and we

evaluate a technique (DFSL) that dynamically adjusts TC mapping

granularity.

3.3.6 Out-of-order primitive rendering. In some cases, the VPO unit

and the TC stage can process primitives out-of-order. For example,

when depth testing is enabled and blending is disabled, primitives

can be safely processed in an out-of-order fashion. However, this

optimization is unexploited in our model and we plan to add it in

our future work.

3.4 Model Accuracy
We have validated our microarchitecture against NVIDIA’s Pascal

architecture (found in Tegra X2). Microbenchmarks were used to

better understand the implementation. For example, for fragment

shading, we used NVIDIA’s extensions (NV_shader_thread_group)

to confirm that screen space is divided into 16x16 screen tiles that

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Gubran and Aamodt

are statically assigned to shader cores using a complex hashing

function. In Emerald, we used similar screen tiles that are pre-

assigned using a modular hash that takes into account compute

cluster and shader core. For vertex shaders, we examined how ver-

tices are assigned to SMs on NVIDIA’s hardware (using transform

feedback [36]) and found they are assigned to SMs in batches (batch

size varies with primitive type). We modified our model accord-

ingly to capture the same behavior. Finally, we profiled Emerald’s

GPU model against the GPU of Tegra K1 SoC [51] with a set of 14

benchmarks. Our initial results show that draw execution time has

a correlation of 98% with 32.2% average absolute relative error (5.2%

to 312%), while pixel fill-rate (pixels per cycle) has a correlation

of 76.5% with a 33% absolute relative error (9.6% to 77%). Absolute

relative error is computed as
|Hardware−Simulator |

Hardware .

3.5 Model Limitations and future work
Modern APIs specify stages for vertex shading, tessellation, ge-

ometry shading, and fragment shading [36]. Currently, Emerald

supports the most commonly used stages of vertex and fragment

shading. Future work includes adding support for geometry and

tessellation.

Emerald covers part of the design spectrum for graphics archi-

tectures with submodels that vary in their level of details. Future

work also includes elaborating some of the less detailed submodels

and adding configuration flexibility to facilitate experimenting with

a broader range of architectures. This includes adding detailed tex-

ture filtering and caching models, support for compression, adding

the option to globally perform depth and blending operations near

the L2 cache, and adding support for managed tile buffers.

4 EMERALD SOFTWARE DESIGN
Figure 8 highlights Emerald’s software architecture for the two

supported modes: standalone and full-system modes. In the stan-

dalone mode, only the GPU model is used. On the other hand, in

the full-system mode, the GPU operates under Android with other

SoC components. In this work, and as detailed below, we chose

to utilize a set of existing open-source simulators and tools like

APITrace, gem5, Mesa3D, GPGPU-Sim, and Android emulation

tools; this makes it easier for Emerald to stay up-to-date with the

most recent software tools as systems like Android and graphics

standards are consistently changing. We use MESA as our API in-

terface and state handler so that future OpenGL updates can be

easily supported by Emerald. Similarly, using Android emulator

tools facilitates supporting future Android systems.

4.1 Emerald Standalone Mode
Figure 8a shows Emerald standalone mode. In this mode, we use

APITrace [9] to record graphics traces. A trace file 1 then is played

by a modified version of APITrace through gem5-emerald 2 and

then to Mesa 3 . Emerald can be configured to execute frames

of interest (a specific frame, set of frames, or a set of draw calls

within a frame). For frames within the specified region-of-interest,

Mesa sends all necessary state data to Emerald before execution be-

gins. We also utilized some components from gem5-gpu [56] which

connects GPGPU-Sim memory ports to the gem5 interface. Finally,

in 4 our tool, TGSItoPTX, is used to generate PTX shaders that

are compatible with GPGPU-Sim (we extended GPGPGPU-Sim’s

ISA to include several graphics specific instructions). TGSItoPTX

consumes Mesa3D TGSI shaders (which are compiled from higher

level GLSL) and converts them to their equivalent PTX version.

4.2 Emerald Full-system Mode
In the full-system mode, Emerald runs under the Android OS. Once

anAndroid system has booted, it uses the goldfish-opengl library [7]

as a graphics driver to Emerald. We connect the goldfish library to

the Android-side gem5-pipe 1 , which captures Android OpenGL

calls and sends them to gem5 through pseudo-instructions. In gem5,

the gem5-side graphics-pipe captures draw call packets and for-

wards them to the Android emulator host-side libraries 2 , which

process graphics packets and convert them to OpenGL ES draw

calls for Mesa 3 . Android host-side emulator libraries are also used

to track each OpenGL context of each process running on Android.

From Mesa 3 , Emerald follows the same steps in Section 4.1.

For the full-system mode, we also added support for graphics

checkpointing 4 . We found this to be crucial to support full-system

simulation. Booting Android on gem5 takes many hours and check-

pointing the system state, including graphics, is necessary to be able

to checkpoint and resume at any point during simulation. Graphics

checkpointing works by recording all draw calls sent by the system

and storing them along with other gem5 checkpointing data. When

a checkpoint is loaded, Emerald checkpointing restores the graphics

state of all threads running on Android through Mesa’s functional

model.

5 CASE STUDY I:
MEMORY ORGANIZATION AND
SCHEDULING ON MOBILE SOCS

This case study evaluates two proposals for memory scheduling [74]

and organization [20] aimed for heterogeneous SoCs. We used these

proposals as they represent some of the most relevant work in the

area of SoC design. Both proposals relied on trace-based simulation

to evaluate system behavior of heterogeneous SoCs.

In this case study, we evaluate the heterogeneous memory con-

troller (HMC) proposed by Nachiappan et al. [20] and the DASH

memory scheduler by Usui et al. [74] under execution-driven simu-

lation using Emerald’s GPU model and running under the Android

OS. We note Usui et al. [74] recognized the shortcomings of approx-

imating memory behavior under a real system using traces.

5.1 Implementation
5.1.1 DASH Scheduler. The DASH scheduler [74] builds on the

TCM scheduler [40] and the scheduler proposed by Jeong et al. [34]

to define a deadline-aware scheduler. DASH aims to balance access

to DRAM by classifying CPU and IP traffic into a set of priority

levels that includes: (i) Urgent IPs; (ii) Memory non-intensive CPU

applications; (iii) Non-urgent IPs; and (iv) Memory intensive CPU

applications.

DASH further categorizes IP deadlines into short and long dead-

lines. IPs with a unit of work (e.g., frame) that is extremely short

(≤ 10µ seconds) are defined as short deadline IPs. In our system, the

frame rate (i.e., 60 FPS, or 16ms per frame) determines both of our

Emerald: Graphics Modeling for SoC Systems ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Mesa3D

gem5Emerald
components

Modified
for Emerald

Android

Android-side
graphics -pipe

APITrace

Mesa3D

gem5-side
graphics -pipe

Android host-side
emulator libs

Emerald +
GPGPU-Sim

TGSI to PTX
Compiler
Graphics

checkpointing

Graphics
models

Emerald +
GPGPU-Sim

TGSI to PTX
Compiler

Graphics
model

gem5

Standalone
module

Trace file

(a) Standalone mode (b) Full-system mode

1

2

34

1

2

3
4

Figure 8: Emerald software architecture

IP deadlines. As a result, both the GPU and the display controller

are classified as long-deadline IPs.

In addition to the priority levels listed above, DASH also im-

plements probabilistic scheduling that tries to balance servicing

non-urgent IPs and memory-intensive CPU applications. With a

probability (P), memory intensive applications are prioritized over

non-urgent IPs where P is updated every SwitchinдUnit to balance
the number of requests serviced to each traffic source.

Defining Clustering Bandwidth. One of the issues we faced in

our implementation is the definition of clustering bandwidth as

specified by TCM [40] and used by DASH. The dilemma is that TCM-

based clustering assumes a homogeneous set of cores, where their

total bandwidthTotalBWusaдe is used to classify CPU threads into

memory intensive or memory non-intensive threads based on some

clustering threshold ClusterThresh. The issue in an SoC system

is how to calculate TotalBWusaдe . In our system, which defines a

contemporary mobile SoC, the number of CPU threads (i.e., CPU

cores) is limited. In addition, there is significant bandwidth demand

from non-CPU IPs (e.g., GPUs). Whether TotalBWusaдe should

include non-CPU bandwidth usage is unclear [40, 74]. We found

that there are significant consequences for both choices. If non-

CPU bandwidth is used to calculateTotalBWusaдe , it is more likely

for CPU threads to be classified as memory non-intensive even if

some of them are relativity memory intensive. On the other hand,

using only CPU threads will likely result in CPU threads classified

as memory intensive (relative to total CPU traffic) even if they

produce very little bandwidth relative to the rest of the system.

This issue extends to heterogeneous CPU cores where memory

bandwidth demand vs. latency sensitivity becomes non-trivial as

many SoCs deploy a heterogeneous set of CPU cores [11, 52, 61].

In this study, we evaluatedDASHusing bothmethods to calculate

clustering TotalBWusaдe , i.e., including or excluding non-CPU

bandwidth. For other configurations, we used the configurations

specified in [74] and [40] which are listed in Table 3.

5.1.2 HMC Controller. HMC [20] proposes implementing a hetero-

geneousmemory controller that aims to support locality/parallelism

based on traffic source. HMC defines separate memory regions by

using different DRAM channels for handling CPU and IPs accesses.

CPU-assigned channels use an address mapping that improves lo-

cality by assigning consecutive addresses to the same row buffer

(page striped addressing). On the other hand, IPs assigned channels

use an address mapping that improves parallelism by assigning

Cycle unit CPU cycle

Scheduling Unit 1000 cycles

Switching Unit 500 cycles

Shuffling Interval 800 cycles

Quantum Length 1M cycles

Clustering Factor 0.15

Emergent Threshold 0.8 (0.9 for the GPU)

Display Frame Period 16ms (60 FPS)

GPU Frame Period 33ms (30 FPS)

Table 3: DASH configurations

consecutive addresses across DRAM banks (cache-line stripped

addressing). HMC targets improving IP memory bandwidth by ex-

ploiting sequential accessing to large buffers that benefits from

accessing multiple banks in parallel. In our study, we look for the

following:

(1) The performance of the system under normal and high loads.

(2) Access locality behavior of CPU cores vs. IP cores.

(3) DRAM access balance (between CPU and IP-assigned chan-

nels).

Baseline
Channels 2

DRAM address mapping Row:Rank:Bank:Column:Channel

Scheduler FRFCFS

HMC
Channels 2 (1 for each source type)

CPU channel address mapping Row:Rank:Bank:Column:Channel

IP channel address mapping Row:Column:Rank:Bank:Channel

Scheduler FRFCFS

Table 4: Baseline and HMC DRAM configurations

5.2 Evaluation
We used Emerald to run Android in the full-system mode using

Emerald’s GPU model and gem5’s CPU and display controller mod-

els. For this experiment, an earlier version of Emerald which fea-

tures a simpler pixel tile launcher and a centralized output vertex

buffer and primitive distribution was used. System configurations

are listed in Table 5.

To evaluate SoC performance, we profile an Android application

that loads and displays a set of 3D models (listed in Table 6). We

run our system under normal and high load configurations. We use

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Gubran and Aamodt

the baseline configuration in Table 5 to model a regular load sce-

nario and use a low-frequency DRAM configuration (133 Mb/s/pin)

to evaluate the system under a high load scenario. We opted for

stressing the DRAM this way as an alternative to setting up differ-

ent workloads with varying degree of complexity (which can take

several weeks under full-system simulation). We compare DASH

and HMC to a baseline DRAM configuration (Table 5) with FR-

FCFS scheduling and using the baseline address mapping as shown

in Table 4.

CPU
Cores 4 ARM O3 cores [17]

Freq. 2.0GHz

L1 32 kb

L2 (per core) 1 MB

GPU
SIMT Cores 4 (128 Cuda Cores)

SIMT Core Freq. 950MHz

Lanes per SIMT Core 32 (warp size)

L1D 16KB, 128B line, 4-way LRU

L1T 64KB, 128B line, 4-way LRU

L1Z 32KB, 128B line, 4-way LRU

Shared L2 128KB, 128B line, 8-way LRU

Output Vertex Buffer 36KB (Max. 9K vertices)

Pixel Tile Size 32×32

Framebuffer 1024×768 32bit RGBA

System
OS Android JB 4.2.2.1

DRAM [31] 2-channel 32-bit wide LPDDR3, Data Rate: 1333Mb/s

Table 5: Case Study I system configurations

3D Workloads
of frames 5 (1 warm-up frame + 4 profiled frames)

Model Name
M1 Chair

M2 Cube

M3 Mask

M4 Triangles

Configs
Abbrv. Description
BAS Baseline configuration

DCB DASH using CPU bandwidth clustering

DTB DASH using system bandwidth clustering

HMC Heterogeneous Memory Controllers

AVG Average

Table 6: Case Study I workload models and configurations

5.2.1 Regular-load scenario. All configurations produce a similar

frame rate under this scenario (less than 1% difference). Both the

GPU and the display controller were able to generate frames at 60

FPS (application target frame rate). However, looking further at

each stage of rendering, we notice that GPU rendering time differs.

Figure 9 shows the normalized execution time (lower is better) of

the GPU portion of the frame. Compared to the baseline, the GPU

takes 19-20% longer to render a frame with DASH, and with HMC

it takes almost twice as long.

First, we investigate why DASH prolongs GPU execution time.

We found the reason for the longer GPU execution time is that

DASH prioritizes CPU requests over that of the GPU’s while frames

being rendered. As long as the IP, i.e., the GPU, is consistently

0

0.5

1

1.5

2

2.5

N
o

rm
a

li
ze

d
 e

x
ec

u
ti

o
n

 t
im

e

Figure 9: GPU execution time under a regular load

Time
B
a
n
d
w
id
th

1

2

3

Figure 10: M3-HMC DRAM bandwidth

meeting the deadline, DASH either fully prioritizes CPU threads

(if classified as memory non-intensive) or probabilistically priori-

tizes CPU threads (if classified as memory intensive) over that of

the GPU. The final outcome from the user’s perspective has not

changed in this case as the application still meets the target frame

rate. However, GPU execution taking longer may increase energy

consumption, which would be detrimental for mobile SoCs. In addi-

tion, this scheduling policy might unintentionally hurt performance

as well (Section 5.2.2).

For HMC, we found two reasons for the slower GPU performance.

The first reason is that traffic from CPU threads and the GPU was

not balanced throughout the frame. When GPU rendering is taking

place, CPU-side traffic reduces significantly and the CPU-assigned

channels are left underutilized. Figure 10 presents M3-HMC mem-

ory bandwidth from each source over time. In 1 the CPU traffic

increases before starting a new frame. Once a frame started, CPU

traffic is reduced (2). This continues until the end of the GPU

frame at 3 . As a result, the split-DRAM channel configuration

becomes problematic in such cases due to the lack of continuous

traffic balance.

The second factor in reduced GPU performance under HMC

was the lower row-buffer locality at IP-assigned channels. The

issue originates from HMC assumption that all IP traffic will use

sequential accesses when accessing DRAM. Although this is true

for our display controller, we found that it is not the case for our

GPU traffic (we were unable to obtain the traces used in the original

HMC study [20] to compare against). As a consequence, IP-assigned

channels suffer from lower row-buffer hit rates and reduced number

Emerald: Graphics Modeling for SoC Systems ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

0

0.2

0.4

0.6

0.8

1
Rowbuffer hit rate Bytes accessed per row activation

Figure 11: Page hit rate and bytes accessed per row activation
normalized to baseline

0

0.5

1

1.5

2

Total frame time GPU rendering time

N
o

rm
a

li
ze

d
 e

x
ec

u
ti

o
n

 t
im

e

Figure 12: Performance under the high-load scenario

of bytes fetched per row-buffer activation, where the latter indicates

higher per byte energy cost. Figure 11 shows HMC DRAM page

hit rate and bytes accessed per row activation compared to the

baseline. On average, the row buffer hit rate decreases by 15% and

the number of bytes accessed per row activation drops by around

60%.

5.2.2 High-load scenario. In this scenario, we evaluate DASH and

HMC under lower DRAM bandwidth to analyze system behavior

under high memory loads. Figure 12 shows normalized execution

times (lower is better).

First, HMC shows similar behavior to that described earlier in

Section 5.2.1. With lower page hit rate and reduced locality; it takes

on average 45% longer than the baseline to produce a frame.

We found DASH reduces frame rates compared to the baseline

by an average of 8.9% and 9.7% for DCB and DTB configurations,

respectively. In larger models (M1 & M3) the drop in frame rates

was around 12%. The time it takes to render a GPU frame was

increased by an average of 15.1% M1-DCB and 15.5% for M1-DTB.

Figure 12 also shows that simpler models (M2 & M4) experience

lower slowdowns as the DRAM still manages to provide a frame

rate close to target even with slower GPU performance.

In addition to GPU performance, we also looked into the dis-

play controller performance. The application rendering process is

independent of screen refreshing by the display controller, where

the display controller will simply re-use the last complete frame if

no new frame is provided. As a result of high-load, and unlike the

low-load scenario, the display controller suffered from below target

0

0.2

0.4

0.6

0.8

1

1.2
2.26.32.4

Figure 13: Number of display requests serviced relative to
BAS

frame rate. Figure 13 shows the normalized display traffic serviced

in each configuration. First, we notice that HMC outperforms BAS,

DCB and DTB with the smaller models (M2 & M4). What we found

is that since the GPU load is smaller in these two cases (as shown

in Figure 12), the IP-assigned channel was available for longer peri-

ods of times to service display requests without interference from

CPU threads. However, as we can see in Figure 12, the overall per-

formance of the application does not improve over BAS and DASH

configurations.

1

2

3

Time (milliseconds)

t1

B
an

d
w

id
th

 (
G

b
/s

)

(a)

4

5

6

t2

7

Time (milliseconds)

B
an

d
w

id
th

 (
G

b
/s

)

(b)

Figure 14: M1 Rendering by BAS (a) and DTB (b)

For larger models (M1 & M3) DCB and DTB both deliver lower

display traffic and lower overall application frame rate. We can

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Gubran and Aamodt

see the reason for DASH’s lower overall performance using the

M1 traffic examples in Figure 14 and by discerning the behavior

of BAS and DCB traffic. Comparing BAS CPU and GPU traffic to

that of DASH, we see that DASH provides higher priority to CPU

threads (4) compared to the FRFCFS baseline (1). This is because

GPU timing is still meeting the set deadline and, as a consequence,

classified as non-urgent. CPU threads either have absolute priority

(if memory non-intensive) or a probabilistic priority (if memory

intensive). By looking at the periods t1 in Figure 14a and t2 in Fig-

ure 14b we found that GPU read requests latencies are higher by

16.2%, on average, in t2 compared to t1, which leads to lower GPU

bandwidth in 5 compared to 2 .

The prioritization of CPU requests during t2, however, does not
improve overall application performance. Looking at 7 we can

see that CPU threads are almost idle at the end of the frame waiting

for the GPU frame to finish before moving to the next job. This

dependency is not captured by DASH’s memory access scheduling

algorithm and leads to over-prioritization of CPU threads during

t2; consequently, DASH can reduce DRAM performance compared

to FR-FCFS.

Examining display controller performance we find DASH DTB

services 85% less display bandwidth than BAS (as shown in Fig-

ure 13 and Figure 14 3 vs. 6). Looking at Figure 14b 6 , we

can see the reason for DASH’s lower display performance. The

display controller starts a new frame in 6 , the frame is consid-

ered non-urgent because it just started and had not missed the

expected progress yet. In addition, the CPU is consuming addi-

tional bandwidth as discussed earlier. Both factors lead to fewer

display requests to be serviced early on. Eventually, because of the

below-expected bandwidth, the display controller aborts the frame

and re-try a new frame later where the same sequence of events

reoccurs (as highlighted in 6).

5.2.3 Summary and discussion. In this case study, we evaluated

two proposals for memory organization and scheduling for hetero-

geneous SoCs. We aimed to test these proposals under execution-

driven simulation compared to trace-based simulations originally

used to evaluate these proposals. We found some issues that trace-

based simulation could not capture fully, including incorporating

inter-IP dependencies, responding to system feedback, or lacking

the details of IP access patterns.

For inter-IP dependencies, traces can be created including inter-

IP dependencies. However, adding dependency information is non-

trivial for complex systems that feature several IPs and multi-

threaded applications. This complexity requires an adequate un-

derstanding of workloads and reliable sources of traces. GemDroid

collects traces using a single-threaded software emulator and in-

corporates rudimentary inter-IP dependencies which are used to

define mutually exclusive execution intervals, e.g., CPU vs. other

IPs. The evaluation of DASH performed by Usui et al. [74] used a

mix of traces from unrelated processes “that execute independently”

and “does not model feedback from missed deadlines”. In contrast,

we find traffic in real systems is more complex as it is generated

by inter-dependent IP blocks, sometimes working concurrently, as

shown in the examples in Figure 10 and Figure 14.

We observed the display controller dropping frames when failing

to meet a deadline. Thus, modeling system feedback between IP

4 5

3

7

8 9

12 13

11

14 15

3

2

4 5

13

6 7

14 15

20 22 23

31

35

59 60 61 62

(a)(b)

Figure 15: Fine (a) vs. Coarse (b) screen-space division for
fragment shading.

blocks appears important, at least when similar scenarios are rele-

vant to design decisions. Another issue highlighted by our study

is the impact of simulating SoCs without a detailed GPU model.

HMCwas designed assuming IP traffic that predominantly contains

sequential accesses which is not true for graphics workloads. A

related key hurdle for academic researchers is difficulty obtaining

real traces from existing (proprietary) IP blocks; our results suggest

it the value of creating detailed IP models that produce represen-

tative behavior. Detailed IP models provide the ability to evaluate

intra-IP architectural changes and their system level impact.

6 CASE STUDY II:
DYNAMIC FRAGMENT SHADING
LOAD-BALANCING (DFSL)

In this section, we propose and evaluate a method for dynamically

load-balancing the fragment shading stage on the GPU. This is

achieved by controlling the granularity of the work assigned to

each GPU core.

The example in Figure 15 shows two granularities to distribute

work amongst GPU cores. The screen-space is divided into tiles,

where each tile is assigned to a GPU cluster/core as described

in Section 3.3.2. In Figure 15a, smaller tiles are used to distribute

load amongst GPU cores. When assigning these tiles to the GPU

cores (e.g., round-robin), we improve load-balance across the cores.

On the other hand, using larger tiles, as in Figure 15b, load-balance

is reduced but locality improves. Locality might boost performance

by sharing data across fragments as in texture filtering, where the

same texels can be re-used by multiple fragments. Also, as we will

see later, load-balance can change from one scene to another based

on what is being rendered.

6.1 Experimental Setup
For this case study, we evaluate GPU performance using Emerald

standalone mode (Section 4.1). Since this case-study focuses on

the fragment shading stage, we only show performance results for

fragment shading. We used a GPU configuration that resembles

a high-end mobile GPU [51, 52] (Table 7). We selected a set of

relatively simple 3D models frequently used in graphics research,

which are listed in Table 8 and shown in Figure 16 (figures shown

were rendered with Emerald); using more complex workloads, e.g.,

game frames, is possible but requires much longer simulation times

with limited additional benefit for most architecture tradeoff studies.

For work granularity we use work tile (WT) to define round-robin

work granularity when assigning work to GPU cores (as explained

in Figure 15). A WT of size N is N×N TC tiles, where N≥1. As

Emerald: Graphics Modeling for SoC Systems ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

(a) Cube (b) Teapot (c) Suzanne (d) Spot (e) Sibenik

Figure 16: Case study II workloads

SIMT Clusters 6 (192 CUDA Cores)

SIMT Core Freq. 1GHz

Max Threads per core 2048

Registers per core 65536

Lanes per SIMT Core 32 (warp size)

L1D 32KB, 128B line, 8-way LRU

L1T 48KB, 128B line, 24-way LRU

L1Z 32KB, 128B line, 8-way LRU

Shared L2 2MB, 128B line, 32-way LRU

Raster tile 4×4 pixels

TC tile size 2×2

TC engines per cluster 2

TC bins per engine 4

Coarse & fine raster throughput 1 raster tile/cycle

Hi-Z throughput 1 raster tile/cycle

Memory 4 channel LPDDR-3 1600Mb/s

Table 7: Case Study II GPU configuration

Model Abbrv. Name Textured? Translucent?

W1 Sibenik [46] Yes No

W2 Spot [22] Yes No

W3 Cube [46] Yes No

W4 Blender’s Suzanne Yes No

W5 Suzanne transparent Yes Yes

W6 Utah’s Teapot [46] Yes No

Table 8: Case Study II workloads

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10

N
o
rm

a
li

ze
d

 e
x
e
cu

ti
o
n

 t
im

e

WT size

W1 W2 W3 W4 W5 W6

Figure 17: Frame execution time for WT sizes of 1-10 nor-
malized to WT of 1

discussed in Section 3.3.2, the minimum work unit that can be

assigned to a core is a TC tile.

6.2 Load-Balance vs. Locality
Figure 17 shows the variation in frame execution time for WT sizes

1 to 10. For WT sizes larger than 10 the GPU is more prone to

load-imbalance. As we can see in Figure 17, frame execution time

can vary by 25% in W6 to as much as 88% in W5. The WT size

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

WT Size

Execution Time Color misses

Texture misses Depth misses

Figure 18: Normalized (to WT1) execution times and the to-
tal L1 cache misses of various caches for W1

that achieves the optimal performance varies from one workload

to another; for W5, the best-performing WT size is 1, and for W2

and W4 the best performing WT size is 5.

We looked at different factors that may contribute to the vari-

ation of execution time with WT size. First, we noticed that L2

misses/DRAM traffic are very similar across WT sizes. However,

we found that L1 cache miss rates significantly change with WT

size. Figure 18 shows execution times and L1 misses for a W1 frame

vs. WT sizes. The figure shows that L1 cache locality is a signifi-

cant factor in performance. Measuring correlation, we found that

execution time correlates by 78% with L1 misses, 79% with L1 depth

misses and 82% with texture misses.

6.3 Dynamic Fragment Shading
Load-Balancing (DFSL)

In this section, we evaluate our proposal of dynamic fragment

shading load-balancing (DFSL). DFSL exploits temporal coherence

in graphics [63], where applications exhibit minor changes between

frames.

DFSL exploits graphics temporal coherence in a novel way –

by utilizing it to dynamically adjust work distribution across GPU

cores so as to reduce rendering time. The goal of DFSL is not to

achieve consistently higher frame rates but rather to lower GPU

energy consumption by reducing average rendering time per frame

assuming the GPU can be put into a low power state between

frames when it is meeting its frame rate target.

DFSL works by running two phases, an evaluation phase and a

run phase. Algorithm 1 shows DFSL’s evaluation and run phases.

For a number of frames equal to possible WT sizes, the evaluation

phase (lines 13-25), renders frames under each possible WT value.

At the end of the evaluation phase, WT with the best performance

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Gubran and Aamodt

Algorithm 1 Find and render with best WT sizes

1: Parameters
2: RunFrames : number of run (non-evaluation) frames

3: MinWT : minimum WT size

4: MaxWT : maximum WT size

5: MAX_TIME: maximum execution time

6:

7: Initialization
8: -CurrFrame← 0

9: -EvalFrames← MaxWT −MinWT
10:

11: procedure DFSL Run

12: while there is a new frame:
13: if CurrFrame%(EvalFrames+RunFrames) == 0 then
14: MinExecTime← MAX_TIME
15: WTSize← MinWT
16: WTBest← MinWT
17: end if
18:

19: if CurrFrame%(EvalFrames+RunFrames) < EvalFrames then
20: ExecTime←execution time withWTSize
21: if ExecTime < MinExecTime then
22: MinExecTime← ExecTime
23: WTBest← WTSize
24: end if
25: WTSize← WTSize + 1
26: else
27: Render frame usingWTBest
28: end if
29: CurrFrame← CurrFrame + 1
30: end procedure

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

W1 W2 W3 W4 W5 W6 MEAN

N
o

rm
a

li
ze

d
 S

p
e
ed

u
p

WT Size

MLB MLC SOPT DFSL

Figure 19: Average frame speedup normalized to MLB

(WTBest) is then used in the run phase for a set of frames, i.e.,

RunFrames . At the end of the run phase, DFSL starts another eval-

uation phase and so on. By changing RunFrames , we can control

how oftenWTBest is updated.

Implementation. DFSL can be implemented as part of the graph-

ics driver, where DFSL can be added to other context information

tracked by the driver. DFSL Algorithm 1 will only execute a few

times per second (i.e., at the FPS rate). For each application, the

GPU tracks the execution time for each frame andWTBest . In our

experiment, each workload used 1-2 draw calls and we tracked

WTBest on per frame basis. DFSL can be extended to also track

WTBest at the draw call level or for a set of draw calls in more

complex workloads.

In Figure 19, DFSL performance is compared against four static

configurations. MLB for maximum load-balance using WT size

of 1, MLC for maximum locality using WT size of 10, and SOPT.
To find SOPT, we ran all the frames across all configs and found

the best WT, on average, across all workloads. For DFSL, we used

an evaluation period of 10 frames and a run period of 100 frames.

Results are shown in Figure 19, where it shows that DFSL is able to

speed up frame rendering by an average of 19% compared toMLB
and by 7.3% compared to SOPT.

7 RELATEDWORK
System simulation. Researchers created several tools to simu-

late multi-core and heterogeneous systems [17, 19, 55](see Table 1).

However, these simulators have focused on simulating heteroge-

neous CPU cores or lack the support for specialized cores like GPUs

and DSPs. Other work focused on CPU-GPGPU simulation [56, 73],

while gemDroid provided an SoC simulation tool that combines

software-model traces using gem5 DRAM model [20, 48, 49, 77].

Another gem5 based simulator, gem5-aladdin [66], provides a con-

venient way to model specialized accelerators using dynamic traces.

Aladdin and Emerald can be integrated to provide a more compre-

hensive simulation infrastructure.

GPU Simulators. Attila [25] is a popular graphics GPU simulator

that models an IMR architecture with unified shaders. The Attila

project has been inactive for a few years and their custom graph-

ics driver is limited to OpenGL 2.0 and D3D 9. Another tool, the

Teapot simulator [13], has been used for graphics research using a

TBR architecture and OpenGL ES [8, 14]. Teapot, however, is not

publicly available. In addition, Teapot models a pipeline with an

older architecture with non-unified shader cores. Qsliver [67] is an

older simulation infrastructure that also uses non-unified shaders.

Finally, a more recent work, GLTraceSim [65], looks at the behavior

of graphics-enabled systems. GLTraceSim does not model a par-

ticular GPU architecture, but it approximates GPU behavior using

the memory traces generated by the functional model provided by

Mesa 3D [1].

Besides graphics GPU simulators, other GPU simulators focus

on GPGPU applications; this includes simulators like Macsim [38]

and GPGPU-Sim [16], where Emerald builds on the latter.

SoC memory scheduling. Several techniques were developed for

memory scheduling in multi-core CPU systems [15, 39, 40, 43, 69].

For GPUs, the work by Jog et al. focused on GPU inter-core memory

scheduling in GPGPU workloads [35]. Another body of work pro-

posed techniques for heterogeneous systems [34, 58, 74]. Previous

work on heterogeneous systems, however, relied on using a mix of

independent CPU and GPUworkloads, rather than using workloads

that utilize both processors. In our work, we introduce an extensive

infrastructure to enable the simulation of realistic heterogeneous

SoC workloads.

Load-Balancing onGPUs. Several proposals tackled load-balancing
for GPGPU workloads. Son et al. [68] and Wang et al. [76] worked

on scheduling GPGPU kernels. Other techniques use software

methods to exploit GPGPU thread organization to improve local-

ity [42, 75, 76]. On the other hand, DFSL tries to find a solution

for workload execution granularity, where the balance between

locality and performance is reached through exploiting graphics

temporal coherence. Other GPGPU scheduling techniques, e.g., the

work by Lee et al. [41], can be adopted on top of DFSL to control

the flow of execution on the GPU.

Emerald: Graphics Modeling for SoC Systems ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

Temporal coherence in graphics. Temporal coherence has been

exploited in many graphics software techniques [63]. For hardware,

temporal coherence has been used to reduce rendering cost by batch

rendering every two frames [12], use visibility data to reduce redun-

dant work [24], and in tile-based rendering to eliminate redundant

tiles [32]. In this work, we present a new technique for exploiting

temporal coherence to balance fragment shading on GPU cores.

8 CONCLUSION AND FUTUREWORK
This work introduces Emerald, a simulation infrastructure that is

capable of simulating graphics and GPGPU applications. Emerald

is integrated with gem5 and Android to provide the ability to sim-

ulate mobile SoC systems. We present two case studies that use

Emerald. The first case study evaluates previous proposals for SoC

memory scheduling/organization and shows that different results

can be obtained when using detailed simulation. The case study

highlights the importance of incorporating dependencies between

components, feedback from the system, and the timing of events

when evaluating SoC behavior. In the second case study, we propose

a technique (DFSL) to dynamically balance the fragment shading

stage on GPU cores. DFSL exploits graphics temporal coherence to

dynamically update work distribution granularity. DFSL improves

execution times by 7-19% over static work distribution.

For future work, and in addition to improving graphics modeling

(as highlighted in subsection 3.5) and developing Emerald compati-

ble GPUWattch configurations for mobile GPUs, we plan to create a

set of mobile SoC benchmarks for Emerald that represent essential

mobile uses-cases running commonly used Android applications.

ACKNOWLEDGMENTS
We thank Allan Knies and Weiping Liao from Google Hardware for

their support and technical guidance. We also thank Serag Gadelrab

from Qualcomm Canada for motivating this work. This research

funded by grants from Qualcomm, Google, and the Natural Sciences

and Engineering Research Council of Canada (NSERC).

REFERENCES
[1] Mesa 3D. [n. d.]. The Mesa 3D Graphics Library. http://www.mesa3d.org/

[Online; accessed 25-Apr-2019].

[2] Michael Abrash. 2009. Rasterization on larrabee. Dr. Dobbs Journal (2009).
http://www.drdobbs.com/parallel/rasterization-on-larrabee/217200602

[3] Niket Agrawal, Amit Jain, Dale Kirkland, Karim Abdalla, Ziyad Hakura, and

Haren Kethareswaran. 2017. Distributed index fetch, primitive assembly, and

primitive batching. US Patent App. 14/979,342.

[4] AMD Radeon Technologies Group. 2017. Radeon’s next-generation Vega archi-

tecture. https://en.wikichip.org/w/images/a/a1/vega-whitepaper.pdf [Online;

accessed April 25, 2019].

[5] Michael Anderson, Ann Irvine, Nidish Kamath, Chun Yu, Dan Chuang, Yushi

Tian, and Yingyong Qi. 2005. Graphics pipeline and method having early depth

detection. US Patent App. 10/949,012.

[6] Anderson, Michael and Irvine, Ann and Kamath, Nidish and Yu, Chun and

Chuang, Dan and Tian, Yushi and Qi, Yingyong and others. 2004. Graphics

pipeline and method having early depth detection. US Patent 8184118.

[7] Android. [n. d.]. Android Goldfish OpenGL. https://android.googlesource.com/

device/generic/goldfish-opengl [Online; accessed April 25, 2019].

[8] Martí Anglada, Enrique de Lucas, Joan-Manuel Parcerisa, Juan L Aragón, and

Antonio González. 2019. Early Visibility Resolution for Removing Ineffectual

Computations in the Graphics Pipeline. In Proceedings of the IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 635–646.

[9] APITrace. [n. d.]. APITrace. http://apitrace.github.io [Online; accessed April 25,

2019].

[10] Apple. 2019. About GPU Family 4. https://developer.apple.com/documentation/

metal/mtldevice/ios_and_tvos_devices/about_gpu_family_4 [Online; accessed

April 25, 2019].

[11] ARM. 2013. big.LITTLE Technology: The Future of Mobile. ARM whitepaper
(2013). https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_

Mobile.pdf

[12] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. 2013. Par-

allel frame rendering: Trading responsiveness for energy on a mobile gpu. In

Proceedings of the ACM/IEEE International Conference on Parallel Architecture and
Compilation Techniques (PACT). IEEE Press, 83–92.

[13] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. 2013.

TEAPOT: A Toolset for Evaluating Performance, Power and Image Quality on

Mobile Graphics Systems. In Proceedings of the ACM International Conference on
Supercomputing (ICS). ACM, 37–46.

[14] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. 2014. Elim-

inating Redundant Fragment Shader Executions on a Mobile GPU via Hardware

Memoization. In Proceedings of the ACM/IEEE International Symposium on Com-
puter Architecture (ISCA). IEEE Press, 529–540.

[15] Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Lavanya Subramanian,

Gabriel H. Loh, and Onur Mutlu. 2012. Staged Memory Scheduling: Achiev-

ing High Performance and Scalability in Heterogeneous Systems. In Proceedings
of the ACM/IEEE International Symposium on Computer Architecture (ISCA). IEEE
Computer Society, 416–427.

[16] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.

2009. Analyzing CUDA workloads using a detailed GPU simulator. In Proceedings
of the IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). IEEE, 163–174.

[17] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

Hill, and David A. Wood. 2011. The Gem5 Simulator. ACM SIGARCH Computer
Architecture News 39, 2 (Aug. 2011), 1–7.

[18] Broadcom. 2013. VideoCore IV 3D Architecture Reference Guide. https://docs.

broadcom.com/docs/12358545 [Online; accessed April 25, 2019].

[19] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven Eeck-

hout. 2014. An Evaluation of High-Level Mechanistic Core Models. ACM Trans-
actions on Architecture and Code Optimization (TACO), Article 5 (2014), 23 pages.

[20] Nachiappan ChidambaramNachiappan, Praveen Yedlapalli, Niranjan Soundarara-

jan, Mahmut Taylan Kandemir, Anand Sivasubramaniam, and Chita R. Das. 2014.

GemDroid: A Framework to Evaluate Mobile Platforms. In Proceedings of the
ACM International Conference on Measurement and Modeling of Computer Science.
ACM, 355–366.

[21] Christoph Kubisch. 2015. Life of a triangle - NVIDIA’s logical pipeline. https:

//developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline [Online;

accessed April 25, 2019].

[22] Keenan Crane. [n. d.]. Keenan’s 3D Model Repository. https://www.cs.cmu.edu/

~kmcrane/Projects/ModelRepository/ [Online; accessed April 25, 2019].

[23] J. Davies. 2016. The bifrost GPU architecture and the ARM Mali-G71 GPU. In

IEEE Hot Chips Symposium (HCS). 1–31.
[24] Enrique De Lucas, Pedro Marcuello, Joan-Manuel Parcerisa, and Antonio Gonza-

lez. 2019. Visibility Rendering Order: Improving Energy Efficiency on Mobile

GPUs through Frame Coherence. IEEE Transactions on Parallel and Distributed
Systems 30, 2 (Feb 2019), 473–485.

[25] Victor Moya Del Barrio, Carlos González, Jordi Roca, Agustín Fernández, and E

Espasa. 2006. ATTILA: a cycle-level execution-driven simulator for modern GPU

architectures. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 231–241.

[26] LUM Eric, Walter R Steiner, and Justin Cobb. 2016. Early sample evaluation

during coarse rasterization. US Patent 9,495,781.

[27] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,

and Doug Burger. 2011. Dark silicon and the end of multicore scaling. In Proceed-
ings of the ACM/IEEE International Symposium on Computer Architecture (ISCA).
IEEE, 365–376.

[28] Anthony Gutierrez, Joseph Pusdesris, Ronald G Dreslinski, Trevor Mudge, Chan-

der Sudanthi, Christopher D Emmons, Mitchell Hayenga, and Nigel Paver. 2014.

Sources of error in full-system simulation. In Proceedings of the IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE,
13–22.

[29] Ziyad Hakura, LUM Eric, Dale Kirkland, Jack Choquette, Patrick R Brown, Yury Y

Uralsky, and Jeffrey Bolz. 2018. Techniques for maintaining atomicity and order-

ing for pixel shader operations. US Patent App. 10/019,776.

[30] Ziyad S Hakura, Michael Brian Cox, Brian K Langendorf, and Brad W Simeral.

2010. Apparatus, system, and method for Z-culling. US Patent 7,755,624.

[31] Andreas Hansson, Neha Agarwal, Aasheesh Kolli, Thomas Wenisch, and Anirud-

dha N Udipi. 2014. Simulating DRAM controllers for future system architecture

exploration. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 201–210.

[32] Peter Harris. 2014. The Mali GPU: An Abstract Machine, Part 2 - Tile-

based Rendering. https://community.arm.com/graphics/b/blog/posts/

http://www.mesa3d.org/
http://www.drdobbs.com/parallel/rasterization-on-larrabee/217200602
https://en.wikichip.org/w/images/a/a1/vega-whitepaper.pdf
https://android.googlesource.com/device/generic/goldfish-opengl
https://android.googlesource.com/device/generic/goldfish-opengl
http://apitrace.github.io
https://developer.apple.com/documentation/metal/mtldevice/ios_and_tvos_devices/about_gpu_family_4
https://developer.apple.com/documentation/metal/mtldevice/ios_and_tvos_devices/about_gpu_family_4
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://docs.broadcom.com/docs/12358545
https://docs.broadcom.com/docs/12358545
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/
https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/
https://community.arm.com/graphics/b/blog/posts/the-mali-gpu-an-abstract-machine-part-2---tile-based-rendering
https://community.arm.com/graphics/b/blog/posts/the-mali-gpu-an-abstract-machine-part-2---tile-based-rendering

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Gubran and Aamodt

the-mali-gpu-an-abstract-machine-part-2---tile-based-rendering [Online; ac-

cessed April 29, 2019].

[33] Harvard Architecture, Circuits, and Compilers Group. [n. d.]. Die Photo Analy-

sis. http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis [Online;

accessed April 25, 2019].

[34] Min Kyu Jeong, Mattan Erez, Chander Sudanthi, and Nigel Paver. 2012. A QoS-

aware memory controller for dynamically balancing GPU and CPU bandwidth

use in an MPSoC. In Proceedings of the Annual Design Automation Conference
(DAC). ACM, 850–855.

[35] Adwait Jog, Onur Kayiran, Ashutosh Pattnaik, Mahmut T. Kandemir, Onur Mutlu,

Ravishankar Iyer, and Chita R. Das. 2016. Exploiting Core Criticality for En-

hanced GPU Performance. In Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Science. ACM, 351–363.

[36] Khronos Group. 2017. The OpenGL Graphics System: A Specification (Version

4.5 Core Profile). https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.

core.pdf [Online; accessed April 29, 2019].

[37] Emmett M Kilgariff, Steven E Molnar, Sean J Treichler, Johnny S Rhoades, Gernot

Schaufler, Dale L Kirkland, Cynthia Ann Edgeworth Allison, Karl M Wurstner,

and Timothy John Purcell. 2014. Hardware-managed virtual buffers using a

shared memory for load distribution. US Patent 8,760,460.

[38] Hyesoon Kim, Jaekyu Lee, Nagesh B Lakshminarayana, Jaewoong Sim, Jieun Lim,

and Tri Pho. 2012. Macsim: A cpu-gpu heterogeneous simulation framework

user guide. Georgia Institute of Technology (2012). http://comparch.gatech.edu/

hparch/macsim/macsim.pdf [Online; accessed April 29, 2019].

[39] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter. 2010. ATLAS:

A scalable and high-performance scheduling algorithm for multiple memory con-

trollers. In Proceedings of the IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 1–12.

[40] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter. 2010.

Thread Cluster Memory Scheduling: Exploiting Differences in Memory Access

Behavior. In Proceedings of the ACM/IEEE International Symposium on Microar-
chitecture (MICRO). IEEE Computer Society, 65–76.

[41] Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong Seo, Yeongon

Cho, and Soojung Ryu. 2014. Improving GPGPU resource utilization through

alternative thread block scheduling. In Proceedings of the IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 260–271.

[42] Ang Li, Shuaiwen Leon Song, Weifeng Liu, Xu Liu, Akash Kumar, and Henk

Corporaal. 2017. Locality-Aware CTAClustering forModern GPUs. In Proceedings
of the ACM Architectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM, 297–311.

[43] Zhonghai Lu and Yuan Yao. 2016. Aggregate Flow-Based Performance Fairness

in CMPs. ACM Transactions on Architecture and Code Optimization (TACO) 13, 4,
Article 53 (Dec. 2016), 27 pages.

[44] Eric B Lum, Justin Cobb, and Barry N Rodgers. 2017. Pixel serialization to improve

conservative depth estimation. US Patent 9,684,998.

[45] Michael Mantor, Laurent Lefebvre, Mikko Alho, Mika Tuomi, and Kiia Kallio.

2016. Hybrid render with preferred primitive batch binning and sorting. US

Patent App. 15/250,357.

[46] Morgan McGuire. 2017. Computer Graphics Archive. https://casual-effects.com/

data [Online; accessed April 25, 2019].

[47] Steven E Molnar, Emmett M Kilgariff, Johnny S Rhoades, Timothy John Purcell,

Sean J Treichler, Ziyad S Hakura, Franklin C Crow, and James C Bowman. 2013.

Order-preserving distributed rasterizer. US Patent 8,587,581.

[48] Nachiappan ChidambaramNachiappan, Praveen Yedlapalli, Niranjan Soundarara-

jan, Anand Sivasubramaniam, Mahmut T Kandemir, Ravi Iyer, and Chita R Das.

2015. Domain knowledge based energy management in handhelds. In Proceedings
of the IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 150–160.

[49] Nachiappan Chidambaram Nachiappan, Haibo Zhang, Jihyun Ryoo, Niranjan

Soundararajan, Anand Sivasubramaniam, Mahmut T. Kandemir, Ravi Iyer, and

Chita R. Das. 2015. VIP: Virtualizing IP Chains on Handheld Platforms. In

Proceedings of the ACM/IEEE International Symposium on Computer Architecture
(ISCA) (ISCA ’15). ACM, 655–667.

[50] Nvidia. 2009. NVIDIA’s Next Generation CUDA Compute Architecture.

(2009). https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_

Fermi_Compute_Architecture_Whitepaper.pdf [Online; accessed 25-Apr-2019].

[51] NVIDIA. 2014. K1: A new era in mobile computing. Nvidia, Corp., White Paper
(2014). https://www.nvidia.com/content/PDF/tegra_white_papers/Tegra_K1_

whitepaper_v1.0.pdf [Online; accessed April 25, 2019].

[52] Nvidia. 2015. NVIDIA Tegra X1. Nvidia whitepaper (2015). https://international.

download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf [Online; ac-

cessed April 25, 2019].

[53] Nvidia. 2019. Parallel Thread Execution ISA. https://docs.nvidia.com/cuda/

parallel-thread-execution/index.html [Online; accessed April 25, 2019].

[54] NVIDIA, Tesla. 2008. A Unified Graphics and Computing Architecture. IEEE
Computer Society (2008), 0272–1732.

[55] Avadh Patel, Furat Afram, and Kanad Ghose. 2011. Marss-x86: A qemu-based

micro-architectural and systems simulator for x86 multicore processors. In 1st

International Qemu Users’ Forum. 29–30.

[56] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood. 2015. gem5-gpu: A

Heterogeneous CPU-GPU Simulator. IEEE Computer Architecture Letter 14, 1 (Jan
2015), 34–36.

[57] Qualcomm. 2013. FlexRender. https://www.qualcomm.com/videos/flexrender

[Online; accessed April 25, 2019].

[58] Siddharth Rai andMainak Chaudhuri. 2017. Improving CPU Performance through

Dynamic GPU Access Throttling in CPU-GPU Heterogeneous Processors. In

Proceedings of the IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 18–29.

[59] Johnny S Rhoades, Steven E Molnar, Emmett M Kilgariff, Michael C Shebanow,

Ziyad S Hakura, Dale L Kirkland, and James Daniel Kelly. 2014. Distributing

primitives to multiple rasterizers. US Patent 8,704,836.

[60] Rys Sommefeldt. 2015. A look at the PowerVR graphics archi-

tecture: Tile-based rendering. https://www.imgtec.com/blog/

a-look-at-the-powervr-graphics-architecture-tile-based-rendering

[61] Samsung. 2013. Samsung Exynos 5410. Samsung whitepaper (2013). https:

//pdfs.semanticscholar.org/54c4/6e6cd3ac84ab5c8586760d9b7cb62cd3427b.pdf

[62] Andreas Sandberg et al. 2016. NoMali: Simulating a realistic graphics driver

stack using a stub GPU. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 255–262.

[63] Daniel Scherzer, Lei Yang, Oliver Mattausch, Diego Nehab, Pedro V. Sander,

Michael Wimmer, and Elmar Eisemann. 2012. Temporal Coherence Methods in

Real-Time Rendering. Computer Graphics Forum 31, 8 (2012), 2378–2408.

[64] Larry D Seiler and Stephen LMorein. 2011. Method and apparatus for hierarchical

Z buffering and stenciling. US Patent 7,978,194.

[65] Andreas Sembrant, Trevor E Carlson, Erik Hagersten, and David Black-Schaffer.

2017. A graphics tracing framework for exploring CPU+ GPU memory systems.

In Proceedings of the IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 54–65.

[66] Yakun Sophia Shao, Sam Likun Xi, Vijayalakshmi Srinivasan, Gu-Yeon Wei,

and David Brooks. 2016. Co-designing accelerators and soc interfaces using

gem5-aladdin. In Proceedings of the ACM/IEEE International Symposium on Mi-
croarchitecture (MICRO). IEEE, 1–12.

[67] Jeremy W Sheaffer, David Luebke, and Kevin Skadron. 2004. A flexible sim-

ulation framework for graphics architectures. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware. ACM, 85–94.

[68] Dong Oh Son, Cong Thuan Do, Hong Jun Choi, Jiseung Nam, and Cheol Hong

Kim. 2017. A Dynamic CTA Scheduling Scheme for Massive Parallel Computing.

Cluster Computing 20, 1 (March 2017), 781–787.

[69] Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur

Mutlu. 2014. The blacklisting memory scheduler: Achieving high performance

and fairness at low cost. In Proceedings of the IEEE International Conference on
Computer Design (ICCD). IEEE, 8–15.

[70] TechInsights. 2017. Huawei Mate 10 Teardown. https://www.techinsights.com/

about-techinsights/overview/blog/huawei-mate-10-teardown

[71] TechInsights. 2018. Samsung Galaxy S9 Teardown. https://www.techinsights.

com/about-techinsights/overview/blog/samsung-galaxy-s9-teardown [Online;

accessed April 25, 2019].

[72] Qualcomm Technologies. 2014. THE RISE OF MOBILE GAMING ON ANDROID:

QUALCOMM SNAPDRAGON TECHNOLOGY LEADERSHIP. https://developer.

qualcomm.com/qfile/27978/rise-of-mobile-gaming.pdf [Online; accessed April

25, 2019].

[73] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli. 2012.

Multi2Sim: a simulation framework for CPU-GPU computing. In Proceedings of
the ACM/IEEE International Conference on Parallel Architecture and Compilation
Techniques (PACT). IEEE, 335–344.

[74] Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and Onur Mutlu.

2016. DASH: Deadline-Aware High-Performance Memory Scheduler for Hetero-

geneous Systems with Hardware Accelerators. ACM Transactions on Architecture
and Code Optimization (TACO) 12, 4, Article 65 (Jan. 2016), 28 pages.

[75] Nandita Vijaykumar, Eiman Ebrahimi, Kevin Hsieh, Phillip B Gibbons, and Onur

Mutlu. 2018. The Locality Descriptor: A holistic cross-layer abstraction to express

data locality in GPUs. In Proceedings of the ACM/IEEE International Symposium
on Computer Architecture (ISCA). IEEE, 829–842.

[76] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and

Minyi Guo. 2016. Simultaneous multikernel GPU: Multi-tasking throughput

processors via fine-grained sharing. In Proceedings of the IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA). IEEE, 358–369.

[77] Praveen Yedlapalli, Nachiappan ChidambaramNachiappan, Niranjan Soundarara-

jan, Anand Sivasubramaniam, Mahmut T Kandemir, and Chita R Das. 2014. Short-

circuiting memory traffic in handheld platforms. In Proceedings of the ACM/IEEE
International Symposium on Microarchitecture (MICRO). IEEE Computer Society,

166–177.

https://community.arm.com/graphics/b/blog/posts/the-mali-gpu-an-abstract-machine-part-2---tile-based-rendering
http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
http://comparch.gatech.edu/hparch/macsim/macsim.pdf
http://comparch.gatech.edu/hparch/macsim/macsim.pdf
https://casual-effects.com/data
https://casual-effects.com/data
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/tegra_white_papers/Tegra_K1_whitepaper_v1.0.pdf
https://www.nvidia.com/content/PDF/tegra_white_papers/Tegra_K1_whitepaper_v1.0.pdf
https://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
https://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://www.qualcomm.com/videos/flexrender
https://www.imgtec.com/blog/a-look-at-the-powervr-graphics-architecture-tile-based-rendering
https://www.imgtec.com/blog/a-look-at-the-powervr-graphics-architecture-tile-based-rendering
https://pdfs.semanticscholar.org/54c4/6e6cd3ac84ab5c8586760d9b7cb62cd3427b.pdf
https://pdfs.semanticscholar.org/54c4/6e6cd3ac84ab5c8586760d9b7cb62cd3427b.pdf
https://www.techinsights.com/about-techinsights/overview/blog/huawei-mate-10-teardown
https://www.techinsights.com/about-techinsights/overview/blog/huawei-mate-10-teardown
https://www.techinsights.com/about-techinsights/overview/blog/samsung-galaxy-s9-teardown
https://www.techinsights.com/about-techinsights/overview/blog/samsung-galaxy-s9-teardown
https://developer.qualcomm.com/qfile/27978/rise-of-mobile-gaming.pdf
https://developer.qualcomm.com/qfile/27978/rise-of-mobile-gaming.pdf

	Abstract
	1 Introduction
	2 Emerald SoC Architecture
	3 Graphics Architecture
	3.1 Graphics Pipelines
	3.2 Contemporary Graphics Architectures
	3.3 Emerald Architecture
	3.4 Model Accuracy
	3.5 Model Limitations and future work

	4 Emerald Software Design
	4.1 Emerald Standalone Mode
	4.2 Emerald Full-system Mode

	5 Case Study i:Memory Organization andScheduling on Mobile SoCs
	5.1 Implementation
	5.2 Evaluation

	6 Case Study ii:Dynamic Fragment Shading Load-Balancing (DFSL)
	6.1 Experimental Setup
	6.2 Load-Balance vs. Locality
	6.3 Dynamic Fragment Shading Load-Balancing (DFSL)

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

