
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Fault Injection for TensorFlow Applications
Niranjhana Narayanan†, Zitao Chen†, Bo Fang‡, Guanpeng Li§ Karthik Pattabiraman†, Nathan

DeBardeleben¶
†University of British Columbia, ‡Pacific Northwest National Laboratory, §University of Iowa, ¶Los Alamos

National Laboratory
{nniranjhana, zitaoc, karthikp}@ece.ubc.ca, bo.fang@pnnl.gov, guanpeng-li@uiowa.edu,

ndebard@lanl.gov

Abstract—As machine learning (ML) has seen increasing adoption in safety-critical domains (e.g., autonomous vehicles), the reliability
of ML systems has also grown in importance. While prior studies have proposed techniques to enable efficient error-resilience (e.g.,
selective instruction duplication), a fundamental requirement for realizing these techniques is a detailed understanding of the
application’s resilience. In this work, we present TensorFI 1 and TensorFI 2, high-level fault injection (FI) frameworks for
TensorFlow-based applications. TensorFI 1 and 2 are able to inject both hardware and software faults in any general TensorFlow 1 and
2 program respectively. Both are configurable FI tools that are flexible, easy to use, and portable. They can be integrated into existing
TensorFlow programs to assess their resilience for different fault types (e.g., bit-flips in particular operations or layers).
We use TensorFI 1 and TensorFI 2 to evaluate the resilience of 11 and 10 ML programs respectively, all written in TensorFlow, including
DNNs used in the autonomous vehicle domain. The results give us insights into why some of the models are more resilient. We also
measure the performance overheads of the two injectors, and present 4 case studies, two for each tool, to demonstrate their utility.

Index Terms—Fault Injection, Machine Learning, TensorFlow, Error Resilience, Deep Neural Networks

✦

1 INTRODUCTION

In the past decade, Machine Learning (ML) has become
ubiquitous. It is being increasingly deployed in safety-
critical applications such as Autonomous Vehicles (AVs) [1]
and aircraft control [2]. In these domains, it is critical to
ensure the reliability of the ML algorithm and its imple-
mentation, as faults can lead to loss of life and property.
Moreover, there are often safety standards in these domains
that prescribe the allowed failure rate. For example, in the
AV domain, the ISO 26262 standard mandates that the FIT
rate (Failures in Time) of the system be no more than 10,
i.e., at most 10 failures in a billion hours of operation [3],
in order to achieve ASIL-D levels of certification. ASIL-D
refers to Automotive Safety Integrity Level D, which is the
ISO standard’s most stringent level of safety measures for
avoiding life-threatening or fatal situations. Therefore, there
is a compelling need to build efficient tools to (1) test and
improve the reliability of ML systems, and (2) evaluate their
failure rates in the presence of different fault types.

The traditional way to experimentally assess the relia-
bility of a system is fault injection (FI). FI can be imple-
mented at the hardware level or software level. Software-
Implemented FI (also known as SWiFI) has lower costs, is
more controllable, and easier for developers to deploy [4].
Therefore, SWiFI has become the dominant method to assess
a system’s resilience to both hardware and software faults
and many tools such as NFTape [5], Xception [6], GOOFI [7],
LFI [8], LLFI [9], PINFI [10] have been developed. However,
most of these tools were not built with ML applications in
mind, and hence are not well-suited for evaluating the reli-
ability parameters associated with ML applications. There-
fore, it is important to build FI tools for ML applications.

Due to the increase in popularity of ML applications,
many frameworks have been developed for writing them.
An example is TensorFlow [11], which was released by
Google in 2017. Other examples are PyTorch [12] and
CNTK [13]. Prior work has studied the error resilience of
ML models by building customized fault injection tools [14],
[15], [16], [17]. However, these tools are limited to specific
ML programs or are platform-dependent. Mutation testing
techniques have been used to create mutant ML models that
are tested with certain inputs to improve the quality of test
data [18], [19] and to localize bugs in the ML frameworks
[20], [21]. Nevertheless, there is still a lack of FI tools that can
be specifically configured and used for reliability assesment,
with the focus on resilience analysis of different ML models to
various fault types. To the best of our knowledge, PyTorchFI
[22] has been developed to address this need for ML appli-
cations written in the PyTorch framework. In this paper, we
build such a tool set for the TensorFlow framework.

There are three main challenges in developing a FI tool
for a specific ML framework. The first challenge is finding
the suitable place for injection. The common method of
modifying the higher level operators in place with faulty
versions and checking with a runtime flag to either inject
faults or continue normally does not work since the under-
lying implementation of the ML frameworks is in C/C++
code or assembly for performance reasons and cannot be
modified. The alternative of directly modifying the low
level code would render the tool dependent on platform
or framework version and harm its portability.

The second challenge is developing the method of in-
jection. Even in the same ML framework, there can be
conceptual differences between the versions, which requires



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

different methods. For example, while both TensorFlow 1
and 2 provide high level Python APIs for ease of use,
the way the ML model uses those APIs, and runs in the
background are quite different from each other.

The third challenge is choosing the right fault types in
the tool. It is important that the tool is capable of abstracting
a wide variety of fault types and injection modes so that the
user can configure it for their particular use case.

To address these challenges, in this paper, we develop
two tools, TensorFI 1 and 2 for injecting faults into Tensor-
Flow 1 and 2 applications respectively*. They can inject both
hardware and software faults in either the outputs of Tensor-
Flow operators (TensorFI 1) or the states and activations of
model layers (TensorFI 2). However, they differ significantly
in their implementations, as explained below.

TensorFI 1 works by first duplicating the TensorFlow
graph and creating a FI graph that parallels the original one.
The operators in the FI graph mirror the functionality of
the original TensorFlow operators, except that they have
the capability to inject faults based on the configuration
parameters specified. These operators are implemented by
us in Python, thereby ensuring portability. Moreover, the FI
graph is only invoked during fault injection, and hence the
performance of the original TensorFlow graph is not affected
(when faults are not injected). Additionally, because we do
not modify the TensorFlow graph other than to add the FI
graph, external libraries can continue to work as before.

Unlike TensorFlow 1, TensorFlow 2 applications do not
necessarily have an underlying data-flow graph. TensorFI 2
addresses the challenge by using the Keras APIs to intercept
the tensor states of different layers directly for fault injec-
tion. Graph duplication is avoided along with the overheads
it incurs (we quantitatively evaluate the overheads later in
Section 4). While TensorFI 1 can only inject into the results
of individual operators in the TensorFlow graph, TensorFI 2
can also be used to inject faults into the model parameters
such as weights and biases as well as the outputs of different
activation or hidden layer states. Overall, in TensorFI 2,
we include support for weight injection, introduce new modes
of injection, design and implement a new methodology for FI,
conduct more experiments, and develop new case studies. Like
TensorFI 1, TensorFI 2 is also designed to be portable and
fully compatible with external libraries. We outline further
the design challenges specific to each tool in Section3.

Finally, in both tools, it is easy to specify different
fault configurations and readily access the FI results. This
is because unlike traditional SWiFi frameworks, TensorFI
performs interface-level FI [24], [25], directly operating on
either the graph nodes or the layer objects of a model. Both
TensorFI 1 and 2 incorporate designs that are tailored to the
specific version of the TensorFlow framework, and hence
use different designs, to meet the same design goals.

We focus on TensorFlow as it is one of the most popular
frameworks used today for ML applications [26], though
our techniques of graph duplication in TensorFI 1 and
layerwise injection in TensorFI 2 are not restricted to Ten-
sorFlow and can be applied to other ML frameworks that
use the computational dataflow graph model or the layer

*TensorFI 1 was published in the ISSRE’20 conference [23] for Ten-
sorFlow 1 applications. This paper extends that work to also support
TensorFlow 2 applications, and adds a more diverse set of injectors.

object model respectively. TensorFI 1 and 2 are open source
tools available at github.com/DependableSystemsLab/TensorFI
and github.com/DependableSystemsLab/TensorFI2 respectively.

Our tool set contains generic and configurable fault
injection tools that are able to inject faults in a wide range
of ML programs written using TensorFlow 1 and 2. With
the help of our tools, users can conduct error resilience
analysis to obtain the worst case estimates of reliability
before deploying their model, especially for safety critical
applications. Users can also identify the classes of inputs
that are vulnerable to faults, and the important features for
correct classification in different datasets. Finally, users can
determine the operators/layers in a model that are suscep-
tible to various fault types, and fine tune the parameters to
improve the model resilience to such faults.

We make the following contributions in this paper.
• Propose generic FI techniques to inject faults in the Ten-

sorFlow 1 and 2 frameworks.
• Implement the FI techniques in TensorFI 1 and 2, which

allow (1) easy configuration of FI parameters, (2) portabil-
ity, and (3) minimal interference with the program.

• Evaluate the TensorFI 1 and 2 tools on 11 and 10 ML
applications respectively, including deep neural network
(DNN) applications used in AVs, across a range of FI
configurations (e.g., fault types, error rates). From our
experiments, we find that there are significant differences
due to both individual ML applications, as well as dif-
ferent configurations. Further, ML applications are more
vulnerable to bit-flip faults than other kinds of faults in
both the tools. Finally, TensorFI 2 was more than twice as
fast as TensorFI 1 for injecting similar faults.

• Conduct four case studies, two for each tool, to demon-
strate some of the use cases of the tool. We find the most
and least resilient image classes in the GTSRB dataset [27]
from fault injection in a traffic sign recognition model.
We consider layer-wise resilience in two of our case
studies, and observe that faults in the initial layers of an
application result in higher vulnerability. In addition, we
visualize the outputs from layer-wise injection in an image
segmentation model, and are able to identify the layer
in which faults occurred based on the faulty prediction
masks. These case studies thus provide valuable insights
into how to improve the resilience of ML applications.

2 OVERVIEW AND FAULT MODEL

We start by explaining the general structure of ML applica-
tions, followed by related work in the area of ML reliability.
We then introduce the fault model we assume in this paper.

2.1 Background
2.1.1 ML Applications
An ML model takes an input that contains specific features
to make a prediction. Prediction tasks can be divided into
classification and regression. The former is used to classify
the input into categorical outputs (e.g., image classification).
The latter is used to predict dependent variable values based
on the input. ML models can be either supervised or unsu-
pervised. In the supervised setting, the training samples are
assigned with known labels (e.g., linear regression, neural

https://github.com/DependableSystemsLab/TensorFI
https://github.com/DependableSystemsLab/TensorFI2


IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

network), while in an unsupervised setting there are no
known labels for the training data (e.g., k-means, kernel
density estimation).

An ML model typically goes through two phases: 1)
training phase where the model is trained to learn a par-
ticular task; 2) inference phase where the model is used for
making predictions on test data. The parameters of the ML
model are learned from the training data, and the trained
model is evaluated on the test data, which represents the
unseen data.

2.1.2 TensorFlow 1 and 2
TensorFlow abstracts the operations in an ML application
thus allowing programmers to focus on the high-level pro-
gramming logic. In TensorFlow 1, programmers use the
built-in operators to construct the data-flow graph of the ML
algorithm during the training phase. Once the graph is built,
it is not allowed to be modified. During the inference phase,
data is fed into the graph through the use of placeholder
operators, and the outputs of the graph correspond to the
outputs of the ML algorithm. TensorFlow 1 version was
difficult to learn and use for ML practitioners, with users
having to deal with graphs, sessions and follow a meticu-
lous method of building models [28].

With TensorFlow 2, eager execution was introduced
making it more Pythonic. Graphs are not built by default but
can be created with tf.function as they are good for speed.
TensorFlow 2 embraces the Keras APIs for building models
making it easier and more flexible for users. In TensorFlow
2, programmers define the ML model layer by layer and
these layer objects have training and inference features. When
data is fed into the ML algorithm, the operations in the
layers are immediately executed.

Both versions of TensorFlow also provide a convenient
Python language interface for programmers to construct and
manipulate the data-flow graphs. Though other languages
are also supported, the dominant use of TensorFlow is
through its Python interface. Note however that the majority
of the ML operators and algorithms are implemented as
C/C++ code, and have optimized versions for different
platforms. The Python interface simply provides a wrapper
around these C/C++ implementations.

2.2 Related Work

In the hardware faults space, there has been significant work
to investigate the resilience of deep neural networks (DNN)
using fault injectors. The earliest such work was by Li
et al., who build a fault injector by using the tiny-CNN
framework [14]. Reagen et al. design a generic framework
for quantifying the error resilience of ML applications [15].
Sabbagh et. al develop a framework to study the fault
resilience of compressed DNNs [17]. Chen et al. introduce
a technique to efficiently prune the hardware FI space
by analyzing the underlying property of ML models [16].
However, the above FI techniques are either limited to
the specific application being studied, or are dependent on
the underlying hardware platform, unlike TensorFI that is
able to perform FI on generic ML applications. The only
exception is PyTorchFI [22], which is a generic FI tool for
DNNs, for PyTorch applications. PyTorch has a different

architecture than TensorFlow, and hence PyTorchFI cannot
be easily applied to TensorFlow applications.

In the software faults space, researchers have employed
conventional software techniques such as mutation testing
in ML applications. DeepMutation [18], DeepMutation++
[19] are such frameworks specialized for ML applications
written in TensorFlow. These tools support specific source
and model level mutations and use their mutant models to
evaluate the quality of test data; in contrast, in TensorFI,
users can define different fault types, configure the fault
location and injection modes for a wide variety of purposes.
LEMON [20] and AUDEE [21] are also based on mutation
testing, and support many ML frameworks (TensorFlow,
Theano, CNTK, MXNet/PyTorch). However, their goal is to
evaluate the ML frameworks themselves, while our goal is
to evaluate the models.

In summary, the TensorFI tool set targets a broader range
of ML applications, gives users the flexibility of emulating
different faults, and can be used to inject both software and
hardware faults in the ML application.

2.3 Fault Model

In this work, we consider both hardware faults and software
faults that occur in TensorFlow programs.

TensorFI 1 operates at the level of TensorFlow graph op-
erations. We abstract the faults to the operators’ interfaces.
Thus, we assume that a hardware or software fault that
arises within the TensorFlow operators, ends up corrupting
(only) the respective outputs. However, we do not make
assumptions on the nature of the output’s corruption. For
example, we consider that the output corruption could be
manifested as either a random value replacement [18] or as
a single bit-flip [14], [15], [16], [17].

TensorFI 2 operates at the TensorFlow model level. We
abstract faults either to the interfaces of the model layers or
to the model parameters. TensorFI 2 can inject faults into the
layer states i.e. the weights and biases. TensorFI 2 models
two kinds of faults. (1) Transient hardware faults during
computation, which can alter the activations or outputs of
each layer. (2) Faults that can occur due to rowhammer
attacks [29], i.e., an attacker performing specific memory
access patterns can induce persistent and repeatable bit
corruptions from software. The vulnerable parameters tend
to be larger objects (greater than 1MB) in memory, and these
are usually page aligned allocations such as weights, biases.

Table 1 shows the faults considered by both TensorFI 1
and 2, and how they are modeled. We make 3 assumptions
about faults. First, we assume that the faults do not modify
the structure of the TensorFlow graph or model (since
TensorFlow assumes a static computational graph) and that
the inputs provided into the program are correct, because
such faults are extraneous to TensorFlow. Other work has
considered errors in inputs [30], [31]. Second, we assume
that the faults do not occur in the ML algorithms or the
implementation itself. This allows us to compare the output
of the FI runs with the golden runs, to determine if the
fault has propagated and a Silent Data Corruption (SDC)
has occurred. Finally, we only consider faults during the
inference phase of the ML program. This is because training
is usually a one-time process and the results of the trained



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

TABLE 1: Fault model for the TensorFI tool set

TensorFI 1 TensorFI 2

Source of fault
Software faults
and transient
hardware faults

Software faults,
transient hardware
faults, rowhammer
attacks

Modeling of fault Operator outputs
Layer outputs
and layer state
(weights)

Fault types
Bitflips, zeros and
random value re-
placement

Bitflips, zeros and
random value re-
placement

model can be checked. Inference, however, is executed re-
peatedly with different inputs, and is hence much more
likely to experience faults. This fault model is in line with
other related work [14], [15], [16], [17].

3 METHODOLOGY

We start this section by articulating the common design
constraints for the 2 tools. We then discuss the design alter-
natives considered, and then present the design of TensorFI
1 and 2 to satisfy the design constraints.

3.1 Design Constraints
We adhere to the following three constraints in the design
of the TensorFI tool set.
• Ease of Use and Compatibility: The injectors should

be easy-to-use and require minimal modifications to the
application code. We also need to ensure compatibility
with third-party libraries that may either construct the
TensorFlow graph, or use the model directly.

• Portability: Because TensorFlow may be pre-installed on
the system, and each individual system may have its own
TensorFlow version, we should not assume the program-
mer is able to make any modifications to TensorFlow.

• Minimal Interference: First, the injection process should
not interfere with the normal execution of the TensorFlow
graph or model when no faults are injected. Further, it
should not make the underlying graph or model incapable
of being executed on GPUs or parallelized due to the
modifications it makes. Finally, the FI process should be
reasonably fast.

3.2 TensorFI 1
3.2.1 Design Alternatives
Based on the design constraints in the previous section,
we identified three potential ways to inject faults in the
TensorFlow 1 graph. The first and perhaps most straight-
forward method was to modify TensorFlow operators in
place with FI versions. The FI versions would check for the
presence of runtime flags and then either inject the fault or
continue with the regular operation of the operator. This
is similar to the method used by compiler-based FI tools
such as LLFI [32]. Unfortunately, this method does not work
with TensorFlow graphs because the underlying operators
are implemented and run as C/C++ code, and cannot be
modified.

A second design alternative is to directly modify the C++
implementation of the TensorFlow graph to perform FIs.

While this would work for injecting faults, it violates the
portability constraint as it would depend on the specific ver-
sion of TensorFlow being used and the platform it is being
executed on. Further, it would also violate the minimal infer-
ence constraint as the TensorFlow operators are optimized
for specific platforms (e.g., GPUs), and modifying them
would potentially break the platform-specific optimizations
and may even slow down the process.

The third alternative is to directly inject faults into the
higher-level APIs exposed by TensorFlow rather than into
the dataflow graph. The advantage of this method would
be that one can intercept the API calls and inject different
kinds of faults. However, this method would be limited to
user code that uses the high-level APIs, and would not be
compatible with libraries that manipulate the TensorFlow
graph, violating the ease of use and compatibility constraint.

3.2.2 Key Idea
TensorFI 1 creates a replica of the original TensorFlow graph
but with new operators. The new operators are capable
of being injected with faults during the execution of the
graph and can be controlled by an external configuration
file. Further, when no faults are being injected, the operators
emulate the behavior of the original TensorFlow operators
they replace.

3.2.3 Implementation
To satisfy the design constraints outlined earlier, TensorFI
1 operates directly on TensorFlow graphs. Because Tensor-
Flow does not allow the dataflow graph to be modified once
it is constructed, we need to create a copy of the entire
graph, and not just the operators we aim to inject faults
into. The new graph mirrors the original one, and takes
the same inputs as it. However, it does not directly modify
any of the nodes or edges of the original graph and hence
does not affect its operator. At runtime, a decision is made
as to whether to invoke the original TensorFlow graph or
the duplicated one for each invocation of the ML algorithm.
Once the graph is chosen, it is executed to completion at
runtime.

TensorFI 1 works in two phases. The first phase instru-
ments the graph, and creates a duplicate of each node for
FI purposes. The second phase executes the graph to inject
faults at runtime, and returns the corresponding output.
Note that the first phase is performed only once for the
entire graph, while the second phase is performed each
time the graph is executed (and faults are injected). Figure 1
shows an example of how TensorFI 1 modifies a TensorFlow
graph. Because our goal is to illustrate the workflow of
TensorFI 1, we consider a simple computation rather than
a real ML algorithm.

In the original TensorFlow graph, there are two oper-
ators, an ADD operator which adds two constant nodes
“Const 1” and “Const 2”, and a MUL operator, which
multiplies the resulting value with that from a placeholder
node. A placeholder node is used to feed data from an
external source such as a file into a TensorFlow graph, and
as such represents an input to the system. A constant node
represents a constant value. TensorFI 1 duplicates both the
ADD and MUL operators in parallel to the main TensorFlow



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

Fig. 1: Working methodology of TensorFI 1: The green nodes are the
original nodes constructed by the TensorFlow graph, while the nodes
in red are added by TensorFI 1 for FI purposes.

graph, and feeds them with the values of the constant nodes
as well as the placeholder node. Note that however there
is no flow of values back from the duplicated graph to
the original graph, and hence the FI nodes do not interfere
with the original computation performed by the graph. The
outputs orig. and faulty represent the original and fault-
injected values respectively.

Prior to the FI process, TensorFI 1 instruments the origi-
nal TensorFlow graph to create a duplicate graph, which will
then be invoked during the injection process. At runtime,
a dynamic decision is made as to whether we want to
compute the orig. output or the faulty output. If the orig.
output is demanded, then the graph nodes corresponding
to the original TensorFlow graph are executed. Otherwise,
the nodes inserted by TensorFI 1 are executed and these
emulate the behavior of the original nodes, except that they
inject faults. For example, assume that we want to inject
a fault into the ADD operator. Every other node inserted
by TensorFI 1 would behave exactly like the original nodes
in the TensorFlow graph, with the exception of the ADD
operator which would inject faults as per the configuration.

3.3 TensorFI 2
3.3.1 Design Challenges
In TensorFlow 1, the session objects contained all the infor-
mation regarding the graph operations and model param-
eters. In TensorFlow 2, there is no graph built by default
as the eager execution model is adopted. This means that
nodes in the graph can no longer be used as the injection
target by the fault injector. Instead, the TensorFlow 2 models
expose the corresponding layers that store the state and
computation of the tensor variables in it. Since these layers
are representative of the different operations in TensorFlow,
they are chosen as the injection target in TensorFI 2.

In addition, TensorFlow 2 models can be built in three
different ways - using the sequential, functional and the sub-
classing Keras APIs. The design of the FI framework should
be such that faults can be injected into the model regardless
of the method used to define it.

3.3.2 Design Alternatives
We considered two alternate approaches in the design of
TensorFI 2. The first is to create custom FI layers that dupli-
cate the original layers to inject the incoming tensors with
the specified faults accordingly and pass it on to the next
layer in the model. This mimics the TensorFI 1 approach of
creating a copy of the FI operations in the graph. However,
this approach incurs high overheads. While this was the
only feasible approach for TensorFI 1 because of the static

Fig. 2: Working methodology of TensorFI 2: The conv 1 layer is chosen
for both weight FI (left) and activation state injection (right. The arrows
in red show the propagation of the fault.

computation graph model adopted by TensorFlow 1, it is
not so for TensorFlow 2. So we do not adopt this approach.

The second design alternative uses eager execution to
inject faults. Once the model starts execution, each layer is
checked whether it is chosen for FI. If a particular layer is
chosen, the execution passes control to the injection func-
tion, which injects the specified faults into the layer outputs.
Unfortunately, this approach only works for the sequential
models, and not for models using non-linear topologies such
as the ResNet model. So we do not adopt this approach.

3.3.3 Key Idea
TensorFI 2 avoids graph duplication and instead makes use
of the layer object model to retrieve either the weights or the
computations of the layer instance for injection.

3.3.4 Implementation
ML models use input data and weight matrices (that are
learned during training) to compute activation matrices
(that output a prediction at the last layer). Each layer in-
stance thus has two components, both of which are possible
injection targets in TensorFI 2. The first is the layer state
or weight matrices that holds the learned model parameters
such as the weights and biases. This is to allow emulation
of hardware and software faults in these parameters. In
TensorFI 2, we use the Keras Model API [33] to retrieve
the trained weights and biases of the specified layer of the
model given by the user, and use TensorFlow 2 operators
(such as stack, flatten, assign) to retrieve and inject the
parameters according to the specified faults and store it back
to observe the faulty inference runs. By this method, the
implementation is general enough to work with programs
that use any of the three methods for building models in
TensorFlow 2. The supported mutations include injecting
bit-flips in these tensor values, replacing the tensor values
with zeros or random values.

The second injection target is the layer computation or
activation matrices, which hold the output states of the layers.
This is to allow emulation of hardware transient faults that
can arise in the computation units. In TensorFI 2, we use
the Keras backend API to directly intercept the tensor states
of the layers chosen for FI. For each layer where faults are



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

TABLE 2: List of fault types supported by TensorFI 1

Type Description
Zero Change output of the target operator into zeros
Rand-
element

Replace one data item in the output of the target
operator into a random value

bitFlip-
element

Single bit-flip in one data item in the output of
the target operator

TABLE 3: List of fault types supported by TensorFI 2

Type Description Amount
Zeros Change specified amount of

tensor values to zeros
Varies from 0% to
100%

Rand. Re-
placement

Replace specified amount of
tensor values with random
values in the range [0, 1)

An integer between
0 and total number
of tensor values

Bit-flips Single or multiple bit-flips
in specified amount of ten-
sor values

An integer between
0 and total number
of tensor values

to be injected, two Keras functions are modeled before and
after the injection call. The first contains the executed model
outputs up to that particular layer for the given test input
and is taken as the injection target to be operated on. These
are the retrieved activation states, and faults are injected
into these tensor values and passed into the second function
that models the subsequent layers. For bit-flip faults, the bit
position to be flipped can either be chosen prior to injection
or determined at runtime.

Modifying the layer states is static and is done before
the inference runs. This is illustrated in the left of Figure 2.
The layers “conv 1”, “maxpool 1” and “dense 1” are part
of a larger convolutional network. Let us suppose the first
convolution layer “conv 1” states are chosen for injection.
TensorFI 2 then injects the weights or biases of this layer
and stores back the faulty parameters in the model. During
inference, the test input passes through the different layer
computations, and the fault gets activated when the execu-
tion reaches the “conv 1” layer outputs. The fault can then
further propagate into the consecutive layer computations
and result in a faulty prediction (i.e., an SDC).

On the other hand, modifying the layer computation
is dynamic and is done during the inference runs. This
is illustrated in the right of Figure 2. We have the same
convolutional model but the “conv 1” activation states are
chosen for injection here. The two Keras backend functions
“K.func 1” and “K.func 2” work on the original model
without duplication but with the inputs and outputs that
we specify. During inference, TensorFI 2 passes the inputs
to the “K.func 1” which intercepts the computation at the
“conv 1” layer, injects faults into the outputs of the layer
computation or the activation states and then passes the
outputs into the next “K.func 2”, which feeds them to the
immediate next layer, and continues the execution on the
rest of the original model. Since “K.func 2” works with
the faulty computation, faults can propagate to the model’s
output, and result in a faulty prediction (i.e., an SDC).

3.4 Satisfying Design Constraints
• Ease of Use and Compatibility: To use the TensorFI tool

set, the programmer changes a single line in the Python

code of the ML model. Everything else is automatic, be
it the graph copying and duplication in TensorFI 1 or the
injection into the layer state and computation in TensorFI
2. Our method is compatible with external libraries as we
do not modify the application’s source code significantly.

• Portability: We make use of the TensorFlow and the Keras
APIs to implement our framework, and do not change the
internal C++ implementation of the TensorFlow operators,
which are platform specific. Therefore our implementa-
tion is portable across platforms.

• Minimal Interference: TensorFI 1 does not interfere with
the operation of the main TensorFlow graph. Similarly,
TensorFI 2 does not interfere with either the model or
layer structure. Further, the original TensorFlow operators
are not modified in any way, and hence they can be
optimized or parallelized for specific platforms if needed.

3.5 Configuration
The TensorFI tool set allows users to specify the injection
configurations such as fault type, error mode and amount
of FI through a YAML interface. Once loaded at program
initialization, it is fixed for the entire FI campaign. We
further elaborate the listed fault types and injection modes
for both tools below.

3.5.1 Fault types
We use three fault types namely zeros, random value re-
placement and bit-flips. These are used to replace the ten-
sor value(s) in the operator or layer with zero(s), random
value(s) in the range or with bit-flips in the value(s). In
TensorFI 1, the bit position is chosen randomly each time.
In TensorFI 2, we can also specify the position of the bit to
be flipped in addition to random selection. The list of fault
types and injection modes we have used in our experiments
are described in Tables 2 and 3 for TensorFI 1 and 2,
respectively. A full list of supported fault configurations can
be found in the Wiki and README of the respective tools.

3.5.2 Injection modes
We use three injection modes in TensorFI 1 namely errorRate,
dynamicInstance and oneFaultPerRun. These are used to inject
different amount of faults in operators. In a model with
multiple operators, there could be multiple instances of each
operator. The errorRate takes a value between 0 and 1, which
specifies the percentage of total operator instances to be
injected. This can be specified for multiple operators. The
operators are injected with faults based on the specified
error rate. With dynamicInstance, one instance of each speci-
fied operator is randomly chosen and injected with faults.
Finally, with oneFaultPerRun, one instance among all the
operator instances is randomly selected for injection.

We specify injection modes in TensorFI 2 with Layerwise
and Amount for both static and dynamic injections. We
directly specify the number of faults we want to inject in
Amount. This also allows for varying the range amount of
values in a tensor in any layer instead of choosing either a
single value (Rand-element, bitFlip-element) or all values
(Zero, Rand, bitFlip-tensor) in a tensor as in TensorFI 1.
We can emulate similar injection modes of TensorFI 1 by
configuring these two in different ways. To emulate the

https://github.com/DependableSystemsLab/TensorFI/wiki/Usage-Guide#config-file
https://github.com/DependableSystemsLab/TensorFI2/tree/master/conf


IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

TABLE 4: List of analogous injection modes between Ten-
sorFI 1 and TensorFI 2

TensorFI 1 TensorFI 2
errorRate: Specify the error rate
for different operator instances

Amount: Specify the error rate
in tensors of different layers

dynamicInstance: Perform ran-
dom injection on a randomly
chosen instance of each operation

Layerwise: & Amount: Perform
injection on specified amount
of tensor values in each layer

oneFaultPerRun: Choose a single
instance among all the operators
at random so that only one fault
is injected in the entire execution

Amount: 1 Choose a random
layer among all the layers
and inject one fault into the
tensor values of that layer

dynamicInstance mode of TensorFI 1, we specify Layerwise
in addition to Amount so that TensorFI 2 can inject faults on
the specified number of tensor values in each layer. Finally,
for emulating the oneFaultPerRun mode, we specify a value
of 1 in the Amount so that a random layer is chosen, and a
single fault is injected into its tensor values.

Table 4 shows the mapping between the analogous injec-
tion modes of the two tools.

4 EVALUATION

In this section, we first present the experimental setup for
both the tools. We then present the research questions and
results for TensorFI 1 followed by those for TensorFI 2.
Finally, we discuss the performance overheads of both tools.

4.1 Experimental Setup
4.1.1 ML Applications
TensorFI 1: We use 11 ML applications for evaluation. These
are supervised learning models listed in Table 5. Among
these, we have an ML application used in the AV domain,
i.e., comma.ai driving model.

In addition to the above supervised models, TensorFI 1
can be used to inject faults into unsupervised models. We
use one such application, Generative Adversarial Networks
(GAN) to show the effects of the injected faults visually.
However, because GANs do not have an expected output la-
bel, we exclude this experiment from the other experiments
and discuss its results separately in Section 4.2.4.

TensorFI 2: We choose a total of 10 ML applications
including deep neural networks like ResNet, VGGNet,
SqueezeNet that are commonly used in existing studies.
We exclude two of the benchmarks we used for TensorFI
1 namely the Highway CNN and comma.ai models because
their TensorFlow 2 implementation was not available. We
still cover a wide range of applications to enable a com-
prehensive evaluation. We use VGG16 and ResNet-50 in
TensorFI 2 experiments instead of VGG11 and ResNet-18
used in TensorFI 1, as they are more complex and recent ar-
chitectures. Table 6 lists the applications with the respective
datasets used.

4.1.2 ML Datasets
We use 6 public ML datasets in our experiments. MNIST
dataset [35] is a handwritten digits dataset (with 10 different
digits) with 28x28 pixel grayscale images. Fashion-MNIST
[36] is a dataset of Zalando’s article images consisting of a
training set of 60000 samples and a test set of 10000 samples.

TABLE 5: ML applications and datasets used for TensorFI 1
evaluation. The baseline model accuracies are also provided.

ML model Dataset Accuracy
Neural Net MNIST 85.42%

Fully Connected Net MNIST 97.54%
Convolutional NN MNIST 95.74%

LeNet MNIST 99%
AlexNet MNIST 94%

Recurrent NN MNIST 98.40%
VGG11 GTSRB 99.74%

ResNet-18 ImageNet 62.66% (top-1)
84.61% (top-5)

SqueezeNet ImageNet 52.936% (top-1)
74.150% (top-5)

Comma.ai model [34] Driving frame 24.12 (RMSE)
12.64 (Avg. Dev.)

Highway CNN MNIST 97.92%

TABLE 6: ML applications and datasets used for TensorFI 2.

ML model Dataset Accuracy
Neural Net MNIST 97.34%

Fully Connected Net FMNIST 88.28%
Convolutional NN MNIST 98.47%
Convolutional NN CIFAR10 70.87%

LeNet MNIST 97.67%
AlexNet CIFAR10 74.6%

Recurrent NN MNIST 84.85%
VGG16 ImageNet 70.5% (top-1)

90.0% (top-5)
ResNet-50 ImageNet 77.8% (top-1)

94.2% (top-5)
SqueezeNet ImageNet 58.5% (top-1)

74.2% (top-5)

Each sample is a 28x28 grayscale image, associated with
a clothing or accessory label from 10 classes. The CIFAR-
10 dataset [37] consists of 60000 32x32 color images in 10
classes that include certain animals and vehicles, with 6000
images per class. GTSRB dataset [27] is a dataset consisting
of 43 different types of traffic signs. In addition, we use a
real-world driving frame dataset that is labeled with steering
angles [38]. ImageNet [39] is a large image dataset with
more than 14 million images distributed in 1000 classes. The
image dimensions vary across the images, but are resized to
224x224 by the VGG, ResNet and SqueezeNet applications.

For models that use the ImageNet dataset (ResNet,
SqueezeNet and VGG), we use the pre-trained models since
it is time-consuming to train the model from scratch. For the
other models, we train them using the following datasets.

TensorFI 1: MNIST, GTSRB, driving frame and ImageNet.
TensorFI 2: MNIST, Fashion-MNIST, CIFAR10, ImageNet.
In TensorFI 1, we used MNIST for the AlexNet model but

have used CIFAR-10 in TensorFI 2 as it is more appropriate
for a more complex architecture such as AlexNet. Similarly,
we use ImageNet for VGG16 in TensorFI 2 instead of GT-
SRB. Finally, we evaluate the CNN model with the MNIST
and CIFAR-10 datasets, and the NN and FCN models with
the MNIST and Fashion-MNIST datasets in TensorFI 2.

4.1.3 Metrics

We use SDC rate as the metric for evaluating the resilience
of ML applications. An SDC is a wrong output that deviates
from the expected output of the program. SDC rate is the
fraction of the injected faults that result in SDCs. For the



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

Input

Output 
(by fault)

Correct angle

Angle (by fault)

Fig. 3: Example of SDCs observed in different ML applications. Left box
- steering model. Right box - image misclassifications.

classifier applications, an SDC is any misclassification. For
the steering model comma.ai that produces a continuous
value as output, we use different threshold values for the
deviations of steering angles to identify SDCs: 15, 30, 60 and
120 degrees [16]. We use the RMSE (root mean square error)
and average deviation per frame to evaluate the model’s
accuracy - these are commonly used in this domain [40].

4.1.4 Experiments

TensorFI 1: For each benchmark, we perform 1000 random
injections per fault configuration and input. We choose 10
inputs for each injection, and because these injections are
dynamic and occur in the duplicated graph nodes for each
input, we perform a total of 10, 000 FIs per application
and configuration. With 14 configurations (Section 4.2) and
11 applications (Table 5), this comes to around 1.55 million
injections in total with TensorFI 1.

TensorFI 2: We perform two kinds of injections.
1) Injections in layer states: The weight FIs (Fig 2) are static,

and affect the stored states (weights or biases) of the
layer. After each injection, we run the injected model
with 10 inputs. Hence, we perform 10, 000 random
injections per application and per fault configuration.
With 11 configurations (Section 4.3) and 10 applications
(Table 6), this comes to 1.1 million injections.

2) Injections in layer computations: The injections in the
layer outputs are dynamic, and are analogous to opera-
tor output injections in TensorFI 1. For each benchmark,
we perform 1000 injections per fault configuration and
input. We choose 10 test inputs for each injection, and
since these injections are dynamic, each test input has
different faults occurring in its corresponding layer
outputs. Thus we perform a total of 10, 000 FIs per
application and configuration. With 2 configurations
(Section 4.3) and 10 applications (Table 6), this comes
to a total of 200,000 injections.

Thus, we perform 1.3 million injections with TensorFI 2.
Error bars: We calculate the error bars at the 95% confi-

dence interval for each experiment in both tools.
Effects of SDCs: Figure 3 shows examples of some of the

SDCs observed in our experiments for both the steering
model and classification applications. These may result in
safety violations in AVs if they are not mitigated. However,
we do not distinguish hazardous outcomes in the SDCs.

4.2 TensorFI 1 Results

We use two of the fault types (bitFlip-element and Rand-
element) and different configurations of TensorFI 1 for an-
swering the following Research Questions (RQs):

• RQ1: What are the SDC rates of different applications
under the oneFaultPerRun and dynamicInstance injection
modes?

• RQ2: For the errorRate mode, how do the SDC rates
vary for different error rates?

• RQ3: How do the SDC rates vary for faults in different
TensorFlow operators in the same ML application?

We organize the results for the 11 ML models listed
in Table 5 by each RQ, and then show the results of the
FI experiments for GANs separately. For RQ1 and RQ2,
we choose all the operators in the data-flow graph during
the inference phase, which is a subset of operators in the
TensorFlow 1 graph. This is because many of the operators
in the TensorFlow 1 graph are used for training, and are
not executed during the inference phase (we do not inject
faults into these operators). We also do not inject faults into
those operators that are related to the input (e.g., reading
the input, data preprocessing), as we assume that the inputs
are correct as per our fault model.

4.2.1 RQ1: Error resilience for different injection modes
In this RQ, we study the effects of two different injection
modes, namely oneFaultPerRun and dynamicInstance (Table
4). We choose single bit flip faults as the fault type for this
experiment. Figure 4 show the SDC rates obtained across
applications. We can see that different ML applications ex-
hibit different SDC rates, and there is considerable variation
across the applications.

We can also observe that there are differences between
the two fault modes. For the dynamicInstance injection
mode, the SDC rates for all the applications are higher
than those in the oneFaultPerRun mode. This is because in
the dynamicInstance mode, each type of operator will be
injected at least once, while in the oneFaultPerRun mode,
only one operator is injected in the entire execution. Thus,
the applications present higher SDC rates for the former
fault mode than the latter.

We also observe significant differences between appli-
cations within the oneFaultPerRun mode. For example, the
comma.ai driving model has a higher SDC rate than the
classifier applications. This is because the output of the
classifier applications are not dependent on the absolute
values (instead classification probability is used). Thus, the
applications are still able to generate correct output de-
spite the fault occurrence, and hence have higher resilience.
However, the comma.ai model predicts the steering angle,
which is more sensitive to value deviations. For example,
a deviation of 30 due to fault in the classification model
will not cause an SDC as long as the predicted label is
correct; whereas the deviation would constitute an SDC in
the comma.ai model (when we use a threshold of 15 or 30).

In the oneFaultPerRun mode, we find that RNN exhibits
the highest resilience (less than 1% SDC rate). This is be-
cause unlike feed-forward neural networks, RNN calculates
the output not only using the input from the previous
layer, but also the internal states from other cells. Under
the single fault mode, the other internal states remain intact
when the fault occurs at the output of the previous layer.
Therefore, faults that occur in the feed-forward NNs are
more likely to cause SDCs in this mode. However, under
the dynamicInstance injection mode, more than one fault



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RNN Comma
(15)

Comma
(30)

Comma
(60)

Comma
(120)

Vgg11 SqNet
(top5)

SqNet
(top1)

ResNet
(top5)

ResNet
(top1)

NN CNN LeNet AlexNet FCN HCNN

SD
C 

ra
te

One fault per run Dynamic instance

Fig. 4: SDC rates under single bit-flip faults (from oneFaultPerRun and dynamicInstance injection modes). Error bars range from ±0.19% to ±2.45% at
the 95% confidence interval.

Fig. 5: SDC rates for various error rates (under bit flip element FI). Error bars range from ±0.33% to ±1.68% at the 95% confidence interval.

Fig. 6: SDC rates for various error rates (under random value replacement FI). Error bars range from ±0.13% to ±1.59% at the 95% confidence
interval.

will be injected. As a result, some of the internal states are
also corrupted, thus making the results prone to SDCs (e.g.,
RNN has around 38% SDC rate).

We also find that AlexNet has the highest resilience
among all the models in both the oneFaultPerRun and dy-
namicInstance injection modes. This is because AlexNet has
a higher proportion of more resilient operators (i.e., the add
and multiply operators) compared to the other models. The
results from Fig. 7 show that the add and multiply operators
are more resilient compared to convolution operators.

RQ1. With the bit-flip fault type, under oneFaultPerRun injec-
tion mode, RNN and comma.ai are the most and least resilient
respectively; under dynamicInstance injection mode, AlexNet
and ResNet are the most and least resilient respectively.

4.2.2 RQ2: Error resilience under different error rates

In this RQ, we explore the resilience of different models for
the errorRate injection mode (Table 4). This mode allows us
to vary the probability of error injection on a per-operator

basis. We choose 2 fault types for studying the effects of the
error rate, namely bitFlip-element and Rand-element.

Figure 5 and Figure 6 show the variation SDC rates with
error rates under both fault types. As expected, we can
observe that larger error rates result in higher SDC rates
in all the applications, as more operators are injected. How-
ever, compared with the results from the bit-flip FI, random
value replacement results in lower SDC rates. This is likely
because the random value causes lesser value deviation than
the bit-flip fault type (in our implementation, we use the
random number generator function from Numpy library).
Thus, a lower value deviation in this mode leads to lower
SDC rates [14], [16].

Figure 5 shows the variations of SDC rates of different
ML applications with error rate under the bit-flip fault type.
While it shows that the SDC rates of all the applications
grow along with the increase of error rates†, we observe
that different applications have different rates of growth of

†There are a few outliers such as HCNN in Figure 5, which exhibit
oscillations, as SDC measurements are subject to statistical variations.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

Fig. 7: SDC rates of different operators under bit-flip FI in the CNN
model). Error bars range from ±0.3077% to ±0.9592% at 95% confi-
dence interval.

SDCs. In particular, we find that there are four outliers in the
results for the bit-flip fault model (Figure 5), RNN, HCNN,
ResNet and FCN, which exhibit significantly higher SDC
rates than the rest. This is because these models have higher
number of operators, and hence higher number of injections.

Likewise, in the case of the random value replacement
we find that the SqueezeNet application exhibits nearly flat
growth in SDC rates with error rates, and that the SDC rates
are consistently low. This is because faults need to cause
large deviation in order to cause SDCs, which rarely occurs
with the random value replacement fault type.

RQ2. Under the errorRate injection mode and with the bit-
flip fault type, NN and ResNet are the most and least resilient
respectively; with the random value replacement fault type,
SqueezeNet and comma.ai are the most and least resilient
respectively.

4.2.3 RQ3: SDC rates across different operators

In this RQ, we study the SDC rates on different operators
in the CNN model. The SDC rates are shown in Figure 7. It
can be seen that faults in the convolution layer usually have
higher SDC rates, compared with other operators (e.g., Sub).

Moreover, we can see that operators such as SoftMax,
ArgMax, Equal exhibit the highest SDC rates. In fact, the
SDC rates on the ArgMax and Equal operators are nearly
100%. This is because these operators are directly associated
with the output, and thus faults in these operators are more
likely to cause SDCs. We consider these operators as special
cases, and hence exclude them from the other experiments.

On the other hand, operators such as Sub, MatMul have
low SDC rates because faults in these operators are unlikely
to propagate much, e.g., faults at the convolution layer are
likely to propagate through the complex convolution oper-
ators, in which faults can quickly propagate and amplify.

However, faults in operators such as add and multiply
might be masked before propagating to the convolution
layer; or occur after the convolution layer. Therefore, faults
in these operators are less likely to cause SDCs, due to
limited fault amplification.

RQ3. In a CNN model, arithmetic operators such as Add, Mul,
MatMul, Sub, Div are more resilient to bit-flip faults than
convolution layer operators such as Conv, ReLU, MaxPool.

Fig. 8: Generated images of the digit 8 in the MNIST dataset under dif-
ferent configurations for GANs. Top row represents the Rand-element
model, while bottom row represents the single bit-flip model. Left
center is with no faults. The fault amount generally increases from left
to right, with the rightmost images having the highest number of faults.

4.2.4 GAN FI results
The FI results on GAN is presented in Figure 8. The set of
images in the top row, from columns (ii) through (vi), are
generated from setting the fault type to Rand-element, and
the set of corresponding images in the bottom row are gener-
ated from setting the fault type to Bitflip-element. Columns
(ii) and (iii) are from oneFaultPerRun, and dynamicInstance
error modes respectively. Columns (iv) to (vi) are generated
from the error rate mode. Column (iv) is generated by setting
the error rate to 25%, columns (v) and (vi) are generated
from error rates of 50% and 100% respectively. Thus as the
number of injected faults increases from left to right, we
can see the corresponding fault progression as the images
become more and more difficult to decipher.

The second row shows images obtained from similar
configurations as the first row, with the only difference being
that the fault type chosen is single bit flip. We observe that
with bit flip in the operators, the resulting faults in images
(vii) to (xi) tend to be more bipolar (i.e., have more black
and white pixels than shades of grey). This is likely because
with bit flips, the tensor values that store the image data
are toggled between being present (1) at a pixel or being
absent (0). As this error propagates into more operators, the
computations performed amplify this effect, and the resul-
tant end images have strong activated regions of black or
white. In the random value replacement mode, the injected
operators are replaced with values over the entire range,
thus causing the error propagation, and consequently the
generated pixels to also exhibit any values within the range.

4.3 TensorFI 2 Results
We use two of the fault types (Bitflips and Zeros) and
different configurations of TensorFI 2, for answering the
following RQs:

• RQ1: What are the SDC rates for faults in the layer
states (i.e. weights and biases) for different models?

• RQ2: What are the SDC rates for faults in the layer
computations (i.e. outputs) for different models?

• RQ3: What are the SDC rates for zero faults in the layer
states (i.e., effect of weight sparsity)?

• RQ4: What are the SDC rates for zero faults in the
convolutional layer states of CNN models?

Recall that TensorFlow 2 allows models to be defined in
three ways (Section 3). In addition to the defined RQs, we



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

Fig. 9: SDC rates for bit-flips and random value replacement faults in the layer states. Error bars range from ±0.97% to ±3.09% for bit-flips and
±0.01% to ±0.98% for random value replacement faults at the 95% confidence interval.

Fig. 10: SDC rates for bit-flips and random value replacement faults in the layer outputs. Error bars range from ±0.06% to ±3.08% for bit-flips
and ±0.01% to ±2.31% for random value replacement faults at the 95% confidence interval.

also perform experiments to confirm that FI results agree
for the same application irrespective of the way the model
is defined in the application (Section 4.3.5).

4.3.1 RQ1: Error resilience for different injection modes
and fault types in the layer states (weights and biases)
In this RQ, we study the effects of three different injection
modes (Table 4) for the bit-flip and random fault types in
the layer states (i.e. weights and biases) of different layers
in the model. Recall that this is static injection in the stored
states (Figure 2). This experiment gives us insights into how
different models perform with faults in the memory and
this type of injection into stored weights is different from
the experiments we did in TensorFI 1.

Figure 11 shows the SDC rates across different models
when a single bit-flip is injected over the entire model
(analogous to oneFaultPerRun injection mode in TensorFI 1)
and in each layer of the model (analogous to dynamicInstance

Fig. 11: SDC rates under bit-flip faults in weights and biases (from single
injection modes). Error bars range from ±0.53% to ±3.02% at the 95%
confidence interval.

in TensorFI 1). We observe that SDC rates vary considerably
across the different applications - this is consistent with the
FI results in TensorFI 1. As expected, injecting a bit-flip in
each layer produces a higher SDC than when injecting a
single bit-flip over the entire model because with more cor-
rupted values, there are higher chances of error propagation.

The differences in the SDC rates of different applications
is due to the number of layers in each application. For
example, ResNet, which has the highest number of layers
(50), gets injected with 50 bit-flips, and so has the highest
SDC rate. This is followed by VGG16 and SqueezeNet with
16 and 18 layers respectively. The other networks have only
3 to 8 layers and so have relatively low SDC rates. However,
the number of layers is not the only parameter that affects
the SDC rate, as we see that the same CNN model with two
different datasets, MNIST and CIFAR10, shows a significant
difference in the SDC rate.

Figure 9 shows the effect of multiple bit-flips and ran-
dom value replacement faults in randomly chosen layers of
the network. We vary the number of faults injected from 10
to 100 for this experiment. For the bit-flip fault type, we also
choose the bit position to be flipped randomly.

As expected, we find that SDC rates are higher with
more number of bitflips across all the applications (Figure 9,
left). We observe that NN and FCN, which are the simplest
models, have the lowest SDCs. We find that SqueezeNet and
VGG16 are the models with the highest SDC rates. ResNet,
in contrast, has lower SDCs rates than either of them even
though it is more complex. This is because ResNet has 50
layers compared to VGG16 and SqueezeNet, which have
only 16 and 18 layers respectively. Because we injected bit-
flips into a single randomly chosen layer’s weights, and the
influence of model’s layer weights are inverse proportional



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

to the number of layers, there is a higher chance for bit-flips
to be masked by the downstream layers in ResNet than in
VGG16 or SqueezeNet.

We observe that there is considerable difference in the
SDC rates for each model between the random value re-
placement fault type (Figure 9, right) and the bit-flips fault
we considered above. This is consistent with our findings
in the experimental results of TensorFI 1 (Section 4.2.2). In
general, we find that lower SDC rates occur for random
value replacement faults compared to bit-flips. This is be-
cause the value deviation that needs to occur to cause SDCs
is not as drastic for random value replacements. We further
find that RNN has the highest SDC rates for random value
replacement faults, similar to our previous findings. The
exact SDC values and the shape of the graph differ because
in our TensorFI 1 experiments, we considered the percentage
of values in the operator for FI, while in this experiment
we consider the number of values in the layer (errorRate
injection mode versus Amount in Table 4). Finally, we find
that VGG16 and SqueezeNet have low SDC rates under
random value replacement faults, with VGG16 having rates
less than 10% even with 100 random value replacements.
This is also consistent with our previous findings where
SqueezeNet and VGG11 have the lowest SDC rates for
random value replacement faults.

RQ1. Under weight injection, with a single bit-flip over the
entire model, NN and SqueezeNet are respectively the most and
least resilient; and with a single bit-flip in each model layer,
FCN and ResNet are respectively the most and least resilient.
When varying the amount of faults, with the bit-flip fault type,
NN and SqueezeNet are respectively the most and least resilient;
and with the random value replacement fault type, NN and
RNN are respectively the most and least resilient.

4.3.2 RQ2: Error resilience for different injection modes
and fault types in the layer computations (outputs)
In this RQ, we study the SDC rates for single and multiple
injection modes as before, but use a different injection target.
We inject faults into the output tensors of each layer i.e. the
activations or the layer computations instead of the layer
states. Recall that this injection is dynamic (Figure 2) in
the layer outputs, and is hence the closest in comparison
to the injection in the operator outputs of TensorFI 1. This
experiment gives us insights into the model resilience for
faults arising during computations.

Figure 12 shows the SDC rates for different applications
for a single bit-flip. We find that AlexNet and SqueezeNet

Fig. 12: SDC rates under single bit-flip faults in activations. Error bars
range from ±0.22% to ±0.85% at the 95% confidence interval.

exhibit the highest SDC rates in this experiment. With
TensorFI 1, while SqueezeNet exhibited similar SDC rates,
AlexNet exhibited the lowest SDC rate. This is because
we used the CIFAR-10 dataset in this experiment, whereas
earlier we used the model with the less complex MNIST
dataset. Recall that we observed earlier in RQ1 of TensorFI
2, that more complex datasets often result in higher SDCs.

Further, we find that the SDC rates for different applica-
tions with bit-flips in the layer outputs are greater than those
with bit-flips in the layer states. This is because the layer
states use different dynamic test inputs (during inference) to
produce the layer outputs, and so when faults are injected
into the states, they are more likely to be masked compared
to when faults are injected directly into the outputs.

Figure 10 shows the SDC rates for bit-flips and random
value replacement faults in the layer outputs‡. We find that
(1) SDC rates are higher for both fault types compared to
injections in the layer states, as seen previously for the single
FI mode, (2) SqueezeNet has the highest SDC rates for bit-
flips in the outputs and is comparable to the SDC rates
obtained in the TensorFI 1 experiments, (3) RNN has the
highest SDC rates once again for random value replacement
faults, (4) the CNN model with the MNIST dataset and
VGG16 have the lowest SDC rates with almost no SDCs
even when 100 random value replacements are injected and
(5) both AlexNet and SqueezeNet have almost no variance
between the number of random value replacements consid-
ered, suggesting that the interval might need to be larger
than 10 faults for observing a difference.

RQ2. Under layer computation injection, with a single bit-
flip over the entire model, NN and SqueezeNet are the most
and least resilient respectively. When varying the amount of
faults, with the bit-flip fault type, NN and SqueezeNet are the
most and least resilient respectively; and with the random value
replacement fault type, CNN-M and RNN are the most and
least resilient respectively.

4.3.3 RQ3: Error resilience under zero faults in the layer
states (weight sparsity)
The goal of this RQ is to study the effect of zero faults in
the layer states (i.e., weight sparsity) on the resilience of ML
models. ML models can have sparsity i.e. having most of the
values in the matrices as zeros. Exploiting sparsity allows
the model to have reduced storage and computation needs.
The zero fault type allows custom modeling of sparsity
through different injection modes and in different targets.
We use the zero fault type, and vary the amount of zeros in
the layer states from 10% to 100% in steps of 10%. The layer
is chosen randomly before injection in each FI trial.

Figure 13 shows the SDC rates for the different appli-
cations. We find that the maximum SDC rates even with
replacing all of a chosen layers’ weights or biases with zeros
are less than 55% across all the models except RNN which
exceeds 60% SDC rates at 80% sparsity. We find that AlexNet
has high SDC rates even at 10% sparsity and continues to
exhibit high SDC rates alongside RNN. On the other hand,
the smaller models have SDC rates less than 20% even at
80% sparsity. Further, the SDC rates plateau for some of

‡We exclude the results for ResNet because we were unable to inject
certain layers due to bugs in our implementation.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

the models in the mid-range of sparsity, before increasing
again. For example, for the CNN model with the CIFAR-
10 dataset, the SDC rates plateau at around 20% between
40% and 70% sparsity; while for the ResNet model, they
plateau between 70% and 90% sparsity. For the RNN and
SqueezeNet models, there are two and three plateau regions.
This is likely because the stored layer weights are usually
redundant. This result can be used to choose the optimal
sparsity for the SDC rate. For example, if the user can have
30% SDC rates in the SqueezeNet model, they can choose
60% sparsity rather than 50% as both have similar resilience,
and more sparsity typically means lower resource usage.

RQ3. Under the zero fault type and with varying the amount
of faults, CNN-M and RNN are the most and least resilient
respectively.

4.3.4 RQ4: Error resilience under zero faults in the convo-
lutional layer states

The goal of this RQ is to understand how sparsity in
the convolutional layer states affects model resilience. We
consider only Convolutional Neural network (CNN) models
for this experiment as only they have convolutional layers.
We use the zero fault type as before, but vary the amount of
zeros in the states of a particular layer. We choose the first
convolutional layer to inject faults into. We vary the sparsity
from 10% to 100% in steps of 10%.

Figure 14 shows the SDC rates for the 7 eligible models.
We find that LeNet is the most resilient model, having low
SDC rates even with 90% of the first convolutional layer
states having zero faults. The CNN model with the MNIST
dataset exhibits similar SDC rates, and is the only other
CNN architecture used with MNIST. The high resilience
is because the number of parameters required to learn the
MNIST dataset is very small, and so even with as few as
10% or 20% of the convolutional layer states, the models are
able to predict the test images correctly.

After LeNet and CNN-MNIST models, the AlexNet and
VGG16 models exhibit the next higher SDC rates. These
two models have an almost linear increase in SDC with
increase in convolutional layer sparsity, e.g., they have 30%
SDC rates even at 10% sparsity. This shows that the weight
matrices learned by the models for the first convolutional
layer are more dense than the LeNet and CNN-MNIST
models, and so it is more important for correct classification.
The models with the highest SDC rates are the CNN-CIFAR-
10, ResNet and SqueezeNet. Even though the ResNet and

Fig. 13: SDC rates under zero faults in weights and biases. Error bars
range from ±0.05% to ±3.06% at the 95% confidence interval.

Fig. 14: SDC rates under zero faults in the convolutional layer states.
Error bars range from ±0.01% to ±2.75% at the 95% confidence
interval.

TABLE 7: SDC rates for bitflips in the NN-MNIST model

Bit-flips Sequential Functional Subclassing
10 0.0882 0.0819 0.0906
20 0.1395 0.1402 0.1376
30 0.1981 0.2212 0.193
40 0.2504 0.2576 0.2459
50 0.2852 0.3077 0.3102
60 0.3090 0.3287 0.3284
70 0.3551 0.3709 0.368
80 0.3986 0.3987 0.393
90 0.4363 0.4283 0.429
100 0.4480 0.4594 0.4421

SqueezeNet models have 30 and 18 convolutional layers
respectively, this result shows that the first convolutional
layer is more important for prediction than for all the other
models. The CNN models have 3 convolutional layers.
However, when the CNN model is used with the CIFAR-
10 dataset, it exhibits high SDC rates. This is because the
neural network encodes information differently for different
datasets and for the CIFAR-10 dataset, the first convolu-
tional layer is more important for correct classification than
for the MNIST dataset.

RQ4. In CNN models, under zero faults in the first convolu-
tional layer states, LeNet and SqueezeNet are the most and least
resilient respectively.

4.3.5 Error resilience for the same application defined us-
ing three different methods
For this experiment, we perform injections on one appli-
cation using one fault configuration and define the model
using the three different methods - using the Keras sequen-
tial, functional and subclassing APIs. We choose the neural
network model with the MNIST dataset as the application,
and inject multiple bit-flips in the layer states.

Table 7 shows the SDC rates when varying the number
of bitflips from 10 to 100 in steps of 10 for the same model
defined three ways. We perform 10000 injections for each
model and configuration. We observe that the SDC rates are
similar between the three model definitions and the varia-
tions are within the error bars. This shows that the model’s
resilience does not depend on which of the three high level
APIs are used to define it in TensorFlow 2 (Section 3).

4.4 Overheads: TensorFI 1 vs 2
In this section, we present the injection overheads between
the two frameworks on a per application basis.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

TABLE 8: Overheads for the program (baseline); with instru-
mentation, without FI (disable FI); with FI (enable FI)

ML model Baseline TFI 1 TFI 2 Overheads
(in s) (in s) (in s) TFI 1 TFI 2

NN 0.16, 0.15 13.50 6.09 83.3x 39.60x
FCN 1.03, 0.37 86.53 14.13 83.0x 37.19x
CNN 0.23, 0.21 25.94 7.48 107.x 34.62x
LeNet 0.22, 0.21 17.44 8.13 78.3x 37.71x

AlexNet 0.58, 1.78 45.24 52.14 77.0x 28.29x
RNN 2.39, 0.59 145 18.48 59.6x 30.32x
VGG 0.82, 0.66 29.1 25.94 34.5x 38.30x

ResNet 3.76, 1.24 300 46.04 78.8x 36.13x
SqzNet 1.01, 0.45 22 16.13 21.0x 34.85x
Average 1.13, 0.63 76.08 21.62 77.8x 35.22x

We measure the average execution time for performing
FI. We consider the execution time for the TensorFlow 1
and 2 programs as a baseline for 50 predictions. Then we
measure the time taken for 50 predictions after the FI trials
(single bit-flips) from TensorFI 1 and 2. Since there are
some differences between the models used in TensorFI 1
and 2, we report the different baselines for each, and sub-
sequently calculate the respective overheads. For TensorFI
2, we consider the dynamic injections (bit-flips in layer
activations/outputs) as this incurs much more overhead
than static injection, and is the type of injection comparable
to TensorFI 1. These measurements are shown in Table 8.

As can be observed, the FI overheads are higher for
TensorFI 1, ranging from 21x to 131x. This is because we are
emulating the TensorFlow operators during FIs in Python,
and cannot benefit from the optimizations and low-level
implementation of TensorFlow. The TensorFI 2 overheads
in contrast are on average, around 35x. This is because we
have no duplication in TensorFI 2 and so the overheads
are lower. Further, they do not vary based on how many
operators or layers the model may have, and hence TensorFI
2 has lower variation in overheads than TensorFI 1 across
different models. Therefore, TensorFI 2 is more than twice as
fast as TensorFI 1 for injecting similar faults.

While the overheads may seem high, we report the
actual time taken by the FI experiments to put these num-
bers in perspective. In our experiments, the most time-
consuming experiment is on the ResNet and Highway CNN
models, which took less than 16 hours to complete. How-
ever, on average, most of our experiments took 3-4 hours
for injecting 10, 000 faults, which is quite reasonable.

4.5 Threats to Validity

Internal validity. We have chosen image classification
models as these were one of the most popularly used ML
applications. To mitigate the bias from application choosing,
we have included experiments with diverse models such as
GAN, object detection and comma.ai steering models.

External validity. While we have considered the com-
mon ML benchmarks used in reliability studies, real-world
safety-critical ML systems typically have other components.
For example, the software powering AVs employ a com-
bination of perception, planning, control, localization and
prediction modules. We have not considered these modules
as our toolset is specific to ML applications.

Fig. 15: SDC rates in different variations of the NN model. Error bars
range from ±0.7928% to ±0.9716% at the 95% confidence interval.

Construct validity. We choose SDC as the standard metric
for evaluating the resilience. This helps us avoid the cases
where incorrect classification occurs due to reasons other
than the particular fault under consideration.

Conclusion validity. To mitigate the effect of statistical
anomalies on our conclusions, for each data point on the
graph, we have performed 10,000 FI runs and report the
values with error bars within a 95% confidence interval.
5 CASE STUDIES

We present four case studies in this section, two for each
tool to demonstrate their utility.

5.1 TensorFI 1

In this section, we perform two case studies to demonstrate
the utility of TensorFI 1 in enhancing the error resilience
of ML models. The first case study considers the effect
of hyperparameter variations to tune for resilience, while
the second considers the effect of per-layer protection in a
DNN. We use the NN and CNN models from our TensorFI
1 experiments for these.

5.1.1 Effect of Hyperparameter Variations
In this first case study, we empirically analyze the effects
of hyperparameter variation on the error resilience of a
simple neural network model [41]. We consider three hy-
perparameters, namely: (i) number of layers - 2, 3, 4; (ii)
number of neurons in each layer - 16, 32, 64, 128, 256 and
512; and (iii) optimizers for model training - Adam [42]
and RMSProp [43]. This constitutes a total of 36 different
models (3*6*2 = 36), on which we use TensorFI 1 to evaluate
their error resilience. In this study, we consider the single
bit-flip fault model, and oneFaultPerRun injection mode. We
perform 10000 injections for each model configuration.

Fig. 15 shows the SDC rates for the NN model under
different number of layers and neurons. The networks in
Fig. 15 are all trained with the Adam optimizer. We observe
a similar trend in the networks trained with the RMSProp
optimizer, and hence do not report them. In other words, the
choice of the optimizer does not affect the SDC percentages.

We first examine the results of increasing the number
of neurons. As can be seen in Fig. 15, the SDC percentages
decrease with the increase in the number of neurons. To
understand the reason behind this, we studied the accuracy
of the models trained with different number of neurons



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

Fig. 16: Accuracy in different variations of the NN model.

TABLE 9: Layerwise resilience in a CNN model

Layer Operators within the layer Avg SDC rate
1st Conv Add, Relu, Conv, Maxpool 0.3102
2nd Conv Add, Relu, Conv, Maxpool 0.2275

Fully Connected Add, MatMul, Relu 0.1429
Output Add, MatMul 0.0499

ranging from 16 to 512. The results are shown in Figure 16.
As can be seen, the accuracy remains more or less constant
with the increase in the number of neurons. In other words,
adding more neurons does not increase the accuracy, hence
these additional neurons are redundant, which increases the
resilience of the model. Therefore, adding more neurons is
beneficial to resilience (in this case).

Second, we examine the results for varying the number
of layers from 2 to 4 in Fig. 15. We find that the SDC rate
initially decreases from 2 to 3 layers, but increases from 3
to 4 layers. This shows that unlike the number of neurons,
there may not be a direct correlation between the SDC rate
and the number of layers (however, we cannot determine
whether the increase and decrease of the SDC rate is a
statistical anomaly). Our tool set helps us to experimentally
vary the hyperparameters and find the optimal values for
different fault types and amounts in any ML model.

5.1.2 Layer-Wise Resilience
In the second case study, we study the layer-wise resilience
in a CNN. The goal is to evaluate the resilience of the
different layers in the network, and identify those that are
most susceptible to transient faults. This could guide cost-
effective resilience techniques to selectively protect them.

We inject faults into the instances of different operators,
and coalesce the result based on the layers. We used the
same single bit-flip model and the oneFaultPerRun fault
mode as in the previous case study. For instance, the first
layer consists of 4 operators: Add, Relu, Conv and MaxPool.
We inject faults into these operators, and measure the SDCs.

We summarize these results in Table 9. As can be seen,
the SDC rate decreases as the layer numbers increase. (i.e.,
the first layer has the highest SDC rate). This is because these
layers consist of the operators (Relu, Conv and Maxpool)
that are vulnerable to transient faults (Fig.7). Though the
first two layers include the same type of operators, the
former has higher SDC rate. This is because faults occurring
in the earlier layers have a longer fault propagation path,
and thus more values are likely to be corrupted during fault

Fig. 17: The number of correct predictions for each class in GTSRB for
different numbers of bit-flips (legend) in the first convolutional layer.

propagation. Therefore, based on the results, one should
protect the earlier layers of the network first, if the protec-
tion overhead is limited.

5.2 TensorFI 2

In this section, we perform two case studies to show how
TensorFI 2 can be applied for understanding and improving
the resilience of applications. The first case study aims to
understand how single bit-flips affect different classes of
traffic signs. The second case study explores how bit-flips
in different layers affects image segmentation and conse-
quently object detection. We use two new models apart
from the 10 ML applications we used in our TensorFI 2
experiments for the following case studies. We use bit-flip
fault type for both studies. We use the injection in layer
outputs for the first study, and injection in layer states for
the second study.

5.2.1 Understanding resilience to bit-flips in a traffic sign
recognition model: Are certain classes more vulnerable?
The goal of this experiment is to understand if certain image
classes are more vulnerable than others to faults. For this
experiment, we choose the GTSRB dataset, which has 43
distinct classes of traffic signs, and a CNN model with two
convolutional layers. We choose dynamic injection of bit-
flips in the first convolutional layer output. We vary the
amount of bit-flips from 10 to 100 in steps of 10. After we
train the model, we choose 30 test inputs from each class of
43 traffic signs in the dataset that are predicted correctly (in
the absence of faults). We perform 1000 FI trials for each test
input in each class, and plot the mean number of images
that are predicted correctly in Figure 17.

From Figure 17, we can see that out of 30 test inputs,
around 25 get classified correctly for almost all the classes
when 10 bit-flips are injected. However, increasing the num-
ber of bit-flips decreases the number of images classified
correctly (as expected). Further, the difference in the amount
of correct predictions grows more pronounced among the
different classes as we increase the number of bit-flips.

We find that certain classes of images are more vulner-
able than others. We examine the top 5 most and least vul-
nerable classes of images respectively. Classes 12, 13, 38, 35
and 29 (in that decreasing order) are the most resilient, and
have between 9 and 6 images out of 30 classified correctly
even in the presence of a 100 bit-flips. Classes 19, 31, 8, 6



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 16

and 42 (in that increasing order), are the least resilient, and
have between 2 and 4 images out of 30 classified correctly
in the presence of 100 bit-flips. Also, there is a significant
difference between the percentages of correctly predicted
images of the most resilient (class 12 with 29.03%) and the
least resilient (class 19 with 9.31%) classes.

Figure 18 shows some of the test images belonging
to each of these 10 classes, chosen randomly. In general,
we find that the more resilient traffic signs are those that
are sufficiently unique, and have enough representation in
the dataset (refer the relative class frequencies data in the
GTSRB dataset [27]). For example, the most resilient Class
12 is the “Priority Road Sign” followed by Class 13, the
“Yield Sign”. We find that there is no other yellow diamond
sign or inverted triangle sign in the dataset, and that both
these classes have enough training images in the dataset
[27]. While the mandatory blue road signs (Classes 33 to
40) all have above average resilience, we find the most
resilient (Classes 38 and 35) have a high representation in
the dataset. An exception is Class 29, which has relatively
low occurrence of training images. However, it is only the
fifth most resilient class, and its value is only slightly higher
than the average.

Though some of the least resilient classes have mod-
erately sufficient representation in the training dataset
(Classes 31 and 8), we found that almost all the test im-
ages of these two classes as well as Class 19 had minimal
brightness, low contrast or were blurry. This could have led
to their misclassifications under faults. Classes 6, 31, 41 and
42 are all “No More Restrictions Signs” which are the only
crossed out grayscale signs in the dataset. We find that these
classes have low resilience values indicating that color is
also important for the correct prediction of road signs.

5.2.2 Visualizing resilience to bit-flips at lower levels of
object detection: Is it possible to identify the layer at which
bit-flips occur from analysing the faulty masks predicted?
The goal of this experiment is to visualize how faults in
different layers in DNNs affect the outcome of object de-
tection. This is useful for identifying the layer in which the
faults occurred. Further, it also provides us with a visual
understanding of how the neural network “sees” in the
presence of faults.

Image segmentation is an important part of object de-
tection, and has applications in AVs, satellite and medical
imaging [44]. We use image segmentation as the target
application in our experiment. We use the modified U-Net

Fig. 18: Top 5 most (upper) and least resilient (lower) traffic signs and
their GTSRB classes to bit-flips in the first convolutional layer.

from the TensorFlow tutorial [44] with the Oxford-IIIT Pet
Dataset [45]. The dataset consists of 37 categories of different
dog and cat breeds. To identify where an object is located
in the image, the image segmentation component outputs
a pixel-wise mask of the image. Each pixel of the image is
assigned one of three labels, (i) belonging to the pet, (ii)
bordering the pet, or (iii) surrounding pixel.

After we have trained the model, we inject faults into the
different layer states of the decoder or upsamplerof the U-
Net. The upsampler encodes the states back into the higher
dimensional format using the reverse Conv2DTranspose
layers. There are 4 blocks in the upsampler, followed by the
last Conv2DTranspose layer which effectively reshapes the
image into the original pixel dimensions by convolving over
the upsampled data. We inject 100 bit-flips into either one
of the 4 Conv2DTranspose layer weights in the upsample
blocks, or in the final Conv2DTranspose layer. We will refer
to the these Conv2DTranspose layers into which we inject
faults as convolutional layers henceforth.

The resulting predicted masks for 5 test images in the
presence of faults is shown in Figure 19. The first and second
columns show the original images, and the correct masks for
the images respectively. The third to the seventh columns
show the faulty masks predicted when faults were injected
into one of the five convolutional layers in order.

We make three main observations. First, we find that
faults in the initial layers result in higher disruption (i.e.,
an unrecognizable mask) compared to faults in the latter
layers. This is in line with a previous result from the second
case study of TensorFI 2 (Section 5.1.2), where we found that
faults in initial layers lead to higher SDC rates because they
have a longer fault propagation path. This effect is especially
pronounced when convolutional operations are involved,
where faults in one value propagate to two or more values.

The second observation is that there are repeating units
of faulty areas in the predicted masks. These are larger for
faults in the initial layers, and smaller for faults in the latter
layers. To understand this, consider the predicted masks
from faults in the first layer. 4x4 dimensional tensors are up-
sampled to 8x8, 16x16, 32x32, 64x64 and finally 128x128 after
each layer. This means that when 100 bit-flips injected into
the first layer, they have a higher likelihood of spreading
out more by the time they reach the final layer compared to
them being injected in the final layer. Since all the five layers
have the same filter sizes and strides in our model, we can
observe that the dimension of the faulty units gets halved
as we move each step to the right to the final layers.

The third observation is that we can identify the layer
at which faults occur based on the final output. Although
the faulty masks shown are the outcomes of a single in-
jection, we show different predicted masks for the same
fault configuration (of 100 bit-flips) in the first convolutional
layer in Figure 20. Each instance produces a different pattern
because these are random FIs, and the faults are propagated
differently based on their values. However, across all these
different images, the size of the faulty unit is the largest
in the first layer. This size depends on the dimension and
number of the upsample blocks used in the decoder. We
have four blocks and the first upsample block converts a 4x4
to 8x8 image using the Conv2DTranspose operation. In the
final faulty outputs in Figure 20, we can see the faulty unit



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 17

Fig. 19: Predicted faulty masks for bit-flips in different layers of the image segmentation model. The first column is the original image, the second
column is the predicted mask in the absence of faults. The remaining columns show the predicted mask after a fault in the ith convolutional layer,
where i ranges from 1 to 5.

repeated 4x4 times. Similarly, for the second upsample block
that converts 8x8 images to 16x16, we see the faulty unit
repeated 8x8 times in Figure 19 and so on. This observation
helps us identify the layer in which the faults originated.

6 CONCLUSION

We present the TensorFI tool set, which consists of generic
fault injection frameworks TensorFI 1 and TensorFI 2, for ML
applications written using TensorFlow 1 and 2 respectively.
They are configurable and can be easily integrated into
existing ML applications. They are portable, and are also
compatible with third party libraries that use TensorFlow.
We use TensorFI 1 to study the resilience of 11 TensorFlow
ML applications under different fault configurations, in-
cluding one used in AVs, and also to improve the resilience
of selected applications via hyperparameter optimization

Fig. 20: 8 instances of faulty masks predicted for the same fault
configuration in the first layer for the same test image (far left).

and selective layer protection. We use TensorFI 2 to study
the resilience of 10 TensorFlow applications and illustrate
its utility in understanding the resilience of a traffic sign
recognition model and an image segmentation model.

ACKNOWLEDGEMENTS

This work was supported in part by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC), and Huawei Corporation.
This manuscript has been approved for unlimited release and assigned
LA-UR-22-24399. This work has been co-authored by an employee
of Triad National Security, LLC which operates Los Alamos National
Laboratory under Contract No. 89233218CNA000001 with the U.S.
Department of Energy/National Nuclear Security Administration. The
publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevo-
cable, world-wide license to publish or reproduce the published form
of the manuscript, or allow others to do so, for U.S. Govt. purposes.

REFERENCES

[1] S. S. Banerjee et al., “Hands off the wheel in autonomous vehicles?:
A systems perspective on over a million miles of field data,”
in 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2018.

[2] K. D. Julian et al., “Policy compression for aircraft collision avoid-
ance systems,” in 2016 IEEE/AIAA 35th Digital Avionics Systems
Conference (DASC), 2016.

[3] “Functional safety methodologies for automotive applications.”
[Online]. Available: https://www.cadence.com/content/
dam/cadence-www/global/en US/documents/solutions/
automotive-functional-safety-wp.pdf

[4] M.-C. Hsueh et al., “Fault injection techniques and tools,” Com-
puter, vol. 30, no. 4, pp. 75–82, 1997.

https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/solutions/automotive-functional-safety-wp.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/solutions/automotive-functional-safety-wp.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/solutions/automotive-functional-safety-wp.pdf


IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 18

[5] D. T. Stott et al., “Nftape: a framework for assessing dependability
in distributed systems with lightweight fault injectors,” in Pro-
ceedings IEEE International Computer Performance and Dependability
Symposium. IPDS 2000. IEEE, 2000, pp. 91–100.

[6] J. Carreira et al., “Xception: Software fault injection and monitoring
in processor functional units,” Dependable Computing and Fault
Tolerant Systems, vol. 10, pp. 245–266, 1998.

[7] J. Aidemark et al., “Goofi: Generic object-oriented fault injection
tool,” in 2001 International Conference on Dependable Systems and
Networks. IEEE, 2001, pp. 83–88.

[8] P. D. Marinescu et al., “Lfi: A practical and general library-level
fault injector,” in 2009 IEEE/IFIP International Conference on Depend-
able Systems & Networks. IEEE, 2009, pp. 379–388.

[9] A. Thomas et al., “Llfi: An intermediate code level fault injector for
soft computing applications,” in Workshop on Silicon Errors in Logic
System Effects (SELSE), 2013.

[10] J. Wei et al., “Quantifying the accuracy of high-level fault injection
techniques for hardware faults,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
2014, pp. 375–382.

[11] M. Abadi et al., “Tensorflow: A system for large-scale machine
learning,” in 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[12] A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing
Systems, 2019, pp. 8024–8035.

[13] https://docs.microsoft.com/en-us/cognitive-toolkit/.
[14] G. Li et al., “Understanding error propagation in deep learning

neural network (dnn) accelerators and applications,” in Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2017.

[15] B. Reagen et al., “Ares: A framework for quantifying the resilience
of deep neural networks,” in 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[16] Z. Chen et al., “Binfi: An efficient fault injector for safety-critical
machine learning systems,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2019.

[17] M. Sabbagh et al., “Evaluating fault resiliency of compressed
deep neural networks,” in 2019 IEEE International Conference on
Embedded Software and Systems (ICESS). IEEE, 2019, pp. 1–7.

[18] L. Ma et al., “Deepmutation: Mutation testing of deep learning
systems,” in 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2018, pp. 100–111.

[19] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao, “Deepmutation++:
A mutation testing framework for deep learning systems,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2019, pp. 1158–1161.

[20] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep
learning library testing via effective model generation,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 788–799. [Online].
Available: https://doi.org/10.1145/3368089.3409761

[21] Q. Guo, X. Xie, Y. Li, X. Zhang, Y. Liu, X. Li, and C. Shen,
“Audee: Automated testing for deep learning frameworks,”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 486–498.
[Online]. Available: https://doi.org/10.1145/3324884.3416571

[22] A. Mahmoud et al., “Pytorchfi: A runtime perturbation tool for
dnns,” in 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W). IEEE, 2020,
pp. 25–31.

[23] Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman,
and N. DeBardeleben, “Tensorfi: A flexible fault injection
framework for tensorflow applications,” in 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE).
Los Alamitos, CA, USA: IEEE Computer Society, oct 2020,
pp. 426–435. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/ISSRE5003.2020.00047

[24] N. P. Kropp et al., “Automated robustness testing of off-the-shelf
software components,” in Fault-Tolerant Computing, 1998. Digest of
Papers. Twenty-Eighth Annual International Symposium on, 1998, pp.
230–239.

[25] A. Lanzaro et al., “An empirical study of injected versus actual
interface errors,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis. ACM, 2014, pp. 397–408.

[26] https://towardsdatascience.com/deep-learning-framework-
power-scores-2018-23607ddf297a.

[27] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel,
“Detection of traffic signs in real-world images: The German
Traffic Sign Detection Benchmark,” in International Joint Conference
on Neural Networks, no. 1288, 2013.

[28] [Online]. Available: https://www.tensorflow.org/guide/
effective tf2

[29] S. Hong et al., “Terminal brain damage: Exposing the graceless
degradation in deep neural networks under hardware fault at-
tacks,” arXiv preprint arXiv:1906.01017, 2019.

[30] K. Pei et al., “Deepxplore: Automated whitebox testing of deep
learning systems,” in proceedings of the 26th Symposium on Operating
Systems Principles, 2017, pp. 1–18.

[31] N. Akhtar et al., “Threat of adversarial attacks on deep learning in
computer vision: A survey,” IEEE Access, vol. 6, 2018.

[32] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman,
“Llfi: an intermediate code-level fault injection tool for hardware
faults,” in Software Quality, Reliability and Security (QRS), 2015 IEEE
International Conference on, 2015.

[33] https://www.tensorflow.org/api docs/python/tf/keras/Model.
[34] “comma.ai’s steering model.” [Online]. Available: https://github.

com/commaai/research
[35] Y. LeCun and C. Cortes, “MNIST handwritten digit database,”

2010. [Online]. Available: http://yann.lecun.com/exdb/mnist/
[36] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a

novel image dataset for benchmarking machine learning
algorithms,” CoRR, vol. abs/1708.07747, 2017. [Online]. Available:
http://arxiv.org/abs/1708.07747

[37] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian
institute for advanced research).” [Online]. Available: http:
//www.cs.toronto.edu/∼kriz/cifar.html

[38] “Driving dataset.” [Online]. Available: https://github.com/
SullyChen/driving-datasets

[39] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Ima-
geNet: A Large-Scale Hierarchical Image Database,” in CVPR09,
2009.

[40] S. Du, et al., “Self-driving car steering angle prediction based
on image recognition,” Department of Computer Science, Stanford
University, Tech. Rep. CS231-626, 2017.

[41] https://github.com/aymericdamien/TensorFlow-Examples.
[42] D. P. Kingma et al., “Adam: A method for stochastic optimization,”

2014.
[43] T. Tieleman et al., “Lecture 6.5—RmsProp: Divide the gradient by

a running average of its recent magnitude,” COURSERA: Neural
Networks for Machine Learning, 2012.

[44] [Online]. Available: https://www.tensorflow.org/tutorials/
images/segmentation

[45] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar, “Cats
and dogs,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2012.

AUTHOR BIOGRAPHIES
• Niranjhana Narayanan received her MASc from the University of

British Columbia in 2021 and her B. Tech from IIT Madras, India in
2017. She is currently a software engineer at Neat.

• Zitao Chen is a PhD student at the University of British Columbia
(UBC). He received his BEng in Computer Sciences at the China
University of Geosciences (Wuhan) in 2018, and MASc from UBC.

• Bo Fang received his MASc and Ph.D. degrees from the University of
British Columbia. He is a computer scientist at the Pacific Northwest
National Laboratory.

• Guanpeng Li received his BASc (2014) and PhD (2019) degrees from
the University of British Columbia, and joined the Department of
Computer Science at the University of Iowa as an assistant professor.

• Karthik Pattabiraman is a Professor of Electrical and Computer
Engineering at the University of British Columbia (UBC).

• Nathan DeBardeleben is a senior research scientist at Los Alamos
National Laboratory and co-executive director of the Ultrascale Sys-
tems Research Center.

https://doi.org/10.1145/3368089.3409761
https://doi.org/10.1145/3324884.3416571
https://doi.ieeecomputersociety.org/10.1109/ISSRE5003.2020.00047
https://doi.ieeecomputersociety.org/10.1109/ISSRE5003.2020.00047
https://www.tensorflow.org/guide/effective_tf2
https://www.tensorflow.org/guide/effective_tf2
https://github.com/commaai/research
https://github.com/commaai/research
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1708.07747
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/SullyChen/driving-datasets
https://github.com/SullyChen/driving-datasets
https://www.tensorflow.org/tutorials/images/segmentation
https://www.tensorflow.org/tutorials/images/segmentation

	Introduction
	Overview and Fault Model
	Background
	ML Applications
	TensorFlow 1 and 2

	Related Work
	Fault Model

	Methodology
	Design Constraints
	TensorFI 1
	Design Alternatives
	Key Idea
	Implementation

	TensorFI 2
	Design Challenges
	Design Alternatives
	Key Idea
	Implementation

	Satisfying Design Constraints
	Configuration
	Fault types
	Injection modes


	Evaluation
	Experimental Setup
	ML Applications
	ML Datasets
	Metrics
	Experiments

	TensorFI 1 Results
	RQ1: Error resilience for different injection modes
	RQ2: Error resilience under different error rates
	RQ3: SDC rates across different operators
	GAN FI results

	TensorFI 2 Results
	RQ1: Error resilience for different injection modes and fault types in the layer states (weights and biases)
	RQ2: Error resilience for different injection modes and fault types in the layer computations (outputs)
	RQ3: Error resilience under zero faults in the layer states (weight sparsity)
	RQ4: Error resilience under zero faults in the convolutional layer states
	Error resilience for the same application defined using three different methods

	Overheads: TensorFI 1 vs 2
	Threats to Validity

	Case Studies
	TensorFI 1
	Effect of Hyperparameter Variations
	Layer-Wise Resilience

	TensorFI 2
	Understanding resilience to bit-flips in a traffic sign recognition model: Are certain classes more vulnerable?
	Visualizing resilience to bit-flips at lower levels of object detection: Is it possible to identify the layer at which bit-flips occur from analysing the faulty masks predicted?


	Conclusion
	References

