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Abstract— Video-based surgical skill assessment is one of
the main assessment methods in robot-assisted surgery (RAS).
Expert assessors watch videos of trainees, recorded from
endoscopic camera feeds, and evaluate their performance using
well-established assessment questionnaires. A major drawback
of this method, however, is the high variability in scores
between different assessors, mainly due to the limited visual
feedback provided by the recorded videos. To solve this prob-
lem, we propose a new method for six-degree-of-freedom (6-
DoF) autonomous camera movement for RAS, which, unlike
previous methods, takes into account both the position and 3D
orientation information from structures in the surgical scene.
We developed a simulation environment to test our method
on the “wire chaser” surgical training task from validated
training curricula in RAS. In a study with N = 30 human
subjects, we show that our proposed method leads to at least
21% more accurate skill assessment and at least 31% less
variability in assessment scores than when using a fixed camera
view, or camera movement method based only on position
information. Our preliminary work suggests that there are
potential benefits to autonomous camera positioning informed
by scene orientation, and this can direct designers of automated
endoscopes and surgical robotic systems, especially when using
chip-on-tip cameras that can be wristed for 6-DoF motion.

I. INTRODUCTION

Video-based skill assessment has been successfully ap-
plied in many domains such as education [1] and sports [2].
The main idea of this approach is to record videos of trainees
or performers during their tasks. These videos are then
used by experts to assess the skill of the trainee/performer
This process is referred to as the monitor-evaluate-modify
cycle and its merits has strong evidence from research in
psychology [3].
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Surgery is one area where video-based skill assessment has
been extensively used [4]. In robot-assisted surgery (RAS),
the videos used for this purpose usually come from the
endoscope/laparoscope viewing the surgical scene. These
videos allow surgeons to monitor and evaluate their own
(or their trainees’) performance with the goal of assessing
their skills and identifying areas of improvement. Many
validated tools and questionnaires have been developed to
standardize skill assessment based on recorded videos such
as the Objective Structured Assessment of Technical Skills
(OSATS) [5]. In these questionnaires, assessors give scores
to trainees based on several metrics such as how they handle
the tissue and if the surgical tools collide with sensitive
anatomical structures [6].

The quality of the visual feedback in the recorded videos
plays a crucial role in video-based skill assessment. Previous
research shows that variability between assessors is a major
problem. Gingerich et al [7] report that this variability comes
from the cognitive limitations of the assessors and from their
making unjustified inferences because of the lack of infor-
mation in the videos. Improving the visual feedback quality
in these videos can reduce this variability and improve the
video-based skill assessment process.

In this paper, we hypothesize that automating the motion
of the endoscope can improve the quality of the visual
feedback and hence improve the video-based skill assessment
process in RAS. The focus of the growing body of literature
on automating the endoscope in RAS was solely on how
this can improve the actual performance of the task at hand.
While this is an important consideration, it ignores the fact
that the camera feeds from these autonomous endoscopes are
also used by assessors in video-based skill assessment.

In this preliminary study, we consider the case of having
a 6-DoF camera in the surgical scene, in addition to the
original endoscope, which has been investigated by many
groups. For example, our group designed and tested a “pick-
up” camera that can be held by one of the tools of the da
Vinci Surgical System [8], [9], [10]. This camera can, hence,
move in 6-DoF and provide an additional view of the surgical
scene. Moreover, the idea of using additional cameras to
provide multiple views of the surgical scene has been tested
in vivo in laparoscopic cholecystectomy as in [11].

The contributions of this paper are as follows:
• We propose a novel autonomous camera method that

can improve video-based skill assessment by tracking20
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both the position and orientation of objects of interest
in the surgical scene. This is unlike previous methods
which only consider the position information.

• We implement the above autonomous camera concept
in a simulated environment of the da Vinci surgical
system where a pickup camera is attached to one of
its arms following the concept in [8]. We include a
motion planning component to satisfy some practical
constraints as the camera moves autonomously.

• We assess the benefits of our proposed autonomous
camera method on video-based skill assessment in a
user study with 30 subjects. We compare our method
against both a stationary camera and a point-based
autonomous camera method where the camera moves
to make a point of interest at the center of the view,
without using any orientation information. In our user
study, subjects assessed the performance of a simulated
surgical training task in recorded videos under the above
three camera methods.

II. RELATED WORK

A. Video-based Skill Assessment in Surgery

Video-based methods are extensively used in minimally
invasive surgery (MIS) for training and skill assessment. The
effectiveness of these methods has been demonstrated in dif-
ferent surgical settings such as conventional laparoscopy [12]
and RAS [13]. The effectiveness of video-based skill assess-
ment methods depends on the quality of the visual feedback
provided in the videos.

One approach to improve the visual feedback is to use
multiple cameras that view the surgical scene from multiple
perspectives. Several groups have explored the feasibility and
effectiveness of this approach as in [14] and [15]. In our
previous work [10], we evaluated the effectiveness of using
two cameras inside the abdomen and showed that this led
to a modest improvement in the accuracy of surgical skill
assessment in RAS.

In all the above studies, the cameras used to record videos
are stationary. In this work, we explore the effectiveness of
using an autonomous camera system for video-based surgical
skill assessment in a RAS setting.

B. Autonomous Cameras in RAS

Automated camera systems in RAS can be categorized
based on the source of information used to automate the
camera motion into three main categories. The first one is
based on the surgical tools. The second is based on the
anatomical structures in the surgical scene and the third one
is a combination of the first two.

The majority of the existing work is based on moving the
camera according to the motion of one or more surgical tools
as in [16], [17]. In contrast, Li et al [18] propose a method to
automate the camera motion based on anatomical structures
in a surgical debridement subtask in a dry lab environment.
The combination of tools and anatomical structures informa-
tion has also been studied in the context of automating the
camera motion as in [19].

In all the above work, a single point is chosen and
the camera moves to make it at the center of the field
of view (FoV), without considering the camera orientation
when doing so. There are infinite number of possible camera
orientations that can make a point at the center of the FoV.
We are not aware of any autonomous camera method that
takes the camera orientation into consideration. Our study
aims at filling this gap in the literature.

Furthermore, all the above methods have not been tested
in the context of video-based skill assessment. Our work
also aims at studying the effect of automating the camera on
video-based skill assessment in RAS.

III. PROPOSED METHOD

A. Overview

In surgical practice, surgeons often identify several land-
marks in the surgical scene and orient the camera with
respect to these landmarks. For example, the liver and
pancreas should be horizontal in the surgical scene in upper
abdominal procedures [20]. In other words, the camera’s
viewing plane should be parallel to the plane that combines
the liver and pancreas. Similar guidelines are used in other
procedures such as radical prostatectomy [21]. The correct
camera orientation is crucial as it guides the surgeon on
where to make the next action in the scene (e.g., where to
cut or dissect while avoiding major veins) [22] [23].

Based on the above, the surgical scene can be abstracted
as a scene with multiple landmarks/structures which can be
combined into a plane of interest. In our proposed method,
the camera moves so that its viewing plane will be at a
specific orientation with respect to the plane of interest.
In addition, the camera position is adjusted to make the
landmark(s) of interest at the center of the FoV.

B. Problem Formulation and Motion Pipeline

We assume that we have a plane of interest where: pa is the
center point of the plane and n is the normal to the plane at
pa. The goal is to compute the position and orientation of the
camera. The camera target position is pt. The camera’s target
orientation can be fully described by a frame z attached to
it, as seen in Fig. 1. It is mathematically represented by a
rotation matrix Rt where col1[Rt] (the first column in Rt)
represents the x-axis, col2[Rt] the y-axis, and col3[Rt] the
z-axis attached to the camera.

We compute the camera target position pt along this
normal vector n, at a fixed distance df from pa. To avoid
collision with tissue, we consider only the space above the
anatomical feature(s) and accordingly consider either n or
−n. At each instant, the camera’s positional target is set to
be the computed point pt such that:

pt = pa ± dfn (1)

For the camera’s orientation, we first align the camera’s
optical axis with n by setting col3[Rt] (the z-axis of frame
z) to -n (Eq. 2). This assumes that the direction of n is above
the anatomical feature of interest, otherwise, col3[Rt] is set
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Fig. 1. Frame z attached to the camera.

Fig. 2. An annotated setup of our simulated scene showing the camera,
feature of interest (cyan ring), constrained workspace, and the wire chaser
evaluation task. The wire chaser rail pattern is the same as that in the
validated curriculum in [25].

to n instead of -n. Another desirable characteristic when
moving the camera in surgery is to maintain a correct camera
horizon [24]. We achieve this by setting col1[Rt] (camera’s
x-axis) to be the cross product between a unit vector that
is pointing directly upwards with respect to the surgical
environment (i.e. the z-axis of the world frame denoted by
z-axisw) and the previously computed col3[Rt] (Eq. 3). By
doing so, we always obtain an x-axis that is parallel to the xy-
plane of the world frame. The remaining col2[Rt] is simply
chosen to be orthonormal to the other two axes and this
completes the desired rotation matrix Rt (Eq. 4).

col3[Rt] = −n (2)

col1[Rt] =
z-axisw × col3[Rt]

‖z-axisw × col3[Rt]‖
(3)

col2[Rt] =
col3[Rt]× col1[Rt]

‖col3[Rt]× col1[Rt]‖
(4)

Fig. 2 shows an instance of applying the above method
to a simulated surgical training task. The plane of interest is
the face of the ring and the camera motion is automated to
make its viewing plane parallel to the face of the ring while
keeping the ring itself at the center of the FoV.

To facilitate collision avoidance, motion planning is in-
corporated when the distance between consecutive target
positions is larger than a set threshold. We generate a set
of intermediate waypoints (IWP) between the current camera
position pc and the target camera position pt as seen in Fig. 3.

Fig. 3. The motion planning part of our autonomous camera method where
IWP are generated.

IWP 1 and 2 are distributed evenly along the line segment
between pc and pt and are a user-defined distance dwp above
the current and target positions, respectively. Using these
four points (pc, pt, IWP 1 and IWP 2), a linear function
is interpolated and a trajectory is obtained. The orientation
of the camera at each of these new intermediate positions
is adjusted to ensure that the anatomical feature/structure of
interest is always centered in the view. The z-axis is set to
the vector between the current intermediate point and the
feature’s center point. The x-axis is adjusted to correct for
the horizon as described previously, and the y-axis is chosen
to be a vector orthonormal to both.

Without human-in-the-loop control, it is essential to in-
corporate safety features into any autonomous system. To
this end, we define a constrained workspace (see Fig. 2)
within which the camera moves autonomously. Outside this
workspace, the autonomous algorithm freezes. We chose
to define this constrained workspace in the form of a 3D
cone (whose projection appears in blue in Fig. 2), with the
following parameters: the cone tip is the remote center of
motion (RCM), the cone height is slightly smaller than the
length of the surgical instrument/endoscope, and the cone
base radius is empirically chosen to be 10 cm. The cone’s
directional vector is initially set to the vector joining the
RCM and the initial position of the feature of interest,
to ensure that this feature is always in view, and remains
unchanged after initialization.

The proposed autonomous camera method is a Cartesian-
based method. This means that it is applicable to any 6-
DoF robotic camera regardless of its kinematic configuration.
This includes cameras that can be picked up by the normal
robot tools as our proposed pick up camera in [8]. This also
includes articulated cameras such as the endoscope of the
single-port da Vinci System [26].

IV. EXPERIMENTAL EVALUATION

A. Experimental setup

We use the first generation da Vinci system simulator
proposed in [27]. It simulates the full patient-side cart of
the da Vinci system including two patient-side manipula-
tors (PSMs) and a 4-degree-of-freedom endoscopic camera
manipulator (ECM). Controlling the motions of the PSMs
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and ECM can be performed in the same way as controlling
the patient-side cart in the real robot using the da Vinci
Research Kit (dVRK) [28]. The simulator comes with some
pre-prepared scenes of different tasks and it also allows
adding new scenes/environments as needed. We used this
feature to add the wire chaser task scene as shown in Fig. 2,
which is described in IV-B.

We modified the simulated da Vinci system by attaching
two vision sensors to the end of the surgical tool tip of one
of the PSMs to form our 6-DoF camera as shown in Fig. 1.
This is similar to the “pick-up” stereoscopic camera concept
proposed in our previous work [8].

The use of the simulator allows us to fix all the variables in
our evaluation except the autonomous camera method. This
enables us to quantify the effect of changing this method on
the experiments’ outcomes.

For this work, we focus solely on evaluating the effect
of our proposed autonomous camera method on video-based
surgical skill assessment and not on tissue tracking. That is
why we obtain and use ground truth data such as position
and normal vector of the structure of interest from the
simulator. In a real scenario, this data can be obtained
through a dedicated vision pipeline as in [29], [30]. It can
also be obtained in image-guided interventions where pre-
and intra-operative images are registered, which gives more
information about the surgical scene [31].

B. Task

We test our autonomous camera method on the “wire
chaser” task which is part of the validated training curricula
in RAS [32]. The task has also been validated for multiple
surgical specialties such as urology, gynecology and general
surgery [33]. Previous research has shown that the level
of performance in this task is correlated with the level of
performance in the operating room [34].

The task involves holding a ring and moving it along a
rail/wire. It is designed to measure the manual dexterity,
hand-eye coordination and camera control skills of trainees.
Errors in this task occur when the ring touches the rail.
The task has also been used in the context of robot-assisted
surgical training as in [35] and in video-based surgical skill
assessment as in [10].

The ring represents the anatomical structure that we are
interested in. The main idea is that a good visualization of
the ring (as seen from the camera) is crucial to the wire
chaser task. That is why our autonomous camera method uses
both the plane of the face of the ring as well as the ring’s
center as its inputs. The camera then moves autonomously
following our proposed method in Section III. That is, the
camera moves so that its viewing plane is always parallel to
the plane of the face of the ring, and that the center of the
ring is always at the center of the FoV.

We argue that results on this task can be generalized to
other surgical tasks for multiple reasons. First, based on our
abstraction of the surgical scene in III-A, the landmarks in a
surgical scene are represented in the wire chaser task by
the points on the face of the ring. Second, the plane of

interest in a surgical scene is represented by the plane of
the face of the ring. Third, the camera viewing plane in
the wire chaser task should be parallel to the face of the
ring, just like the surgical guidelines in the upper abdominal
procedures to do the same with the plane combining the
liver and pancreas. Moreover, the motion of the ring in the
chosen task represents a stress test to our proposed method
with different instances of possible orientations of the plane
of interest. Furthermore, the quality of visually assessing the
skill in the wire chaser task is based on how good the camera
orientation is. This is exactly like the case in surgical practice
when the correct camera orientation guides the surgeon on
where to perform the next action. In addition, the ability
to measure the ground truth errors of the wire chaser tasks
in the simulator provides us with a baseline to quantify the
benefits of visually detecting these errors based only on the
views from the camera.

Our hypothesis is that using the proposed autonomous
camera method, human assessors can better spot the cases
when the ring touches the rail compared with other methods
that automate the camera based only on position informa-
tion. The position information in this case is the position of
the center of the ring.

This hypothesis is tested in the context of video-based
skill assessment where subjects watch videos of the task to
assess the skill using specific criteria. This context is similar
to the real context in video-based skill assessment where
assessors need to figure out things such as whether or not the
trainee touches a critical structure in the scene (e.g., nerves).
Such criterion is part of the used assessment questionnaires
in video-based skill assessment.

We choose to test our proposed method in video-based
skill assessment instead of testing it while subjects perform
the actual task in this first study of the proposed autonomous
camera method. The reason is that video-based skill assess-
ment is performed purely based on the views of the camera.
In contrast, while performing the actual task, a user can
have the best camera views to guide his/her motion, but still
commits errors due to other factors such as the lack of the
required motor skill to navigate the ring along a complex
trajectory.

C. Trajectory Randomization

We record videos of the task when we automated the
ring motion that is held by one PSM to follow predefined
trajectories along the rail. Some of these trajectories are ideal
according to the following two conditions: (i) The ring is
centered with respect to the rail, and (ii) The plane of the
face of the ring is always perpendicular to the rail. Other
trajectories were randomized by violating one or two of
the above conditions. This in turn introduces a number of
collisions between the ring and rail.

The trajectory of the ring’s motion along the rail is defined
by setting control points evenly spaced from start to finish. A
control point’s position is defined in (x, y, z) coordinates, and
orientation in Tait-Bryan Euler angles (α, β, γ) that together
represent a single rotation: Rtotal = Rx(α) Ry(β) Rz(γ).
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Rz , Ry and Rx represent elemental rotations about the z-, y-
and x-axes respectively of the simulation world frame. We
automate the ring movement in the simulator to follow the
pose of these control points.

To introduce collisions between the ring and rail, randomly
generated noise is added to the six variables describing each
of the control points. By varying the number of control
points and the threshold of noise added to the position and
orientation, varying levels of difficulty can be represented in
the resultant trajectories. For our tests, we chose trajectories
with the following parameters: number of control points: 36
and 71, position noise threshold: 3-3.5 mm, angular noise
threshold: 10-30 degrees. A higher number of control points
introduces a higher degree of variation in the trajectory,
providing more touches/collisions between the ring and rail.
This resulted in the video of the trajectory with 71 control
points being the most difficult one to assess.

D. Performance Metrics

We tested the proposed autonomous camera method in two
aspects. The first one is by measuring the tracking errors as
the ring moves along the ideal and randomized trajectories.
The second one is by conducting a user study where users
watch the recorded videos to count the number of touches
between the ring and rail. The goal in this second case is to
measure how accurate the users are when using the proposed
method in comparison with other methods as explained in
Section V below.

In the first evaluation method, we measure the tracking ac-
curacy when the ring is moving along ideal and randomized
trajectories according to the following three tracking errors:

• Centering error in the image space: This metric refers
to the difference in pixels between the position of the
center of the ring on the camera view and the position
of the center of the view.

• Centering error in the 3D space: This metric is similar to
the first one except that it is the difference in millimeters
between the 3D position of the center of the ring and
the equivalent 3D position of the center of the FoV.

• Orientation error: This metric refers to the angle be-
tween the camera optical axis and the vector n that is
perpendicular to the plane of the face of the ring.

The above three errors are reported as a function of time
along the entire trajectory of the ring. We report them in
three cases of using ideal trajectories and in another three
cases of using randomized ones.

In the user study, the performance metric is the absolute
difference between the reported number of errors (instances
of the ring touching the rail) by each participant and the
ground truth from the simulator

V. USER STUDY

We conducted a user study (N = 30) to measure the
effectiveness of the proposed autonomous camera method
while performing a video-based skill assessment task as
described above. We recorded videos of the wire chaser task

as the ring follows different randomized trajectories under
three conditions for the camera motion as follows:

• Condition I is when the camera is fixed, showing the
entire task. This represents the baseline condition.

• Condition II is when the camera motion is automated
to follow the center point of the ring, regardless of the
ring’s orientation. This represents an autonomous cam-
era method that is based solely on position information.
We refer to this method as the “centering method”.

• Condition III is when the proposed autonomous camera
method is applied. That is, when the autonomous cam-
era motion is based on both the position and orientation
information as described in Section III above.

In the last two conditions, the camera’s initial pose was the
same as in the fixed camera condition (condition I) above.

This was a within-subject user study, where each subject
was exposed to all the study conditions. We recorded a total
of nine videos, three per each condition. The nine videos
were for the ring moving along the rail in three randomized
trajectories with varying levels of difficulty. The goal is to
measure the skill assessment accuracy in the videos where
the ring moves in the most difficult trajectory (that is, the
one with highest level of randomness which is the trajectory
that has 71 control points).

Each subject watched the nine videos in three sets, each
set containing the three videos of each condition. Subjects
were asked to count the number of touches between the ring
and rail in each video. Counterbalancing was employed to
reduce/eliminate the effect of any learning or carryover bias
that may exist when a subject is exposed to each condition.
The Latin squares [36] method was used to compute the order
in which each subject is exposed to a condition. Since the
study has three conditions, we applied two Latin squares,
the second one being the mirror of the first, which led to
having a total of six cases representing all the six possible
combinations of the three conditions.

Due to the restrictions of inviting subjects to the lab
(because of the COVID-19 situation), the study was con-
ducted virtually by sending an electronic form to each subject
containing the videos. We added an attention question in the
middle of the form to make sure that subjects were paying
attention. The data of any subject who provided a wrong
answer to this question was excluded.

All our subjects had little or no exposure to surgery.
Previous research shows that crowd-sourced video-based
surgical skill assessment with non-experts is as accurate
as the skill assessment performed by expert surgeons and
surgical educators [37]. The user study was approved by the
Research Ethics Board at the University of British Columbia.

VI. RESULTS AND DISCUSSION

A. Tracking Accuracy Results

Based on the performance metrics outlined in IV-D, we
conducted two tests with the wire chaser task to evaluate the
accuracy of our implemented algorithm. In the first test, the
trajectory represents the ideal trajectory of the ring along the
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rail, without any collisions between the two. We compute the
three metrics: centering error with respect to the left image
space, centering error in the 3D space, and orientation error.
This test is repeated three times to show the repeatability of
our algorithm. Across all three trials, we obtained an average
image centering error of 35± 37 pixels, 3D centering error
of 3± 3 mm, and orientation error of 5± 12 degrees.

In the second test, we chose three noisy trajectories by
adding noise to the ideal positions and orientations of the
ring across its path such that the ring collides with the rail
at certain points. The three noisy trajectories are the same
trajectories used in the user study described in Section V.
We obtained an average image centering error of 38 ± 22
pixels, 3D centering error of 3±2 mm, and orientation error
of 4± 11 degrees across the three paths.

It is important to note here that the tracking accuracy under
noisy trajectories is comparable to the case of having ideal
ones. This shows the robustness of our proposed method to
added noise to the ring’s motion, which is the closer case to
a human-generated motion for the same task.

Compared with the centering method, our proposed
method is at least six times better in terms of the orientation
error. At the same time, the centering method is at most
28% better (or 11 pixels more accurate) than our proposed
method in terms of the image centering error. This shows that
the addition of the 3D orientation tracking did not practically
compromise the important need to keep the feature of interest
at the center of the FoV.

B. User Study Results

As for the user study, we report the assessment errors in
the most difficult video, that is, the one with the highest
level of randomization. From the 30 participants in the user
study, three participants were excluded after providing a
wrong answer to the attention question. We then compared
between the subjects’ assessment errors across the three
study conditions.

As shown in Fig. 4, using the proposed autonomous
camera method leads to lower number of assessment errors
and less variance between the subjects’ scores compared with
the other two conditions. In particular, the proposed method
(condition III) leads to 25% and 21% fewer assessment
errors compared with the centering method (condition II) and
fixed camera method (condition I), respectively. Furthermore,
the standard deviation in the assessment errors using the
proposed method is 31% and 32% lower than that of the
centering method and fixed camera method, respectively.

These reductions in the average and standard deviation
of the proposed method show its potential to improve the
current practice in video-based surgical skill assessment.
Previous research in this area show that variability between
assessors is a major practical problem due mainly to the cog-
nitive limitations of the assessors. This sometimes leads them
to make unjustified inferences which affects the accuracy of
their assessment. Our proposed autonomous camera method
has the potential to contribute to solving these problems as it
can provide better visual feedback which allows the assessors

Fig. 4. The results of the user study based on the assessment errors of the
subjects in the most difficult skill assessment video.

to make more informed assessments and reduces their need to
infer/guess due to the lack of the available visual information.

VII. CONCLUSIONS

Orientation matters in viewing the surgical scene in video-
based skill assessment. In this paper, we presented an au-
tonomous camera method for 6-DoF endoscopic camera sys-
tems in RAS. Our method takes into consideration both the
position and orientation information of anatomical structures
of interest in the surgical scene. Our method achieved an
average position tracking accuracy of 3 mm and orientation
tracking accuracy of 5 degrees when tested on a validated
RAS training task in a simulated environment. Moreover, our
results show the robustness of our method to added noise to
the anatomical structure’s motion and that the consideration
of 3D orientation did not practically compromise the need
to keep the object of interest at the center of the FoV.

We also tested the effectiveness of using our autonomous
camera method for video-based surgical skill assessment. We
conducted a user study (N = 30) where subjects watched
videos of a simulated surgical training task under different
camera automation conditions. Our results show that using
the proposed autonomous camera method leads to up to 25%
more accurate skill assessment and up to 32% lower standard
deviations between different assessors in the “wire chaser”
task. These results demonstrate the potential of the proposed
autonomous camera method in augmenting the cognitive
abilities of assessors by providing better visual feedback of
the tasks compared with the other methods.

Our results show the importance of including orientation
information into automated camera systems in RAS. With
the extensive research on articulated endoscopic cameras,
the kinematic constraints of tracking such information in
practice are removed. Our future work includes improving
the proposed autonomous camera pipeline to address po-
tential problems in the visual feedback such as occlusions,
and testing the proposed system with subjects conducting a
surgical task on a RAS platform such as the da Vinci system.
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