
Warp Scheduling for Fine-Grained Synchronization

Ahmed ElTantawy§†, Tor M. Aamodt§
§University of British Columbia, Canada

†Huawei, Canada
ahmede@ece.ubc.ca, aamodt@ece.ubc.ca

Abstract—Fine-grained synchronization is employed in many
parallel algorithms and is often implemented using busy-
wait synchronization (e.g., spin locks). However, busy-wait
synchronization incurs significant overheads and existing CPU
solutions do not readily translate to single-instruction, multiple-
thread (SIMT) graphics processor unit (GPU) architectures. In
this paper, we propose Back-Off Warp Spinning (BOWS), a
hardware warp scheduling policy that extends existing warp
scheduling policies to temporarily deprioritize warps executing
busy wait code. In addition, we propose Dynamic Detection of
Spinning (DDOS), a novel hardware mechanism for accurately
and efficiently detecting busy-wait synchronization on GPUs.
On a set of GPU kernels employing busy-wait synchroniza-
tion, DDOS identifies all busy-wait loops incurring no false
detections. BOWS improves performance by 1.5× and reduces
energy consumption by 1.6× versus Criticality-Aware Warp
Acceleration (CAWA) [14].

Keywords-Warp Scheduling; Synchronization; SIMT Archi-
tectures; Busy Wait; GPGPUs

I. INTRODUCTION

There is growing interest in running applications with
fine-grained synchronization on GPUs as indicated by
recently announced changes to control-flow handling on
NVIDIA’s next generation Volta GPU [26], [25]. Enabling
faster synchronization on GPUs is important even if CPUs
always have an advantage because it helps reduce the need
to transfer data between CPU and GPU between processing
steps in larger scientific application work flows. Demand
for faster synchronization support on SIMT architectures
is evident in that the performance of atomic operations
has improved by orders of magnitude in recent NVIDIA
GPU generations (Section II). To enable support for fine-
grained synchronization, and not unlike recent academic pro-
posals [11], [10], NVIDIA’s Volta removes the stack-based
SIMT reconvergence mechanism found in prior NVIDIA
(and AMD) GPUs [26], [25]. This change will enable easier
programming on GPUs [10] for workloads such as Graph
analysis [6], [22], [20], [34], data flow algorithms [16], hash
tables [13], and others. However, NVIDIA cautions “threads
spinning on a lock may degrade the performance of the
thread holding the lock” [26], [25]. In this paper, we focus
on this challenge.

Overheads of fine-grained synchronization have been well
studied in the context of multi-core CPU architectures [37],
[33], [17], [9]. However, the scale of multi-threading and

the fundamental differences in the architecture in SIMT
machines hinders the direct applicability of the previously
proposed CPU solutions (more details in Section VII). In
SIMT machines, barrier synchronization overheads have
been recently studied [19], [18]. These studies proposed
warp scheduling policy that accelerates warps that have not
yet reached a barrier to enable other warps blocked at the
barrier to proceed. However, bust-wait synchronization is a
fundamentally different problem. With barriers, warps that
reach a barrier are blocked and do not consume issue slots.
With busy-wait synchronization, threads that fail to acquire
a lock spin, compete for issue slots and, in the absence of
coherent L1 caches, compete for memory bandwidth.

Yilmazer and Kaeli [36] quantified the overheads of spin-
locks on GPUs and proposed a hardware-based blocking
synchronization mechanism called hierarchal queue locking
(HQL). HQL provides locks at a cache line granularity by
adding flags and pointer meta-data to each L1 and L2 block,
which can be in one of six states. Negative acknowledgments
are used when queues are filled and in certain race condi-
tions. An acquire init primitive is added to the application to
set up a queue. While HQL achieves impressive performance
gains when an application uses a small number of locks
relative to threads, it can experience a slowdown when using
a large number of locks concurrently. Moreover, HQL adds
a significant area to the caches and requires a fairly complex
cache protocol. While Yilmazer and Kaeli noted the potential
for synchronization aware warp scheduling to help improve
HQL, no details of how to implement such a scheduler were
described. By judiciously modifying warp scheduling, this
paper shows how to effectively approximate the benefits of
queue-based locking without the complexity and overhead
of directly implementing queues.

Criticality-Aware Warp Acceleration (CAWA) [14] uses
run-time information to predict critical warps. Critical warps
are those that are slowest in a kernel and as they determine
execution time CAWA prioritizes them. CAWA estimates
warp criticality using a criticality metric that predicts which
warp will take the longest time to finish. CAWA outperforms
greedy-than-oldest (GTO) warp scheduling across a range
of traditional GPGPU workloads [14]. However, CAWA can
reduce performance for busy-wait synchronization code as
its criticality predictor tends to prioritize spinning warps.

We propose Back-Off Warp Spinning (BOWS), a schedul-

1 . bool done = false;
2 . int *mutex = lock[hashValue].mutex;
3 . while(!done){
4 . if(atomicCAS(mutex, 0, 1) == 0){
5 . threadfence();
6 . l o c a t i o n−>n e x t = t a b l e . e n t r i e s [hashValue] ;
7 . t a b l e . e n t r i e s [hashValue] = l o c a t i o n ;
8 . done = true;
9 . threadfence();
1 0 . atomicExch(mutex,0);
1 1 . } / / e l s e back−o f f d e l a y code (S e c t i o n 4 , F i g u r e 4 a)
1 2 . }

(a) Critical Section in Hashtable Insertion

 0

 1

 2

 3

 4

 5

128 256 512 1024 2048 4096

K
er

ne
l E

xe
cu

tio
n

T
im

e
(L

O
G

10
(m

se
c)

)

HashTable Buckets

Intel i7-4770K 3.50GHz
Fermi TeslaC2050

Pascal GTX1080

(b) Hash Table Perf. (y-axis is log scale)

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

128 256 512 1024 2048 4096

D
is

tr
ib

ut
io

n
of

 D
yn

am
ic

 In
st

ru
ct

io
ns

HashTable Buckets

Synchronization Overheads
Useful Instructions

(c) Dynamic Instructions Overheads

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

128 256 512 1024 2048 4096

D
is

tr
ib

ut
io

n
of

 M
em

or
y

T
ra

ns
ac

tio
ns

HashTable Buckets

Other
Synchronization

(d) Memory Traffic Overheads

 0

 20

 40

 60

 80

 100

128 256 512 1024 2048 4096

S
IM

D
 E

ffi
ci

en
cy

HashTable Buckets

Multiple Warps
Single Warp

(e) Divergence Overheads

Figure 1: Fine-grained Synchronization in current GPGPUs. Both CPU and GPU versions are compiled with NVCC-6.5
-O3. Overheads measured on Pascal GTX1080 using nvprof with 120 blocks each containing 256 threads.

ing policy that prevents spinning warps from competing for
scheduler issue slots. BOWS approximates software back-
off techniques used in multi-threaded CPU architectures [2],
which are impractical to apply directly to GPUs (Figure 3).
Warp prioritization in stack-based SIMT architectures is
complicated by the fact that some threads within a warp
may hold a lock while others do not. In BOWS warps
that are about to execute a busy-wait iteration are removed
from competition for scheduler issue slots until no other
warps are ready to be scheduled. BOWS requires annotation
of acquire and release operations. Thus, we propose a
hardware mechanism, called Dynamic Detection of Spinning
(DDOS), to detect spin locks in GPGPU code. DDOS tracks
path and selective register value histories for a subset of
threads within a kernel to accurately identify spin loop code.
DDOS provides the first approach to achieve spin detection
similar to CPU proposals [17] that is practical for GPU
implementation.

II. BACKGROUND AND MOTIVATION

In this section, we analyze the overheads of busy-wait syn-
chronization on GPUs. Similar to Yilmazer and Kaeli [36]
we find high overheads. In contrast to their analysis, our
measurements in Figure 1 use real GPU hardware instead of
simulation. Moreover, we compare against CPU-only execu-
tion, breakout instruction overheads due to spinning, explore
the impact of hardware warp scheduling and software only
back-off techniques.

Figure 1a shows how atomics can be used to implement
locks in architectures using a SIMT-stack. This code is
modified from NVIDIA’s CUDA by Example [30] and
implements a critical section in a hashtable1. Figure 1b
compares the execution time of 26.2 million insertions of
random keys to this hashtable on a GPU versus on a CPU
while varying the number of hashtable buckets (y-axis is
log scale). Few buckets mean more contention. We compare
two NVIDIA GPUs and a CPU: A Tesla C2050 (Fermi),
GeForce GTX 1080 (Pascal), and an Intel Core i7 running
a serial CPU implementation. The GTX 1080 outperforms
the single-threaded CPU implementation, that uses the same
algorithm, for reasonably sized hashtables: At 4096 buckets
the GTX 1080 is 9.77× faster.

Figure 1c shows synchronization overhead ranges from
61.0% up to 98.3% of dynamic instructions at high con-
tention. Similarly, Figure 1d shows 41.5% to 95.6% of
memory operations are due to synchronization. A significant
portion of both is due to failed lock acquire attempts.
Another source of synchronization overhead on GPUs is
control-flow divergence. Figure 1e shows that if the code
is executed by a single warp, the SIMD utilization (fraction
of active lanes) ranges between 87.1%-98.6% but drops to
16.4%-47.1% when executing multiple warps due to inter-
warp lock conflicts.

Next, we consider the impact of warp scheduling policies.

1We modified the code to avoid serializing threads within a warp as
proposed in [30]. This improves performance on our hardware

 0

 0.5

 1

 1.5

 2

 2.5

TB ST DS ATM HT TSP NW1 NW2

Lo
ck

 A
cq

ui
re

/W
ai

t D
is

tr
ib

ut
io

n

Benchmarks

Wait Exit Success
Wait Exit Fail
Intra−Warp Lock Fail
Inter−Warp Lock Fail
Lock Success

Figure 2: Synchronization Status Distribution. Bars from
left to right: LRR, GTO, and CAWA. GPGPU-Sim with a
GTX480 configuration. See Section V for details.

Greedy then Oldest (GTO) scheduling [29] selects the same
warp for scheduling until it stalls then moves to the oldest
ready warp. Older warps are those with lower thread IDs.
GTO typically outperforms Loose Round Robin (LRR) [29].
In CAWA (Section I) warp criticality is estimated as:
nInst×w.CPIavg+nStall, where nInst is an estimate of
remaining dynamic instruction count (based on direction of
branch outcomes), w.CPIavg is per-warp CPI, and nStall
is the stall cycles experienced by a warp. Critical warps are
prioritized.

Figure 2 plots the distribution of lock acquire attempts
in lock-based synchronization and the wait exit attempts
in wait and signal based synchronization (benchmarks and
methodology described in Section V) using LRR, GTO,
and CAWA scheduling policies.The figure also shows the
distribution of whether the lock acquire failure is because the
lock is held by a thread within the same warp (i.e., intra-warp
lock fail) or in a different warp (i.e., inter-warp lock fail).
Most lock failures are due to inter-warp synchronization.
The figure shows that inter-warp conflicts are significantly
influenced by the warp scheduling policy.

Figure 3 plots execution time of the hashtable insertion
code in Figure 1a augmented with the software-only backoff
delay code in Figure 3a running on GTX 1080 hardware.
The results suggest that adding a backoff delay to a spin-
lock degrades performance on recent GPUs. The reason is
that, except at very high levels of contention, the benefits of
reduced memory traffic appear insufficient to make up for
wasted issue slots executing the delay code itself.

III. BOWS: BACKOFF WARP SPINNING

To avoid wasted issue slots we propose Back-Off Warp
Spinning (BOWS), a hardware scheduling mechanism that
reduces the priority of spinning warps. BOWS assumes
synchronization loops have been identified by programmer,
compiler or DDOS (Section IV).

1 . c l o c k t s t a r t = c l o c k () ;
2 . c l o c k t now ;
3 . f o r (; ;) {
4 . now = c l o c k () ;
5 . c l o c k t c y c l e s = now>s t a r t ? now−s t a r t :

now +(0 x f f f f f f f f−s t a r t) ;
6 . i f (c y c l e s >= DELAY FACTOR∗b l o c k I d x . x){
7 . b r e a k ;
8 . }
9 . }

(a) Backoff Delay Code*.

 0

 0.5

 1

 1.5

 2

 2.5

 3

128 256 512 1024 2048 4096

K
er

ne
l E

xe
cu

tio
n

T
im

e
(L

O
G

10
(m

se
c)

)

HashTable Buckets

No Delay
Delay Factor=50

Delay Factor=100
Delay Factor=500

Delay Factor=1000

(b) Execution Time.

Figure 3: Software Backoff Delay Performance in GPUs.
*omp set lock GPU implementation for OpenMP 4.0 [4].

0
x0

9
8

:
%

p
3

 b
ra

 B
B

2

Back-off
 Delay

0
x0

3
0

: a
to

m
.c

as
.b

3
2

x
x

0
x0

3
8

: %
p

2
 b

ra
 B

B
3

0
x0

9
0

: s
et

p
.e

q
.s

1
6

x
x

Blocked W
0

Th

re
ad

s

P

W0

W1

W2

W3

P

W1

W2

W3

W0

P

W0

W1

W2

W3

P

W1

W2

W3

W0

P

W0

W1

W2

W3

P

W1

W2

W3

W0

P

W0

W1

W2

W3

W
ar

p

Sc
h

e
d

u
lin

g
P

ri
o

ri
ty

In

st
ru

ct
io

n

Ex
e

cu
te

d

Back-off
 Delay

1

2

3
5

4

6 7 8

9

10

time

0
x0

9
8

:
%

p
3

 b
ra

 B
B

2

0
x0

3
0

: a
to

m
.c

as
.b

3
2

0

x0
3

8
: %

p
2

 b
ra

 B
B

3

0
x0

9
8

:
%

p
3

 b
ra

 B
B

2

0
x0

3
0

: a
to

m
.c

as
.b

3
2

C
ri

ti
ca

l S
ec

ti
o

n

 E
xe

cu
te

d

Figure 4: BOWS scheduling Policy.

A. BOWS scheduling policy

The scheduling policies examined in Section II suffer
from two limitations:
• The scheduler may prioritize spinning warps in the

competition for issue slots over other eligible non-
spinning ones. This slows down the progress of non-
spinning warps. In cases when these non-spinning
warps are holding locks, this decision also slows down
the forward progress of spinning warps.

• The scheduler may return back to the same spinning
warp too early even if it was at the bottom of the
scheduling priority because other warps are stalling on
data dependencies.

BOWS avoids these issues by modifying an existing warp
scheduling policy as follows:
• It discourages warps from attempting another spin

iteration by inserting the warp that is about to execute
another iteration into the back of the warp scheduling
priority queue. Warps in this state are called Backed-
off. Once a warp in the backed-off state issues its next
instruction its priority reverts to normal and leaves the
backed-off state.

• It sets a minimum time interval between the start of

any two consecutive iterations of a spin loop by the
same warp. Warps that are about to start a new spin
loop iteration prior to the end of their interval are not
eligible for scheduling.

BOWS requires that Spin-Inducing Branches (SIBs) have
been identified. SIBs are the backward branch of each spin
loop. Once a warp executes a SIB, the scheduler control unit
triggers BOWS’ logic.

1) BOWS Operation: BOWS works as follows: Once a
warp exits its backed-off state, a pending back-off delay
register is initialized to the back-off delay limit. The warp
then continues execution normally with the pending back-off
delay register decremented every cycle. If the warp executes
a SIB it cannot issue its next instruction until its back-off
delay is zero. The back-off delay value can be determined
through profiling or tuned adaptively at runtime.

Figure 4 shows an example of BOWS operation for
warp W0 containing four threads for the code in Fig-
ure 7a. Backward branch 0x098: %p3 bra BB2; has
been identified as a SIB. Scheduling priority is shown in
the top of Figure 4. Initially, W0 has high priority 1 . Once
W0 encounters a spin-inducing branch 2 , it is pushed to
the back of the priority queue and marked as backed-off
(shaded in Figure 4). W0 is scheduled when other warps are
stalling (e.g., on memory accesses for line 6 in Figure 1a)
and executes the lock-acquire atomic compare and swap
instruction (Figure 7a, PC=0x030). At this point, 3 three
actions are taken: First, the warp loses its backed-off state;
second, the warp priority reverts to normal; and third a
back-off delay value is stored in the warp pending back-off
delay register 4 . Two threads of W0 successfully acquire the
lock and proceed to the critical section while the other two
threads fail 5 . Threads reconverge at the setp instruction
and execute the spin-inducing branch. The two threads that
executed the critical section exit the spin loop while the
others proceed to another iteration. Once the spin-inducing
branch is executed, the warp enters the backed-off state and
is pushed to the end of the priority queue 6 . As the duration
of the critical section is larger than that of the back-off delay
limit W0’s back-off delay is already zero and so W0 is
eligible for scheduling. After W0 is scheduled it executes the
lock acquire and the two remaining threads in the spin loop
again fail to acquire a lock 7 . The two threads immediately
proceed to another iteration of the spin-loop 8 . However,
once W0 enters the backed-off state, it cannot be scheduled
until the pending back-off delay is zero 9 . Once the pending
back-off delay is zero, W0 is eligible for scheduling 10 .

2) Adaptive Back-off Delay Limit: A small back-off delay
may increase spinning overheads while a large back-off
delay may throttle warps more than necessary. We adaptively
set the delay by trying to maximize (Useful Instructions

Spinning Overheads)
over a window of execution. We use
Total Inst.
SIB Inst. = Useful Inst. + SIB Inst.×avg. Spin Overhead

SIB Inst.

f o r each E x e c u t i o n Window of T c y c l e s :
i f (SIB I n s t r u c t i o n s > FRAC1 ∗ T o t a l I n s t r u c t i o n s)

Delay L i m i t += Delay S tep
i f ((T o t a l I n s t r u c t i o n s) / (SIB I n s t r u c t i o n s)<

FRAC2 ∗ (Prev . T o t a l I n s t r u c t i o n s) / (Prev . SIB
I n s t r u c t i o n s))

Delay L i m i t −= 2∗Delay S tep
i f (Delay L i m i t > Max L i m i t) Delay L i m i t = Max L i m i t
i f (Delay L i m i t < Min L i m i t) Delay L i m i t = Min L i m i t

Figure 5: Adaptive Back-off Delay Limit Estimation.

as a rough estimate. As the average spin overhead is almost
constant across the execution of the same kernel the ratio of
the Total Instructions

SIB Instructions is proportional to Useful Instructions
Spinning Overheads .

The pseudo code in Figure 5 summarizes our adaptive
back-off delay limit calculation. This algorithm is applied
over successive time windows. During the current window
the adaptive back-off delay estimation algorithm computes
the back-off delay limit to use during the next window.
Initially, the scheme attempts to increase the back-off delay
limit by a fixed step as long as a non-negligible ratio of
dynamic spin-inducing branches is executed. However, if the
ratio of Total Instructions

SIB Instructions in the current execution window is
considerably smaller than the ratio in the previous window
the back-off delay limit is decremented by a double step.
Finally, lower and upper limits are applied to the back-
off delay limit. The values used in evaluation are listed in
Table II.

IV. DYNAMIC DETECTION OF SPINNING

It is possible to identify spin loops when explicit busy-
wait synchronization APIs are used. The compiler can
then translate a lock acquire API into a busy wait loop
with the backward branch of the loop flagged as a spin
inducing branch. However, such APIs are not available in
current SIMT programming models. Moreover, they may are
challenging to implement due to the SIMT-induced deadlock
problem [10].

A SIMT-induced deadlock occurs when a thread is indef-
initely blocked due to the cyclic dependency between SIMT
scheduling constraints and a synchronization operation. For
example, consider the use of a while loop to implement a
lock acquire statement such as follows:

whi le (atomicCAS (mutex , 0 , 1) ! = 0) ;
/ / c r i t i c a l s e c t i o n
a tomicExch (mutex , 0) ;

This code deadlocks on most GPUs. Instead of progressing
in the critical section towards the lock release statement,
thread(s) that successfully acquire a lock are blocked at the
while loop exit waiting to reconverge with thread(s) in the
same warp that are trying to acquire a lock held by one
of the successful threads. Thus a cyclic-dependency occurs
leading to a deadlock. The code in Figure 1a, addresses
this problem using a standard GPU programming approach

1 . boo l t r a n s a c t i o n d o n e = f a l s e ;
2 . w h i l e (! t r a n s a c t i o n d o n e) {

/ / t r y l o c k 1
3 . i f (atomicCAS(& lock1−>lock , 0 , 1) ==0){

/ / t r y l o c k 2
4 . i f (atomicCAS (&lock2−>lock , 0 , 1) ==0){
5 . / / c r i t i c a l s e c t i o n
6 . a tomicExch (& lock2−>lock , 0) ; / / r e l e a s e l o c k 2
7 . a tomicExch (& lock1−>lock , 0) ; / / r e l e a s e l o c k 1
8 . t r a n s a c t i o n d o n e = t r u e ;
9 . }e l s e {
1 0 . a tomicExch (& lock1−>lock , 0) ; / / r e l e a s e l o c k 1
1 1 . }
1 2 . }
13.}

(a) Nested Locks (ATM [12] and CP [12], [5]).

1 . f o r (i = 0 ; i < 3 2 ; i ++) {
/ / s e r i a l i z e t h r e a d s w i t h i n t h e same warp

2 . i f (l a n e i d == i) {
/ / t r y g l o b a l l o c k

3 . w h i l e (atomicCAS (mutex , 0 , 1) ! = 0){
4 . }
5 . / / c r i t i c a l s e c t i o n
6 . a tomicExch (mutex , 0) ;
7 . }
8.}

(b) Global Locking (TSP [28], [30]).

1
2 . w h i l e (k >= bot tom) {
3 . s t a r t = s t a r t d [k] ;
4 . i f (s t a r t >= 0) { / / i f n o t w a i t
5
6 . i f (ch >= n b o d i e s d) {
7
8 . }e l s e {
9 . / / c h i l d i s a body
1 0 . s o r t d [s t a r t]= ch ; / / s i g n a l
1 1 . }
1 2 . k−=dec ; / / move t o n e x t c e l l
13.}
14.}

(c) Wait and Signal (BH-ST [6]).

Figure 6: Examples of Inter-Thread Synchronization Patterns used in GPUs (Section V).

0 x028 : mov . s16 %r21 , 0 ;
BB2 :

0 x030 : atom . c a s . b32 %r15 , [% r l 2 9] , 0 , 1 ;
0 x038 : s e t p . eq . s32 %p2 , %r15 , 0 ;
0 x040 : @%p2 b r a BB3 ;
0 x048 : b r a . u n i BB4 ;

BB3 :
/ / c r i t i c a l s e c t i o n

0 x088 mov . s16 %r21 , 1
BB4 :

0 x090 : s e t p . eq . s16 %p3 , %r21 , 0 ;
0 x098 : @%p3 b r a BB2 ;

(a) Busy-Wait Loop.

Path
History 0111

Value
History 0001 0000

Path
History 0010 0111

Value
History 0000 0000 0001 0000

Match Pointer=0,
Remaining Matches = NULL

Match Pointer=1,
Remaining Matches = NULL

Path
History 0111 0010 0111

Value
History 0001 0000 0000 0000 0001 0000

Match Pointer=2,
Remaining Matches = 1

Path
History 0010 0111 0010 0111

Value
History 0000 0000 0001 0000 0000 0000 0001 0000

Match Pointer=2,
Remaining Matches = 0

1a

1b

2a

2b

3

4

Path
History 0111 0010 0111 0010 0111

Value
History 0000 0000 0000 0000 0001 0000 0000 0000 0001 0000

5a

5b

Match Pointer= 2 (reset to 0)
Remaining Matches = NULL

Spin-inducing Branches Prediction Table (SIB-PT)
PC Confidence Prediction

0x098 1 Non Spinning

(b) Updates to History Registers and SIB-PT.

0 x020 : l d . param . u32 %r15 ,
[Z 1 4 i n v e r t m a p p i n g P f S i i p a r a m 3] ;

0 x028 : mov . u32 %r20 , 0 ;
BB2 :

0 x030 : l d . g l o b a l . f32 %f1 , [% r l 1 4] ;
0 x038 : s t . g l o b a l . f32 [% r l 1 5] , %f1 ;
0 x040 : add . s64 %r l 1 5 , %r l 1 5 , %r l 4 ;
0 x048 : add . s64 %r l 1 4 , %r l 1 4 , 4 ;
0 x050 : add . s32 %r20 , %r20 , 1 ;
0 x058 : s e t p . l t . s32 %p4 , %r20 , %r15 ;
0 x060 : @%p4 b r a BB2 ;

(c) Regular Loop.

Path
History 0010

Value
History 0000 1110

Path
History 0010 0010

Value
History 0001 1110 0000 1110

Match Pointer=0,
Remaining Matches = NULL

Match Pointer=1,
Remaining Matches = NULL

Path
History 0010 0010 0010

Value
History 0010 0000 0001 0000 0000 0000

Match Pointer=2,
Remaining Matches = NULL

6a

6b

7a

7b

8a

8b

Spin-inducing Branches Prediction Table (SIB-PT)
PC Confidence/Threshold Prediction
- - -

(d) Updates to History Registers and SIB-PT.

Figure 7: Warp History Registers and SIB-PT Operation (Figure 8 shows the units locations in the pipeline).

involving placing the lock release inside the spin loop.
In this code threads that successfully acquire the lock are
guaranteed to be able to make forward progress to the
lock release code. However, to generalize this approach to
arbitrary synchronization patterns, it requires non-trivial and
costly code transformations. Please refer to [10], [25] for
details.

Consequently, current GPU programmers write synchro-
nization code tailored to their specific application scenario to
avoid deadlocks. Figure 6a shows an implementation of two
nested locks that avoid SIMT-induced deadlocks from ATM
and Figure 6b shows an implementation of a global lock
from TSP where the execution of the critical section is seri-
alized across threads from the same warp. Figure 6c shows
busy-wait synchronization from the ST kernel in BH that
implements a wait and signal synchronization rather than a

lock. A thread waits in a spin loop for a condition set by
another thread. The large variety of synchronization patterns
makes it challenging to detect busy-wait synchronization
statically [10]. Thus, below, we describe a mechanism for
dynamically detecting SIBs.

To identify a SIB, DDOS first makes a prediction re-
garding whether each warp is currently in a spinning state
or not. As noted by Ti et al. [17], a thread is spinning
between two dynamic instances of an instruction if it exe-
cutes the instruction and later executes the same instruction
again (e.g., in another loop iteration) without causing an
observable change to the net system state (i.e., to its local
registers or to memory). Ti et al. [17] propose a thread
spinning detection mechanism design for multi-threaded
CPUs which tracks the changes in all local registers by
all threads. This information is used to drive OS thread

scheduling decisions and/or frequency scaling. However,
with thousands of hardware threads in GPGPUs and the
energy cost of register file accesses, it is not practical to
employ such mechanism in massive multi-threaded SIMT
architectures. DDOS essentially approximates Ti et al.’s
approach to reduce costs.

DDOS detects busy-wait loops in two steps. First, it
detects the presence of a loop. DDOS does this by tracking
the sequence of program counter values of a warp. Second,
DDOS speculates whether a loop identified in the first step
is a busy-wait loop or a normal loop. To distinguish these
cases it leverages the observation that typically in normal
loops found in GPU code an induction variable changes
every iteration. Moreover, this induction variable typically
contributes to the computation of the loop exit condition. In
NVIDIA GPUs the loop exit condition and the divergence
behavior of a thread are typically determined using a set
predicate instruction (available both in PTX and SASS)2.
For each thread in a warp, the set predicate instruction
compares two source registers and writes the result to a
boolean destination register. The boolean values are typically
used to predicate execution of both normal and branch
instructions (e.g., instructions at address 0x090 and 0x098
in Figure 7a). In normal (none busy-wait) loops, the value
of at least one source register of the set predicate (setp)
instruction(s) that determine the loop exit condition change
each iteration. For example, in a ‘for’ loop, one of these
registers would be the loop counter. DDOS tracks only the
values of source registers of the set predicate instructions to
determine whether a loop is a normal loop (i.e., setp source
register values change) or a busy-wait spin loop (setp
source register values do not change).

A. DDOS Operation

Conceptually, the spin loop detection step of DDOS works
as follows: Each warp has two shift registers, a Path History
Register and a Value History Register (Figure 7b). These
registers track the execution history of the first active thread
in the warp. We refer to this thread as the profiled thread.
The Path History Register tracks program counter values
of setp instructions. The Value History Register tracks
the values of the source registers of setp instructions.
To reduce storage overhead we hash program counter and
source operand values before adding them to the Path
History and Value History Registers. As elaborated upon
in Section IV-C the Value History Register is implemented
in the execution stage. DDOS’ examines entries in Path and
Value History Registers looking for repetition. If it finds
sufficient repetition DDOS classifies the profiled thread as
being in a spinning state.

2AMD Southern Islands ISA has an equivalent vector compare instruc-
tion (v comp) [1].

Figure 7 illustrates operation of Path and Value His-
tory Registers on PTX3 assembly examples with (Fig-
ure 7a) or without (Figure 7c) busy wait code. Fig-
ure 7a is equivalent to Figure 1a. In Figure 7a as-
sume the first active thread is executing the setp in-
struction at PC = 0x038. In the busy-wait example
in Figure 7b, the program counter is first hashed using:
((PC − PCkernel start)/Instruction Size)%m)4, where
PCkernel start = 0x000, m = 4 and Instruction Size =
8. The result (0x7) is inserted into the Path History Reg-
ister 1a . In parallel, the source operand values of the
setp instruction are hashed and added to the Value History
Register. We assume the profile thread fails to acquire the
lock so that %r15 is ‘1’. Only the least significant k-bits
(here k is 4) are used 1b . To detect repetition DDOS keeps
track of two other values, Match Pointer and Remaining
Matches. The Match Pointer identifies which m-bit (k-bit)
portion of the Path (Value) History Register to compare
new insertions against. For each insertion into the path
(value) history registers, the entry before the match pointer
is compared with the new entry. If they are equal, a loop
is detected. To enable better selectivity DDOS requires
multiple consecutive loop detections before identifying a
spin inducing loop. To facilitate this the remaining matches
register tracks the number of remaining matches required.

Continuing the example in Figure 7b, eventually the warp
executes the setp instruction at PC=0x90 in Figure 7a.
The entries in both shift registers are (logically) shifted to
the right and new values inserted to their left. No match
is found between the new entry (0x2) and the entry before
the match pointer (0x7) 2a . As the profiled thread fails to
acquire the lock %r21 remains ‘0’. Thus, the value history
register is updated with two 4-bit zero values 2b . When
the warp reaches PC=0x038 again we assume the profiled
thread again fails to acquire the lock leading to a match in
both path and value histories 3 . Once a match is detected,
the match pointer is fixed and the remaining matches value
is initialized to (matchpointer−1). Once the warp reaches
the setp instruction at PC=0x090 again an additional match
is found 4 . Since the remaining matches value is now zero,
the warp is identified as in a spinning state. After the profiled
thread successfully acquires the lock the execution of the
setp instruction at PC=0x040 leads to a mismatch in the
value history and the warp loses its spinning state 5b .

To detect SIBs DDOS employs a spin-inducing branch
prediction table (SIB-PT). The SIB-PT, shown in Figure 7b,
is shared between warps executing on the same SM. The
SIB-PT maintains a confidence value for each branch under
consideration. When a warp is in a spinning state and it
executes a backward branch if that branch is not in the SIB-
PT then it is added with a confidence value of 1. If the branch

3PTX is Nvidia GPU virtual assembly [24].
4We discuss other hashing techniques in Section IV-B.

is in the SIB-PT, its confidence value is incremented. Once
the confidence reaches a threshold the branch is identified
as a spin-inducing branch. To guard against accumulated
path and value hash aliasing errors a nonzero confidence is
decremented every time the branch is taken by a warp that
is currently classified as non-spinning.

Returning to the example in Figure 7b, initially, the SIB-
PT is empty. Once the warp executes the backward branch
at PC=0x098 while in the spinning state (i.e., after 4 and
before 5) the branch is added to the SIB-PT with its
confidence set to ‘1’. Assuming a confidence threshold of
4, only three more instances where the backward branch at
PC=0x098 is executed by a spinning warp would be required
before this branch is confirmed as a SIB. Larger threshold
values reduce false predictions but lead to longer detection
time.

For example, consider the PTX code in Figure 7c, which
is the assembly of a ‘for’ loop in Kmeans [7], [8]. The
backward branch is at 0x060 and its associated setp is
at 0x058. The first source operand %r20 represents the
‘for’ loop induction variable that is incremented by one
every iteration (at 0x050), while %r15 is a copy of the
kernel input indicating the number of loop iterations. The
PC of the setp instruction is hashed to (0x2) and inserted
into the Path History Register every time the instruction is
executed (6a , 7a , and 8a). In contrast to the busy-wait
case, the contents of %r20 changes each iteration causing a
mismatch with every insertion to the value history register
(7b and 8b).

B. DDOS Design Trade-offs

Next, we evaluate the impact of DDOS parameters on the
following metrics: (1) Average True Spin Detection Rate
(TSDR), which is the percentage of spin-inducing branches
accurately identified by DDOS; (2) Average False Spin
Detection Rate (FSDR), which is the percentage of non-spin-
inducing branches incorrectly classified as spin-inducing;
and (3) Avg. Detection Phase Ratio (DPR), which is the
average ratio of the detection phase duration of a branch
to the cycles executed from the first encounter to the last
encounter of the branch. The detection phase duration of a
branch measures how many cycles were required to confirm
a branch as a spin-inducing branch after its first encounter.
For SIBs it is preferable to have a short detection phase.
Table I shows the sensitivity of these metrics to the different
design parameters averaged over all our benchmarks (see
Section V for details).
Hashing Function: The top sub-table in Table I studies the
impact of XOR and MODULO hashing. In XOR hashing,
the values inserted into the path register are hashed as
follows (PC[m-1:0] xor PC[2m-1:m] xor PC[3m-1:2m] ...
xor PC[31:32-m]), where PC is the program counter at the
execution of a setp instruction. The value register XOR
hashes are computed similarly but using the source registers

Sensitivity to the hashing function “h” at t=4 and l=8
h Avg. TSDR Avg. DPR Avg. FSDR Avg. DPR

XOR, m=k=4 1 0.041 0.016 0.006
XOR, m=k=8 1 0.041 0 -

MODULO, m=k=4 1 0.041 0.17 0.014
MODULO, m=k=8 1 0.041 0.104 0.001

Sensitivity to the Hashed Path/Value Width “m/k” at t=4, l=8, and h=XOR
m/k Avg. TSDR Avg. DPR Avg. FSDR Avg. DPR

2 1 0.042 0.078 0.062
3 0.983 0.074 0.012 0.008
4 1 0.041 0.016 0.006
8 1 0.041 0 0

Sensitivity to Confidence Threshold “t” at m=k=4, l=8, and h=XOR
t Avg. TSDR Avg. DPR Avg. FSDR Avg. DPR
2 1 0.03 0.027 0.016
4 1 0.041 0.016 0.006
8 1 0.075 0.002 0.002

12 0.992 0.105 0.002 0.003
Sensitivity to the History Registers Length “’l” at t=4 , m=k=8. and h=XOR

l Avg. TSDR Avg. DPR Avg. FSDR Avg. DPR
1 0 0 0 0
2 0 0 0 0
4 0.625 0.032 0 0
8 1 0.041 0 0

Sensitivity to Time Sharing of History Registers “sh” at l=8, t=4, h=XOR, and epoch=1000
sh Avg. TSDR Avg. DPR Avg. FSDR Avg. DPR

0, m=k=4 1 0.041 0.016 0.006
0, m=k=8 1 0.041 0 0
1, m=k=4 0.642 0.211 0.033 0.023
1, m=k=8 0.642 0.211 0.026 0.003

Table I: DDOS Sensitivity to Design Parameters.

in the setp instructions. In MODULO hashing, values are
hashed by considering only the least significant m (k) bits
of the value (as in Figure 7). XOR hashing considerably
reduces false detections compared to MODULO hashing.
With 8-bits hashing width, the XOR hashing has a zero
false detection rate. False detections occur in Merge Sort
and Heart Wall with MODULO hashing due to loops with
power-of-2 induction variable increments larger than 2k.
Hashing Width: The impact of the hashing width is quanti-
fied in the second sub-table in Table I. A 2-bit path and value
width leads to aliasing that leads to 7.8% false detection
rate. With 3-bits the aliasing impact is smaller and 8-bits
are enough to eliminate false detections with XOR hashing.
Confidence Threshold: The third sub-table in Table I
shows that as the confidence threshold (t) increases, the
false detection rate decreases but the detection phase ratio
increases for true detections. With t = 12 some SMs fail to
confirm a spin-inducing branch (e.g., TB kernel of BH).
Hashing Registers Length: The fourth sub-table in Table I
shows the sensitivity to the history length (l), which deter-
mines the number of setp instructions DDOS can track.
DDOS needs at least five entries in its history registers to
detect their spin behaviour.
Time Sharing of History Registers: The results of time-
sharing a single set of path and value history registers among
different warps in an SM is shown in the last sub-table in
Table I. Here a warp uses the history registers for a certain
fixed interval (1000 cycles), then another warp uses them.
Time-sharing reduces detection accuracy and leads to longer
detection phase.

In evaluation, we use “h=XOR, t=4, m=k=8, l=8, and
time sharing disabled”. The total storage per warp for both
the path and value history registers is 192-bits. In our
benchmarks, the maximum number of confirmed SIBs was

R
o

ta
te

 P
ri

o
ri

ti
es

Ev

er
y

Ti
m

eO
u

t

Last
Issued

Warp Scheduler

Arbitration Logic

GTO
Priority
Queue

ID

W0

W1

W4

Backed-
off

Queue

ID

W2

W3

W5

SIB-PT

PC Conf. Pred.

0x098 4 1

Operand Collector

Branch
Unit

ALU
ALU

ALU

ALU Execution Stage

Value History

Path History

PC

Per Warp

Fetch

Decode

Scoreboard

Warp
Scheduling

Registers &
Operand
Collector

Register
File

ALU
Execution

Stage

1

2

3

5

6

7

8

Instruction Buffer

ID Ready Backed-off Pending Back-off
Delay

W0 0 0 0

W1 0 0 0

W2 0 1 0

W3 1 1 500

W4 0 0 0

W5 1 1 (0) 0 (1000)

9

4 3

Figure 8: Operation of BOWS with DDOS.

three. However, the maximum number of concurrent entries
in the SIB-PTX was 9 entries (the next maximum was only
four). A conservative 16-entry SIB-PT requires 560 bits of
storage per SM.

C. DDOS integration with BOWS

Figure 8 illustrates BOWS’ combined with DDOS. Warp
Scheduling: BOWS modifies the warp scheduling and exe-
cution stages. We found that strict GTO scheduling (without
BOWS) can leads to livelocks on two of our benchmarks
(HT and ATM). To avoid this, we modify GTO to rotate
the age priority periodically (every 50,000 cycles in our
evaluation). Arbitration logic first checks whether the last
issued warp is ready to issue its next instruction 1 . If the
last issued warp is not ready, the oldest ready warp that is not
backed-off is selected 2 . If no such warp is available the
backed-off queue is checked. A warp is added to the backed-
off queue after executing a SIB. A warp in the backed-off
queue can be scheduled only if it is both ready and its back-
off delay is zero 3 . If the arbitration selects such a warp
it is removed from the backed-off queue. The “Backed-off”
field for the warp is set to false and the “Pending Back-off
Delay” is initialized to the back-off delay limit value when
the warp exits the backed-off state 4 .

ALU Execution Stage: Path and value history are up-
dated during execution of setp instructions 5 , 6 . Current
GPUs already supports instructions such “shuffle” which
allow threads within the same warp to access each other’s
registers [27]. The underlying hardware can be used to select
the source registers of the first active thread. If the warp
executes a backward branch, then it looks up the SIB-PT 7 .
If the branch is predicted to be a spin-inducing branch the
warp enters the backed-off state 9 and is pushed to the end
of the queue.

BOWS Specific Configuration
Baseline Scheduler GTO (+rotates age every 50,000 cycles), LRR, CAWA

Window (T) 1000 Cycles Delay Step 250 Cycles
Min Limit 1000 Cycles Maximum Limit 1000 Cycles

FRAC1 0.5 FRAC2 0.8
DDOS Specific Configuration

Hashing Function XOR (Default) History Width (m=k) 8
History Length (l) 8 Confidence Threshold (t) 4

Time Sharing Disabled
Baseline Configuration

Parameter GTX480 (Fermi) GTX1080Ti (Pascal)
Number of Cores 15 28

Number of Threads/Core 1536 2048
Number of Registers/Core 32768 65536

L1 Data Cache 16 KB, 128 B line, 4-way LRU 48 KB, 128 B line, 6-way LRU
L2 Data Cache 64 KB/Channel,128 B line, 8-way LRU 128 KB/Channel, 128 B line, 16-way LRU

I$ Cache 4 KB, 128 B line, 4-way LRY 8 KB, 128 B line, 4-way LRU
Number of Warp Schedulers/Core 2 4

Frequencies (Core/Interconnect/L2,Memory) 700,700,700,924 MHz 1481,2962,1481,2750 MHz

Table II: GPGPUSim Configuration

V. METHODOLOGY

We implement BOWS in GPGPU-Sim 3.2.2 [3], [31].
We use GPGPU-Sim GTX480 for both GPGPU-Sim and
GPUWattch for performance and energy evaluation. In Sec-
tion VI-D, we report results for a Pascal GTX1080Ti con-
figuration that has a correlation of about 0.85 for Rodinia to
estimate the impact of BOWS on the performance of newer
generations of GPUs. We evaluate the impact of BOWS on
three scheduling policies; GTO, LRR, and CAWA. We use
BOWS and DDOS design parameters detailed in Table II.

For evaluation, we use Rodinia 1.0 [7], [8] for synchro-
nization free benchmarks (see Section VI-B). We use and
the kernels described below for kernels displaying different
synchronization patterns.
BH: BarnesHut is an N-body simulation algorithm [6]. Its
Tree Building (TB) kernel uses lock-based synchroniza-
tion [6]. The kernel is optimized to reduce contention by
limiting the number of CTAs and using barriers to throttle
warps before attempting a lock acquire. Its sort kernel (ST)
uses a wait and signal synchronization scheme. We run
BarnesHut on 30,000 bodies.
CP: Clothes Physics perform cloth physics simulation for
a T–shirt [5]. Its Distance Solver (DS) kernel lock-based
implementation uses two nested locks to control updates to
cloth particles.
HT: Chained HashTable uses the critical section shown in
Figure 1a. We run 3.2M insertions by 40K threads on 1024
hashtable buckets.
ATM: An bank transfer between two accounts [12]. It
uses two nested locks. We run 122K transactions with 24K
threads on 1000 accounts.
NW: Needleman-Wunsch finds the best alignment between
protein or nucleotide sequences following a wavefront prop-
agation computational pattern. We implemented the lock-
based algorithm in [16] which uses two kernels NW1 and
NW2 that perform similar computation while traversing a
grid into opposite directions.
TSP: Travelling Salesman. We modified the CUDA imple-
mentation from [28] to use a global lock when updating
the optimal solution. We run TSP on 76 cities with 3000
climbers.

 0

 0.5

 1

 1.5

 2

TB ST DS ATM HT TSP NW1 NW2 Gmean

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Kernels

LRR
LRR+BOWS

GTO
GTO+BOWS

CAWA
CAWA+BOWS

(a) Normalized Execution Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

TB ST DS ATM HT TSP NW1 NW2 Gmean

N
or

m
al

iz
ed

 E
ne

rg
y

Kernels

LRR
LRR+BOWS

GTO

GTO+BOWS
CAWA

CAWA+BOWS

(b) Normalized Dynamic Energy

Figure 9: Performance and Energy Savings on GTX480 (Fermi)

VI. EVALUATION

Figure 15 shows normalized execution time and energy
consumption on busy-wait synchronization kernels. Results
are normalized to LRR. BOWS uses adaptive back-off
delay. It uses DDOS for detecting spin loops. The design
parameters are shown in Table II).

Figure 15 shows that BOWS consistently improves per-
formance over different baseline scheduling policies with a
speedup of 2.2×, 1.4×, and 1.5× and energy savings of
2.3×, 1.7×, and 1.6× compared to LRR, GTO, and CAWA
respectively.

BOWS has minimal impact on TB because TB’s code
uses a barrier instruction to limit the number of concurrently
executing warps between lock acquisition iterations. We note
this barrier approach is fairly specific to TB. For example,
it requires at least one thread from each warp to reach the
barrier each iteration. Also, the lack of adaptivity of this
software-based barrier approach can be harmful even where
it can be applied (would lead to a 28x slowdown if applied
to HT, measured on hardware - Pascal GTX1080). ST shows
17.8% energy improvements with BOWS (Figure 15b) as it
reduces dynamic instruction count but does not exhibit per-
formance improvement because the performance is limited
by memory latency. In TSP, the synchronization instructions
consume ¡0.03% of the total number of instructions, thus
synchronization code is not the dominant factor in execution
time. Large back-off delay values may unnecessarily block
execution leading to performance degradation (see TSP
results in Figure 10).

For the NW kernels, the progress of younger warps is de-
pendent on older warps finishing their execution. Therefore,
NW prefers GTO scheduling over LRR as it gives priority to
older warps. HT with the GTO scheduler runs into a patho-
logical scheduling pattern where it prioritizes spinning warps
which significantly reduce performance. BOWS eliminates

 0

 0.5

 1

 1.5

 2

TB ST DS ATM HT TSP NW1 NW2 Gmean

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Kernels

GTO
GTO+BOWS(0)

GTO+BOWS(500)
GTO+BOWS(1000)
GTO+BOWS(3000)
GTO+BOWS(5000)

GTO+BOWS(Adaptive)

Figure 10: Normalized Execution Time at Different Back-off
Delay Limit Values (using DDOS).

such problems by deprioritizing spinning warps.

A. Sensitivity to Back-off Delay Limit Value

The following results use the GTX480 configuration with
GTO as the baseline policy for BOWS. Figure 11 shows the
average distribution of warps at the scheduler in terms of
their status (backed-off or not). The first bar is GTO. The
remaining bars are for BOWS as the back-off delay limit
value increases. The last bar to the right is BOWS with
adaptive back-off delay limit. The figure shows how BOWS
impacts warp scheduling. The back-off delay is not effective
until reaching a threshold unique to each benchmark. The
reason is that the back-off delay sets a minimum duration
between two successive iterations of a spin loop. If warps
already consume a time that is larger than the back-off delay
limit before they attempt another iteration, then the back-
off delay has no observable effect (recall the discussion of
Figure 4). The effective back-off delay value depends upon

 0

 0.2

 0.4

 0.6

 0.8

 1

TB ST	 DS ATM HT TSP NW1 NW2

A
ve

ra
ge

 W
ar

p
D

is
tr

ib
ut

io
n

Benchmarks

Non Backed−off
Backed−off

Figure 11: Distribution of Warps at the Scheduler. From left
to right, GTO without BOWS, GTO with BOWS with delay
limit in cycles 0, 500, 1000, 3000, 5000, Adaptive.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

TB ST DS ATM HT TSP NW1 NW2

Lo
ck

 A
cq

ui
re

/W
ai

t D
is

tr
ib

ut
io

n

Benchmarks

Wait Exit Fail
Wait Exit Success
Intra−Warp Lock Fail
Inter−Warp Lock Fail
Lock Success

Figure 12: Distribution of Warps at the Scheduler. From left
to right, GTO without BOWS, GTO with BOWS with delay
limit in cycles 0, 500, 1000, 3000, 5000, Adaptive.

how many instructions are along the failure path in the busy-
wait code, how many warps are running and how much
memory contention there is.

Figure 12 shows the distribution of Lock acquire and
wait status. The behavior aligns with the percentage of
warps that are backed-off in Figure 11. This data elucidates
performance gaps in some benchmarks – particularly, HT,
ATM, and NW – between the different scheduling policies.
For example, in HT BOWS reduces the lock failure rate by
10.8× compared to GTO.

Figure 13a shows the impact of BOWS on the dynamic
instruction count. On average BOWS reduces dynamic in-
struction count by a factor of 2.1× compared to GTO.
Figure 13b shows that BOWS also reduces the number of
L1D memory transaction by 19% compared to GTO. One of
the side effects of BOWS is that it increases SIMD efficiency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

HL MS Gmean

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Benchmarks

GTO
GTO+BOWS(0)

GTO+BOWS(500)

GTO+BOWS(1000)
GTO+BOWS(3000)
GTO+BOWS(5000)

Figure 14: Overheads Due to Detection Errors.

for some benchmarks. For example, BOWS improves HT
and ATM SIMD efficiency by 3.4× and 1.85× respectively
compared to GTO. In ST, the significant reduction of the
number of spin iterations (see Figure 13a) biases the SIMD
calculation results as the benchmark spends more time in
executing the divergent code rather than spinning, and hence
the reduction in SIMD efficiency.

B. Sensitivity to Detection Errors

Note that with the XOR hashing configuration we
do not have any false detections. Thus, the results of
Synchronization-Free benchmarks are identical to the base-
line. Figure 14 reports the results of Synchronization-
Free benchmarks under the MODULO hashing. For
Synchronization-Free benchmarks, BOWS is expected to
perform identically to the baseline under perfect spin detec-
tion. Only two applications from Rodinia have false detec-
tions with MODULO hashing, Merge Sort (MS) and Heart
Wall (HL). In both of these applications, false detections
were due to ‘for’ loops with a large power of two induction
variable increment that is not reflected in the least significant
8-bits of setp source registers. In this evaluation, we use an
8-bit hash width for the path and value registers. On average,
over Rodinia’s 14 benchmarks, BOWS with a 5000 cycles
back-off delay and MODULO hashing downgrades GTO
performance by only 2.1% on these synchronization free
applications. However, for MS, BOWS with MODULO has
and a large backoff delay downgrades performance versus
GTO significantly.

C. Sensitivity to Contention

Figure 16 uses the hashtable benchmark to study BOWS
sensitivity to contention. A small number of hashtable buck-
ets indicate higher contention. The figure shows that BOWS
provides a speedup of up to 5× at high contention and down
to 1.2× at low contention. Similarly, the dynamic instruction
count savings ranges from 3.7× to 1.3×. Figure 16b also

 0

 0.5

 1

 1.5

 2

TB ST DS ATM HT TSP NW1 NW2 Gmean

N
or

m
al

iz
ed

 In
st

ru
ct

io
n

C
ou

nt

Kernels

GTO
GTO+BOWS(0)

GTO+BOWS(500)
GTO+BOWS(1000)
GTO+BOWS(3000)
GTO+BOWS(5000)

GTO+BOWS(Adaptive)

(a) Dynamic Instruction Count

 0

 0.5

 1

 1.5

 2

TB ST DS ATM HT TSP NW1 NW2 Gmean

N
or

m
al

iz
ed

 N
um

be
r

of
 M

em
or

y
T

ra
ns

ac
tio

ns

Kernels

GTO
GTO+BOWS(0)

GTO+BOWS(500)
GTO+BOWS(1000)
GTO+BOWS(3000)
GTO+BOWS(5000)

GTO+BOWS(Adaptive)

(b) Number of Memory Transactions.

 0

 0.5

 1

 1.5

 2

TB ST DS ATM HT TSP NW1 NW2

S
IM

D
 E

ffi
ci

en
cy

Kernels

LRR
GTO-TimeOut
BOWS-Ideal-0

BOWS-0
BOWS-500

BOWS-1000
BOWS-3000
BOWS-5000

BOWS-Adaptive

(c) SIMD Efficiency.

Figure 13: BOWS Impact on Dynamic Overheads.

includes data, “Ideal Block Inst. Count”, that serves as a
proxy for how HQL [36] might perform on this workload.
This curve shows the instruction count assuming locks do
not require multiple iterations to acquire. The difference be-
tween the two curves thus represents the overhead introduced
by BOWS versus an ideal queuing lock system. As we can
see, the benefits of an (idealized version of) HQL appear to
diminish as the number of hash buckets increases.

D. Pascal GTX1080Ti Evaluation
To evaluate the impact of BOWS on recent architec-

tures, we configured GPGPU-sim and GPUWattch to model
GTX1080Ti (the configurations are currently available in
GPGPU-sim GitHub repository). We evaluate the same
benchmarks with the same inputs used for GTX480. BOWS
consistently improves performance over different baseline
scheduling policies with a speedup of 1.9× on LRR, 1.7×
on GTO, and 1.5× on CAWA.

One observation is that on Pascal, except for DS, the
behavior is flat across the different baseline scheduling
policies. The reason is that most of the input data sets for
the workloads we run are set to fully utilize (without over-
subscribing) the Fermi GPU but they under-utilize Pascal.
Pascal has almost double the number of cores compared
to Fermi (Table II). Thus, on Fermi, each core has many
warps to choose from and the scheduling policy is of a great
impact. However, in Pascal, each core will have about half
the number of warps distributed on four warp schedulers
instead of two. Thus, the number of warps available at each
scheduler in Pascal is one fourth that in Fermi making the
baseline scheduling policy less important (e.g., unlike the
case with Fermi on NW and HT benchmarksZ). DS, on
the other hand, is oversubscribed in the Fermi configuration
and the number of concurrently running CTAs is limited
to four due to the number of available registers per core.
This helps to limit contention. However, in Pascal, each core
runs up to 8 CTAs/Core and Pascal has more cores. This
significantly increases the number of concurrent warps and
thus lock contention. Therefore, DS performs worse with
Pascal baseline than Fermi. BOWS significantly improves

 0

 1

 2

 3

 4

 5

128 256 512 1024 2048 4096
B

O
W

S
 S

pe
ed

U
p

ov
er

 G
T

O

HashTable Buckets

(a) BOWS SpeedUp.

 0

 0.2

 0.4

 0.6

 0.8

 1

128 256 512 1024 2048 4096

D
yn

am
ic

 In
st

ru
ct

io
n

C
ou

nt
 (

N
or

m
al

iz
ed

 to
 G

T
O

)

HashTable Buckets

BOWS Inst. Count
Ideal Blocking Inst. Count

(b) BOWS Inst. Count.

Figure 16: Sensitivity to Contention.

performance as it combines deprioritizing spinning warps
(which helps when there are many warps to schedule from)
and throttling spinning warps by forcing them to wait by the
back-off delay limit (which helps when there are few warps
to schedule from).

E. Implementation Cost

Table III identifies the basic components in both DDOS
and BOWS and estimates their costs per SM. The main
cost of DDOS is the history registers, but using time-
sharing (Section IV-B) it may be possible to reduce this
cost. Comparison and hashing logic can be shared across
warps in the same SM. To enable back-off delay up to

 0

 0.5

 1

 1.5

 2

TB ST DS ATM HT TSP NW1 NW2 Gmean

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Kernels

LRR
LRR+BOWS

GTO
GTO+BOWS

CAWA
CAWA+BOWS

(a) Normalized Execution Time (Pascal)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

TB ST DS ATM HT TSP NW1 NW2 Gmean

N
or

m
al

iz
ed

 E
ne

rg
y

Kernels

LRR
LRR+BOWS

GTO

GTO+BOWS
CAWA

CAWA+BOWS

(b) Normalized Dynamic Energy (Pascal)

Figure 15: Performance and Energy Savings on Pascal

DDOS

SIB-PT 16-entry - 35 bits each (560 bits)
History Registers 48 warps * 192 bits,(9216 bits)

Comparison 8-bit comparator + 8:1 8-bitMux
Hashing (XOR) 8 4-bit XORs

FSM 48* 4-state FSM states

BOWS

Pending Delay Counters 48* 14 (bits) = 672 bits
Backed-off Queue 48 * 5 (bits)

Arbitration Logic Changes
Delay Limit Estimation Logic

(can use functional units when available)

Table III: DDOS and BOWS Implementation Costs

10,000 cycles requires 14-bits per Pending Delay counter.
Adaptive estimation requires division. This can be done
using reduced precision computation or by using existing
arithmetic hardware when not in use.

VII. RELATED WORK

Numerous research papers have proposed different warp
scheduling policies with different goals (e.g., improving
latency hiding [23], improving locality [29], reducing barrier
synchronization overheads [19], [18], reducing load imbal-
ance overhead across warps from the same CTA [15]).
However, none of these scheduling policies have considered
the challenge of warp scheduling under inter-thread synchro-
nization. Recent work has addressed the programmability
challenges associated with inter-thread synchronization on
SIMT architecture [10]. In that work, the authors propose
a compiler analysis and transformation that helps eliminate
SIMT-induced deadlocks (see Section II). However, it does
not address with busy-waiting overheads.

Overheads of fine-grained synchronization have been well
studied in the context of multi-core CPU architectures [37],
[33], [17], [9], [32]. Ti et al. [17] proposed a thread spinning
detection mechanism for multi-threaded CPUs that tracks
changes in all registers. Directly applying such a technique
to a GPU would be prohibitive given the large register files

required to support thousands of hardware threads. Instead,
DDOS employs a speculative approach. In [37], the authors
propose a synchronization state buffer that is attached to the
memory controller of each memory bank to cache the state
of in-flight locks. This reduces the traffic propagated to the
main memory and the latency of synchronization operations.
However, when the buffer is full the mechanism falls back
to software synchronization mechanisms. This work builds
on the following observation “at any instance during the
parallel execution only a small fraction of memory locations
are actively participating in synchronization” to maintain a
reasonably sized buffer [37]. Although this observation holds
true for modestly multi-threaded CPUs, it does not apply
to massively multi-threaded SIMT architectures with tens of
thousands of threads running in parallel. A similar technique
that requires an entry per hardware thread to track locks
acquired by each thread is used in [32].

In [36], the authors propose hierarchal queuing at each
block in L1 and L2 data caches with the use of explicit
acquire/release primitives. Their goal is to implement a
blocking synchronization mechanism on GPGPU. In that
work, locks can be acquired only on a cache line granularity.
Locked cache lines are not replaceable until released. If a
cache set is full with locked lines, the mechanism reverts
back to spinning for newer locks mapped to the same line.
Thus, the efficiency of this mechanism drops as the number
of locks increase and starts to perform worse than the
baseline [36]. For example, in the hashtable benchmark,
the proposal in [36] performs worse than the baseline
starting from 512 buckets (in contrast to our proposal, see
Section VI-C which consistently outperform the baseline).
Further, unlike [36], our work does not assume explicit syn-
chronization primitives which require non-trivial compiler
support and/or significant hardware modifications [10] to run
correctly on SIMT architectures.

Transactional memory and lock-free synchronization are

other approaches to implement inter-thread synchroniza-
tion [12], [35], [21]. However, both techniques rely on retries
upon failure which lead to overheads and contention that
is similar to busy-wait synchronization. GPU transactional
memory proposals to date achieve lower performance versus
fine-grained synchronization [35], [12]. Similar results have
been also reported for lock-free synchronization [22].

VIII. CONCLUSION

This paper proposes DDOS, a low-cost dynamic detection
mechanism for busy-wait synchronization loops on SIMT ar-
chitecture. DDOS is used to drive BOWS a warp scheduling
policy that throttles spinning warps to reduce competition for
issue slots allowing more performance critical warps to make
forward progress. On a set of kernels that involve busy-wait
synchronization, BOWS reduces dynamic instruction count
by a factor of 2.1× and reduces memory system accesses by
19% compared to GTO. This leads to an average speedup
of 1.4× and dynamic energy reduction by a factor of 1.7×.

ACKNOWLEDGMENTS

We would like to thank Mieszko Lis and the reviewers
for their insightful feedback. We thank Timothy G. Rogers
and his students for GTX1080Ti configuration for GPGPU-
Sim 3.2.2 and Scott Peverelle and Tayler Hetherington for
their help with GTX1080Ti configuration for GPUWattch.
This research was funded in part by the Natural Sciences
and Engineering Research Council of Canada.

REFERENCES

[1] AMD Corporation, “Southern Islands Series Instruction Set
Architecture,” 2012.

[2] T. E. Anderson, “The performance of spin lock alternatives
for shared-memory multiprocessors,” IEEE Transactions on
Parallel and Distributed Systems, 1990.

[3] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M.
Aamodt, “Analyzing CUDA Workloads Using a Detailed
GPU Simulator,” in Proc. IEEE Symp. on Perf. Analysis of
Systems and Software (ISPASS), 2009, pp. 163–174.

[4] C. Bertolli, S. F. Antao, A. E. Eichenberger, K. O’Brien,
Z. Sura, A. C. Jacob, T. Chen, and O. Sallenave, “Coordi-
nating GPU Threads for OpenMP 4.0 in LLVM,” in Proc.
LLVM Compiler Infrastructure in HPC, 2014.

[5] A. Brownsword, “Cloth in OpenCL,” Khronos Group, Tech.
Rep., 2009.

[6] M. Burtscher and K. Pingali, “An Efficient CUDA Imple-
mentation of the Tree-based Barnes Hut n-Body Algorithm,”
GPU computing Gems Emerald edition, 2011.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H.
Lee, and K. Skadron, “Rodinia: A Benchmark Suite for Het-
erogeneous Computing,” in Proc. IEEE Symp. on Workload
Characterization (IISWC), 2009.

[8] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang,
and K. Skadron, “A Characterization of the Rodinia Bench-
mark Suite with Comparison to Contemporary CMP Work-
loads,” in Proc. IEEE Symp. on Workload Characterization
(IISWC), 2010.

[9] K. Du Bois, S. Eyerman, J. Sartor, and L. Eeckhout, “Criti-
cality stacks: Identifying critical threads in parallel programs
using synchronization behavior,” in Proc. IEEE/ACM Symp.
on Computer Architecture (ISCA), 2013.

[10] A. ElTantawy and T. M. Aamodt, “MIMD Synchronization
on SIMT Architectures,” in Proc. IEEE/ACM Symp. on Mi-
croarch. (MICRO), 2016.

[11] A. ElTantawy, J. W. Ma, M. O’Connor, and T. M. Aamodt,
“A Scalable Multi-Path Microarchitecture for Efficient GPU
Control Flow,” in Proc. IEEE Symp. on High-Perf. Computer
Architecture (HPCA), 2014.

[12] W. W. Fung, I. Singh, A. Brownsword, and T. M. Aamodt,
“Hardware Transactional Memory for GPU Architectures,” in
Proc. IEEE/ACM Symp. on Microarch. (MICRO), 2011, pp.
296–307.

[13] T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor,
and T. M. Aamodt, “MemcachedGPU: Scaling-up Scale-out
Key-value Store,” in to appear in proceedings of the ACM
Symposium on Cloud Computing (SoCC’15), 2015, pp. 88–
98.

[14] S.-Y. Lee, A. Arunkumar, and C.-J. Wu, “CAWA: Coordinated
Warp Scheduling and Cache Prioritization for Critical Warp
Acceleration of GPGPU workloads,” in ISCA, 2015.

[15] S.-Y. Lee and C.-J. Wu, “CAWS: criticality-aware warp
scheduling for GPGPU workloads,” in Proc. IEEE/ACM Conf.
on Par. Arch. and Comp. Tech. (PACT), 2014.

[16] A. Li, G.-J. van den Braak, H. Corporaal, and A. Kumar,
“Fine-grained Synchronizations and Dataflow Programming
on GPUs,” in Proc. ACM Conf. on Supercomputing (ICS),
2015.

[17] T. Li, A. R. Lebeck, and D. J. Sorin, “Spin Detection Hard-
ware for Improved Management of Multithreaded Systems,”
IEEE Transactions on Parallel and Distributed Systems, 2006.

[18] J. Liu, J. Yang, and R. Melhem, “Saws: Synchronization
aware gpgpu warp scheduling for multiple independent warp
schedulers,” in Proceedings of the 48th International Sympo-
sium on Microarchitecture. ACM, 2015, pp. 383–394.

[19] Y. Liu, Z. Yu, L. Eeckhout, V. J. Reddi, Y. Luo, X. Wang,
Z. Wang, and C. Xu, “Barrier-aware warp scheduling for
throughput processors,” in Proceedings of the 2016 Interna-
tional Conference on Supercomputing. ACM, 2016, p. 42.

[20] M. Mendez-Lojo, M. Burtscher, and K. Pingali, “A GPU
Implementation of Inclusion-based Points-to Analysis,” in
Proc. ACM Symp. on Prin. and Prac. of Par. Prog. (PPoPP),
2012.

[21] P. Misra and M. Chaudhuri, “Performance Evaluation of Con-
current Lock-free Data Structures on GPUs,” in Proc. IEEE
Int’l Parallel and Distributed Processing Symp. (IPDPS),
2012.

[22] N. Moscovici, N. Cohen, and E. Petrank, “POSTER: A GPU-
Friendly Skiplist Algorithm,” in Proc. ACM Symp. on Prin.
and Prac. of Par. Prog. (PPoPP), 2017.

[23] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov,
O. Mutlu, and Y. N. Patt, “Improving GPU Performance
via Large Warps and Two-Level Warp Scheduling,” in Proc.
IEEE/ACM Symp. on Microarch. (MICRO), 2011, pp. 308–
317.

[24] NVIDIA, “PTX: Parallel Thread Execution ISA Version
3.1,” http://developer. download. nvidia. com/compute/cuda/3,
vol. 1, 2013.

[25] Nvidia, “NVIDIA TESLA V100 GPU ARCHITECTURE,”
2017.

[26] NVIDIA Corp., “https://devblogs.nvidia.com/parallelforall/inside-
volta/,” accessed: July 31, 2017.

[27] NVIDIA, CUDA, “NVIDIA CUDA Programming Guide,”
2011.

[28] M. A. O’neil, D. Tamir, and M. Burtscher, “A Parallel GPU
Version of the Traveling Salesman Problem,” in International
Conference on Parallel and Distributed Processing Tech-
niques and Applications, 2011.

[29] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-
Conscious Wavefront Scheduling,” in Proc. IEEE/ACM Symp.
on Microarch. (MICRO), 2012, pp. 72–83.

[30] J. Sanders and E. Kandrot, CUDA by example: an introduc-
tion to general-purpose GPU programming. Addison-Wesley
Professional, 2010.

[31] T. M. Aamodt et al., GPGPU-Sim 3.x Manual. University
of British Columbia, 2013.

[32] D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M. Levy,
“Supporting fine-grained synchronization on a simultaneous
multithreading processor,” in HPCA, 1999.

[33] E. Vallejo, R. Beivide, A. Cristal, T. Harris, F. Vallejo, O. Un-
sal, and M. Valero, “Architectural support for fair reader-
writer locking,” in Proc. IEEE/ACM Symp. on Microarch.
(MICRO), 2010.

[34] Y. Xu, L. Gao, R. Wang, Z. Luan, W. Wu, and D. Qian,
“Lock-based Synchronization for GPU Architectures,” in
Proc. Int’l Conf. on Computing Frontiers, 2016.

[35] Y. Xu, R. Wang, N. Goswami, T. Li, L. Gao, and D. Qian,
“Software Transactional Memory for GPU Architectures,” in
Proc. IEEE/ACM Symp. on Code Generation and Optimiza-
tion (CGO), 2014, p. 1.

[36] A. Yilmazer and D. Kaeli, “HQL: A Scalable Synchronization
Mechanism for GPUs,” in Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on, 2013.

[37] W. Zhu, “Synchronization State Buffer: Supporting Efficient
Fine-Grain Synchronization on Many-Core Architectures,” in
Proc. IEEE/ACM Symp. on Computer Architecture (ISCA),
2007.

