
A Scalable Multi-Path Microarchitecture for Efficient GPU Control Flow

Ahmed ElTantawy1, Jessica Wenjie Ma1, Mike O’Connor2, and Tor M. Aamodt1

1University of British Columbia
2NVIDIA Research

Abstract
Graphics processing units (GPUs) are increasingly used

for non-graphics computing. However, applications with
divergent control flow incur performance degradation on
current GPUs. These GPUs implement the SIMT execu-
tion model by serializing the execution of different con-
trol flow paths encountered by a warp. This serialization
can mask thread level parallelism among the scalar threads
comprising a warp thus degrading performance. In this pa-
per, we propose a novel branch divergence handling mech-
anism that enables interleaved execution of divergent paths
within a warp while maintaining immediate postdomina-
tor reconvergence. This multi-path microarchitecture de-
couples divergence and reconvergence tracking by replac-
ing the stack-based structure typically employed to support
SIMT execution with two tables: a warp split table and a
warp reconvergence table. It also enables reconvergence
before the immediate postdominator which is important for
efficient execution of unstructured control flow. Evaluated
on a set of benchmarks with complex divergent control flow,
our proposal achieves up to a 7× speedup with a harmonic
mean of 32% over conventional single-path SIMT execu-
tion.

1 Introduction
Current graphics processing units (GPUs) enable non-

graphics computing using a Single Instruction Multiple
Threads (SIMT) execution model. The SIMT model is typ-
ically implemented using a single instruction sequencer to
operate on a group of threads, called a warp by NVIDIA,
in lockstep. This amortizes instruction fetch and decode
cost improving efficiency. To implement the SIMT model
a mechanism is required to allow threads to follow differ-
ent control flow paths. Current GPUs employ mechanisms
that serialize the execution of divergent paths. Typically,
they ensure reconvergence occurs at or before the immedi-
ate postdominator (IPDOM)1 [9] of the divergent branch.

1The immediate postdominator of a branch is the earliest point in the
program that all diverged threads from the branch are guaranteed to cross

This serialization of divergent control flow paths reduces
thread level parallelism (TLP), but this reduction can be
mitigated if the concurrent execution of divergent paths is
enabled. Indeed, there have been several proposals to sup-
port multi-path execution in GPUs [17, 13, 4, 21]. However,
previous multi-path proposals have limitations. Dynamic
warp subdivision (DWS) [17] enables interleaving the ex-
ecution of divergent control flow paths. DWS uses com-
piler heuristics to decide which branches start subdividing
a warp into splits and which do not. Diverged splits recon-
verge at the IPDOM of a subdividing branch. However, the
IPDOMs of branches nested within the subdividing branch
are ignored. To compensate, the heuristics employed by
DWS must carefully balance SIMD utilization with TLP.
Dual-Path Stack (DPS) [21] enables interleaving two diver-
gent paths while maintaining IPDOM reconvergence.

In this paper, we explore how to enable multi-path execu-
tion with support for an arbitrary number of divergent con-
trol flow paths while maintaining IPDOM reconvergence.
We demonstrate that this is possible if the tracking of di-
verged control flow paths is decoupled from the tracking
of their reconvergence points. Hence, we propose replacing
the stack-based reconvergence mechanisms with two tables.
One table tracks the concurrent executable paths, while the
other tracks the reconvergence points. We demonstrate how
to extend this mechanism to enable opportunistic early re-
convergence to improve the SIMD unit utilization for appli-
cations with unstructured control flow behaviour [8]. Eval-
uated on a set of benchmarks with multi-path divergent
control flow, our proposal achieves an average of 30% re-
duction in idle cycles, 48% average improvement in SIMD
efficiency and 32% harmonic mean speedup compared to
the conventional single-path execution. Also, our proposal
achieves 22.5% harmonic mean speedup over DPS.

The contributions of this paper are:

• It proposes a new branch divergence handling mech-
anism that enables multi-path execution with support

before the program exit.

In
terco

n
n

ectio
n

N

etw
o

rk

Memory
Partition

Last
Level

Caches

Off-Chip
DRAM

Kernel
Launch

Fetch
Unit

I-Cache
Decode

Unit

Score-
Board

Issue

L1-
Caches

Branch
Unit

Register
File

CPU

ALUs ALUs ALUs I-Buffer

Figure 1. Baseline architecture

for an arbitrary number of diverged splits while main-
taining reconvergence at the IPDOM.

• It extends the proposed mechanism to enable early re-
convergence opportunistically at run-time.

• With detailed analysis, we show that our proposal pro-
vides up to a 7× speedup with a harmonic mean of
32% over the single-path execution model; and up to
4.5× speedup with a harmonic mean of 22.5% over the
recent Dual-Path execution proposal [21].

The rest of this paper is organized as follows: Section 2
describes our baseline and the conventional stack-based re-
convergence mechanism. Section 3 describes the multi-
path microarchitecture. In Section 4, we extend it to enable
opportunistic reconvergence at early reconvergence points.
Section 5 describes our methodology. Section 6 describes
experimental results, Section 7 summarizes related work
and Section 8 concludes.

2 Baseline SIMT Accelerator
This section describes our baseline architecture and ex-

plains the branch divergence problem in GPUs.

2.1 Architecture

We study modifications to the GPU-like accelerator ar-
chitecture shown in Figure 1. Current GPU designs consist
of multiple processing cores. Each core consists of a set of
parallel lanes (or SIMD units). Initially, an application be-
gins execution on a host CPU, then a kernel is launched on
the GPU in the form of a large number of logically inde-
pendent scalar threads. These threads are split into logical
groups operating in lockstep in a SIMD fashion (referred to
as warps). Each SIMT core interleaves a number of warps
on a cycle-by-cycle basis. The Instruction Buffer unit (I-
Buffer) contains storage to hold decoded instructions and
register dependency information for each warp. The score-
board unit is used to detect register dependencies. A branch
unit manages control flow divergence. The branch unit ab-
stracts both the storage and the control logic required for
divergence and reconvergence. Section 2.2 explains in de-
tail the branch unit used in our baseline.

The issue logic selects a warp with a ready instruction in
the instruction buffer to issue for execution. Based on the

/ / i d = t h r e a d ID
/ / BBA Basic Block "A"
i f (i d %2==0){

/ / BBB

} e l s e {
/ / BBC

}
/ / BBD

1111

1010 0101

1111

A

B C

D

A

B-CBR

Figure 2. Divergent code example

Single Path Stack Single Path Stack

PC RPC Active Mask PC RPC Active Mask

A --- 1111 D --- 1111
C D 1010
B D 0101

(a)Initial State After BRA

Single Path Stack Single Path Stack
PC RPC Active Mask PC RPC Active Mask
D --- 1111 D --- 1111
C D 1010

(c) C0101 reaches G (d) B1010 reaches G

TOS

TOS

TOS

TOS

2

A A C C D D

A A B B D D

A A C C D D

A A B B D D

1 2 3 4 5 6 7 8 9 10

la
n

es

cycles

Timing
Diagram

A

B-C BR1

4 3

Figure 3. Execution with Single-Path Stack

active mask of the warp, threads that should not execute,
due to branch divergence, are disabled. The issued instruc-
tions fetch their operands from the register file. It is then
executed on the corresponding pipeline (ALU or MEM).

2.2 Branch Divergence in GPUs

Figure 2 illustrates a simple example of divergent code
and its corresponding control flow graph (CFG). The bit
mask in each basic block of the CFG denotes which threads
of a single warp containing four threads will execute that
block. The rightmost bit represents thread with thread
ID=0. All threads execute basic block A. Upon executing
divergent branch BRA

B−C , warp A1111 diverges into two
warp splits [17] B0101 and C1010. In our notation, branches
are abbreviated as BR with a superscript representing the
basic block containing the branch and a subscript represents
the successor basic blocks. Each warp split is represented
by a letter representing the basic block that the split is exe-
cuting with a subscript indicating the active threads.

The immediate postdominator (IPDOM) of the branch
BRA

B−C , basic block D, is the earliest point where all
threads diverging at the branch are guaranteed to execute.
We say an execution mechanism supports IPDOM recon-
vergence if it guarantees all threads in the warp that are ac-
tive at any given branch are again active (executing in lock-

step) when the immediate postdominator of that branch is
next encountered. IPDOM reconvergence is favorable be-
cause the immediate postdominator is the closest point all
threads in a warp are guaranteed to reconverge1. A mecha-
nism for supporting IPDOM reconvegence using a stack of
active masks [16] was introduced by Fung et al. [9]. How-
ever, there are different possible implementations that can
support IPDOM reconvergence as defined above.

The postdominance relation between basic blocks can be
represented in the form of a postdominator tree. In a post-
dominator tree, each node’s descendants are those nodes it
immediately dominates. We refer to basic blocks that are
not ancestors or children with respect to each other as par-
allel basic blocks. Warp splits at parallel basic blocks can
execute independently without impacting the reconvergence
location. For example, warp splits B1010 and C0101 can ex-
ecute independently until they reach basic block D [17].

Single-Path Stack Execution Model: Several designs
have been proposed for handling branch divergence [16, 9,
25, 26]. They can achieve IPDOM recovergence but seri-
alize execution of parallel control flow paths such that one
split of a warp is scheduled repeatedly until reaching a re-
convergence point.

Figure 3 illustrates the operation of the Single-Path Stack
(SPS) model that we compare against in this paper, called
IPDOM by Fung et al. [9], while it is executing the code
example in Figure 2. The example assumes that each ba-
sic block contains two dependent instructions and that all
instructions have one cycle latency, except the first instruc-
tions in blocks B and C, which have two cycle latency.

In SPS, a per-warp stack is used to manage divergent
control flow. Initially, the stack has a single entry during
the execution of basic block A 1 . Once branch BRA

B−C is
executed, the PC of the diverged entry is set to the recon-
vergence PC (RPC) of the branch (D). Also, resulting warp
splits, C1010 and B0101, are pushed onto the stack 2 . The
RPC of the new entries is set to the RPC of the executed
branch (D). At this point, only warp split B0101 is eligible
for scheduling, as it resides at the top of the stack (TOS en-
try). Warp split C1010 is not at the top of the stack, hence,
it cannot be scheduled. As a result, on cycle 4, there are
no instructions to hide the latency of the first instruction in
basic block B. Once warp split B0101 reaches its reconver-
gence point (D), its corresponding entry is popped from the
stack 3 . Then, warp split C1010 executes until it reaches its
reconvergence point (D) after which it is popped from the
stack 4 . Finally, the diverged threads reconverge at D1111.
The above execution results in two idle cycles.

Stack-Based Reconvergence Limitations: The SPS ex-
ecution model allows only a single control flow path to exe-

1Likely convergence [10] and thread frontiers [8] identify earlier recon-
vergence points that can occur dynamically in unstructured control flow if
a subset of paths between branch and IPDOM are executed by a warp.

0%
20%
40%
60%
80%

100%

1 2 4 6 8 any 1 2 4 6 8 any 1 2 4 6 8 any 1 2 4 6 8 any

MAND MC MUM MEMC

Figure 4. Fraction of running scalar threads
while varying maximum warp splits and as-
suming IPDOM reconvergence

cute at a time, which reduces the number of running threads.
Active threads on alternate paths that are not on the top
of stack may be either waiting at a reconvergence point or
ready to execute a parallel control flow path. During cycles
when the pipeline is idle due to long latency events these
alternate control paths could make progress, as observed
by Meng et al. [17]. Thus, the SPS model captures only
a fraction of the actual thread level parallelism (TLP). The
remaining TLP is essentially masked by a structural haz-
ard implicit in the use of a stack for implementing IPDOM
reconvergence.

Figure 4 quantifies this by showing the amount of TLP
available to the scheduler as we increase the maximum
number of concurrently executable warp splits supported by
hardware while IPDOM reconvergence is maintained. The
graph plots the average portion among all the scalar threads
that can be scheduled because they are active in the top en-
try of the stack. The SPS execution model corresponds to
enabling a single warp split. Section 5 gives more details
about the benchmarks and the methodology.

For this set of benchmarks, the SPS execution model
captures from 15% of overall TLP in the MC benchmark up
to around 65% in MEMC. Figure 4 suggests that up to 35%
more TLP is available when moving from SPS to a mecha-
nism allowing any number of warp splits to be concurrently
scheduled while maintaining IPDOM reconvergence. TLP
does not go to 100% with unlimited warp splits because
some threads need to wait at reconvergence points.

3 Multi-Path IPDOM (MP IPDOM)
In this section we propose a hardware mechanism that

allows concurrent scheduling of any number of warp splits
while still maintaining IPDOM reconvergence. To achieve
this we replace the SIMT reconvergence stack structure
with two tables. The warp Split Table (ST) records the
state of warp splits executing in parallel basic blocks (i.e.,
blocks that do not dominate each other), which can there-
fore be scheduled concurrently. The Reconvergence Table
(RT) records reconvergence points for the splits. The ST
and RT tables work cooperatively to ensure splits executing
parallel basic blocks will reconverge at IPDOM points.
3.1 Operation of MP IPDOM

We use the same simple control flow graph in Figure 2 to
explain the high level operation of the Multi-Path IPDOM

Splits Table (ST)
PC RPC Active Mask

A --- 1111

Reconvergence Table (RT)
PC RPC Reconvergence Mask Pending Mask

Splits Table (ST)
PC RPC Active Mask

C D 1010
B D 0101

Splits Table (ST)
PC RPC Active Mask

C D 1010

Splits Table (ST)
PC RPC Active Mask

Splits Table (ST)
PC RPC Active Mask

D --- 1111

Splits and Reconvergence Tables

2a

Reconvergence Table (RT)
PC RPC Reconvergence Mask Pending Mask

D --- 1111 1111

Reconvergence Table (RT)
PC RPC Reconvergence Mask Pending Mask

D --- 1111 1010

Reconvergence Table (RT)
PC RPC Reconvergence Mask Pending Mask

D --- 1111 0000

Reconvergence Table (RT)
PC RPC Reconvergence Mask Pending Mask

A A C C D D

A A B B D D

A A C C D D

A A B B D D

1 2 3 4 5 6 7 8

la
n

es

cycles

Timing
Diagram

1

2b

3a 3b

4a 4b
5

Figure 5. Execution with Multi-Path IPDOM

with the same assumptions described in Section 2.2. Fig-
ure 5 shows the operation of the MP IPDOM illustrating
changes to the ST and RT tables (top) along with the result-
ing pipeline issue slots (bottom).

The warp begins executing at block A. Since there is no
divergence, there is only a single entry in the ST, and the
RT is empty 1 . The warp is scheduled on the pipeline un-
til it reaches the end of block A. After the warp executes
branch BRA

B−C on cycle 2, warp A1111 diverges into two
splits B0101 and C1010. Then, the A1111 entry is moved from
the ST to the RT 2a with PC field set to the RPC of branch
BRA

B−C (i.e., D). The RPC can be determined at compile
time and either conveyed using an additional instruction
before the branch or encoded as part of the branch itself
(current GPUs typically include additional instructions to
manipulate the stack of active masks). The Reconvergence
Mask entry is set to the same value of the active mask of the
diverged warp split before the branch. The Pending Mask
entry is used to represent threads that have not yet reached
the reconvergence point. Hence, it is also initially set to
the same value as the active mask. At the same time, two
new entries are inserted into the ST; one for each side of
the branch 2b . The active mask in each entry represents
threads that execute the corresponding side of the branch.

On the clock cycle 3, warp splits B0101 and C1010 are eli-
gible to be scheduled on the pipeline independently. We as-
sume that the scheduler interleaves the available warp splits.
Warp splits B0101 and C1010 hide each others’ latency leav-
ing no idle cycles (cycles 3-5). On cycle 6, warp split B0101

reaches the reconvergence point (D) first. Therefore, its en-

try in the ST table is invalidated 3a , and its active mask is
subtracted from the pending active mask of the correspond-
ing entry in the RT table 3b . Later, on cycle 7, warp split
C1010 reaches reconvergence point (D). Thus, its entry in
the ST table is also invalidated 4a , and its active mask is
subtracted from the pending active mask of the correspond-
ing entry in the RT table 4b . Upon each update to the
pending active mask in the RT table, the Pending Mask is
checked if it is all zeros, which is true in this case. The
entry is then moved from the RT table to the ST table 5 .
Finally, the reconverged warp D1111 executes basic block D
on cycles 7 and 8.
3.2 Example with Nested Divergence

Figure 6 illustrates how MP IPDOM handles nested
branches. It shows the state of the ST and RT tables after
each step of executing the control flow graph in the left part
of the figure. In our explanation of this example, we assume
a particular sequence of events that results from one possi-
ble scheduling order. However, Multi-Path IPDOM does
not require a specific scheduling order.

Initially, a single entry in the ST exists for warp split
A1111 1 . After branch BRA

B−C , the MP control unit up-
dates the ST and RT tables in a way identical to that de-
scribed in Section 3.1 2 . Both warp splits in B0101 and
C1010 are scheduled on the pipeline. Subsequently, warp
split C1010 diverges at BRC

D−E 3 . Hence, the entry corre-
sponding to C1010 in the ST table is moved to the RT table
with PC field set to the the reconvergence point of BRC

D−E ,
which is F in this case. Also, two new entries correspond-
ing to both sides of BRC

D−E are added to the ST table. As
explained in detail in Section 3.3, the new entries are added
to the first unallocated entries in the ST table.

At this point MP IPDOM exposes parallelism in three
parallel control flow paths. Later, warp split B0101 reaches
the reconvergence point G 4 . The MP control unit looks
for the entry in the RT with PC=G and its active mask is a
super set of the active mask of B0101 entry in the ST table.
As described in Section 3.3, the ST can store direct indices
to the reconvergence entries in the RT. However, as later
explained in Section 4, a performance optimized version of
MP IPDOM uses an associative search through ST and RT
table entries to detect earlier reconvergence opportunities.

The reconvergence entry is found to be G1111. The ac-
tive mask of warp split B0101 is then subtracted from the
Pending Mask of the reconvergence entry G1111. Finally,
the B0101 entry in the ST table is invalidated 4 .

Later warp split E1000 reaches its reconvergence point F
5 . The Pending Mask of the reconvergence entry F1010 is
updated accordingly, and the E1000 entry in the ST table is
invalidated. Then, warp split D0010 reaches the same recon-
vergence point (F). The ST entry is removed and the recon-
vergence entry F1010 is updated again to mark the arrival of
warp split E1000 6 .

/ / i d = warp ID
/ / BBA Basic Block "A"
i f (i d %2==0){

/ / BBB

} e l s e {
/ / BBC

i f (i d ==1) {
/ / BBD

} e l s e {
/ / BBE

}
/ / BBF

}
/ / BBG

1010

1111

0101

0010 1000

1010

1111

A

B C

E D

F

G

A

B-CBR

C

D-EBR

(a) Code and CFG

Splits Table (ST)

PC RPC Active Mask

B G 0101

C G 1010

Reconvergence Table (RT)

PC RPC Rec. Mask Pending Mask

G --- 1111 1111

Splits Table (ST)

PC RPC Active Mask

B G 0101

D F 0010

E F 1000

Reconvergence Table (RT)

PC RPC Rec. Mask Pending Mask

G --- 1111 1111

F G 1010 1010

Splits Table (ST)

PC RPC Active Mask

A --- 1111

Reconvergence Table (RT)

PC RPC Rec. Mask Pending Mask

 Initial State 1

Splits Table (ST)

PC RPC Active Mask

D F 0010

E F 1000

Reconvergence Table (RT)

PC RPC Rec. Mask Pending Mask

G --- 1111 1010

F G 1010 1010

 B0101 reconverge at G 4

Splits Table (ST)

PC RPC Active Mask

D F 0010

Reconvergence Table (RT)

PC RPC Rec. Mask Pending Mask

G --- 1111 1010

F G 1010 0010

 E1000 reconverge at F 5

Splits Table (ST)

PC RPC Active Mask

Reconvergence Table (RT)

PC RPC Rec. Mask Pending Mask

G --- 1111 1010

F G 1010 0000

 D0010 reconverge at F 6

Splits Table (ST)

PC RPC Active Mask

F G 1010

Reconvergence Table (RT)

PC RPC Rec. Mask Pending Mask

G --- 1111 1010

 F1010 move to ST table 7

Splits Table (ST)

PC RPC Active Mask

Reconvergence Table (RT)

PC RPC Rec. Mask Pending Mask

G --- 1111 0000

 F1010 reconverge at G 8

Splits Table (ST)

PC RPC Active Mask

G -- 1111

Reconvergence Table (RT)

PC RPC Rec. Mask Pending Mask

9

 After 2

 After 3

 G1111 move to ST table

A

B-CBR

C

D-EBR

(b) ST and RT tables (only valid entries shown)

Figure 6. Example of Multi-Path IPDOM execution with nested divergence

Upon updating the Pending Mask of the reconvergence
entry F1010, the MP control unit detects that there are no
more pending threads for this entry (the Pending Mask is
all zeros). Hence, the MP control unit moves the reconver-
gence entry to the ST table, setting the active mask to the
Reconvergence Mask 7 . Finally, warp split F1010 reaches
the reconvergence point G and updates the reconvergence
entry G1111. The control unit detects that the Pending Mask
of entry G1111 is all zeros 8 and moves the entry from the
RT table to the ST table 9 .

This example does not cover two special cases. The first
case is when one side of the branch directly diverges to the
reconvergence point of the branch (e.g., if clause with no
else). In this case, the Pending Mask of the corresponding
reconvergence entry is updated to mark this side of branch
as converged, and there is no need to register a new entry
for it in the ST. The second case is when a warp split en-
counters a branch whose reconvergence point is the same
as the reconvergence point of the diverged warp split (e.g.,
backward branches that create loops). In such a case, there
is no need to add a new entry to the RT table, since the cor-
responding reconvergence entry already exists.

3.3 Implementation

The modifications to the baseline pipeline consist of
changes to three main parts: branch unit, instruction buffer,
and issue unit. The changes are discussed in detail below.

3.3.1 Branch Unit and Instruction Buffer

Figure 7 shows the details of the branch unit and the instruc-
tion buffer (I-Buffer). Each warp has its own ST and RT
tables. The PC entry in ST and RT tables points to the first
instruction in a basic block. I-Buffer entries are allocated
at the warp split granularity and modified to add the Split-
ID, RPC and Active Mask entries. The I-Buffer is sized to
hold a number of splits equal to the maximum number of
warps per core. The maximum number of entries in the ST
table equals the number of threads in a warp. The size of
the RT table depends on the nesting depth of the application
control flow. Section 6.6 presents the maximum usage of
entries in both the ST and RT tables for our studied bench-
marks. Similar to stack-based implementations, RT entries
could be spilled to memory if the benchmark has a very
large nesting depth [6].

Upon divergence, the branch control unit invalidates the
associated split entry in the I-Buffer. Hence, it is no longer

PC RPC R-Index Active
Mask

v
PC RPC R-Index Active

Mask
v

PC RPC R-Index Rec.
Mask

Pending
Mask PC RPC R-Index Rec.

Mask
Pending

Mask

Warp-
ID

Split-
ID

Inst-
PC

valid ready RPC Active
Mask

Instructions Dependency
Mask

PC RPC R-Index Rec.
Mask

Pending
Mask

PC RPC R-Index Active
Mask

v

Issue Unit
(Scheduler)

Fetch Unit

Instruction Buffer (I-Buffer)

Warp Reconvergence Table (RT)

Execute
 Branch

 Instruction

Update the ST table
With the branch outcomes

Invalidate
 divergent

split

Update I-Buffer

Update ST
Table upon

Reconvergence

Update RT Table upon Reconvergence

Move Reconverged Entry to the ST

Branch
Control

Unit

Warp Splits Table (ST)

Branch Unit

Figure 7. Multi-Path IPDOM implementation

eligible for fetch or issue. The branch control unit marks
the entry of the associated split in the ST table as unallo-
cated. It also signals the ST table to transfer this entry to
an unused entry in the RT table after modifying the PC field
to the RPC of the branch. The index of this entry, R-Index,
is stored, along with the new warp splits resulting from the
divergence, in the ST table. The R-Index is used to directly
index the corresponding reconvergence entry in the RT ta-
ble upon reconvergence. Warp splits in the I-Buffer contain
warp and split IDs. The split ID is an index identifying the
warp split in the ST table. After a new warp split is created,
it is written to a free I-Buffer entry. If there are more splits
than I-Buffer entries, the extra splits sit idle in the ST table
until an I-Buffer entry is free.

Upon reconvergence, the branch control unit invalidates
the reconverged entry in both the I-Buffer and the ST table.
It uses the R-Index field of the reconverging split to index
the RT table to update the pending active mask as described
in Section 3.1. Finally, the Pending Mask of the updated
entry is checked; if it is all zeros, it moves the entry to the
first unallocated entry in the ST table.

3.3.2 Scoreboard Logic

Current GPUs use a per-warp scoreboard to track data de-
pendencies [7]. A form of set-associative look-up table
(Figure 8a) is employed, where sets are indexed using warp
ids and entries within each set contain a destination regis-
ter ID of an instruction in flight for a given warp. When a
new instruction is decoded, its source and destination reg-
ister IDs are compared against the scoreboard entries of its
warp. A dependency mask that represents registers that are
causing data dependency hazards is produced from these
comparisons and stored in the I-Buffer with the decoded in-
struction. The dependency mask is used by the scheduler
to decide the eligible instructions at each issue slot. An in-
struction is eligible only if its dependency mask is all ze-
ros. After writeback, both the scoreboard and the I-Buffer
entries are updated to mark the dependency as cleared. In
particular, the entries in the scoreboard look-up table that

(
W

ar
p

-I
D

, R
e

g)
 R Register-ID

1 0

W
ar

p
 0

W

ar
p

 1

…

(a) Single-Path IPDOM

(
W

ar
p

-I
D

, R
e

g,

A
ct

iv
e

 M
as

k)

W
ar

p
 0

W

ar
p

 1

…

R-Mask Register-ID
10101… 0 10101… 0

(b) Multi-Path IPDOM

Figure 8. Changes required to the scoreboard
logic to support Multi-Path IPDOM

correspond to the destination registers of the written-back
instruction are invalidated, and the bits that correspond
to these destination registers in the dependency mask are
cleared for all decoded instructions from this warp.

The Multi-Path IPDOM supports multiple number of
concurrent warp splits running through parallel control flow
paths. Hence, it is essential for the scoreboard logic to cor-
rectly handle dependencies for all warp splits and across di-
vergence and reconvergence points. It is also desirable for
the scoreboard to avoid declaring a dependency exists when
a read in one warp split follows a write to the same register
but from another warp split.

Therefore, we modify the scoreboard design by adding
a reserved mask (R-mask) field to each entry in the score-
board look-up table as shown in Figure 8b. When an in-
struction is scheduled it bitwise-ORs the R-mask of its des-
tination register with its active mask. When a new instruc-
tion is decoded, its source and destination register IDs are
compared against the scoreboard entries of its warp. If the
R-mask bit of a register operand of the instruction is set for
any of the instruction’s active threads then a bit is set in the
dependency mask for the I-Buffer entry associated with the
instruction. This means that there is a pending write to this
register by at least one active thread.

Upon writeback, the destination register’s dependencies
are cleared from the scoreboard by clearing the bits in the
R-mask that correspond to the active threads in the written-
back instruction. The dependency bit masks in the I-Buffer
are also updated. To do so, the active mask of each instruc-
tion that belongs to the written-back warp is compared with
the R-mask of the destination registers of the written-back
instruction. The respective destination register bit in the de-
pendency mask is cleared if the instruction active mask and
the R-mask do not have any common active bits. An in-
struction in the I-Buffer is available to be issued if all the
bits in the dependency mask are zero.

To illustrate the operation of the modified scoreboard and
its interactions with the I-Buffer, we use the example code
snippet in Figure 9. Initially, the scoreboard is empty and I0
has no pending dependencies with any registers. At 1 , I0 is
issued and it reserves a scoreboard entry for its destination
register R0 with R-mask=1111. Also, the branch instruc-

tion splits the warp into two splits that fetch and decode in-
structions from the two sides of the branch (i.e., I1 and I2).
At the decode stage, all the source and destination registers
of the decoded instruction are checked against the reserved
registers in the scoreboard unit to see if there are any pend-
ing dependencies, and, accordingly, the dependency mask
of the instruction is generated. In this example, I1 is depen-
dent on R0 while I2 has no pending dependencies. Hence,
I2 is eligible to be issued, and once it is issued, at 2 , it re-
serves R1 with an R-mask=1010. At 3 , I3 is fetched and
decoded. I3 has pending dependencies on both R0 and R1,
hence its Dep-mask=11. At 4 , I0 writes the load value to
R0 and hence it releases R0 and clears the R-mask of the
R0 entry from the scoreboard unit (the R0 entry becomes
invalid since its R-mask is all zeros). Also, it clears the de-
pendency mask of both I1 and I3 since the R-mask of R0 is
now zeros for all active threads of both instructions. Since
the dependency mask of I1 is all zeros, it becomes eligible
to be issued. Hence, at 5 , it reserves its destination register
R1 with an R-mask=1010; such that R1 becomes reserved
by all lanes—odd lanes due to pending writes of I1 and even
lanes due to pending writes of I2. At 6 , I2 writes the load
value to R1 and hence it clears the even bits in the R-mask of
register R1 in the scoreboard unit. Currently, R1 has an R-
mask=0101 and it does not have any common active threads
with I3 which has an I-mask=1010. Hence, the dependency
bit that corresponds to R1 in the dependency mask of I3 is
cleared and I3 becomes eligible for scheduling.

3.3.3 Interaction with Barriers:

MP IPDOM enables additional functionality for barriers
compared to the SPS model. In SPS, the entire divergent
warp is suspended if any of its diverged threads encounters
a barrier [3]. This is essentially because a stack-based ex-
ecution model requires the top of the stack split to reach
the reconvergence point before starting the execution of an-
other split. If the top of the stack split is waiting at a barrier,
the entire warp is suspended. Therefore, it is not possible
to synchronize divergent threads of the same warp. In con-
trast, MP independently schedules diverged warp splits un-
til they reach their reconvergence point enabling threads to
synchronize within the same warp while diverged.

4 Opportunistic Early Reconvergence
In Section 2.2, we explained that the IPDOM reconver-

gence point is the earliest guaranteed reconvergence point.
However, in certain situations, there are opportunities to re-
converge at earlier points than the IPDOM point. Such sit-
uations depend on the outcomes of a sequence of branch
instructions and the scheduling order of warp splits. Hence,
early reconvergence is not guaranteed for all executions, but
rather occurs dynamically when certain control paths are

Code Example:

I0 : LOAD R0 , 0 (R5) ;
i f (i d %2==0)

I1 : LOAD R1 , 0 (R0) ;
e l s e {

I2 : LOAD R1 , 0 (R4) ;
I3 : ADD R4 , R0 , R1 ;

}

Scoreboard I-Buffer
Reg R-mask Inst. Dep-mask I-mask

- - I0 00 1111
- - - - -

1 R0 1111 I1 01 0101
- - I2 00 1010

2 R0 1111 I1 01 0101
R1 1010 - - -

3 R0 1111 I1 01 0101
R1 1010 I3 11 1010

4 - - I1 00 0101
R1 1010 I3 10 1010

5 - - - - -
R1 1111 I3 10 1010

6 - - - - -
R1 0101 I3 00 1010

Figure 9. MP IPDOM scoreboard example

followed. Early reconvergence opportunities are common
in applications with unstructured control flow [10, 8].

Figure 10 shows a code snippet that has unstructured
control flow. We will use this code snippet to illustrate
the modified operation of MP with support for opportunistic
early reconvergence. Figure 11 shows instantaneous snap-
shots for a warp with four threads traversing through the
control flow graph corresponding to the code in Figure 10.
Active masks within basic blocks represent threads that are
executing basic blocks at a specific time. Basic blocks with
no active masks are not executed by any threads at that time.
Figure 11a shows a snapshot of the execution where there
are two warp splits, A0101 and B1010, executing basic blocks
A and B respectively 1a . Both diverged warp splits have
their IPDOM reconvergence point at D 1b . This initial
state results if a divergence at BRA

B−C results in two splits
B1010 and C0101, and split C0101 reaches BRC

A−D before
split B1010 finishes executing basic block B.

Next, warp split A0101 branches to basic block B after
executing BRA

B−C . This scenario creates an early recon-
vergence opportunity, where there are two splits (B0101 and
B1010) of the same warp executing the same basic block B
2a . To detect an early reconvergence opportunity, an asso-
ciative search within the ST using the first PC of the basic
block is performed upon the insertion of any new entry. If
there is an existing entry that matches the new entry in both
the PC and RPC entries then an early reconvergence op-

Wavefront Splits Table
PC RPC Active Mask

A D 0101
B D 1010

Wavefront Reconvergence Table
PC RPC Reconvergence Mask Pending Mask

D --- 1111 1111

B C

D

A

A

B-CBR

C

A-DBR
1a

1b

B

0101

1010

(a) Initial State

0101
B C

D

A

1010

C

A-DBR

Wavefront Splits Table
PC RPC Active Mask
B D 0101
B D 1010

Wavefront Reconvergence Table
PC RPC Reconvergence Mask Pending Mask

D --- 1111 1111

Wavefront Splits Table
PC RPC Active Mask

B BR 0101

Wavefront Reconvergence Table
PC RPC Reconvergence Mask Pending Mask

D --- 1111 1111
BR D 1111 0101

- Before Early Reconvergence Logic

- After Early Reconvergence Logic

3c 3a

3b

2a

A

B-CBR

PC=BR

2b

(b) A0101 executes BRA
B-C

Wavefront Splits Table
PC RPC Active Mask

BR D 1111

Wavefront Reconvergence Table
PC RPC Reconvergence Mask Pending Mask
D --- 1111 1111

4b

4a

B C

D

A

C

A-DBR

A

B-CBR

PC=BR

1111

(c) B1010 reconverges at an early reconvergence point

Figure 11. Operation of the Multi-Path with the Opportunistic Reconvergence (OREC) enabled

do{
/ / BBA

i f (cond1) {
/ / BBB

break ;
} e l s e {

/ / BBC

}
} whi le (cond2) ;
/ / BBD

Figure 10. Unstructured control flow

portunity is detected. The early reconvergence point is the
program counter of the next instruction of the leading warp
split. In this example, B1010 is the leading split, and the
early reconvergence point is labeled BR 2b . A new entry is
added to the RT to represent the early reconvergence point
3a . The RPC of the new entry (B0101) is set to the early re-
convergence point (BR). Finally, warp split B1010 in the ST
is invalidated 3b , and accordingly the pending mask of the
early reconvergence entry is updated 3c (warp split B1010

is already at the early reconvergence point).
The execution continues as explained in Section 3. Warp

split B0101 reaches the early reconvergence point BR. Its
entry in the ST is invalidated, the pending mask of the
reconvergence entry BR1111 is updated, and the reconver-
gence entry BR1111 moves from the RT 4a to the ST 4b .
Similar cases to this example occur with more complex
code in several GPU applications [8]. We evaluate the ben-
efits of opportunistic reconvergence in Section 6.

5 Methodology and Benchmarks
We model MP IPDOM as described in Section 3 in

GPGPU-Sim (version 3.1.0) [2]. Our modified GPGPU-
Sim is configured to model a Geforce GTX 480 (Fermi)
GPU with the configuration parameters distributed with
GPGPU-Sim 3.1.0 but with 16KB instruction cache per
core (see Section 6.4 for details). MP IPDOM does not re-
strict the scheduling order, so we can use any scheduler.

Interleavable Benchmarks
Name Abbr. Name Abbr.
Monte Carlo MC [1] Mandelbrot MAND [19]
3-D Renderer REND [27] MUMMER MUM[2]
MUMMER++ MUMpp [11] Memcached MEMC [12]
Laplace Solver LPS [2] Ray Tracing RAY [2]

LU Decomposition LUD [2]

Table 1. Studied benchmarks

For both the baseline (i.e., SPS model) and our MP varia-
tions, we use a greedy-then-oldest (GTO). GTO runs a sin-
gle warp until it stalls then picks the oldest ready warp [22].
On the baseline, the GTO scheduler outperforms the Two-
Level and the Loose Round Robin schedulers. For splits
within the same warp, we use a simple Round Robin scheme
to alternate between them. We model, the opportunistic re-
convergence optimization described in Section 4 as a sepa-
rate configuration.

In Section 6, we present results for MP IPDOM when
it limits the number of concurrently supported warp splits.
This is modelled by setting a maximum constraint on the
active number of entries in the ST. If, upon a branch, a new
entry is required to be inserted to the ST, and the table is
already at its maximum capacity, the new warp split is not
considered for scheduling until an ST entry is invalidated.
The configuration with two entries models the effect of the
Dual-Path Stack (DPS) with the Path-Forwarding optimiza-
tion [21] (more details are provided in Section 7).

We study benchmarks from Rodinia [5] and those dis-
tributed with GPGPU-Sim [2]. We also use some bench-
marks with multi-path divergence from other sources:

MEMC: Memcached is a key-value store and retrieval
system. It is described in detail by Hetherington et al. [12].

REND: Renderer performs 3D real-time raytracing of
triangle meshes. For benchmarking, we use pre-recorded
frames provided with the benchmark [27].

MC: MC-GPU is a GPU-accelerated X-ray transport
simulation code that can generate clinically-realistic radio-
graphic projection images and computed tomography scans
of the human anatomy [1].

MAND: Mandelbrot computes a visualization of man-
delbrot set in a complex cartesian space. It partitions the
space into pixels and assigns several pixels to each thread
[19].

Note that out of 32 benchmarks, we only report the de-
tailed results for the 9 benchmarks shown in Table 1, be-
cause the other benchmarks execute identically over SPS,
DPS and MP variations. They perform identically be-
cause they are either non-divergent or they are divergent
but all branches are one-sided branch hammocks such that
the branch target is the reconvergence point. Under IP-
DOM reconvergence constraints, these applications do not
exhibit parallelism between their basic blocks (i.e., non-
interleavable [21]).

6 Experimental Results
This section presents our evaluation for the MP model.

6.1 SIMD Unit Utilization

Figure 12 shows the SIMD unit utilization ratio for
benchmarks in Table 1. As expected, the SPS, DPS and
basic MP have the same SIMD unit utilization because they
all reconverge at the IPDOM reconvergence points. How-
ever, the opportunistic reconvergence optimization provides
an average of 48% and up to 182% improvement in SIMD
unit utilization. Benchmarks that exhibit unstructured con-
trol flow benefit from the opportunistic reconvergence.
6.2 Thread Level Parallelism

Figure 13 shows the average ratio of warp splits to warps.
A value grater than one means an increase in the schedula-
ble entities at the scheduler. Hence, it is more likely for the
scheduler to find an eligible split to schedule. The SPS ex-
poses only one split at a time to the scheduler. Hence, its
average ratio of warp splits to warps is always one.

As shown in the figure, benchmarks such as REND,
MAND, MC, MUM and MEMC show a considerable in-
crease in the average ratio of the warp splits as the maxi-
mum number of supported warp splits increase. The MP
IPDOM achieves ∼50%-690% increase in the warp splits
compared to SPS, and ∼11%-400% compared to the DPS.
This is mainly because some of these benchmarks have
highly unstructured control flow (e.g. REND, MAND and
MC) and they also have switch and else if statements that
increase the number of parallel control flow paths (e.g.
MEMC, MUM and MC).

The MUMpp, LPS, LUD and RAY benchmarks have a
limited increase in the average number of warp splits (∼-
5%). This is mainly for two reasons. The LPS, LUD and
RAY benchmarks have SIMD utilization (>75%), hence, for
a large portion of time there is no divergence at all. This
biases the average towards a single split per warp. Also,
the four benchmarks have a maximum of two parallel con-
trol flow paths at a time, otherwise, they are dominated by
single-sided branches (i.e., one of their two outcomes is the

0

0.2

0.4

0.6

0.8

1

REND MAND MC MUM MUMpp MEMC LPS LUD RAYSI
M

D
 L

an
e

s
U

ti
liz

at
io

n

SPS DPS MP model +OREC

Figure 12. SIMD units utilization

0

1

2

3

4

REND MAND MC MUM MUMpp MEMC LPS LUD RAY

A
ve

ra
ge

 s
p

lit
s

to

 w
av

ef
ro

n
ts

 r
at

io

SPS DPS 4PS
6PS 8PS MP model
+OREC

6.9

Figure 13. Warp splits to warp ratio

branch reconvergence point). Therefore, for these applica-
tions MP acts identically to DPS.

The data in Figure 13 shows that the opportunistic early
reconvergence bounds the increase in the number of warp
splits. This is expected because it forces the splits to wait
for each other at the early reconvergence points, and it tends
to combine multiple splits into a single one.

Figure 14 shows the average breakdown of the threads’
state at the scheduler. The threads’ state means whether the
thread can issue its next instruction (i.e., eligible) or not.
Also, it breaks down the different possible reasons that stalls
a thread. Since a single thread can be stalled due to more
than one reason (e.g., data hazard and structural hazard at
the same time), the breakdown assumes priorities for the
different possible stalling reasons. The priority order is the
order in Figure 14 from bottom to top.

“Suspended" threads are those stalled due to divergence
(i.e., they are either waiting at reconvergence points or they
are waiting at a parallel control flow path). There is a
gradual decrease in the number of “Suspended" threads for
mechanisms that support a larger number of warp splits. For
example, on MAND, MP has an average number of sus-
pended threads that is ∼35% less than SPS.

However, the decrease in the average number of sus-
pended threads does not directly translate to an increase in
eligible threads. In particular, the non-suspended threads
can be stalled due to data or structural hazard. This effect
is pronounced in the MUM and MEMC benchmarks, where
the gradual decrease in the average suspended threads is fol-
lowed by a gradual increase in the average threads stalled
due to structural hazard.

The REND benchmarks suffers from load imbalance,
where some warps exit the kernel early while others con-
tinue execution under divergence. The splits of the diverged
warps are serialized in SPS. This biases the average result
to have a large portion of "Finished" threads on the SPS
model. As we increase the number of allowed warp splits,
the scheduler interleaves the execution of diverged splits

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
SP

S
4

P
S

8
P

S
+O

R
EC

D
P

S
6

P
S

M
P

SP
S

4
P

S
8

P
S

+O
R

EC

D
P

S
6

P
S

M
P

SP
S

4
P

S
8

P
S

+O
R

EC

D
P

S
6

P
S

M
P

SP
S

4
P

S
8

P
S

+O
R

EC

D
P

S
6

P
S

M
P

SP
S

4
P

S
8

P
S

+O
R

EC

REND MAND MC MUM MUMpp MEMC LPS LUD RAY

ELIGIBLE STRUCTURAL DATA SYNC+CNTRL EMPTY I-BUFF SUSPENDED FINISHED

Figure 14. Average breakdown of threads’
state at the scheduler

0
0.2
0.4
0.6
0.8

1
1.2

REND MAND MC MUM MUMpp MEMC LPS LUD RAY

Id
le

 C
yc

le
s

 (
N

o
rm

al
iz

e
d

 t
o

 S
P

S)

SPS DPS MP model +OREC

Figure 15. Idle cycles

which in turn speeds up their execution. Hence, on aver-
age, we have more "FINISHED" threads.
6.3 Idle Cycles

Figure 15 shows the idle cycles accumulated for all cores
for our benchmarks. The increase in the average number of
eligible threads in Figure 14 translates into a decrease in
the Idle cycles. Only the MEMC benchmark shows ∼7%
increase in the idle cycles when we adapt MP with oppor-
tunistic reconvergence compared to SPS model. We discuss
this in detail in Section 6.4.
6.4 Impact on Memory System

Instruction Locality: MP has a direct impact on instruc-
tion cache locality. Unlike the SPS model, MP may require
frequent fetching of instructions from distant blocks in the
code. While this is not a problem for most GPU kernels
which tend to have small static code size, it can consider-
ably affect the instruction cache misses in a large kernel.
We find that the effect of instruction misses on the overall
performance is negligible with a 16 KB cache. Figure 16
shows the instruction cache misses normalized to the SPS
model. There is a considerable increase in instruction cache
misses for the REND benchmark but it has limited effect
on the overall performance (only an average of up to 2.5%
of threads are stalled due to empty instruction buffers; see
Figure 14). Since instruction fetch is done at warp splits
granularity, MP with opportunistic reconvergence tends to
have less instruction cache accesses and misses.

Data Locality: The effect of MP execution on data cache
locality depends on the application and whether parallel
control flow paths access contiguous memory locations or
not. Figure 17 shows the L1 data cache misses normal-
ized to the SPS execution model. The MUM benchmark
has reduced L1 data cache misses in MP compared to the

0

0.5

1

1.5

2

REND MAND MC MUM MUMpp MEMC LPS LUD RAY

I$
 m

is
se

s
 (

N
o

rm
al

iz
e

d
 t

o
 S

P
S)

SPS DPS MP model +OREC

Figure 16. Inst. cache misses (16KB I$)

0

0.5

1

1.5

2

REND MAND MC MUM MUMpp MEMC LPS LUD RAY

SPS DPS MP model +OREC

L1
 D

$
 m

is
se

s
(N

o
rm

al
iz

e
d

 t
o

 S
P

S)

Figure 17. L1 data cache misses (32KB D$)

0

0.4

0.8

1.2

1.6

2

REND MAND MC MUM MUMpp MEMC LPS LUD RAY HM

Sp
e

e
d

u
p

SPS DPS MP model +OREC3.45 2.9 7.8

Figure 18. Overall speedup

SPS model, but it does not have a big impact on its perfor-
mance because it already has low data cache misses (<0.3
MPKI "misses per thousand instructions"). However, the
MEMC benchmark suffers from a significant increase in its
misses (> 80%). In particular, the total misses jumps from
30 MPKI to 82 MPKI. In depth analysis suggests that the
MEMC benchmark loses its intra-warp locality. That is,
warp splits evict each others’ data from the data cache be-
fore they get accessed again by the same warp split. These
observations are consistent with prior work [22].

6.5 Overall Performance

Figure 18 shows the speedup over SPS. The speedup
comes mainly due to the reduced idle cycles (i.e., more
warp split instructions per cycle) and the improved SIMD
units’ utilization (i.e., more throughput per warp split in-
struction). MP with opportunistic reconvergece has 32%
harmonic mean speedup over the SPS model, compared to
18.6% and 12.5% for the basic MP and DPS models.

6.6 Implementation Complexity

As discussed in Section 3.3, implementing MP requires
modifications to the branch unit and the scoreboard logic.
First, we replace the stack with two tables (ST and RT). Fig-
ure 19 shows the maximum usage of both tables. Although
the maximum usage of entries in the ST and RT can reach
large numbers with the basic MP, the opportunistic recon-
vergence helps to bound this increase to a maximum of 12
and 13 entries respectively.

The modified scoreboard logic adds 1.5KB storage re-
quirement for 48 warps per SM each with 8 register en-
tries (GTX480 configuration). We synthesized both the
basic scoreboard and the modified scoreboard on NCSU

0
5

10
15
20
25

M
P

+O
R

EC M
P

+O
R

EC M
P

+O
R

EC M
P

+O
R

EC M
P

+O
R

EC M
P

+O
R

EC M
P

+O
R

EC M
P

+O
R

EC M
P

+O
R

EC

REND MAND MC MUM MUMpp MEMC LPS LUD RAY

M
ax

. n
u

m
b

e
r

o
f

e
n

tr
ie

s

Max WST entries Max WRT entries
46 34

32

Figure 19. Usage of the WST and RT tables

FreePDK 45nm [24]. We model the scoreboard as a small
set associative SRAM. The synthesis results estimates an
area 175,432 µm2 and a total power of ∼4.4mW total power
at 50% activity factor; compared to 91,365 µm2 and 1mW
power for the original scoreboard. The SRAM used is based
on NCSU’s FabScalar memory compiler, FabMem [23],
with 6 read ports and 3 write ports.

We also use GPU-Wattch [15] to estimate the increase
in the dynamic power due to the associated with overall
increased performance. For all our benchmarks, we find
that the maximum observed increase in the average dynamic
power is (37.5%) for the REND benchmark. However, the
7× speedup justifies such increase in power.

7 Related Work
Dual Path Stack (DPS) is a recent proposal that extends

the SPS stack to support two concurrent paths of execution
[21] while maintaining reconvergence at immediate post-
dominators. Instead of stacking the taken and not-taken
paths one after the other, the two paths are maintained
in parallel. DPS maintains separate scoreboard units for
each path to avoid false dependencies between independent
splits. However, it is necessary to check both units to make
sure there are no pending dependencies accorss divergence
and reconvergence points. As shown in Section 6, DPS has
limited benefits on benchmarks that have multi-path diver-
gence or benchmarks that have unstructured control flow
behavior. The DPS also suffers from the same limitations
related to interaction with barriers as the SPS model.

Dynamic Warp Subdivision (DWS) adds a warp splits ta-
ble to the conventional stack [17]. Upon a divergent branch,
it uses heuristics to decide which branches start subdividing
a warp into splits and which do not. If a branch subdivides a
warp, DWS ignores IPDOMs nested in that branch. This of-
ten degrades DWS performance compared to the SPS model
[21]. Unlike DWS, MP IPDOM manages to maximize TLP
under the IPDOM reconvergence constraints.

Similar to DPS, Simultaneous Branch Interweaving
(SBI) allows a maximum of two warp splits to be inter-
leaved [4]. However, SBI targets improving SIMD utiliza-
tion by spatially interleaving the diverged warp splits on the
SIMD lanes. The reconvergence tracking mechanism pro-
posed with the SBI requires constraints on both the code
layout and the warp splits’ scheduling priorities to adhere
to thread-frontier based reconvergence [8].

Dynamic Warp Formation (DWF) is not restricted to IP-
DOM reconvergence [9]. Instead, it opportunistically group
threads that arrive at the same PC, even though they belong
to different warps. DWF performance is highly dependent
on the scheduling to increase the opportunity of forming
denser warps, and sometimes leads to starvation eddies.

Temporal SIMT (T-SIMT) is a new microarchitecture
where each warp is mapped to a single lane, and the threads
within a warp dispatch an instruction one after the other
over successive cycles [14]. Upon divergence, threads
progress independently; and hence divergence does not re-
duce the SIMD units utilization. However, reconvergence
is still favourable to perform memory address coalescing
and scalar operations [14]. The T-SIMT microarchitecture
lacks a hardware mechanism to track reconvergence of di-
verged warp splits, therefore, they insert (syncwarp) in-
structions at the immediate postdominator of the top-level
divergent branches [14]. Our MP microarchitecture pro-
vides a hardware mechanism to track nested reconvergence
points. Hence, it can be integrated with T-SIMT.

Multiple SIMD Multiple Data (MSMD) [28] proposes
quite large changes to the baseline architecture to support
flexible SIMD datapaths that can be repartitioned among
multiple control flow paths. Similar to T-SIMT, MSMD
proposes to use a special syncronization instruction to re-
converge at postdominators, however, the paper does not
specify an algorithm that determines where to place these
syncronization instructions and how to determine which
specific threads to synchronize at each instruction.

Thread Block Compaction (TBC) and TBC-like tech-
niques allow a group of warps to share the same SIMT
stack [10, 18]. Hence, at a divergent branch, threads from
grouped warps are compacted into new more dense warps.
Since TBC employs a thread block wide stack, it suffers
more from the reduced thread level parallelism [20]. This
makes MP IPDOM a good candidate to integrate with TBC
to mitigate such deficiencies. For this purpose, the warp-
wide divergence and reconvergence tables would need to be
replaced with thread block wide tables.

8 Conclusion
In this paper, we propose a novel mechanism which en-

ables efficient multi-path execution in GPUs. In particu-
lar, our mechanism enables tracking IPDOM reconvergence
points of diverged warp splits while interleaving their exe-
cution. This is achieved by replacing the stack-based struc-
ture that handles both the divergence and reconvergence in
the current GPUs with two tables. One table tracks the con-
current executable paths upon every branch, while the other
tracks the reconvergence points of these branches. Further-
more, we illustrate that our multi-path model can be modi-
fied to enable opportunistic early reconvergence at run-time
to improve SIMD units utilization for applications with un-
structured control flow behavior. Evaluated on a set of

benchmarks with multi-path divergent control flow, our pro-
posal achieves 32% speedup over conventional single-path
SIMT execution.

Acknowledgments
The authors would like to thank Wilson Fung, Tayler

Hetherington, Ali Bakhoda, Timothy G. Rogers, Ayub
Gubran, Hadi Jooybar and the reviewers for their insightful
feedback. This research was funded in part by a Four Year
Doctoral Fellowship from University of British Columbia,
the Natural Sciences and Engineering Research Council of
Canada and a grant from Advanced Micro Devices Inc.

References
[1] A. Badal and A. Badano. Accelerating Monte Carlo Sim-

ulations of Photon Transport in a Voxelized Geometry Us-
ing a Massively Parallel Graphics Processing Unit. Medical
physics, 36:4878, 2009.

[2] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M.
Aamodt. Analyzing CUDA Workloads Using a Detailed
GPU Simulator. In Proc. IEEE Symp. on Perf. Analysis of
Systems and Software (ISPASS), pages 163–174, 2009.

[3] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thom-
son. GPUVerify: a Verifier for GPU Kernels. In Proc.
ACM Int’l Conf. on Object oriented programming systems
languages and applications, pages 113–132, 2012.

[4] N. Brunie, S. Collange, and G. Diamos. Simultaneous
Branch and Warp Interweaving for Sustained GPU Perfor-
mance. In Proc. IEEE/ACM Symp. on Computer Architec-
ture (ISCA), pages 49–60, 2012.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee,
and K. Skadron. Rodinia: A Benchmark Suite for Heteroge-
neous Computing. In Proc. IEEE Symp. on Workload Char-
acterization (IISWC), pages 44–54, 2009.

[6] S. Collange. Stack-less SIMT Reconvergence at Low Cost.
Technical Report hal-00622654, ARENAIRE - Inria Greno-
ble Rhône-Alpes / LIP Laboratoire de l’Informatique du Par-
allélisme, 2011.

[7] B. W. Coon, P. C. Mills, S. F. Oberman, and M. Y. Siu.
Tracking Register Usage during Multithreaded Process-
ing Using a Scoreboard having Separate Memory Regions
and Storing Sequential Register Size Indicators. US Patent
7,434,032, 2008.

[8] G. Diamos, B. Ashbaugh, S. Maiyuran, A. Kerr, H. Wu, and
S. Yalamanchili. SIMD Re-convergence at Thread Frontiers.
In Proc. IEEE/ACM Symp. on Microarch. (MICRO), pages
477–488, 2011.

[9] W. Fung, I. Sham, G. Yuan, and T. Aamodt. Dynamic Warp
Formation and Scheduling for Efficient GPU Control Flow.
In Proc. IEEE/ACM Symp. on Microarch. (MICRO), pages
407–420, 2007.

[10] W. W. L. Fung and T. M. Aamodt. Thread Block Com-
paction for Efficient SIMT Control Flow. In Proc. IEEE
Symp. on High-Perf. Computer Architecture (HPCA), pages
25–36, 2011.

[11] A. Gharaibeh and M. Ripeanu. Size Matters: Space/Time
Tradeoffs to Improve GPGPU Applications Performance. In
Proc. ACM Int’l Conf. for High Performance Computing,
Networking, Storage and Analysis (SC), pages 1–12, 2010.

[12] T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and
T. M. Aamodt. Characterizing and Evaluating a Key-Value
Store Application on Heterogeneous CPU-GPU Systems. In
Proc. IEEE Symp. on Perf. Analysis of Systems and Software
(ISPASS), pages 88–98, 2012.

[13] S. Keckler, W. Dally, B. Khailany, M. Garland, and
D. Glasco. GPUs and the Future of Parallel Computing. Mi-
cro, IEEE, 31(5):7–17, 2011.

[14] Y. Lee, R. Krashinsky, V. Grover, S. Keckler, and
K. Asanovic. Convergence and Scalarization for Data-
Parallel Architectures. In Proc. IEEE/ACM Symp. on Code
Generation and Optimization (CGO), pages 1–11, 2013.

[15] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S.
Kim, T. M. Aamodt, and V. J. Reddi. GPUWattch: Enabling
Energy Optimizations in GPGPUs. In Proc. IEEE/ACM
Symp. on Computer Architecture (ISCA), 2013.

[16] A. Levinthal and T. Porter. Chap — A SIMD graphics pro-
cessor. SIGGRAPH, 18(3):77–82, 1984.

[17] J. Meng, D. Tarjan, and K. Skadron. Dynamic Warp Subdi-
vision for Integrated Branch and Memory Divergence Toler-
ance. In Proc. IEEE/ACM Symp. on Computer Architecture
(ISCA), pages 235–246, 2010.

[18] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov,
O. Mutlu, and Y. N. Patt. Improving GPU Performance
via Large Warps and Two-Level Warp Scheduling. In Proc.
IEEE/ACM Symp. on Microarch. (MICRO), pages 308–317,
2011.

[19] NVIDIA. CUDA SDK 3.2, September 2013.
[20] M. Rhu and M. Erez. CAPRI: Prediction of Compaction-

Adequacy for Handling Control-Divergence in GPGPU Ar-
chitectures. In Proc. IEEE/ACM Symp. on Computer Archi-
tecture (ISCA), pages 61–71, 2012.

[21] M. Rhu and M. Erez. The Dual-Path Execution Model for
Efficient GPU Control Flow. In Proc. IEEE Symp. on High-
Perf. Computer Architecture (HPCA), pages 235–246, 2013.

[22] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-
Conscious Wavefront Scheduling. In Proc. IEEE/ACM
Symp. on Microarch. (MICRO), pages 72–83, 2012.

[23] T. Shah. FabMem: A Multiported RAM and CAM Compiler
for Superscalar Design Space Exploration. Master’s thesis,
North Carolina State University, 2010.

[24] J. Stine, I. Castellanos, M. Wood, J. Henson, F. Love,
W. Davis, P. Franzon, M. Bucher, S. Basavarajaiah, J. Oh,
and R. Jenkal. FreePDK: An Open-Source Variation-Aware
Design Kit. In Proc. IEEE of Microelectronic Systems Edu-
cation (MSE), pages 173–174, 2007.

[25] AMD Corporation. R700-Family Instruction Set Architec-
ture. 2011.

[26] Intel Corporation. Intel HD Graphics OpenSource Program-
mer Reference Manual. 2010.

[27] T. Tsiodras. Real-time raytracing: Renderer.
http://users.softlab.ntua.gr/∼ttsiod/renderer.html, Septem-
ber 2013.

[28] Y. Wang, S. Chen, J. Wan, J. Meng, K. Zhang, W. Liu, and
X. Ning. A Multiple SIMD, Multiple Data (MSMD) Ar-
chitecture: Parallel Execution of Dynamic and Static SIMD
fragments. In Proc. IEEE Symp. on High-Perf. Computer
Architecture (HPCA), pages 603–614, 2013.

