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Joint Segmentation and Classification of Time Series
Using Class-Specific Features

Zhen Jane Wang and Peter Willett, Fellow, IEEE

Abstract—We present an approach for the joint segmentation
and classification of a time series. The segmentation is on the basis
of a menu of possible statistical models: each of these must be de-
scribable in terms of a sufficient statistic, but there is no need for
these sufficient statistics to be the same, and these can be as com-
plex (for example, cepstral features or autoregressive coefficients)
as fits. All that is needed is the probability density function (PDF)
of each sufficient statistic under its own assumed model—presum-
ably this comes from training data, and it is particularly appealing
that there is no need at all for a joint statistical characterization of
all the statistics. There is similarly no need for an a-priori specifica-
tion of the number of sections, as the approach uses an appropriate
penalization of an over-zealous segmentation.

The scheme has two stages. In stage one, rough segmentations
are implemented sequentially using a piecewise generalized like-
lihood ratio (GLR); in the second stage, the results from the first
stage (both forward and backward) are refined. The computational
burden is remarkably small, approximately linear with the length
of the time series, and the method is nicely accurate in terms both
of discovered number of segments and of segmentation accuracy.
A hybrid of the approach with one based on Gibbs sampling is also
presented; this combination is somewhat slower but considerably
more accurate.

Index Terms—Classification, class-specific, GLR, order selec-
tion, segmentation.

I. INTRODUCTION
A. Motivation

UPPOSE we have M classes characterized by different pa-

rameter vectors, and we observe a time series that consists
of sections generated by iteratively selecting a class. How can
we use the time series to recover the class index, model parame-
ters, and the transition points between sections? In other words,
we are interested in the joint segmentation and classification of
such a time series.

The segmentation of time series into sections arising from dif-
ferent statistical models (classes) has received reasonably exten-
sive research attention [5]. The problem has quite wide applica-
tions, from discrete Fourier transform (DFT) data partitioning
[20], to ionic-channel detection [26], to speech treatment and
understanding [24], to audio content analysis [34]. Of partic-
ular interest to us is the posing of the acoustic transient detec-
tion problem (e.g., [14], [17], [25]), as one of segmentation. No-
tionally, we are given a time series that may be given by, for
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example, an autoregressive (AR) model of low complexity if it
is “ambient” and free of interesting artifacts; but it may con-
tain a short-duration signal (or even, perhaps, more than one)
whose presence indicates a situation of interest. One can assume
that there has been some effort to model each sort of such tran-
sient signal, both in terms of selection of some sort of statistics
that might be thought “sufficient” (mathematically, we shall as-
sume that they are just so) and in terms of characterizing sta-
tistically the distribution of each such statistic based on some
training data. At a more specific level, perhaps one transient type
is best represented as a medium-order AR process, two others
as autoregressive moving average (ARMA) process, a fourth in
terms of specific short-time Fourier transform (STFT) coeffi-
cients, and several others in terms of their multi-resolution co-
efficients; and one can assume that each of these “sufficient” sta-
tistics has, for example, a vector Gaussian-mixture probability
density function (PDF) that approximates it when the transient
is truly present. How do we segment this to locate and charac-
terize transient signals?

We have worked on a transient detection problem by as-
signing sections of a white time series to those parts with
governing PDF’s either fy or f;, where the PDF’s f; and
f1 represent the signal-absent and signal-present hypotheses
respectively. This segmentation problem is hard even when the
number of sections is known, since one needs, in principle,
to investigate all breakpoint combinations. When the number
of sections is unknown, the problem is harder still: given that
more sections means a better match, how many sections should
there be? But a computationally efficient solution even for that
problem is available in [32], and has the additional feature
that each f; segment (i.e., where transient exists) can have a
different scale (variance) parameter.

In this paper, however, the problem is harder still: the seg-
ments are not necessarily white, and may not even be directly
comparable: they can be described by different parameter vec-
tors, such as white versus AR(3) versus (another) AR(3) versus
AR(6). Let us assume, temporarily, that the number of segments
is known. Then one can pose the problem of maximizing, over
all possible feasible combinations of breakpoints and models,
the joint likelihood of all statistics. One’s popularity amongst
users is unlikely to increase after one does this, however: not
only is the maximization ridiculous from a computational view-
point, but, except in very limited situations, one would never
have such a joint likelihood! .

We provide here a computationally efficient solution via mod-
ification on the techniques of [32], there applied to the simple

I'This really is a significant practical concern: perhaps one can estimate a PDF
of coefficients from a fourth-order AR model based on an obtainable amount
of training data. But if that is augmented by third-order ARMA coefficients,
by cepstral values, and by a few selected STFT outputs, the resulting vector is
unrealistically large ever to be faithfully represented by any estimated PDF.
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variance-shift segmentation problem. There is no need for the
above “temporary” assumption of a known number of segments:
a likelihood penalty term provides the appropriate punishment
of over-segmented descriptors. Further, and perhaps most im-
portant, we avoid joint estimation of a massive feature vector
via Baggenstoss’ new “class-specific” statistical descriptors for
noncomparable hypotheses [3]. There are good segmenters for
white data, there are techniques for segmentation of nonwhite
data (e.g., [5]), and there are ways to segment based on data-de-
rived statistics whose properties are well-modeled globally, for
all segment types. But in many practical problems these prop-
erties must be estimated, and hence the class-specific approach
holds great appeal since each statistic needs only to be estimated
over its “own” hypothesis. We have seen little treatment? of
segmentation based on nonglobal statistics: that is this paper’s
contribution.

B. Background

There have been numerous attempts to solve segmentation
and classification problems. From the optimization point of
view, there are optimal and sub-optimal approaches. The usual
statistically optimal criterion is the maximum likelihood (ML),
although some researchers do prefer least-squares to avoid
specifying the distribution of the process [22]. To reduce the
computational load of an exhaustive breakpoint evaluation,
assuming independence among segments, an optimal search
can be realized via dynamic programming (DP) [10], [27] or
simulated annealing [21]. With the ML approach, the number
of segments can be automatically chosen by the minimum
description length (MDL) rule as in [20], [18]. However,
though the computational burden is cleverly reduced vis-a-vis
a direct search, the DP implementation is still computationally
expensive and in practice formidable, especially when the
number of data, segments and/or models is high. Therefore, in
practice, suboptimal methods based on sequential estimation
have been studied to lighten the computational complexity [9],
[8], [6], [2]. There is no likelihood calculated as the criterion
in most suboptimal approaches, due to both the modeling and
computational difficulty. For example, a heuristic rule-based
procedure is proposed to segment and classify audio signals
in [34]; and simple thresholding segmentation with neural
classification is applied to speech analysis in [24]. Reduced
performance is observed in those implementations, and various
tunable thresholds are required whose choice tends to be
empirical.

From the procedural point of view, there can be joint segmen-
tation/classification, or two-step (either implementing segmen-
tation or classification first) approaches. Examples of the former
are the joint segmentation and recognition of phonemes using
the stochastic segment model (SSM) [12], and the DP recur-
sion in [27]. In most cases, however, algorithms work sequen-
tially in segmentation and classification steps: the signals are
segmented first according to some statistic, such as power, that
does not require a precise statistical description of hypotheses;
then the resultant segments are classified [24], [26], [34]. For ex-
ample, a classification plus segmentation procedure is presented
in [23] in which signals are first divided into fixed size windows;

2However, the reader may find [7] of interest. That work treats the discovery
of DNA segments in which these have only a local statistical description; and
indeed the local statistical description is itself to be estimated. The problem here
is related, but different.
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Fig. 1. Illustration of segmentation problem.

then each window is classified; then consecutive windows of the
same types are merged into a segment. Therefore, the procedure
is really problem and criteria dependent — a perfectly reasonable
engineering expedient, but not particularly optimal.

C. Modeling

In this paper we are interested in a joint segmentation and
classification procedure, and we apply the likelihood as the cri-
terion. A segmentation and classification problem of interest
here is depicted in Fig. 1. Let the time series {x1,22,...,2n}
be composed of K segments with & — 1 transition times 7 =
{t1,%a,...,tx—1}. The data within segment 7 is assumed to
be a realization of model m;, where 1 < m; < M, and thus
be characterized by the PDF p(z4, ., ..., 24 —1|Hm, ). Write
i ={my,ma, ..., mg}, indicating the class indices of all seg-
ments. Thus, determination of unknown K, 7 and p is formu-
lated as a joint segmentation and classification problem. As is
we hope reasonable, we know as a priori information that the
segments satisfy

Lmin S ti - ti—l S Lmax (l)

meaning that segments are of lengths restricted between L i,
and /... (This constraints can be trivialized out of existence
with no theoretical price to be paid; but in terms of implemen-
tation, making L, as large as reasonably possible is a good
idea. One assumes that a “segment” consisting of, for example,
three samples is not particularly interesting.)

It is further assumed that the X segments are statistically in-
dependent, and hence that the PDF of the data set {«} is

plalr, w) = W plaftiog, t; — 1]|Hum,) 2

where tg = 0 and ¢ — 1 = N by definition, and z[t; 1, — 1]
represents the data {«;, _,, ¢, ,+1,...,%+—1}. It is helpful to
recall that p(«[¢;_1, ¢; — 1]| H,», ) must be estimated from exoge-
nous training data, since normally it is not exactly known. This
difficulty often limits the segmentation problem to the single-
model case, in which only parameters change as time. For ex-
ample, the time series could be white and Gaussian (the model),
and the variance can differ between segments; or in a more in-
volved situation [2], a series of AR models each with order
16 was chosen for speech segmentation. Now, in the case that
the models are fundamentally different from one another and
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contain unknown parameters (e.g., with various AR orders but
unknown coefficients) the segmentation problem is made even
more difficult by the fact that one must compare different model
complexities. The class-specific (CS) method [3] allows such
comparison, and further it enables one to represent [¢;_1, £, —1]
by a sufficient statistic (such as the estimated AR coefficients).
We discuss this shortly in Section II, where each class H; is fully
represented by the CS features and their corresponding PDF.
In this paper, we assume that the following knowledge of the
generating models/classes is available. First, each model H; is
sufficiently characterized by a set of features. Next, the PDF of
the set of features under class j§ is known; presumably it has
already been estimated based on training data, but that is not the
concern of this paper® . Third—and this is more of a technical
detail—we must assume that there is a “common” hypothesis
Hj in the sense to defined in Section II-A. Finally, for a given
time series, our purpose is to divide it into appropriate segments
and correctly classify each segment, and we shall examine the
performance measures of our proposed scheme accordingly.

D. Plan of the Paper

Our purpose is to find efficient realizations for the joint seg-
mentation and classification problem. We have provided two:
the faster one is presented in some detail here, and another based
on the iterated conditional mean (similar to Gibbs sampling)
is given in detail in [33], but since we compare to it and hy-
bridize it, it appears here in the Appendix. The remainder of the
paper is as follows. In Section II we give background on sev-
eral items vital to the approaches. Specifically, we begin with
a short description of Baggenstoss’ CS classification ideas in
Section II-A, and then we show how the optimal DP approach
can be formulated in Section II-B. In Section II-C the appro-
priate penalty term on the model complexity is given: although
one might expect MDL, this turns out not to work particularly
well, and we give an alternative approach that relies on CS for
penalization of model complexity and an extra MDL-like term
for the number of segments.

Section III is devoted to the presentation of the two-stage se-
quential generalized likelihood ratio (GLR) approach, as gener-
alized from [32]. The first stage here is a simple and speedy
GLR segmenter, similar in some respects to a Page detector.
The second stage is a more ruminative “refinement” both of the
solution from the previous stage and its twin that operates on
time-reversed data. If haste is a great concern, one can use the
first stage alone.

The proposed scheme is applied to two simulation examples
in Section IV; in each case the models are reasonably complex,
and PDF’s are estimated from the data as they would be in prac-
tice. Several alternatives are explored, including the direct and
refined “two-stage” approach, and a Gibbs sampling approach
that is initialized according to the two-stage solution.

II. SOME USEFUL RESULTS
A. Classification Using Class-Specific (CS) Features

It is well-known [31] that the optimum Bayesian classifier
(hypothesis tester) for M classes is

argmjaxp(Hﬂx) = argmjax{p(ﬂHj)p(Hj)}. 3)

3The PDF p(x[t;_1,t; — 1]|H;) can thus be obtained by projection through
using the PDF of the features, as we shall discuss shortly.

Without loss of generality, in this paper we assume that p(H ;)
are identical and can be ignored. With an additional “dummy”
class, Hp, used in the denominator, the M-ary classifier
(3) can be realized by knowing only the likelihood ratios

p(z|H;)/p(x|Hy), for j = 1,...,M, and thus we have the
H.
arg max {pi(gd J)

equivalent form
H;)»p.
iUt

Then by using a well-known property that any likelihood ratio
is invariant when written in terms of a statistic z(z) that is suf-
ficient for the test, meaning

p(z|H;)

plz|Hj)
= . 5)
p(z|Ho)  p(z|Ho)
In [3] Baggenstoss introduced a novel approach to reformulate
(3) into an equivalent “class-specific” classifier

p(z;|H;) (H»)}
p(z;|Ho)"
where Hy is a common “null” hypothesis. Care must be taken
that this null hypothesis is such that each statistic {z;} is in-
deed sufficient for testing H; versus Hy; but in many cases a
simple assumption such as that = be independent Gaussian with
zero-mean and unit-variance is adequate. Also of interest is the
PDF “projected” from the domain of the sufficient statistic to
that of the original data [4], defined as

p(z;|H;)
p(z;|Ho)

“

are max { ©)
J

p(z|Hj;) = p(z|Ho) @)

Note that:

o the p(z;|Ho) are assumed known exactly due to the choice
of a simple “null” model and analysis of the effect of the
sufficient statistic;

* normally p(z;|H;) are not known, and need to be esti-
mated from the training data;

* it is assumed that this training has already been done.

In our method the estimated PDF’s p(x|H;) are obtained by
projection [4]. It is also noted via (7) that the CS method allows
the likelihood-based “competition” of different models based
only on their CS features. Finally, let us note that Baggenstoss
[3], [4] tends to assume that “sufficient” features {z;} are first
selected by an expert, and that each has its PDF estimated from
its class’ training data.

B. Maximum Likelihood Approach Using Dynamic
Programming
According to (7) we can rewrite the PDF in (2) as
HK p(zmi [ti—lvti - 1]|Hma)
= p(Zm, [ti—1, ti — 1]|Ho)

where z,,.[t;_1,% — 1] represents the sufficient statistics z,,

p(z|T, 1) = p(x|Ho) )

calculated from the data {@;, ,,..., 2+ —1}. Let
A7, p) =
K
> (@, [ti—1. ts = 1| Hon )= (p(Z, [ti—1, ti=1]| Ho)) }-
i=1

C))
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A statistically optimal approach is the maximum likelihood seg-
menter, which chooses 7 and x to maximize (8). It is equivalent
to maximize (9), since

{7, 4} =argmax{p(z|r, u)} = arg max{A(z|r, u)}

=arg m;‘;xx{mﬁxx{A(xh, )1} (10)

Since it is assumed each segment is independent of other seg-
ments, meaning maximization over parameters for each segment
can be performed in parallel, one may apply dynamic program-
ming to avoid an exhaustive search [4] by defining (11) and (12),
shown at the bottom of the page. The recursive DP implemen-
tation is

Ik(L) = Hl&}( {Ik—l(tk—l - 1) + Ak[tk_l, L]} (13)
tp—_1E€Sk
where S} indicates the restriction
max{(k— D) Lmin +1,L — Lyax + 1} < g1
<min{(k—1)Lyax +1, L — Lnin +1}.  (14)

It is clear that the computational complexity is reduced sub-
stantially as compared to a direct maximization, since only
Ag[tr—1, I] needs to be computed at each step. The solution to
the original problem occurs for k = K and L = N.

C. Estimation of Number of Segments via the Minimum
Segment Number (MSN)

In practice, information about the number of segments K is
unavailable. Naturally the likelihood function from (8) increases
monotonically with number of segments due to there being more
parameters estimated. This implies that the segmentation proce-
dure should include a criterion for selecting the number of seg-
ments (as in order selection applications). Various criteria for
selecting the order are described in the literature. There are two
such important criteria from the use of information-theoretic ar-
guments: one being the information-theoretic criteria (AIC) pi-
oneered by Akaike [1] and the other the minimum description
length (MDL) criterion proposed by Rissanen [28], [29]. The
resulting cost functions of AIC and MDL have the following
form:

C(k) = —Inp(z|#, i) + P(k) (15)

where the first term is the negative maximum log-likelihood
function and P(%) is the penalty function, and P(k) = ny for
AIC and P(k) = (ny,/2)In(N), with n;, being the total number
of parameters requiring estimation for the k£ segments, and N
being the length of observation. One minimizes C'(k) over k

From (15), we see that the principal difference between AIC
and MDL lies in their structure-dependent penalty terms P (k).
It suggests that we should include such a term, but one specifi-
cally suited for our problem. We thus propose a similar measure,
the Minimum Segment Number, defined as

<P@miﬂ—h5i—1ﬂﬂﬁﬂ
(2o, [ti—1,ts — 1]|Ho)

k
MSN(k;z)=» In

i=1

) —Prsn(k)

(16)
for ko < k < kpax, where £;°s and 7n;’s are suitable esti-
mates, and Pyssn(.) is a problem-dependent penalty term. For
example, we have found Pyssn(k) = kIn(N) useful for AR
processes. At any rate, the number of segments X is determined
as

K =arg max

¢ [Kmin, Kmax

MSN(k). (17)

Note that the class-specific formalism allows us to separate in
(16) the classification penalty (i.e., the denominator in each like-
lihood ratio) from the penalty on the number of segments. Now,
for unknown K, the DP approach is implemented as

Tap(k) = I(N) — Prusn(k)
where [, (N) is defined as in (13).

(18)

III. APPROACH: SEQUENTIAL GLR AND REFINEMENT

Here we present an alternative segmentation approach. It
is based on the procedure of [32], but is modified to allow
for more general (multiple!) hypotheses and class-specific
decision-making. First, a rough segmentation, calculating GLR
sequentially, is implemented. One can stop at this point, since
the results are reasonable and the procedure is fast. But if a
refined estimate is desired, then this “rough” segmentation
should be repeated for the time-reversed time series. Then the
results from both are combined, and further processed to obtain
more reliable segmentation.

A. Simplified Sequential GLR Method

The signal within each segment is assumed to be homoge-
neous in the sense that it is characterized only by model m; and
the CS features z,,,, . The GLR method detects changes in either
models or parameters starting from the location of the previous
boundary. Its implementation is described as follows:

1) Initialization: Set tg = 1, and let 2, the index of the cur-
rent segment, be 1. Since the length of segment is in the range
of [Lmin, Lmax], we regard z[1, L;n] as the first segment and
set t; = Lpin + 1. The estimated model m; is

and selects the minimizing number of segments and the corre- L p(Zj [ti1,t; — 1]|H j) (19)
sponding parameters as the most parsimonious fit of the data. i = atg max p(z;[ti—1,t: — 1]|Ho)
Ailti—1,ti — 1] =max{In(p(zm, [ti—1,ti — U|Hm,)) — In(p(zm, [ti—1, t; — 1]|[Ho)) } (11
k
T(L) = Ailtiot,t; —1]. 12
k(1) max _ ; [ti-1 ] (12)

{tite, e te—1 hto=1t
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in the usual class-specific way.

2) Change Detection: Since there is at most one change
during the interval [¢;, ¢; + Lin — 1], let i be the sequence of
a[t;—1,t; + Lmin — 1]. Three situations are possible.

1) The hypothesis H, is that all the observations in ¥ be-

long to the same class mn;, characterized by z,,, [t;—1,%; +
Lyin — 1]

2) The first alternative Hy; is that there exists an unknown
change time 7o € .S such that, before 7, the observations
in y belong to class m;, and after the change the observa-
tions in y belong to class j, where j # m;.

3) The second alternative Hjs is that there exists an un-
known change time ro € S such that z[¢;_1, 7] belongs
to class m; characterized by z,,,[t;—1,70], and z[ro +
1,4 + Lmin — 1] also belonging to class m; but char-
acterized by 2., [r0 + 1, %; + Lmin — 1], where z,,,, [0 +
1,%; + Lin — 1] is distinguished from z,,,, [t;—1,70]

In the previous
S=[t;— 1,min(t;—1 + Liax — 1,4 + Lyin — 1)]
due to the length constraint (1).

The second alternative refers to the case that segments come
from different hypotheses that happen to share a common suffi-
cient statistic — for example, both could refer to an elevation in
variance for which the empirical second moment is sufficient,
but these levels are different. At any rate, the change detection
problem is to test between the hypothesis H, and the composite
hypothesis Hy, where Hy, = Hy; U Hyo.

Now since the segments are assumed to be independent, it is
convenient to introduce the following hypotheses:

H, :p(y) = p(xfti—1, ti + Limin — 1][Hm,)
H,; :3rg € S, such that

(20)

p(y) = plelti—1,7o]|Hm, )p(z[ro + 1,4 + Limin — 1]|H}).

(21)
According to the GLRT formalism [31], to test, ¢ and § should
be replaced by their ML estimates
{ (p(y|Hy) }

max —_—
(roesjelt.m]) | p(ylHa))
=arg max {max; {In(p(x[ti—1,70]|Hm,))

(ro€S)

+In(p(zfro + 1,t; + Lmin — 1]|H;))}}
P(Zm-[ti—hm]mm-))
=arg max <{In : :
g(roes) { < p(zmi [ti—lv TOHHO)
{ln <p(Zj[7“0 + 1,4 + Linin — 1]|Hj))}}
p(z;[ro + 1,t; + Lin — 1]|Ho)
AZarg max {ln <p(zmq. [ti_hTOHHm”'))
(ro€S) P(Zm; [ti—1,70]|Ho)
ti + Lmin —-1-
N

Lmin
; 1 LoinllH;

.max{ln <p(zf[7“0+ 270 & Linin| 3))}}.(22)
J p(z;[ro + 1,70 + Lmin)| Ho)

Since we assume the minimum length of each segment is p;y,
and since accuracy improves with quantity of data, it is more
reliable for us to calculate z; based on x[rg 4+ 1,79 + Lmin]. In
other words, as shown in Fig. 2(a), the window W3 of with fixed
length L,;, is used to estimate the PDF for the data within the
window Ws. Then applying the “projection” formula in (7) (see

(f0,J) =arg

+ max
J

[4]) and considering the true length, we therefore have approx-
imately the second term of (22).

If 79 is obtained now, recalling that the length of each segment
is no less than L.,;,, we further note that there are either one
or two segments within the observation {y{} = z[t;—1,70 +
Loin]. Since different numbers of parameters are involved in
the modeling of {y:}, we employ the M SN (l; ) defined in
Section II-C

[ = arg max MSN(;y1)

(23)
1e[1,2]

to determine the number of segments [, and the model indices.

The update is carried out as the following.

* No new segment (H,): If both i =1, meaning H, is
preferred, then no new change is indicated. The current
segment index k& is unchanged. We update ¢; = ¢; + Lpin
and also update m; yielding M. SN (1;y1).

e New segment (Hyi or Hps): Otherwise, if| = 2, a new
segment is indicated. We update ¢; = 7 + 1, t;41 =
70 + Lmin + 1, and also update m; and m, 1 corre-
spondingly such that m;, m;41 and 7, together yields the
MSN(2;y1). We then update ¢ = 7 + 1.

3) Finish: If the end of the time-series has not yet been
reached, go back to step 2. Continue this segmentation pro-
cedure until all data have been visited. We thus obtain the
estimated number of segments K = i, and the estimates
T={ty,...,ix}tand p = {my,...,mg}.

Note that points of the observation {z} are visited sequen-
tially, and hence the estimate of #; (also m;) is obtained con-
tinually but separately. No joint estimation of 7 is needed (as
it would be in the DP approach), and therefore this approach is
quite fast.

Note also that both p(z;|H ;) and p(z;|Hy) are required. By
choosing an appropriate Hy (such as iid Gaussian) as our class-
specific normalizing PDF, an accurate PDF of p(z;|Hy) is ob-
tained even in its far tails via the saddlepoint approximation
[19]. The distribution p(z;|H;) is estimated from training data,
often via a Gaussian mixture approximation [13].

B. Scheme With Refinement

As indicated earlier, the scheme operates in two stages, as
shown in Fig. 2(b).

Stage 1 — Rough Segmentation and Classification: We
apply the sequential GLR method from Section III-A
to segment the original time-series {z1,%s,...,ZN},
and we record the results as {K,,7,,,}. Then the
time-reversed series {zn,Zn_1,...,21} is also jointly
segmented and classified similarly, with the results stored
as {Kgr, Tgr, tgry — ideally these “reversed” results
should coincide with the original ones, but in practice
there is always discrepancy.
Stage 2 — Refinement:* Both {K, 74,1, and
{Kg4r, Tyr, thgr+ contain information about the correct
segmentation/classification on {z}. These are blended
and improved as follows.

4To conserve space, many details of this sub-procedure are suppressed; please
refer to [32] for full information.
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Fig. 2. Structure of the sequential GLR scheme. (a) Procedure of change detection in stage 1. (b) The overall procedure.

1) Find common detected changes in T,
and T4 : A common change is indicated
if F; and 42, such that |rg(i1) — Tgr(ia)] <
Lmin/4, where ILyin/4 appears to be a
suitable threshold). It is reasonable
to assume that a change truly occurs
in the range between the minimum and
maximum of the pair.

2) Solve sub-problems: Based on common
changes, we divide the time-series =z
into k. data records and segment each
separately. We save the results for
the i*" sub-problem as {7, ui}.

3) Erase gaps: We assume the existence
of a change instant within the data

y =2z[ri(k; —1),741(1) — 1] (since a “common”
change is observed from 7, and 74 ).
Therefore, r(i) is estimated via its ML
estimate, and the model index is also
updated correspondingly.

4) Make adjustments: Re-iterate the
MSN tests now for adjacent segments

to adjust their total number. Since
our purpose 1s to reach the maximum

of the whole likelihood of {z} as
nearly as possible, we may also be
able to adjust the results to in-
crease the overall likelihood of {z}
with no change of the number of seg-
ments. Repeat this process until there

is no further decrease in the number
of total segments. We then record the
final estimates as 7 and u.

There are several advantages for this scheme: first, the com-
putational burden is much lighter than the optimal ML approach
using DP. The computation load grows approximately linearly
with the length of the time-series; second, the sequential GLR
method in Stage 1 itself could be used as an on-line segmenter;
third, there are no hard thresholds or other “tuning” parame-
ters, since only the MSN penalty term is involved; and fourth,
although we have presented the scheme from a class-specific
segmentation point of view, it could easily be extended to use
other criteria.

IV. SIMULATIONS

In what follows, we give results in the application of the
scheme to two segmentation problems: one problem in which
the segments are AR Gaussian time series of different orders,
and another in which the model types are mixed (AR versus
mean-shifted Gaussian versus variance-shifted Gaussian).
In each case the segmentation is according to the respective
sufficient statistics: if it were possible to evaluate, say, the
statistics of eighth-order AR coefficients when the process was
truly fourth-order AR, then the problem would be solved in a
manner similar to [32]. Since the models’ sufficient statistics
are not directly comparable, the class-specific approach of this
paper is vital. The PDF of each statistic under its corresponding
hypothesis is estimated using a Gaussian mixture; there is
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out of the menu 4, 8, and 10. (d): Results for the time-series {x1, 22, . .

time

Example results of our schemes on the segmentation and classification of AR processes. Top: time-series. Next: true change instants and AR model order,
., ¥} via the DP method. (b): Using the simplified sequential method of Section III-A.

(e): Using the refined scheme of Section III-B. (z): Using the iterative approach of Appendix .

no attempt made to estimate statistics of noncorresponding
models.

We make comparison to a scheme based on iterating the con-
ditional mean—this amounts to Gibbs sampling. The scheme
itself is based on the corresponding scheme in [32] for white
Gaussian segmentation, and is related to the segmentation ap-
proachin [11]. Since there is much overlap, we consign a sketch
of the approach in the Appendix, and refer the reader to [33] for
more details.

A. Application to AR Processes

We now consider a time-series consisting of AR pro-
cesses—AR models play an important role in analyzing
speech signals and underwater signals. In this example, we are
interested in three AR models

H;: AR(4) model,
H,: AR(8) model
H;: AR(10) model. (24)

We select the Hy hypothesis as the iid Gaussian noise with
zero-mean and unit-variance. To differentiate an AR(p) model
from Hy, a set of autocorrelation function (ACF) samples is ap-
proximately sufficient. Thus we can define the CS features z
for AR(p) model as the first p + 1 ACF lags {ro,r1,...,7p}.
Since p(z|H ;) will be estimated via the Gaussian mixture ap-
proach, it is often desired to work with an alternative feature set
by invertible transformation of z. Therefore, finally we choose
the CS features z; = {log(ro), n*}, 2o = {log(ro), %} and
z3 = {log(ro), "%}, where x” = {1, Ka,...,r,} and

I+ K) (25)

where { K;} are the reflection coefficients.

We evaluate our schemes in simulation. Data was generated
under each class hypothesis using random parameter values.
Based on 1000 training series from each class, with lengths
distributed uniformly in the interval [Lpin, Limax] = [32, 120],
the PDF’s p(z;|H;) for j = 1, 2, and 3 were estimated using
Gaussian mixture approximation. A clever means to calculate
accurate CS null-hypothesis densities p(z;|Hy) via the saddle-
point approximation was described as in [19]. In our implemen-
tation, for the observation {z }, we define the penalty term in the
MNSN test (16) as

P]wsN(k) =kx IH(N) (26)

where % is the number of segments within {z} and N is the
length of {z}; this coincides with the earlier suggestion.

An example is shown in Fig. 3, where K = 7, Ly, = 32,
Linax = 120. The observation {x} itself, the true change-in-
stants 7 and the orders of the AR processes p are indicated in the
top plots. We test the DP approach (termed d method, for DP),
the simplified sequential GLR method (termed b, for basic), the
final procedure (termed e, for enhanced) that includes refine-
ment, and the iterative conditional-mean approach (termed ¢).
The results are shown in Fig. 3. In this example we find that the
e and 7 methods have gratifyingly well matched the true AR or-
ders, though additional segments (of the same AR order) were
decided by either approach. There is a class-mismatch around
time sample 350 in the DP (d) method. There are several mis-
matches in (b): most of these are resolved by the refinement
stage (e). The iterative scheme (2) is quite accurate.

A “good” segmenter and classifier should find a number of
segments that is close to truth; it should locate the beginnings
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TABLE 1
MONTE CARLO COMPARISON FOR MMULTIPLE-ORDER AR PROCESSES. HERE THE SUBSCRIPT d REPRESENTS THE DP METHOD; b: THE FORWARD SIMPLIFIED
GLR METHOD; e: THE 2-STAGE SEQUENTIAL GLR SCHEME; #: THE ITERATIVE APPROACH BASED ON CONDITIONAL MEANS; ¢:: THE HYBRID METHOD, ¢
FOLLOWED BY ¢. K’ REFERS TO THE AVERAGE, THE AVERAGE ABSOLUTE ERROR, AND THE STANDARD DEVIATION OF THE ESTIMATED NUMBER OF SEGMENTS,
PM DENOTES THE AVERAGE PERFORMANCE MEASURE FROM (27), AND t SHOWS THE AVERAGE CPU TIME REQUIRED. FOR EACH SIMULATION RUN

THE DATA LENGTH IS DRAWN RANDOMLY FROM THE RANGE [kmins Kimax]

No. of segments 3 5 7 8 10

{4 3.74(0.82,0.83) | 5.83(0.91,0.94) | 7.98(1.08, 0.96) | 9.16 (1.30,1.25) | 11.2(1.42,1.352)

{ b 3.93(1.03,0.98) | 6.72(1.80,1.46) | 9.82(2.84,1.59) | 11.26(3.28,1.61) | 14.48(4.5,1.95)

2 . 3.67(0.81,0.89) | 6.01(1.07,1.08) | 8.41(1.53,1.22) | 9.58(1.68,1.42) | 11.98(2.06,1.55)

K; 3.370.57,089) | 5.27(0.63,097) | 7.55(0.83,1.09) | 5.23(097124) | 10.2(1.021.40)
PM, 0.1620 0.1543 0.1478 0.1576 0.1636
PM, 0.1955 0.1818 0.1826 0.1834 0.2026
PM, 0.1487 0.1601 0.1499 0.1633 0.1783
PM,; 0.1354 0.1530 0.1227 0.1538 0.1652
PM,; 0.1419 0.1461 0.1415 0.1597 0.1697
ta(min.) 3.570 14.780 34.504 46.070 70.240
ty(min.) 0.072 0.147 0.214 0.246 0.311
te(min.) 0.262 0.536 0.799 0.956 1.248
t;(min.) 0.642 1.995 4.126 5.249 8.486
tei(min.) 0.426 0.953 1.502 1.975 2.778

and ends of these segments reasonably accurately; it should
classify each segment highly accurately; and it should be ex-
peditious. We intend to report both the first and the last of the
above: the number of segments found versus the true number,
and the CPU time needed for calculation. In terms of the esti-
mated number of segments K, we consider the simple average
of K , its average absolute error, and its standard deviation to in-
dicate the difference of schemes. The deviation can help to tell
whether the averages are actually significantly different, since
the empirical mean could obscure large fluctuation in the esti-
mated K. Evaluating the performance regarding the second ob-
jective is not straightforward and there is no universal rule. As
such, we propose the criteria concerning the second objective as

| X
PM = ~ Z Lo(y=e(i)
=1

where N is the length of the observation {z}, ¢ and ¢ are corre-
spondingly the true and estimated class index vectors, and

27)

(i) = the true class index for point ¢ of the series {«}
(28)
and ¢&(7) is similarly defined. Based on this definition, the
smaller the PM is, the better performance a classifier provides.
A Monte Carlo comparison is shown in Table I, where each
datum is based on 100 simulation runs, and the figure K gives

the average, the average absolute error, and the standard devia-
tion of the estimated number of segments K.An interesting pic-
ture emerges. First, all methods tend to overestimate the number
of segments, and the number recognized by the iterative method
using a uniform initialization appears to be more accurate than
the DP scheme.

Turning to the computational cost, it is clear that the new se-
quential GLR approach is remarkably good—the new schemes
have a computational load that is approximately linear in the
length of the time series. As expected, though DP is intelligent
in reducing the computational burden itself, it is still expensive
and this expense grows quickly with problem size. The compu-
tational loads of new schemes are orders of magnitude less.

Considering the performance measure PM, which places
greater stress on sample-by-sample model accuracy, it is noted
that the overall performances of the proposed methods are
startlingly good as compared to the optimal approach using DP
(even better PM is observed in many cases for method ¢), and it
is clear that there is some room for performance improvement
of b and it benefits considerably from the refinement stage
in the e method, with the price of around twice more the
computation.

Is there some way to be more efficient? The iterative approach
¢ spends much of its time coarsely “hunting;” if this part of its
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Fig. 4. Results of our scheme on the segmentation and classification of multiple structures, where X' = 10, L,in = 32, Lya.x = 120. Top: time-series. Next:

true model, out of the menu 1, 2 and 4 (see (29)). (d): Results for the time-series {x1, 2, . .

., &} via the DP method. (b): Using the simplified GLR method of

Section III-A. (e): Using the refined scheme of Section III-B. (z): Using the iterative approach of Appendix A.

duty is taken over by the quick scheme e, and the ¢ approach
reserved for a final super-refinement, then we can. We report on
the hybrid scheme e?, in which ¢ method begins respectively
from the solutions of the refined sequential GLR methods —
the estimated number of segments Kis clamped to the values
passed from e. The performance is promising: PM is lower than
e method, with the price of almost double the computation.

Concerning K and PM, we note that the iterative approach
provides the best performance: it yields smaller errors both
in estimating the number of segments and in classifying each
segment. The sequential GLR scheme yields somewhat worse
performance, but it requires the lightest computational load.
Therefore, our conclusion is that: the sequential GLR scheme
is the best choice when CPU time is the strictest limitation; the
basic iterative approach z is best if we want better accuracy;
and we choose the hybrid ez approach when jointly considering
the performance and computational load. The DP approach
should be out of picture in this application due to its prohibitive
computation.

B. Application to Multiple Structures

To explore our scheme to applications having competing
models with different structures, we consider

H; : y; ~ N{a,1), for 7 € [1,n]
H2: yLNN(OvﬁZ)u forzé[l,n]
H, : y follows AR(4) model (29)

where N(u,0?) represents the Normal distribution with
p-mean and o2-variance, and « and /3% are random variables
whose distributions are not known. In other words, the obser-
vations in the H{ model are iid Gaussian with unit-variance but

unknown (different) means. Again, we select the Hy hypothesis
as the iid Gaussian noise with zero-mean and unit-variance.

The sufficient statistics z;, § = 1, 2, for testing H; against
Hy are easy; and z, is as in the previous section. Therefore, we
have the following CS features:

1 n
Z1=—Zyi
ni:l
1 n

2
Zo —— A
2 n;yL

z4 ={log(ro), £*} (30)

where x; = log((1—K;)/(1+K,)) and {K,} are the reflection
coefficients. Clearly, p(z1|Hp) and p(z2|Hy) can be easily and
exactly obtained, and as in Section IV-A an accurate p(z4|Hg)
was obtained via the saddlepoint approximation.

Data was generated under each class hypothesis using
random parameter values. Based on 1000 training samples
from each class, with length distributed uniformly in the
interval [Lynin, Lmax] = [32,120], the PDF’s p(z;|H;) were
estimated using a Gaussian mixture approximation. As in
Section IV-A, the penalty term is chosen as

PA]SN(]%') =k x hl(N) (31)

An example is shown in Fig. 4, and in this case it appears that
all schemes except b match well.

Monte Carlo comparisons based on 100 simulation runs are
given in Table II. All methods except b tend to under-segment,
but the e scheme on average gives the best estimation of K. It
is also noted that despite requiring much lighter computational
load, both the e and the hybrid ei methods provide better PM
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TABLE 1I
MONTE CARLO COMPARISON FOR MULTIPLE STRUCTURE MODELS. HERE THE SUBSCRIPT d REPRESENTS THE DP METHOD; b: THE FORWARD SIMPLIFIED GLR
METHOD; e: THE FINAL (REFINED) SEQUENTIAL GLR SCHEME; ¢: THE ITERATIVE APPROACH BASED ON CONDITIONAL MEANS; ¢i: THE HYBRID METHOD.
K REFERS TO THE AVERAGE, THE AVERAGE ABSOLUTE ERROR, AND THE STANDARD DEVIATION OF THE ESTIMATED NUMBER OF SEGMENTS,
PM DENOTES THE AVERAGE PERFORMANCE MEASURE FROM (27), AND ¢ SHOWS THE AVERAGE CPU TIME REQUIRED.
FOR EACH SIMULATION RUN THE DATA LENGTH IS DRAWN RANDOMLY FROM THE RANGE [Kmin s Kimax)

No. of segments 3 5 7 8 10
2 d 2.77(0.31,0.51) | 4.30(0.74,0.67) | 6.28(0.74,0.68) | 6.81(1.23,0.85) | 8.40(1.62,1.02)
K, 8.25(0.55,0.74) | 5.28(0.84,1.12) | 7.70(0.96,1.07) | £.53(0.99.1.23) | 10.7(1.24,1.47)
K. 2.00(0.28,0.52) | 4.76(0.62,0.81) | 6.62(0.55,0.85) | 7.43(0.61,092) | 9.40(0.5,1.06)
K; 2.66(0.40,054) | 4.05(0.98,0.76) | 6.07(0.97,0.81) | 6.64(1.580.88) | 5.200182,1.07)
PMy 0.1354 0.1597 0.1267 0.1703 0.1826
PM, 0.1795 0.1992 0.1460 0.1833 0.1793
PM, 0.1348 0.1622 0.1270 0.1601 0.1722
PM; 0.1489 0.1838 0.1355 0.1745 0.1854
PM,; 0.1254 0.1577 0.1158 0.1571 0.1546
ta(min.) 1.670 6.040 14.184 17.946 28.6502
ty(min.) 0.054 0.104 0.160 0.186 0.232
te(min.) 0.150 0.304 0.479 0.538 0.704
t;(min.) 0.277 0.740 1.405 1.652 2.399
tei(min.) 0.2133 0.501 0.817 0.907 1.342

than even the d method’. Our conclusion for this application
comes as: overall the sequential GLR (e) scheme is the best
choice; and, with the price of 70% more computation, the ez
approach should be chosen for improved accuracy. In the pre-
vious example the ¢ scheme was appealing in that it was the most
frugal with sections: in this example its parsimony remains, but
it appears misplaced.

V. CONCLUSION

The need to segment a time series into intervals that are lo-
cally statistically homogeneous arises in a number of applica-
tions, the two most accessible being in speech processing (the
sections are phonemes) and transient detection (the sections are
signals whose presence may be of interest). Previous approaches
to segmentation have tended to be either special-purpose, in
need of the number of segments, or slow. However, two tech-
niques with none of these weaknesses were developed in a pre-
vious paper for the special case that segmentation was on the

SWhile this may seem a cause for concern, recall that DP maximizes likeli-
hood, which is not directly measured by PM; and that DP’s likelihood-maxi-
mizing properties are adulterated by the penalty term.

basis of a scale change in white data [32]. These two techniques
are both fast and accurate. However, they were tailored to the
specific application given.

In this paper the faster of the two is extended to far more
general case that: there is a list of possible statistical models;
each of these is describable in terms of a sufficient statistic (but
these need not be the same); and there is in hand an estimate
for the PDF of each sufficient statistic under its own assumed
model. There is no need for a joint probabilistic model (whose
availability would be unrealistic) of all sufficient statistics, this
via the new class-specific multihypothesis testing breakthrough.
And there is no need to know the number of sections, since an
appropriate penalty term, similar to MDL, is given.

The approach has two stages. In stage one, rough segmenta-
tions are implemented sequentially using a piecewise GLR; in
the second stage, the results from the first stage (both forward
and backward) are refined. The computational burden is remark-
ably small, approximately linear with the length of the time se-
ries. The method is quite satisfactory in terms both of segmen-
tation complexity and accuracy. The approach can be run either
as one stage or as two: in the former case it is remarkably fast,
and while it is reasonably accurate, it can be improved. The full
(two-stage) implementation is somewhat more intensive, but is
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very accurate. If both accuracy and speed are concerns, a hy-
brid between the approach presented here that initializes a re-
finement using Gibbs sampling is preferable.

APPENDIX
MARKOV CHAIN MONTE CARLO CONDITIONAL
MEAN APPROACH

The key to model (9) is to estimate 7, the segment transi-
tion times. Here we present an iterative method to estimate 7
by revisiting the data for each transition time #;. We treat 7 as
composed of random variables, and assume a noninformative
(uniform) prior. Now, for an arbitrary transition time ¢;, treat
other transition times as known and obtain the posterior con-
ditional distribution p(¢;|x, 1, ..., %1, tit1, -, tx ) from that;
then this PDF serves as updated information to estimate %;.

Suppose K is known. The basic form of the proposed iterative
approach is as follows:

1) Choose a noninformative prior for 7,
to have a minimal impact on the posterior
distribution [15], according to
p(T) = ﬁ’{(l) is true} (32)

where I;y is 1 if the length constraints
(1) are satisfied by 7 and 0 otherwise.
The total number of possible choice of
7 is M, a parameter whose actual value
needs not be computed since it is the same
for all estimates.
2) Initialize the iteration counter n = 1,
and choose the initial estimated values
7 to divide the series {z} into K sim-
ilar-sized segments.
3) Classify each segment. That is,
using the current segment boundaries
{to,t1,...,tx} and the class-specific
formalism in (6)

i = argmaX{P(Zj[ti,tiﬂ - ]]|Hj)p(Hj)} (33)

i Lp(z;[ti, tigr — 1]|Ho)

in which z;[t;,ti41 — 1] is the statistic suf-
ficient for discrimination of hypothesis
H; from Hy, and in which Hp is the common
“null” hypothesis (such as white unit-nor-
mality) that has been chosen.
4) Update the estimate of #;,

T =

for

i = 1,...,X — 1. The following con-
ditional posterior distributions
p(ti|t0,...,t,,1_1,t,,1+1,...,t;(,x) (E p(t,j|t,j,$)) for

i=1,..., K —1 are required for updating the

estimate of {;, where

o]t ) o

p(zﬁlq‘ [t’i—T ’ t’i_l] |qu' ) p(zmm [t’iv tH‘1_1]|H7ﬁq‘+1)

(2 [tit, i1 Ho)  p(Zm, [tir tip—1] Ho) (1) = o
(34)

for 1 = 1,....K — 1, where

ti = {to,...,ti_l,ti+1,...,t1{}, and ﬁ”LL is
the ML estimate corresponding to [t_1,%],

as derived in [32], and more specifically
for this application in [33]. Note that
to=1 and tgx —1 =N by definition. Now, for
i =1,....,K — 1, update ¢ by its conditional
mean

ti = Z?L = E(ti|ﬂ,x) = Z p(ti|ﬂ,x)ti

t;eS

where S indicates the set satisfying the
constraints (1) and in which p(4;|6,2) is
from (34). Since ¢; is a transition time,
it should be integral, and thus rounding
is appropriate.
5) If for V i, t; has converged, then stop.
Otherwise, let n = n+ 1 and return to step
3. The convergence criterion is that the
maximum mismatch of 7 between the n'* it-
eration and (n —1)* be no greater than 1.
6) Record the converged 7 as the final
estimates 7 and record the corresponding
fi. In the above, a joint estimate of 7 is
avoided via the repeated update of indi-
vidual ¢;'s, and therefore a huge computa-
tional savings is achieved. Usually, very
few iterations are needed.

(35)

For the case that the number of segments K is unknown, this
methods relies on the MSN in the same way as does the paper’s
main approach: the same procedure is executed for K = 1, K =
2, etc., until (16) begins to drop—the maximum value is chosen.
It appears that using conditional means as estimates helps to
avoid local minima. In this regard, and in fact as justification
for its convergence, note that the approach shares the features
of Gibbs Sampling, an implementation of Markov Chain Monte
Carlo (MCMC) [16], [30]. Under Gibbs one would generate a
random variable from p(%;|z, ¢, . . . t K ); here, for
speed, we use that density’s mean.

st bty -y
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